CN101622367A - 含铌的高强度灰铸铁 - Google Patents

含铌的高强度灰铸铁 Download PDF

Info

Publication number
CN101622367A
CN101622367A CN200880006275A CN200880006275A CN101622367A CN 101622367 A CN101622367 A CN 101622367A CN 200880006275 A CN200880006275 A CN 200880006275A CN 200880006275 A CN200880006275 A CN 200880006275A CN 101622367 A CN101622367 A CN 101622367A
Authority
CN
China
Prior art keywords
cast iron
weight percent
alloy
equal
gray cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880006275A
Other languages
English (en)
Inventor
J·W·埃登伯恩(已故)
J·K·贾斯扎罗维斯基
R·W·康科林
L·W·玛西尼
M·J·莫蒂尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Publication of CN101622367A publication Critical patent/CN101622367A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

本发明涉及一种灰铸铁合金。所述灰铸铁合金包含大约3.05至大约3.40重量百分比的碳、大约0.05至大约0.3重量百分比的铌和大约1.75至大约2.3重量百分比的硅。所述灰铸铁合金还包含小于或等于大约0.06重量百分比的镍。

Description

含铌的高强度灰铸铁
技术领域
本发明总体涉及灰铸铁,更具体而言,本发明涉及具有高强度的灰铸铁。
背景技术
一般而言,铸铁是铁、碳和硅的合金,其中,碳的存在量比共晶温度下奥氏体固态溶液中可能保持的碳更多。铸铁中碳的含量通常大于1.7%和小于4.5%。工业应用中存在着多种类型的铸铁。作为炼铁高炉产物的生铁可以被认为是铸铁,因为它是被铸造成锭或块(其随后用于再熔和铸造成最终形式)的铁。另外一种合金铁是奥氏体铸铁,其通过添加镍和其它元素进行改造以降低其转变温度,以使得在室温或常温下其结构是奥氏体的。奥氏体铸铁通常被用于需要高度耐腐蚀性的应用中。白铸铁是铸铁的一种类型,其中,几乎所有的碳与铁相结合形成渗碳体。通常白铸铁被用于需要高耐磨性的应用中。另一类的铸铁被称为可锻铸铁。可锻铸铁是通过将白铸铁进行退火以改变铁中碳的结构而制成的。通过退火,白铸铁中的渗碳体分解成为小的石墨致密颗粒(而不是灰铸铁中观察到的片状石墨),从而增加了材料的延展性。还有另外两类铸铁,它们是可延展的,被称为球墨铸铁(nodular iron)和延性铸铁(ductile cast iron)。球墨和延性铸铁是通过添加锰或铝制成的,其或者以结合状态束缚住碳,或者使游离碳成为球形或结节状。这一结构为铸造提供了更大的延展性或可锻性。此外还有包含少量铬、镍、钼、铜或其它用于提供特定性质的元素的合金铸铁。这些合金通常提供更高强度的铸铁。高强度铁的主要用途之一为铸造汽车曲轴。这些合金有时候被称为半钢或以其专用商标名称相称。
应用最广的铸铁类型被称为灰铁。其大规模的产量超过了其它任何铸造金属的产量。灰铁的组成各式各样,但是通常情况下其基质(matrix)结构主要是在整个范围内分散着许多片状石墨的珠光体。灰铸铁的弯曲能力和延展性非常低。延展性低是由于存在片状石墨,其起到间断面的作用。灰铸铁具有多种材料性质,例如低浇注温度、高流动性、低液态至固态收缩性等,这些性质使得灰铸铁适宜铸造。灰铸铁还容易得到,并且是最便宜的铁质材料形式之一。广泛应用灰铸铁的一个工业领域是汽车工业。使用合金元素调整灰铸铁性质的能力使其适用于制造不同的汽车部件。例如,经过调整具有耐热疲劳性的灰铸铁组合物被用于制造发动机组和气缸盖,而经过调整具有高热传导性和比热容的灰铸铁组合物被用于制造刹车片。
为了满足新的性能要求和更加严格的汽车排放标准,要求发动机比以前制造的发动机在更高的温度和更高的压力下运行。更高的温度和更高的压力需要增加灰铸铁的强度和提高灰铸铁的耐热疲劳性。这对于发动机气缸盖而言尤为重要。发动机气缸盖由于与燃烧室非常近,其最容易受到热疲劳损伤和发生蠕变。在燃料燃烧过程中,燃料室中的气体温度可接近1300°F,压力可接近160MPa。该热量可以传导至气缸盖。为了避免在吸气冲程中热量传导回燃烧室内的吸入空气中(其降低吸气效率并最终降低发动机效率),可以使冷却液经过气缸盖中的通道进行循环来冷却气缸盖。在发动机操作过程中对气缸盖进行的循环加热和冷却与由气缸壁上的压力产生的高机械应力相结合,使得气缸盖非常容易发生热疲劳和蠕变。研究显示,灰铸铁气缸盖的抗热疲劳和蠕变性取决于灰铸铁中合金元素的组成。
