US3893873A - Method for manufacturing spheroidal graphite cast iron - Google Patents

Method for manufacturing spheroidal graphite cast iron Download PDF

Info

Publication number
US3893873A
US3893873A US358028A US35802873A US3893873A US 3893873 A US3893873 A US 3893873A US 358028 A US358028 A US 358028A US 35802873 A US35802873 A US 35802873A US 3893873 A US3893873 A US 3893873A
Authority
US
United States
Prior art keywords
cast iron
graphite cast
spheroidal graphite
draft
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US358028A
Inventor
Kenichi Hanai
Tsukasa Fukumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kinzoku Co Ltd filed Critical Nippon Kinzoku Co Ltd
Priority to US358028A priority Critical patent/US3893873A/en
Application granted granted Critical
Publication of US3893873A publication Critical patent/US3893873A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • Cast iron is generally superior to the steels in wear resistance or damping capacity.
  • spherulitic graphite cast iron considered excellent in strength and toughness among cast irons has a tensile strength as low as 70 to 90 kg/mm It is quite seldom to obtain a strength exceeding 100 kg/mm even in case choice of material is melted and, after graphitization treatment, quenched and tempered. Accordingly, the increase of wall-thickness is unavoidable when cast iron is used in place of steels, bringing about the increase of weight and size of a machine part and, more seriously, its fatal drawback lies inherently in the difficulty to obtain light section casting.
  • the present invention is intended for eliminating such disadvantages to provide a high tensile strength spheroidal graphite cast iron comparable to special steels, superior to the conventional rolled cast iron or heat-treated special cast iron, retaining such characteristics inherent in cast iron as wear resistance and high damping capacity.
  • the present invention is to provide a high tensile strength spheroidal graphite cast iron possessing a tensile strength higher than 100 kg/mm by plastically deforming at a draft of 30 to 80% a spheroidal graphite cast iron having a normal structure of graphite spherical or spheroidal in form (hereinafter referred to simply as spheroidal graphite cast iron) and by subsequently applying such heat treatment as quenching and tempering.
  • the reason for limiting the draft of plastic deformation of spheroidal graphite cast iron to 30 to 80% in the present invention is that the mutual dependent effect of plastic deformation and the subsequent heat treatment cannot develop fully in case of draft under 30% and that workability falls down in case of draft over 80%.
  • a cast iron possessing a tensile strength from l70to 190 kg/mm can be obtained by subjecting a material to quenching from above A transformation point and later to tempering, following the plastic deformation; and in case toughness is needed, a cast having a tensile strength from 160 to 170 kg/mm and proper toughness can be obtained by isothermal heat treatment after the plastic deformation.
  • a cast iron possessing an epochal tensile strength can be obtained unexpectedly of conventional cast iron according to the present invention.
  • the advantages of this invention include not only reduction of member weight to make possible the design of compact machinery but usability for members requiring high levels of mechanical strength.
  • the cast iron according to the present invention may be plastically deformed close to a desired thickness and the machining allowance is thereby reduced to the atmost (for instance, 0.05 to 0.02 m/m thus markedly lessening the production cost as compared with the conventional cast iron.
  • either one or both niobium and tantalum are contained in the cast material according to the present invention while molten, wear resistance increases and hardenability decreases and it is confirmed that machinability is improved consequently.
  • niobium and tantalum are contained in a quantity of 0.05 to 2.5%, very minute and hard globular carbides and nitrides (globule diameter 1 to 5p. of those elements are distributed precipitating all over the matrix independently of grain boundaries at a concentration over lOO/mm". Consequently, in case the material is used as a sliding member, the contact face pressure is uniformly distributed and develops a useful bearing effect. When the material is cooled before the above carbides do not dissolve sufficiently into austenite, the hardenability decreases and even a thin plate material cannot show supercooling effect and may be easily worked to its advantage.
  • niobium containing spheroidal graphite cast iron is rolled, then heated to 930C and held for 30 minutes, and subsequently cooled; however, it does not precipitate martensite in the matrix and is easily worked.
