CN101604660B - 台型半导体器件及其制造方法 - Google Patents

台型半导体器件及其制造方法 Download PDF

Info

Publication number
CN101604660B
CN101604660B CN200910140669.XA CN200910140669A CN101604660B CN 101604660 B CN101604660 B CN 101604660B CN 200910140669 A CN200910140669 A CN 200910140669A CN 101604660 B CN101604660 B CN 101604660B
Authority
CN
China
Prior art keywords
semiconductor layer
oxide film
ditch
heat oxide
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910140669.XA
Other languages
English (en)
Other versions
CN101604660A (zh
Inventor
关克行
土屋尚文
铃木彰
冈田喜久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Sanyo Electronics Corp
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Sanyo Semiconductor Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd, Sanyo Semiconductor Manufacturing Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN101604660A publication Critical patent/CN101604660A/zh
Application granted granted Critical
Publication of CN101604660B publication Critical patent/CN101604660B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明的目的在于谋求高耐压、高可靠度的台型半导体器件及其制造方法的确立,通过使用廉价的材料来解决现有的因相当于PN接合部PNJC的位置的台沟内壁(11)的第2绝缘膜(10)的厚度较薄而产生耐压劣化与漏电流的问题。本发明的台型半导体器件,以在台沟(5)内壁形成由热氧化膜(6)所构成的稳定的保护膜来被覆保护PN接合部PNJC,并且在台沟(5)内的氧化膜(6)所夹的空隙填埋具有负电荷的绝缘膜(7)以使N-型半导体层(2)的与热氧化膜(6)的界面不易形成电子蓄积层。通过采用上述构成,减低热氧化膜(6)中的正电荷所造成的影响,而确保空乏层往与热氧化层(6)的界面的N-型半导体层的扩展。