传统上,钼(Mo)和钒(V)是已知提高耐热疲劳性的最有效的促进剂。在传统合金元素中,这两种元素被认为对于优化灰铸铁的共晶团(eutectic cell)大小以提高耐热疲劳性是独一无二的。于1993年9月7日授权于Begin的美国专利5242510(下面称为510专利)公开了含钼的灰铸铁,用以提高汽车组件的高温热疲劳抗性。510专利中公开的铸铁合金的碳含量为3.4重量百分比至3.6重量百分比,主要的合金添加物为含量为0.25百分比至0.4百分比的钼和含量为大约0.3百分比至0.6百分比的铜的组合。510专利中的铸铁合金还包含大约1.8百分比至2.1百分比的硅、大约0.5至0.9百分比的锰,以及不大于0.25百分比的铬和0.15百分比的硫。由专利510的铁合金铸造的样品显示了具有优化的共晶团大小的全珠光体基质的微观结构。该微观结构还显示出任意位向的基本均匀的石墨分布。510专利微观结构中的石墨的片大小主要为5-7ASTM。由510专利的合金铸造的样品还显示出抗拉强度为至少40000psi(≈276MPa),硬度为大约179至大约229BHN。
尽管510专利中的灰铸铁合金具有可接受的耐热疲劳性和强度,但是含钼灰铸铁合金的成本可能很高。随之灰铸铁材料成本的增加会对该材料在汽车(和其它商业)应用中的适用性造成负面影响。因此,在商业应用中需要具有良好的耐热疲劳性和强度的低成本灰铸铁合金。
本发明旨在克服现有技术中高强度灰铸铁的一个或多个缺陷。
发明内容
本发明的一个方面公开了一种灰铸铁合金。该合金包含大约3.05至大约3.40重量百分比的碳、大约0.05至大约0.3重量百分比的铌和大约1.75至大约2.3重量百分比的硅。该合金还包含小于或等于大约0.06重量百分比的镍。
本发明的另一个方面公开了一种包含大约3.05至大约3.40重量百分比的碳、大约0.05至大约0.3重量百分比的铌和大约0.04至大约0.15重量百分比的硫的灰铸铁合金。该合金中的碳基本以ASTM A247中限定的具有3-6的片大小的A型构型片状石墨形式存在。
本发明的再另一个方面公开了一种由灰铸铁合金制成的铸件。该铸件包含大约3.05至大约3.40重量百分比的碳。该铸件中的碳基本以ASTM A247A型片状石墨的形式存在。该铸件还包含大约0.05至大约0.3重量百分比的铌、大约1.75至大约2.3重量百分比的硅,以及小于或等于大约4.1重量百分比的碳当量。该铸件在室温下的抗拉强度为大约290MPa至大约360MPa。
具体实施方式
灰铸铁之所以这样命名是由于其断面呈灰色。灰铸铁在由铁素体、珠光体或二者的组合物构成的基质中包含片状石墨形式的碳。这些片状石墨的形状和分布可能会影响灰铁铸件的性质。确定石墨分布和大小的标准方法是基于美国金属测试协会(ASTM)规范A247,其对石墨的形式、分布和大小进行了分类。在ASTM A247中,片状形态被分为五类(A型-E型)。A型是大小基本均匀的片的随机分布。当在液态铁中存在高成核(nucleation)度时,通常形成A型片状石墨,从而促进接近于平衡石墨共晶体的固化。B型石墨是以菊花(rosette)模式形成。由于成核度较低,B型石墨的共晶团大小较大。在菊花的中心由于过冷(undercooling)形成细片,且随着结构的生长,这些细片变粗。C型结构通常出现在过共晶铁(见下文描述)中,其中,最初形成的石墨主要为漂浮石墨。D型和E型是在石墨核不足的快速冷却铁中形成的细的、过冷的片状石墨。这一石墨形态阻止全珠光体基质的形成。
ASTM规范还提供了测量片状石墨大小的标准。该测量是通过将100X的标准放大倍率下合金的抛光样本与规范中提供的一系列标准图进行对比来完成的。片状石墨的大小和类型主要取决于固化温度、冷却速率和熔体的成核状态。片状石墨起到应力集中部位(stress raiser)的作用,其在低应力下过早地造成局部的塑性流动,并在高应力下引起基质断裂。因此,灰铸铁的非弹性性能最低,但是却具有良好的阻尼特性,因而在不发生显著塑性变形的情况下不能拉伸(也就是脆性)。片状石墨的存在还使得灰铸铁具有良好的机械加工性能和自润滑特性。
为了在灰铁铸件中实现理想的机械性能,液态铁必须具有适当的组成,并必须包含合适的合金元素来诱导固化时形成的适当石墨结构(也就是石墨化能力(graphitization potential))。石墨化能力部分地通过合金中的碳当量值(下面详细说明)和硅含量决定。为了在具有不同壁厚的铸件中使用合金,合金性质的截面大小敏感性较低也是重要的。某些情况下,为了增加强度而添加的合金元素会提高截面大小敏感性。
除了形成一致的石墨结构以外,灰铸铁合金还应该相对地消除冷铁(chill)、碳化物和游离铁素体,并显示出具有均匀强度和硬度的细珠光体微观结构。冷铁是指由于与模具的金属表面相接触引起局部加速冷却而导致固化成为白铸铁的铸件部分。在固化过程中,碳化物会在铸铁中析出。尽管碳化物不会特别地损害合金的强度,但是它们会负面影响合金的机械加工性能。基质中的游离铁素体可以降低铸件的强度。由于珠光体比游离铁素体强度要高,因此合金强度可以通过完全消除游离铁素体而最大化。