  • niobium is not contained, however, the material less than 3.2 mm in wall thickness shows hardenability effect and exhibits high hardness when naturally cooled, and needs annealing when machined.
  • the number of precipitations of globular carbide and nitride of niobium and tantalum is larger than lOO/mm It is further preferable that either of niobium and tantalum or both are added in a quantity of 0.05 to 2.5%.
  • the reason for establishing the lower and upper limits is that niobium or tantalum addition less than 0.05% is not sufficient for producing the globular carbides and nitrides of niobium and tantalum over mm in number; the upper limit is set to 2.5% because niobium and tantalum are expensive elements and it is desired that their content is low as long as wear resistance can develop.
  • the globular carbides and nitrides of niobium or tantalum exhibit roughly equal nature and distribute uniformly and minutely all over the matrix. Accordingly, the effect of globular carbide and nitride precipitates on the wear resistance is not appreciably different whether either or both niobium and tantalum are added.
  • EXAMPLE 1 According to a known method, a spherical graphite cast iron having a main composition of 3.70% C, 2.64% Si, 0.29% Mn, 0.10% P and 0.012% S is formed into a plate of 20 m/m (T) X 100 m/m (W) X 600 m/m (L) and surface-machined to 15 m/m (T) X 60 m/m (W) x 500 m/m (L).
  • specimens of 2.0 m/m (T) X 20 m/m (W) X 180 m/m (L) at each draft are prepared by machining, and heated in a salt bath to 890C and 850C and held at such temperatures for 1 hour and then oil-quenched, and subsequently tempered for 30 minutes at 300C.
  • the tensile strengths of the specimens are measured and the result is shown in Table 1.
  • Example 2 The same specimens as tested in Example 1 are tested for measuring tensile strength in the direction parallel to rolling when only hot-rolled omitting quenching and tempering treatment. The result is shown in Table 2.
  • a spherical graphite cast iron having a main composition of 3.38% C, 3.47% Si, 0.41% Mn, 0.08% P, 0.011% S, 0.14% Cr, and 0.32% Nb is formed into a plate of m/m (T) X 100 m/m (W) X 600 m/m (L) and surface-machined to 6.0 m/m X 85 m/m (W) X 500 m/m (L). After preliminary heating for 1 hour at 1,000C, the specimen is immediately hot-rolled and the thickness is reduced to 4.55 m/m (draft 24%), to 3.5 m/m (draft 42%), and to 2.7
  • a spherical graphite cast iron having a main composition of 3.57% C, 2.62% Si, 0.54% Mn, 0.12% P, 0.011% S, 0.18% Cr, and 0.24% Nb is formed into a plate of 10 m/m (T) X 100 m/m (W) X 500 m/m (L) and surface-machined to 6.0 m/m (T) X m/m (W) X 400 m/m (L).
  • the specimen After annealing for 2 hours at 700C, the specimen is cold-rolled while intermediately annealing and the thickness is reduced to 4.4 m/m (draft 27%), to 3.2 m/m (draft 47%), to 2.2 m/m (draft 63%), and to 1.6 m/m (draft 73%).
  • the specimen is subsequently subjected to normalizing treatment through heating at 930C for 30 min. followed by air cooling.
  • a specimen for abrasion test is prepared for each draft. The specimen is tested for wear resistance by Ogoshi quick abrasion test machine. The result is shown in Table 4.
  • test conditions are as follows: sliding distance: 200 m, Final load: 6.4 kg
  • Sliding block chromium-plated rotor Fixed block: specimen at various drafts
  • Specimen thickness Draft Direction perpendicular to rolling m/m 1.02 m/sec 4.0 m/sec 7.15 m/sec
  • some special steels and conventional cast irons are tested for wear resistance under the same condition, and the result is shown in Table 5.
  • the cast iron according to the present invention exhibits wear resistance superior to those of steels and conventional cast irons and the wear resistance does not show anisotropy whether it is parallel or perpendicular to the rolling direction.
  • High tensile strength spheroidal graphite cast iron according to the present invention can exhibit high tensile strength far greater, by applying both plastic deformation and heat treatment to those of ordinary composition or containing either or both niobium and tantalum,
  • this cast iron finds new fields of application unforeseeable for the conventional cast irons and can contribute much to industry, making the equipment and machinery lighter in weight and reducing cost by use of this cast iron.
  • a method for manufacturing spheroidal graphite cast iron comprising applying hot plastic deformation treatment to a spherical graphite cast iron at a reduction ratio of 30 to and subsequently subjecting the said material to heat treatment to obtain high tensile strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A method for manufacturing spheroidal graphite cast iron characterized by plastically deforming spherulitic graphite cast iron at a draft of 30 to 80% and then heat-treating for obtaining high tensile strength.