Description

台型半导体器件及其制造方法
技术领域
本发明涉及具有台沟的半导体器件及其制造方法。本申请案中是将具有台沟的半导体器件表示为台型半导体器件。
背景技术
现有技术中,就台型半导体器件的一种类而言,已知有大功率用的台型二极管。兹参照图8及图9说明现有例的台型二极管。图8是显示以矩阵状配置多个现有例的台型二极管的半导体晶圆的概略平面图。图9是沿着图8的X-X线的剖面图,显示沿着切割线(scribe line)DL进行切块(dicing)后的状态。
于N+型半导体衬底101的表面形成N-型半导体层102。于N-型半导体层102的表面形成有P型半导体层103,于P型半导体层103上形成有第1绝缘膜105。此外,形成与P型半导体层103电性连接的阳极电极106。
此外,形成有从P型半导体层103的表面到达N+型半导体衬底101的台沟108。台沟108形成为比N-型半导体102还深,台沟108的底部位于N+型半导体衬底101中。从P型半导体层103的表面至台沟108的底部,台沟108的侧壁具有顺锥形状呈倾斜。台型二极管由该台沟108包围而具有台型的构造。
此外,覆盖台沟108的侧壁而形成有由聚酰亚胺膜构成的第2绝缘膜130,且于N+型半导体衬底101的背面形成有阴极电极107。
另外,关于台型的半导体器件,记载于例如下述的专利文献1。
专利文献1:日本特开2003-347306号公报
发明内容
(发明所欲解决的课题)
虽然上述的现有例,显示图9所示的第2绝缘膜130是以均匀的膜厚被覆着台沟108的内壁,但实际上是如图11所示,第2绝缘膜130是以在台沟108内壁的上部薄薄地形成并积存在台沟108的底部的形状来形成。此种形状是以下述的步骤形成。亦即,如图10所示,在进行滴涂(dispense)等而将第2绝缘膜130配置于台沟108时,是以第2绝缘膜130填埋台沟108内,由于在之后的热处理时,进行酰亚胺化反应等,会使第2绝缘膜130的流动性变高,故全体而言第2绝缘膜130会流入台沟108的底部,以致如图11所示,第2绝缘膜130在台沟108内壁的上部薄薄地形成。
故,在相当于电场强度最大的PN接合部PNJC的位置的台沟侧壁110的第2绝缘膜130的膜厚变薄,而引起PN接合的耐压劣化及漏电流的增大,结果即产生良率降低、可靠度降低等必须解决的严重课题。又,就解决上述问题的方法而言,虽然可采取重复若干次形成第2绝缘膜的方法,但其材料费用高,会使得半导体器件的成本提高。
(解决课题的手段)
本发明的台型半导体器件的制造方法含有准备第1导电型的半导体衬底,于所述半导体衬底的表面形成比所述半导体衬底低浓度的第1导电型的第1半导体层的步骤;于所述第1半导体层的表面形成第2导电型的第2半导体层的步骤;以掩模层局部性地被覆所述第2半导体层的表面,并形成从所述第2半导体层的表面到达所述半导体衬底中的台沟的蚀刻步骤;在干O2或湿O2环境的高温炉中,在所述台沟内及所述第2半导体层上形成热氧化膜的步骤;在所述台沟内的由所述热氧化膜所围成的沟内及所述第2半导体层上的所述热氧化膜的一部分的上方形成带有负电荷的有机绝缘膜的步骤;在所述形成有机绝缘膜的步骤后,在所述热氧化膜的未形成有所述有机绝缘膜的部分形成使所述第2半导体层露出的开口部的光刻步骤;及在所述开口部内形成电极的步骤。
此外,本发明的台型半导体器件具备:第1导电型的半导体衬底;第1导电型的第1半导体层,接合于所述半导体衬底的表面且比所述半导体衬底低浓度;第2导电型的第2半导体层,接合于所述第1半导体层的表面,与所述第1半导体层共同形成PN接合部;台沟,从所述第2半导体层的表面到达所述半导体衬底中;热氧化膜,形成在所述第2半导体层上所述台沟内;有机绝缘膜,形成在所述台沟内的由所述热氧化膜所围成的沟内及所述第2半导体层上的所述热氧化膜的一部分的上方且带有负电荷;及电极,在形成所述有机绝缘膜的步骤之后,形成在所述热氧化膜的未形成有所述有机绝缘膜的部分形成的使所述第2半导体层露出的开口部内而接触于所述第2半导体的表面。
在上述手段中采用以良质的氧化膜被覆台沟内的PN接合部的平面(planar)制备技术,并利用被覆在氧化膜上的具有一定性质的绝缘膜来补强氧化膜的弱点。
(发明的效果)
依据本发明的台型半导体器件及其制造方法,可通过廉价的材料使PN接合部的耐压提升,并且能够谋求漏电流的降低。
附图说明