合金元素的主要功能是控制奥氏体的转变以实现细珠光体结构,从而提高强度。但是,有助于这一转变过程的某些合金元素对固化过程具有负面作用,会产生冷铁和碳化物。因此,为了制造出具有理想特性的合金,需要对合金元素的组成进行良好的控制。下述表I列出了本发明公开的高强度灰铸铁的一些成分的大致组成范围。
表I
Figure G2008800062759D00051
Figure G2008800062759D00061
合金中存在的碳可以为大约3.05至大约3.40重量百分比,尽管在某些实施方式中,碳的组成可以为大约3.1至大约3.35重量百分比。碳可能是合金中最重要的成分。除了基质珠光体中的碳以外,碳以石墨形式存在。合金中存在的片状石墨主要是ASTM A247的A型构型,且片大小为3-6。尽管基质主要是由珠光体组成的,但是还可能存在一些铁素体和痕量的贝氏体和/或马氏体。如果存在斯氏体和碳化物的话,它们的量不能超过最大2%,并可作为孤立的非块状颗粒或非连续网状物均匀地分布。
合金中存在的硅可以为大约1.75至大约2.30重量百分比。在某些实施方式中,合金中硅的组成可以为大约1.9至大约2.2重量百分比。可以向合金添加硅来减少冷铁和碳化物。但是,硅可能通过促进铁素体的形成对合金的强化产生负面影响。控制硅的组成对于实现合金的理想性质而言是重要的。添加硅可以降低碳在铁中的溶解度,并可以降低共晶体中碳的含量。提高硅含量可以降低珠光体的碳含量,并提高铁素体加珠光体向奥氏体转变的转变温度。铁和碳的共晶体大约为4.3重量百分比。每添加1.00重量百分比的硅降低共晶体中大约0.33重量百分比的碳量。
既然碳和硅是合金中的两种主要元素,这两种元素的组合效应可以表述为碳当量(C.E)。碳当量表示为合金中碳的重量百分比加上合金中硅的重量百分比的1/3。本发明公开的合金的C.E值可以小于或等于大约4.1重量百分比。在某些实施方式中,C.E值可以小于或等于大约4.08重量百分比。碳当量值小于大约4.3百分比的灰铸铁被称为亚共晶铁,而碳当量值大于大约4.3百分比的灰铸铁被称为过共晶铁。因此,本发明的铸铁合金为亚共晶铁合金。对于汽车和配套工业中的亚共晶铁而言,碳当量值每增加0.10%可以降低大约18.6MPa的抗拉强度。如果冷却和固化速率对于合金的碳当量值而言太大的话,合金可能会凝固在铁-铁碳化物亚稳态系统中,而不是形成稳定的铁-石墨系统,这可能导致在铸件上形成硬边或冷边(chilled edge)。可以通过改变碳和硅的含量之一或者两者来改变碳当量值。相对于增加碳含量,增加硅含量达到相同的碳当量值可以对减少硬边起到更大的作用。
合金中存在的锰可以为大约0.5至大约0.7重量百分比。在某些实施方式中,锰的浓度可以为大约0.5至大约0.6重量百分比。合金中存在的锰大部分为硫化锰。高于结合硫所需量的过量锰可以延缓铁素体的形成,并适度地细化珠光体。只有不与硫结合的锰的部分才能达到这个目的。在某些实施方式中,锰的最低浓度可以限制为大约(1.7x硫的百分比)+0.3百分比或更高。例如,对于含0.05百分比的硫的合金,锰的浓度可以为大约0.5至大约0.7重量百分比,而对于含大约0.14百分比的硫的合金,锰的浓度可以为大约0.54至大约0.7重量百分比。锰是强的珠光体形成促进剂,因为锰可以通过提高奥氏体中的碳的溶解度来稳定奥氏体。锰还可以降低铁素体形成的平衡温度。向合金中添加大量的锰可能扰乱硫-锰平衡并改变成核的状态,因而导致较低的共晶团计数以及粗或过冷的石墨。
合金中存在的硫可以为大约0.04至大约0.15重量百分比。在某些实施方式中,硫的组成可以为大约0.09至大约0.15重量百分比。在高达大约0.15百分比时,硫可以倾向于促进A型石墨的形成。高于该百分比时,硫可以导致在铸件中形成气孔。
合金中磷的含量可以小于或等于大约0.06重量百分比。在某些实施方式中,合金中磷的含量可以保持小于或等于大约0.02重量百分比。高达大约0.06百分比的磷可以促进熔融金属的流动性。高于该量时,磷化铁的形成可能对铸件的性质产生不利的影响。在某些实施方式中,当铬的含量小于或等于大约0.2百分比时,可以预想合金中磷的含量可以高达0.08百分比。
合金中不需要存在铜和镍,因为不存在这些元素也可以实现所需的合金性质,而它们的添加增加了合金的成本。但是,可以预想在合金的某些实施方式中,铜和镍可以作为有意添加的合金元素或残留的合金元素存在。如果存在的话,合金中铜的浓度可以小于或等于大约1重量百分比。如果存在的话,镍的浓度可以小于或等于大约0.06重量百分比。在某些实施方式中,合金中镍的最大浓度可以小于或等于大约0.04重量百分比。铜是相对强的珠光体促进剂。与锡类似,铜可以通过在奥氏体-石墨界面聚集而作为碳扩散的屏障。铜只能较弱地细化珠光体。但是,当与其它合金元素(例如钼)结合时,铜可以显示出强得多的可硬化(hardenability)效应。与铜类似,镍也是弱的珠光体细化剂,且在与其它合金元素(例如钼)结合时,镍具有更好的可硬化效应。一般而言,铜和镍在铸铁中可以以相似的方式发挥作用。也就是铜和镍可以强化基质并降低铸件上形成硬边的趋势。由于铜和镍都是温和的石墨化剂,它们可以取代合金中的一些硅。