Description

United States Patent Hanai et al.
[451 July 8,1975
METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON Inventors: Kenichi Hanai, Urawa; Tsukasa Fukumura, Okaya, both of Japan Assignees: Nippon Kinzoku Co. Ltd.; Teikoku Piston Ring Co. Ltd., both of Tokyo, Japan Filed: May 7, 1973 Appl. No.: 358,028
U.S. Cl. 148/12 R; 148/35; 75/123 CB Int. Cl C21d 5/00 Field of Search 148/2, 12, 139, 35;
References Cited UNITED STATES PATENTS Bonte 148/35 Schermer 148/35 Forbes et a1. 148/35 Bonte 148/35 Heine et al. 75/123 CB Primary Examiner-W. Stallard ABSTRACT 4 Claims, No Drawings METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON BACKGROUND OF THE INVENTION The present invention relates to a high tensile strength spheroidal graphite case iron possessing strength comparable to the special steel in spite of the fact that it belongs to the cast iron.
Generally as high tensile materials are used special steels in most cases. These special steels, however, do not exhibit precipitation of graphite and cannot therefore retain oil or provide self-lubrication, so that the use of them is restricted for high speed and high load operation. It is also one of the disadvantages that consideration must be given to the vibration absorption in case such steels are used as a machine element, because of their low damping capacity.
Cast iron is generally superior to the steels in wear resistance or damping capacity. However, even spherulitic graphite cast iron considered excellent in strength and toughness among cast irons has a tensile strength as low as 70 to 90 kg/mm It is quite seldom to obtain a strength exceeding 100 kg/mm even in case choice of material is melted and, after graphitization treatment, quenched and tempered. Accordingly, the increase of wall-thickness is unavoidable when cast iron is used in place of steels, bringing about the increase of weight and size of a machine part and, more seriously, its fatal drawback lies inherently in the difficulty to obtain light section casting.
SUMMARY OF THE INVENTION The present invention is intended for eliminating such disadvantages to provide a high tensile strength spheroidal graphite cast iron comparable to special steels, superior to the conventional rolled cast iron or heat-treated special cast iron, retaining such characteristics inherent in cast iron as wear resistance and high damping capacity.
The present invention is to provide a high tensile strength spheroidal graphite cast iron possessing a tensile strength higher than 100 kg/mm by plastically deforming at a draft of 30 to 80% a spheroidal graphite cast iron having a normal structure of graphite spherical or spheroidal in form (hereinafter referred to simply as spheroidal graphite cast iron) and by subsequently applying such heat treatment as quenching and tempering.
DETAILED DESCRIPTION OF THE INVENTION The reason for limiting the draft of plastic deformation of spheroidal graphite cast iron to 30 to 80% in the present invention is that the mutual dependent effect of plastic deformation and the subsequent heat treatment cannot develop fully in case of draft under 30% and that workability falls down in case of draft over 80%. With such restriction, as described in the examples later described, a cast iron possessing a tensile strength from l70to 190 kg/mm can be obtained by subjecting a material to quenching from above A transformation point and later to tempering, following the plastic deformation; and in case toughness is needed, a cast having a tensile strength from 160 to 170 kg/mm and proper toughness can be obtained by isothermal heat treatment after the plastic deformation.
Accordingly, a cast iron possessing an epochal tensile strength can be obtained unexpectedly of conventional cast iron according to the present invention. The advantages of this invention include not only reduction of member weight to make possible the design of compact machinery but usability for members requiring high levels of mechanical strength.