图1是显示本发明实施形态的台型二极管及其制造方法的剖面图;
图2是显示本发明实施形态的台型二极管及其制造方法的剖面图;
图3是显示本发明实施形态的台型二极管及其制造方法的剖面图;
图4是显示本发明实施形态的台型二极管及其制造方法的剖面图;
图5是显示本发明实施形态的台型二极管及其制造方法的剖面图;
图6是显示本发明实施形态的台型二极管及其制造方法的剖面图;
图7是显示在具有未被绝缘膜填埋的台沟的半导体晶圆上所形成的光刻胶层的涂布不均的平面图;
图8是显示现有例的台型二极管及其制造方法的平面图;
图9是现有例的台型二极管的剖面图;
图10是显示现有例的台型二极管及其制造方法的剖面图;
图11是显示现有例的台型二极管及其制造方法的剖面图;
图12(A)及(B)是显示本发明其它实施形态的台型二极管及其制造方法的剖面图。
【主要元件符号说明】
1、101  N+型半导体衬底
2、102  N-型半导体层
3、103  P型半导体层
4、14  光刻胶层
4A、6A、8A  开口部
5、108  台沟
6  热氧化膜
7、105、130  绝缘膜
8、106  阳极电极
9、107  阴极电极
10  钝化膜
11PNJC  部台沟侧壁
12A、12B  氧化膜
15  涂布不均
16  半导体晶圆
DL  切割线
PNJC PN  接合部
具体实施方式
兹针对本发明实施形态的半导体器件及其制造方法,以台型半导体器件是台型二极管的情形为例进行说明。图1至图5显示本实施形态的台型二极管及其制造方法的剖面图。其中,以下所说明的台型二极管的制造方法是针对以矩阵状配置多个台型二极管的晶圆状半导体衬底进行,为了说明上的方便,仅图示晶圆状半导体衬底所含有的多个台型二极管的中的1个台型二极管。
如图1所示,准备扩散有高浓度的例如磷等N型杂质的N+型半导体衬底1(例如,硅单晶衬底)。使半导体层磊晶成长于该N+型半导体衬底1的表面而形成低浓度的N型半导体层,亦即N-型半导体层2。另外,上述N+型与N-型的双层结构亦可为进行下述步骤而得,亦即,在从N-型半导体衬底的两面将作为杂质的磷等予以热扩散而形成N+层后,进行化学性蚀刻或机械性研磨去除该半导体衬底的一面。尤其在为必须具备较厚N-型半导体层2的超高耐压品时,会有以扩散法比以磊晶法来形成的方式为理想的情形。
之后,在N-型半导体层2的表面扩散例如硼等P型杂质而形成P型半导体层3。通过此,于N-型半导体层2与P型半导体层3的界面形成PN接合部PNJC。在上述的构成中,N+型半导体衬底1、N-型半导体层2、P型半导体层3的全体厚度例如约200μm左右。
接着,如图2所示,在P型半导体层3上形成具有开口部4A的光刻胶层4,该开口部4A是将预定形成台沟5的区域予以开口。接着,以该光刻胶层4为掩模(mask),贯通P型半导体层3与N-型半导体层2将N+型半导体衬底1予以干蚀刻达至其厚度方向的中途的区域,通过此形成台沟5。之后,使用氟酸、硝酸的蚀刻液将因干蚀刻而产生于台沟5侧壁的损伤层(damage layer)去除。蚀刻结束后,以灰化(ashing)法或光刻胶剥离液去除作为掩模使用的光刻胶层4。
接着,如图3所示,在干O2或湿O2环境的高温炉中,于台沟5侧壁上、P型半导体层3上、N+型半导体衬底1上形成厚度数μm以下的热氧化膜6。相当于PN接合部PNJC的位置的台沟侧壁11由该热氧化膜6以可确保耐压的足够厚度所被覆保护,因此可容易解决以聚酰亚胺等填埋台沟5时的覆盖台沟侧壁11的膜厚形成为较薄而无法确保耐压等的问题。本实施形态的台沟5的宽度是10μm以上,因此无法以热氧化膜6填埋台沟5内全体,而形成由形成在台沟5内的热氧化膜6所围成的沟。
此时,在平面型NPN高耐压晶体管中会出现成为问题的一种现象,亦即,会有在氧化膜的界面,于属于集极层的N-型半导体层2形成电子蓄积层,空乏层未足够扩展,在表面发生绝缘崩溃,而无法获得以整体电阻率所决定的绝缘耐压的现象,而在以热氧化膜6被覆台沟5的台型二极管也会有发现该现象的情形。当为平面型晶体管时,从集极表面扩散若干个P+保护环(guard ring)来解决上述问题。而在台型二极管中将P+保护环设置在台沟5内则步骤数是增加,反而失去能够以比平面型低廉地生产的好处。