合金中铬的含量可以小于或等于大约0.25重量百分比。添加铬可以提高合金的硬度和强度。铬是强的珠光体促进剂,因为其增加碳在奥氏体中的溶解度,并因此抑制铁素体的形成。在高达大约0.25百分比时,铬可以提高合金的高温强度。但是,高于大约0.25百分比时,铬可能在固化过程中促进冷铁和碳化物的形成。
钼可用于提高灰铸铁合金的高温性质。合金中存在的钼可以为大约0.05至大约0.4重量百分比。在某些实施方式中,钼的浓度可以为大约0.05至大约0.3重量百分比。传统上,钼是用以提高灰铸铁强度的最广泛使用的合金元素。由于钼与磷形成复合共晶体并因此降低合金效应,当磷的含量低于0.10百分比时可以实现最佳结果。由于钼的弹性模量非常高,因此添加钼可能增加合金的弹性模量。但是,钼造成的成本增加可能使得含钼的灰铸铁变得比较昂贵。为了降低合金的成本,合金中的钼可由铌代替。
合金中存在的铌可以为大约0.05至大约0.3重量百分比。为了降低成本,铌可以代替合金中的钼。因此,在合金的某些实施方式中,一部分钼可由铌代替。可以预想在钼由铌代替的某些实施方式中,钼的浓度可以更接近于允许范围的下限(即大约0.05重量百分比),而铌的浓度可以更接近允许范围的上线(即更接近于大约0.3重量百分比)。
合金中存在的锡可以高达大约0.1重量百分比。少量添加锡(小于0.10百分比)可以提高合金中珠光体的稳定性。高于这一限度时,锡可能在合金中引起脆化以及其它的负面副作用。
合金组合物的余量可以由铁组成。除了表I中所列的成分,该合金还可以包含痕量的其它杂质。表II列出了合金中可能存在的一些杂质及其典型的最大浓度。需要强调的是,表II只是示例性的,合金可能包含表II中未列出的杂质。一种或多种杂质的浓度也可能超出表II中所列出的典型的最大浓度。
表II
  杂质   典型的最大浓度(重量百分
  砷   0.05
  锑   0.02
  铋   0.005
  硼   0.01
  铈   0.02
  氮   0.02
0.003
  钒   0.05
  锆   0.1
工业实用性
本发明公开的高强度灰铸铁可用于制造可能暴露于高温和/或热循环条件下并需要高强度的任何物品。本发明公开的合金可用于发动机和动力系统的组件。例如,本发明公开的合金可用于柴油发动机气缸盖铸件中,该铸件需要具有足以耐受气缸盖所承受的应力和循环温度的高强度和耐热疲劳性。但是,本发明并不局限于这些应用,因为其它的应用对于本领域技术人员也是显而易见的。
本领域已知的任何模制和孕育(innoculation)工艺都可被用于铸造高强度灰铸铁物品。合适的铸造工艺的非限制性例子是湿砂铸造、干砂铸造、壳模铸造、离心铸造等。另外,产生具有所要求的石墨形态和机械性能的合金的任何本领域已知的冷却曲线都可以用于冷却熔融合金。
具有表I所列范围内的组成的不同实施方式合金的样品(在标题为“样品的组成范围”的栏下所列的)被铸造,并经受冶金学和机械测试。特别地,这些样品按照ASTM标准在铸造的同样条件下进行抗拉和硬度测试。测试样品的抗拉强度为大约290-360MPa,样品的硬度为大约195-253BHN。在硬度测试中,样品被研磨到足够的深度(大约1mm)以避免表面效应。可以设想,如果样品的机械加工性能不受到负面影响的话,合金的抗拉强度可以超过360MPa。机械加工性的负面影响可能特别表现为加工过程中工具寿命的降低、较差的表面光洁度等。
通过以100X放大倍率对直径1.6mm范围的铸件进行微观结构分析,发现石墨形态主要是ASTM的A型,片大小为3-6。还可以设想,合金的实施方式可能包含其它片状类型,以使得样品的抗拉强度为大约290-360MPa。样品基质主要由珠光体组成。可以设想在合金的某些实施方式中,基质中可以存在铁素体,其程度使得合金的抗拉强度不会下降到低于大约290MPa。基质中还可以存在痕量的贝氏体或马氏体。在某些实施方式中,基质中可以存在高达2百分比上限的斯氏体和碳化物。如果合金中存在斯氏体和碳化物,它们可以作为孤立的非块状颗粒或非连续网状物均匀地分布在合金中。
冶金学和机械测试表明合金的强度、耐热疲劳性和其它性质达到或超过典型的含钼灰铸铁合金的性质。合金强度的增加是通过用铌取代钼来实现的。市场研究显示铌的价格远远低于钼的价格。因此,减少高强度灰铸铁合金中的钼成分可以显著地降低合金的成本。
本领域技术人员知道,可以对本发明公开的高强度灰铸铁进行各种不同的改进和变化。在考虑了本发明公开的高强度灰铸铁的说明书和对其进行实施后,其它的实施方式对本领域技术人员是显而易见的。本发明的说明书和实施例仅是示例性的,要求保护的真正范围由下述权利要求书和它们的等同范围确定。