It has long been admitted that a light section is very difficult to cast. Even if a light section material is obtained by casting, it would take a large amount of cost for surface machining amounting to more than half of the total production cost. In case of the present invention, even if a plate material as thin as l to 3 m/m, for example, is desired, the cast iron according to the present invention may be plastically deformed close to a desired thickness and the machining allowance is thereby reduced to the atmost (for instance, 0.05 to 0.02 m/m thus markedly lessening the production cost as compared with the conventional cast iron. Furthermore, either one or both niobium and tantalum are contained in the cast material according to the present invention while molten, wear resistance increases and hardenability decreases and it is confirmed that machinability is improved consequently.
In case either one or both niobium and tantalum are contained in a quantity of 0.05 to 2.5%, very minute and hard globular carbides and nitrides (globule diameter 1 to 5p. of those elements are distributed precipitating all over the matrix independently of grain boundaries at a concentration over lOO/mm". Consequently, in case the material is used as a sliding member, the contact face pressure is uniformly distributed and develops a useful bearing effect. When the material is cooled before the above carbides do not dissolve sufficiently into austenite, the hardenability decreases and even a thin plate material cannot show supercooling effect and may be easily worked to its advantage. For instance, a niobium containing spheroidal graphite cast iron is rolled, then heated to 930C and held for 30 minutes, and subsequently cooled; however, it does not precipitate martensite in the matrix and is easily worked. In case niobium is not contained, however, the material less than 3.2 mm in wall thickness shows hardenability effect and exhibits high hardness when naturally cooled, and needs annealing when machined.
In the present invention, it is preferable to improve wear resistance that the number of precipitations of globular carbide and nitride of niobium and tantalum is larger than lOO/mm It is further preferable that either of niobium and tantalum or both are added in a quantity of 0.05 to 2.5%. The reason for establishing the lower and upper limits is that niobium or tantalum addition less than 0.05% is not sufficient for producing the globular carbides and nitrides of niobium and tantalum over mm in number; the upper limit is set to 2.5% because niobium and tantalum are expensive elements and it is desired that their content is low as long as wear resistance can develop. The globular carbides and nitrides of niobium or tantalum exhibit roughly equal nature and distribute uniformly and minutely all over the matrix. Accordingly, the effect of globular carbide and nitride precipitates on the wear resistance is not appreciably different whether either or both niobium and tantalum are added.
The cast iron according to the present invention is explained hereafter in reference with practical examples.
EXAMPLE 1 According to a known method, a spherical graphite cast iron having a main composition of 3.70% C, 2.64% Si, 0.29% Mn, 0.10% P and 0.012% S is formed into a plate of 20 m/m (T) X 100 m/m (W) X 600 m/m (L) and surface-machined to 15 m/m (T) X 60 m/m (W) x 500 m/m (L). After preliminary heating for 1 hour at 1,050C, the specimen is immediately hot-rolled and the thickness is reduced to 10.5 m/m (draft 30%), to 7.5 m/m (draft 50%), to 4.5 m/m (draft 70%), and to 3.0 m/m (draft 80%). After hot rolling, specimens of 2.0 m/m (T) X 20 m/m (W) X 180 m/m (L) at each draft are prepared by machining, and heated in a salt bath to 890C and 850C and held at such temperatures for 1 hour and then oil-quenched, and subsequently tempered for 30 minutes at 300C. The tensile strengths of the specimens are measured and the result is shown in Table 1.
Note: The above values are mean values of tensile strengths measured twice in the direction parallel to rolling.
EXAMPLE FOR REFERENCE.
The same specimens as tested in Example 1 are tested for measuring tensile strength in the direction parallel to rolling when only hot-rolled omitting quenching and tempering treatment. The result is shown in Table 2.
Table 2 Draft 30 50 60 70 80 Tensile strength 76.0 80.1 84.5 92.3 101.0 100.0 (kg/mm Note: The values in Table 2 are mean values of results measured twice.
As clearly seen in the above Example and Example for reference, high tensile strength is not obtained when merely plastically deformed or when merely quenched and tempered, but a really high tensile strength is obtained only when both treatments are carried out.