因此,如图4所示,在台沟5内的由热氧化膜6所围成的沟内及除了之后形成阳极电极8的区域外的P型半导体层3上的热氧化膜6上形成绝缘膜7。当绝缘膜7由环氧树脂等所构成时,相较于疏水性的硅面直接露出的台沟5的沟内,环氧树脂等比较容易流入亲水性的热氧化膜6所围成的沟内。在热氧化膜6中,若热氧化时于与N-型半导体层2等的界面的氧化膜侧半导体为硅的话则会产生因过剩的硅所造成的阳离子,或者,产生存在于硅与氧化膜的界面的悬键(dangling bond)的界面态(interfacestate)。结果,热氧化膜6整体成为或多或少带有正电荷的状态,若维持这种状态,在与热氧化膜6的界面的N-型半导体层2会蓄积电子,而成为耐压降低的原因。
因此,为了抵消上述正电荷,形成于热氧化膜6上的绝缘膜7可选择带有负电荷的廉价的环氧树脂。与其说由于绝缘膜7隔介热氧化膜6而形成于N-型半导体层2等上,因此绝缘膜7中的负电荷直接对该N-型半导体层2等造成影响,不如说起了减低热氧化膜6的正电荷对N-型半导体层2等的影响的作用。另外,即使绝缘膜7中的负电荷量变多,抵消热氧化膜6的正电荷量且成为以整体而言N-型半导体层2上存在负电荷的形式,只要台沟5内的N-型半导体层2的与热氧化膜6的界面不反转成P型便没有问题。
结果,在N-型半导体层2与热氧化膜6的界面的热氧化膜6的正电荷所造成的N-型半导体层2的电子蓄积减少,空乏层变得容易扩展,因此发生在台沟侧壁11的绝缘崩溃变得不易发生,耐压便能够接近整体电阻率所决定的值。当将由具有负电荷的环氧树脂等所构成的绝缘膜7直接形成于台沟5上时,亦防止在N-型半导体层2的与绝缘膜7的界面的P型反转层所产生的漏电流等的问题。
另外,在本实施形态中,虽然亦将绝缘膜7形成在台沟5以外的部分,但只要填埋比台沟5的相当于PNJC部的位置的台沟侧壁11下部的台沟5的话,便可获得上述效果。惟当未将台沟5以绝缘膜7完全填埋时,形成阳极电极8时等的药液等会残留于台沟5内而引起可靠度方面的问题,且如图7所示产生半导体晶圆16内的光刻胶层14的涂布不均15,造成良率下降,因此较理想为将台沟5完全填埋。
另外,就前述绝缘膜7而言,亦可使用例如所谓的永久光刻胶的有机光刻胶膜与聚酰亚胺膜、或者无机或有机的SOG(Spin On Glass;旋覆式玻璃)膜、或者氮化硅膜等。
最后,如图5所示,经预定的光刻步骤而在热氧化膜6形成用以进行P型半导体层与后述的阳极电极8的接触的开口部6A。此时亦去除形成于N+型半导体衬底侧1的热氧化膜6。之后,通过溅镀法或蒸镀法将铝等导电材料形成在P型半导体层3上等,再经预定的步骤而形成阳极电极8,并在N+型半导体衬底1上形成阴极电极9,通过此便完成以简便且具稳定性的热氧化膜6及由廉价的环氧树脂等所构成的绝缘膜7来填埋台沟5的台型二极管。
另外,如图6所示,依需要而将以电浆CVD法制得的氮化膜所构成的钝化(passivation)膜10以在阳极电极8上具有开口部8A的状态予以形成,能够有效地谋求可靠度的提升。当如前述仅在台沟5内填埋绝缘膜7而达成初期目的时,将钝化膜10亦形成为比台沟5的宽度稍微大的宽度,通过此,可阻止绝缘膜7中的负电荷量的变化,而能够获得可靠度高的台型二极管。
以下,参照图12(A)及图12(B)说明本发明的其它实施形态。又,其它实施形态的特征是在于仅以氧化膜填埋台沟5内。
首先,图12(A)所示构成与图6所示构成的相异点,是在以前述热氧化膜6、及CVD法所制作的氧化膜12A完全填埋在台沟5内的状态下,在该等膜的上形成前述绝缘膜7的点。其它的构成则与图6相同。
再者,图12(B)所示构成与图6所示构成的相异点,是在仅以由CVD法所制作的氧化膜12B完全填埋在台沟5内的状态下,在其上形成前述绝缘膜7的点。其它构成则与图6相同。
在本实施形态中,以台沟5深度约100μm、台沟5宽度约10μm为例加以说明,惟前述台沟5的深度、宽度尺寸可做种种变更,且对应各种尺寸形成在台沟内的氧化膜的构成可做变更。亦即,对于比前述宽度尺寸小的台沟要形成氧化膜时,亦可仅以热氧化膜完全填埋在台沟5内,以取代图12(B)所示的氧化膜12B,而可建构更简便的工艺,例如,宽度尺寸若在5μm以下,则可仅以热氧化膜填埋。此种情况时,为了确保台型二极管的超高耐压、低漏电流特性,而为了将热氧化膜6的成长速度减缓以谋求减少氧化膜中的因过剩的硅所造成的正电荷,并且依需要而减少产生于N-型半导体层2与热氧化膜6的界面的悬键亦可通过采用氢退火等,来使热氧化膜所具有的正电荷量减少。另外,虽以台型二极管为一例来说明本发明,但本发明亦可广泛应用于台型晶体管等其它台型半导体器件。