Claims (10)

1.一种灰铸铁合金,包含:
大约3.05至大约3.40重量百分比的碳;
大约0.05至大约0.3重量百分比的铌;
大约1.75至大约2.3重量百分比的硅;
小于或等于大约4.1重量百分比的碳当量;和
小于或等于大约0.06重量百分比的镍。
2.根据权利要求1所述的灰铸铁合金,进一步包含:
大约0.04至大约0.15重量百分比的硫;
锰的最低浓度大于或等于(1.7x硫浓度+0.3)和0.5中较大者;和
锰的最高浓度小于或等于大约0.7重量百分比。
3.根据权利要求1所述的灰铸铁合金,进一步包含:
小于或等于大约0.06重量百分比的磷;和
小于或等于大约0.25重量百分比的铬。
4.根据权利要求1所述的灰铸铁合金,进一步包含:
大约0.05至大约0.4重量百分比的钼。
5.根据权利要求1所述的灰铸铁合金,进一步包含:
小于或等于大约0.1重量百分比的锡;和
小于或等于大约1重量百分比的铜。
6.根据权利要求1所述的灰铸铁合金,其中,所述合金在室温下的抗拉强度为大约290MPa至大约360MPa,且在足以避免表面效应的深度进行测量时,其硬度值为大约195BHN至大约253BHN。
7.根据权利要求1所述的灰铸铁合金,其中,碳基本以片状石墨形式存在,且如ASTM A247规范所确定的,该片状石墨基本上为A型构型并具有3-6的片大小。
8.由权利要求1-7中任一项所述的灰铸铁合金制成的物品。
9.一种由灰铸铁合金制成的铸件,包含:
大约3.05至大约3.40重量百分比的碳,其中,所述碳基本以ASTMA247A型片状石墨形式存在;
大约0.05至大约0.3重量百分比的铌;
大约1.75至大约2.3重量百分比的硅;和
小于或等于大约4.1重量百分比的碳当量,
其中,该合金在室温下的抗拉强度为大约290MPa至大约360MPa。
10.根据权利要求9所述的铸件,进一步包含:
大约0.04至大约0.15重量百分比的硫;
锰的最低浓度大于或等于(1.7x硫浓度+0.3)和0.5中的较大者;和
锰的最高浓度小于或等于大约0.7重量百分比。
CN200880006275A 2007-02-28 2008-01-31 含铌的高强度灰铸铁 Pending CN101622367A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/711,718 2007-02-28
US11/711,718 US8333923B2 (en) 2007-02-28 2007-02-28 High strength gray cast iron