EXAMPLE 2 According to a known method, a spherical graphite cast iron having a main composition of 3.38% C, 3.47% Si, 0.41% Mn, 0.08% P, 0.011% S, 0.14% Cr, and 0.32% Nb is formed into a plate of m/m (T) X 100 m/m (W) X 600 m/m (L) and surface-machined to 6.0 m/m X 85 m/m (W) X 500 m/m (L). After preliminary heating for 1 hour at 1,000C, the specimen is immediately hot-rolled and the thickness is reduced to 4.55 m/m (draft 24%), to 3.5 m/m (draft 42%), and to 2.7
Table 3 Austenitizing temperature (C) 930 850 Draft 55 169.5 kg/mm 172.3 kg/mm As clearly seen from the above Table, the cast iron according to the present invention exhibits a high level of tensile strength comparable to special steels.
EXAMPLE 3 According to a known method, a spherical graphite cast iron having a main composition of 3.57% C, 2.62% Si, 0.54% Mn, 0.12% P, 0.011% S, 0.18% Cr, and 0.24% Nb is formed into a plate of 10 m/m (T) X 100 m/m (W) X 500 m/m (L) and surface-machined to 6.0 m/m (T) X m/m (W) X 400 m/m (L). After annealing for 2 hours at 700C, the specimen is cold-rolled while intermediately annealing and the thickness is reduced to 4.4 m/m (draft 27%), to 3.2 m/m (draft 47%), to 2.2 m/m (draft 63%), and to 1.6 m/m (draft 73%). The specimen is subsequently subjected to normalizing treatment through heating at 930C for 30 min. followed by air cooling. A specimen for abrasion test is prepared for each draft. The specimen is tested for wear resistance by Ogoshi quick abrasion test machine. The result is shown in Table 4.
The test conditions are as follows: sliding distance: 200 m, Final load: 6.4 kg Sliding block: chromium-plated rotor Fixed block: specimen at various drafts Sliding velocity: 1.02 m/sec, 4.00 m/sec, 7.15 m/sec Lubrication: dry abrasion Table 4 Specimen thickness Draft Direction parallel to rolling m/m 1.02 m/sec 4.0 m/sec 7.15 m/sec Specimen thickness Draft Direction perpendicular to rolling m/m 1.02 m/sec 4.0 m/sec 7.15 m/sec For comparison, some special steels and conventional cast irons are tested for wear resistance under the same condition, and the result is shown in Table 5.
cast iron or piston ring) Note: Tests at a low speed range (1.02 mlsec) fail owing to the occurrence of seizure.
The values shown in Tables 4 and 5 indicate worn volumes (mm) of the abrasion trace on the specimen surface tested 4 times for each specimen.
From these results, it is seen that the cast iron according to the present invention exhibits wear resistance superior to those of steels and conventional cast irons and the wear resistance does not show anisotropy whether it is parallel or perpendicular to the rolling direction.
High tensile strength spheroidal graphite cast iron according to the present invention can exhibit high tensile strength far greater, by applying both plastic deformation and heat treatment to those of ordinary composition or containing either or both niobium and tantalum,
than by applying only plastic deformation or heat treatment, and also may possess characteristics comparable to special steels as well as excellent properties inherent in cast iron such as oil retentivity, wear resistance, and high damping capacity.
Accordingly, this cast iron finds new fields of application unforeseeable for the conventional cast irons and can contribute much to industry, making the equipment and machinery lighter in weight and reducing cost by use of this cast iron.
What we claim is:
l. A method for manufacturing spheroidal graphite cast iron comprising applying hot plastic deformation treatment to a spherical graphite cast iron at a reduction ratio of 30 to and subsequently subjecting the said material to heat treatment to obtain high tensile strength.
2. A method for manufacturing spheroidal graphite cast iron as recited in claim 1, wherein the said heat treatment comprises quenching and tempering.
3. A method for manufacturing spheroidal graphite cast iron as recited in claim 1, wherein the said heat treatment comprises austempering.
4. A method for manufacturing spheroidal graphite cast iron as recited in claim 1, wherein the said spheriodal graphite cast iron contains 0.05 to 2.5% of at least one element selected from niobium and tantalum.

Claims (4)

1. A METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON COMPRISING APPLYING HOT PLASTIC DEFORMATION TREATMENT TO A SPHERICAL GRAPHITE CAST IRON AT A REDUCTION RATIO OF 30 TO 80% AND SUBSEQUENTLY SUBJECTING THE SAID MATERIAL TO HEAT TREATMENT TO OBTAIN HIGH TENSILE STRENGTH.
2. A mEthod for manufacturing spheroidal graphite cast iron as recited in claim 1, wherein the said heat treatment comprises quenching and tempering.
3. A method for manufacturing spheroidal graphite cast iron as recited in claim 1, wherein the said heat treatment comprises austempering.
4. A method for manufacturing spheroidal graphite cast iron as recited in claim 1, wherein the said spheriodal graphite cast iron contains 0.05 to 2.5% of at least one element selected from niobium and tantalum.
US358028A 1973-05-07 1973-05-07 Method for manufacturing spheroidal graphite cast iron Expired - Lifetime US3893873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US358028A US3893873A (en) 1973-05-07 1973-05-07 Method for manufacturing spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US358028A US3893873A (en) 1973-05-07 1973-05-07 Method for manufacturing spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
US3893873A true US3893873A (en) 1975-07-08

Family

ID=23408007

Family Applications (1)

Application Number Title Priority Date Filing Date
US358028A Expired - Lifetime US3893873A (en) 1973-05-07 1973-05-07 Method for manufacturing spheroidal graphite cast iron

Country Status (1)

Country Link
US (1) US3893873A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080715A (en) * 1976-03-16 1978-03-28 Kobe Steel, Ltd. Process for production of lamellar graphite-containing material
US4096002A (en) * 1974-09-25 1978-06-20 Riken Piston Ring Industrial Co. Ltd. High duty ductile cast iron with superplasticity and its heat treatment methods
US4541878A (en) * 1982-12-02 1985-09-17 Horst Muhlberger Cast iron with spheroidal graphite and austenitic-bainitic mixed structure
US4880477A (en) * 1988-06-14 1989-11-14 Textron, Inc. Process of making an austempered ductile iron article
US5028281A (en) * 1988-06-14 1991-07-02 Textron, Inc. Camshaft
US5976709A (en) * 1996-05-31 1999-11-02 Hitachi Kinzoku Kabushiki Kaisha Aluminum alloy member, with insert provided therein, possessing improved damping capacity and process for producing the same
US6258180B1 (en) * 1999-05-28 2001-07-10 Waupaca Foundry, Inc. Wear resistant ductile iron
US6457960B1 (en) * 1998-10-05 2002-10-01 Matsushita Electric Industrial Co., Ltd. Hermetic compressor and open compressor
WO2007040464A1 (en) * 2005-09-15 2007-04-12 Grede Foundries, Inc. High silicon niobium casting alloy and process for producing the same
US20080206584A1 (en) * 2007-02-28 2008-08-28 Jaszarowski James K High strength gray cast iron
US20080274005A1 (en) * 2005-05-05 2008-11-06 Wescast Industries, Inc. Cast Iron With Improved High Temperature Properties
WO2012125031A1 (en) * 2011-03-14 2012-09-20 Tdi Value Web B.V. A method of heat treating a cast iron, in particular a nodular cast iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2087766A (en) * 1933-03-11 1937-07-20 Gunite Foundries Corp Method of making rolled products
US2087764A (en) * 1933-02-24 1937-07-20 Timken Roller Bearing Co Ferrous alloys and method of manufacture
US2087765A (en) * 1933-02-17 1937-07-20 Stellum Inc Conversion of iron-carbon alloys into products of sheeted and other shapes
US2283664A (en) * 1940-07-26 1942-05-19 Timken Roller Bearing Co Graphitic steel
US3663212A (en) * 1969-07-18 1972-05-16 Wisconsin Alumni Res Found Nodular irons and method for controlling same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2087765A (en) * 1933-02-17 1937-07-20 Stellum Inc Conversion of iron-carbon alloys into products of sheeted and other shapes
US2087764A (en) * 1933-02-24 1937-07-20 Timken Roller Bearing Co Ferrous alloys and method of manufacture
US2087766A (en) * 1933-03-11 1937-07-20 Gunite Foundries Corp Method of making rolled products
US2283664A (en) * 1940-07-26 1942-05-19 Timken Roller Bearing Co Graphitic steel
US3663212A (en) * 1969-07-18 1972-05-16 Wisconsin Alumni Res Found Nodular irons and method for controlling same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096002A (en) * 1974-09-25 1978-06-20 Riken Piston Ring Industrial Co. Ltd. High duty ductile cast iron with superplasticity and its heat treatment methods
US4080715A (en) * 1976-03-16 1978-03-28 Kobe Steel, Ltd. Process for production of lamellar graphite-containing material
US4541878A (en) * 1982-12-02 1985-09-17 Horst Muhlberger Cast iron with spheroidal graphite and austenitic-bainitic mixed structure
US4880477A (en) * 1988-06-14 1989-11-14 Textron, Inc. Process of making an austempered ductile iron article
US5028281A (en) * 1988-06-14 1991-07-02 Textron, Inc. Camshaft
US5976709A (en) * 1996-05-31 1999-11-02 Hitachi Kinzoku Kabushiki Kaisha Aluminum alloy member, with insert provided therein, possessing improved damping capacity and process for producing the same
US6457960B1 (en) * 1998-10-05 2002-10-01 Matsushita Electric Industrial Co., Ltd. Hermetic compressor and open compressor
US6258180B1 (en) * 1999-05-28 2001-07-10 Waupaca Foundry, Inc. Wear resistant ductile iron
US20080274005A1 (en) * 2005-05-05 2008-11-06 Wescast Industries, Inc. Cast Iron With Improved High Temperature Properties
WO2007040464A1 (en) * 2005-09-15 2007-04-12 Grede Foundries, Inc. High silicon niobium casting alloy and process for producing the same
US20080260568A1 (en) * 2005-09-15 2008-10-23 Shah Bipin H High Silicon Niobium Casting Alloy and Process for Producing the Same
CN101300368B (en) * 2005-09-15 2011-08-31 格瑞得有限责任公司 High silicon niobium casting alloy and method of manufacturing the same
US8012410B2 (en) 2005-09-15 2011-09-06 Grede Llc High silicon niobium casting alloy and process for producing the same
US20080206584A1 (en) * 2007-02-28 2008-08-28 Jaszarowski James K High strength gray cast iron
US8333923B2 (en) 2007-02-28 2012-12-18 Caterpillar Inc. High strength gray cast iron
WO2012125031A1 (en) * 2011-03-14 2012-09-20 Tdi Value Web B.V. A method of heat treating a cast iron, in particular a nodular cast iron
US9708677B2 (en) 2011-03-14 2017-07-18 Tdi Value Web B.V.; Method of heat treating a cast iron, in particular a nodular cast iron