Publications (1)

Publication Number Publication Date
CN101622367A true CN101622367A (zh) 2010-01-06

Family

ID=39425856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880006275A Pending CN101622367A (zh) 2007-02-28 2008-01-31 含铌的高强度灰铸铁

Country Status (3)

Country Link
US (1) US8333923B2 (zh)
CN (1) CN101622367A (zh)
WO (1) WO2008105987A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109898014A (zh) * 2017-12-08 2019-06-18 现代自动车株式会社 高强度灰铸铁
CN111961953A (zh) * 2020-08-11 2020-11-20 驻马店中集华骏铸造有限公司 灰铸铁的生产方法
CN114231833A (zh) * 2021-11-05 2022-03-25 宁国东方碾磨材料股份有限公司 一种风机用轴盘铸件

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576196B1 (ko) * 2008-09-25 2015-12-10 보르그워너 인코퍼레이티드 터보차저 및 이를 위한 터빈 케이싱 내 바이패스 제어를 위한 서브어셈블리
JP5466247B2 (ja) * 2009-02-12 2014-04-09 テクシド ド ブラジル リミターダ 燃焼機関および一般鋳造物用高耐性ねずみ鋳鉄合金を得るための方法
JP5475806B2 (ja) * 2009-02-12 2014-04-16 テクシド ド ブラジル リミターダ 燃焼機関および一般鋳造物用の高耐性ねずみ鋳鉄合金
SE535043C2 (sv) * 2010-12-02 2012-03-27 Scania Cv Ab Gråjärnslegering samt bromsskiva innefattande gråjärnslegering
US20130048906A1 (en) * 2011-08-30 2013-02-28 Third Millennium Metals, Llc Iron-carbon compositions
ES2523887T3 (es) 2011-11-29 2014-12-02 Casa Maristas Azterlan Fundición de hierro gris con grafito superfino, elevada fracción de austenita primaria y propiedades mecánicas optimizadas
KR101822203B1 (ko) * 2011-12-23 2018-03-09 두산인프라코어 주식회사 고강도 편상 흑연 주철의 제조방법 및 그 방법에 의해 제조된 편상 흑연 주철, 상기 주철을 포함하는 내연기관용 엔진바디
CN103572150A (zh) * 2013-10-12 2014-02-12 广西玉柴机器股份有限公司 发动机气缸盖灰铸铁
CN104178684A (zh) * 2014-09-03 2014-12-03 河北丰维机械制造有限公司 一种铬、钼、铜、镍、锡、锑低合金耐磨铸铁的熔炼方法
CN104451368B (zh) * 2014-12-25 2017-01-04 常熟市瑞峰模具有限公司 玻璃器皿生产用合金铸铁模具
CN107345285A (zh) * 2016-05-05 2017-11-14 通富热处理(昆山)有限公司 汽车制动盘用合金灰铸铁材料、汽车制动盘及其制备方法
BR102018003793A2 (pt) * 2018-02-26 2019-09-10 Tupy S A liga de ferro fundido cinzento, e cabeçote de motor de combustão interna
CN109182890B (zh) * 2018-10-19 2020-05-26 中车大连机车车辆有限公司 一种灰铸铁及其冶炼方法
WO2024069251A1 (en) * 2022-09-29 2024-04-04 Tata Motors Limited A high strength wear and corrosion resistant grey cast iron and a method of manufacturing thereof

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930519C1 (de) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
GB985874A (en) * 1962-09-25 1965-03-10 Mirrlees Nat Ltd An alloy cast iron
US3909202A (en) * 1972-12-15 1975-09-30 Bayer Ag Apparatus for analysis of liquids
US3893873A (en) * 1973-05-07 1975-07-08 Nippon Kinzoku Co Ltd Method for manufacturing spheroidal graphite cast iron
SE425003B (sv) * 1978-02-28 1982-08-23 Sandvik Ab Modifikation av molybden-volfram-karbonitrid enligt kraven i patentet 7800756-4
JPS5698455A (en) * 1980-01-10 1981-08-07 Kubota Ltd Ion-based heat-resisting cast alloy
SU1097703A1 (ru) * 1982-12-28 1984-06-15 Всесоюзный Заочный Политехнический Институт Серый чугун
US4638847A (en) * 1984-03-16 1987-01-27 Giw Industries, Inc. Method of forming abrasive resistant white cast iron
JP2506333B2 (ja) * 1986-03-12 1996-06-12 日産自動車株式会社 耐摩耗性鉄基焼結合金
JPS6428342A (en) 1987-07-22 1989-01-30 Toyota Motor Corp Cast iron for cylinder block
DE3779314D1 (de) 1987-08-27 1992-06-25 United Technologies Corp Niob, vanadium und molybdaen enthaltende titan-aluminiumlegierungen.
SU1560606A1 (ru) 1988-02-11 1990-04-30 Белорусский Политехнический Институт Чугун дл гильз цилиндров двигателей
JPH02258951A (ja) 1989-03-30 1990-10-19 Kubota Ltd 高弾性率を有する耐摩耗性鋳鉄材
EP0562114B1 (en) * 1991-09-12 1998-11-04 Kawasaki Steel Corporation Material of outer layer of roll for rolling and compound roll manufactured by centrifugal casting
FR2681878B1 (fr) * 1991-09-26 1993-12-31 Centre Tech Ind Fonderie Fonte a graphite spherouidal resistant a la chaleur.
US5242510A (en) * 1992-09-25 1993-09-07 Detroit Diesel Corporation Alloyed grey iron having high thermal fatigue resistance and good machinability
DE4414571C1 (de) * 1994-04-27 1996-01-18 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Tantal-Niob-Konzentraten
JP2852018B2 (ja) * 1995-03-07 1999-01-27 川崎製鉄株式会社 遠心鋳造ロール用外層材
US6013141A (en) * 1995-06-06 2000-01-11 Akers International Ab Cast iron indefinite chill roll produced by the addition of niobium
DE19545611C1 (de) * 1995-12-07 1997-03-13 Daimler Benz Ag Optimierte Lamellen-Graugußlegierung für Bremsscheiben von Nutzfahrzeug
US6669790B1 (en) * 1997-05-16 2003-12-30 Climax Research Services, Inc. Iron-based casting alloy
DE19840788C2 (de) * 1998-09-08 2000-10-05 Thyssenkrupp Stahl Ag Verfahren zur Erzeugung von kaltgewalzten Bändern oder Blechen
DE19911287C1 (de) * 1999-03-13 2000-08-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes
BR0009107A (pt) * 1999-03-19 2002-12-31 Cabot Corp Método para produzir pó de nióbio e outros pós metálicos através de moagem
DE19921328A1 (de) * 1999-05-08 2000-11-16 Thyssenkrupp Stahl Ag Stahl zur Herstellung von Bauteilen von Bildröhren und Verfahren zur Herstellung von für die Fertigung von Bauteilen für Bildröhren bestimmtem Stahlblech
DE19950502C1 (de) * 1999-10-20 2000-11-16 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Warmbandes
US6395107B1 (en) * 2000-01-28 2002-05-28 Sundaresa V. Subramanian Cast iron for use in high speed machining with cubic boron nitride and silicon nitride tools
DE10015691C1 (de) * 2000-03-16 2001-07-26 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
US6508981B1 (en) * 2001-05-24 2003-01-21 Wescast Industries, Inc. High temperature oxidation resistant ductile iron
DE10146301C1 (de) * 2001-09-19 2002-07-18 Krupp Vdm Gmbh Verfahren zur Herstellung eines Metallbandes aus einer Eisen-Nickel-Legierung für gespannte Schattenmasken
US6973954B2 (en) * 2001-12-20 2005-12-13 International Engine Intellectual Property Company, Llc Method for manufacture of gray cast iron for crankcases and cylinder heads
JP3915067B2 (ja) * 2002-03-20 2007-05-16 ミネベア株式会社 薄型遠心ファン
SE526903C2 (sv) 2002-05-13 2005-11-15 Scania Cv Ab Gråjärnslegering och gjuten förbränningsmotorkomponent
DE10320397B4 (de) 2003-05-06 2007-11-29 Halberg Guss Gmbh Gusseisenlegierung für Zylinderkurbelgehäuse
JPWO2005007914A1 (ja) * 2003-07-18 2006-11-24 日立金属株式会社 オーステナイト系耐熱球状黒鉛鋳鉄