Similar Documents

Publication Publication Date Title
US3860457A (en) A ductile iron and method of making it
US4930909A (en) Rolling bearing
JP3538995B2 (en) Rolling bearing
US4871268A (en) Rolling bearing
US4023988A (en) Heat treatment for ball bearing steel to improve resistance to rolling contact fatigue
EP1384794B1 (en) Spheroidal cast iron particulary for piston rings and method for its production
US5002729A (en) Case hardenable corrosion resistant steel alloy and article made therefrom
US5084116A (en) Rolling contact element steel and rolling bearing made thereof
US3893873A (en) Method for manufacturing spheroidal graphite cast iron
US6403026B1 (en) Steel and process for the manufacture of a component for bearings
JPH0579742B2 (en)
US3859147A (en) Hot hard stainless steel
US2087764A (en) Ferrous alloys and method of manufacture
US5908515A (en) Bearing component
EP1574592A1 (en) Bearing steel excellent in workability and corrosion resistance, method for production thereof, and bearing member and method for manufacture thereof
US2413602A (en) Bearing steels
JPH03153842A (en) Rolling bearing
US2664369A (en) Method of softening low-carbon medium-alloy steel
US2624687A (en) Process of heat-treating alloy steel
US2863763A (en) Ductile and tough high strength steel
US3155550A (en) Heat treatment of chromium-free steel bearings
US2585372A (en) Method of making low-alloy steel
US3704183A (en) Method for producing a low-cost hypereutectoid bearing steel
US2438267A (en) Graphitic steel
US3712808A (en) Deep hardening steel