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109898014A (zh) * 2017-12-08 2019-06-18 现代自动车株式会社 高强度灰铸铁
CN109898014B (zh) * 2017-12-08 2022-04-15 现代自动车株式会社 高强度灰铸铁
CN111961953A (zh) * 2020-08-11 2020-11-20 驻马店中集华骏铸造有限公司 灰铸铁的生产方法
CN114231833A (zh) * 2021-11-05 2022-03-25 宁国东方碾磨材料股份有限公司 一种风机用轴盘铸件

Also Published As

Publication number Publication date
WO2008105987A1 (en) 2008-09-04
US20080206584A1 (en) 2008-08-28
US8333923B2 (en) 2012-12-18

Similar Documents

Publication Publication Date Title
CN101622367A (zh) 含铌的高强度灰铸铁
CN106947912B (zh) 一种等温淬火球墨铸铁及其铸造方法
US10087509B2 (en) Spheroidal graphite cast iron having excellent strength and toughness and its production method
JP2013117071A (ja) 片状黒鉛鋳鉄およびその製造方法
CN108588544A (zh) 一种具有综合高热性能和力学性能的高性能灰铸铁
US10975458B2 (en) High-strength gray cast iron
CN102080177A (zh) 钒钛蠕墨铸铁
CN108441752A (zh) 一种汽车制动盘用球墨铸铁及其制备方法
CN104357736A (zh) 一种钒钛蠕墨铸铁
JPH08311599A (ja) 内燃機関用シリンダ形軸受ブッシュ
CN102317488B (zh) 用于内燃机及一般铸件的高电阻灰铁合金
CN105624569A (zh) 一种高耐磨轴承
CN110894582A (zh) 一种高强度和高导热蠕墨铸铁及其制备方法
CN103205625A (zh) 一种高强韧等温淬火球铁及其生产方法和应用
KR20150021754A (ko) 내구성이 우수한 회주철
JPS61174358A (ja) 高強度球状黒鉛鋳鋼
JPH04218645A (ja) 熱疲労寿命に優れたフェライト系耐熱鋳鋼  
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
CN101565793A (zh) 一种合金球铁曲轴及其热处理工艺
CN104087865A (zh) 一种使用寿命长的高铬合金耐磨球及其制备方法
CN108707826B (zh) 一种用于低温环境的高速列车制动盘的材料
CN106048451A (zh) 一种耐磨损合金弹簧钢及其热处理工艺
CN105463300A (zh) 一种等温淬火球墨铸铁锤头的制备方法
CN103757564B (zh) 合金铸铁贝氏体活塞环及其生产工艺
CN104313452A (zh) 一种含碳化物奥贝耐磨球铁及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100106