Claims (6)

1.一种台型半导体器件的制造方法,其特征在于含有: 
准备第1导电型的半导体衬底, 
于所述半导体衬底的表面形成比所述半导体衬底低浓度的第1导电型的第1半导体层的步骤; 
于所述第1半导体层的表面形成第2导电型的第2半导体层的步骤; 
以掩模层局部性地被覆所述第2半导体层的表面,并形成从所述第2半导体层的表面到达所述半导体衬底中的台沟的蚀刻步骤; 
在干O2或湿O2环境的高温炉中,在所述台沟内及所述第2半导体层上形成热氧化膜的步骤; 
在由所述台沟内的所述热氧化膜所围成的沟内及所述第2半导体层上的所述热氧化膜的一部分的上方形成带有负电荷的有机绝缘膜的步骤; 
在所述形成有机绝缘膜的步骤后,在所述热氧化膜的未形成有所述有机绝缘膜的部分形成使所述第2半导体层露出的开口部的光刻步骤;及 
在所述开口部内形成电极的步骤。 
2.一种台型半导体器件的制造方法,其特征在于含有: 
准备第1导电型的半导体衬底, 
于所述半导体衬底的表面形成比所述半导体衬底低浓度的第1导电型的第1半导体层的步骤; 
于所述第1半导体层的表面形成第2导电型的第2半导体层的步骤; 
以掩模层局部性地被覆所述第2半导体层的表面,并形成从所述第2半导体层的表面到达所述半导体衬底中的台沟的蚀刻步骤; 
在干O2或湿O2环境的高温炉中,以埋设于所述台沟内的方式形成热氧化膜的步骤; 
在所述热氧化膜的一部分的上方,以延伸至所述第2半导体层上方的方式形成带有负电荷的有机绝缘膜的步骤; 
在所述形成有机绝缘膜的步骤后,在所述热氧化膜的未形成有所述有机绝缘膜的部分形成使所述第2半导体层露出的开口部的光刻步骤;及 
在所述开口部内形成电极的步骤。 
3.如权利要求1或2所述的台型半导体器件的制造方法,其特征在于,所述有机绝缘膜是有机光刻胶、环氧树脂。 
4.一种台型半导体器件,其特征在于具备: 
第1导电型的半导体衬底; 
第1导电型的第1半导体层,接合于所述半导体衬底的表面且比所述半导体衬底低浓度; 
第2导电型的第2半导体层,接合于所述第1半导体层的表面,与所述第1半导体层共同形成PN接合部; 
台沟,从所述第2半导体层的表面到达所述半导体衬底中; 
热氧化膜,形成在所述第2半导体层上所述台沟内; 
有机绝缘膜,形成在所述台沟内的由所述热氧化膜所围成的沟内及所述第2半导体层上的所述热氧化膜的一部分的上方且带有负电荷;及 
电极,在形成所述有机绝缘膜的步骤之后,形成在所述热氧化膜的未形成有所述有机绝缘膜的部分形成的使所述第2半导体层露出的开口部内而接触于所述第2半导体的表面。 
5.一种台型半导体器件,其特征在于具备: 
第1导电型的半导体衬底; 
第1导电型的第1半导体层,接合于所述半导体衬底的表面且比所述半导体衬底低浓度; 
第2导电型的第2半导体层,接合于所述第1半导体层的表面,与所述第1半导体层共同形成PN接合部; 
台沟,从所述第2半导体层的表面到达所述半导体衬底中; 
热氧化膜,埋设于所述台沟内; 
有机绝缘膜,在所述热氧化膜上,以在所述第2半导体层的一部分的上方延伸的方式形成且带有负电荷;及 
电极,在形成所述有机绝缘膜的步骤之后,形成在所述热氧化膜的 未形成有所述有机绝缘膜的部分形成的使所述第2半导体层露出的开口部内而接触于所述第2半导体的表面。 
6.如权利要求4或5所述的台型半导体器件,其特征在于,所述有机绝缘膜是由有机光刻胶、环氧树脂所构成。 
CN200910140669.XA 2008-06-12 2009-06-12 台型半导体器件及其制造方法 Expired - Fee Related CN101604660B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008153850 2008-06-12
JP2008153850 2008-06-12
JP2008-153850 2008-06-12

Publications (2)

Publication Number Publication Date
CN101604660A CN101604660A (zh) 2009-12-16
CN101604660B true CN101604660B (zh) 2014-12-03

Family

ID=41413965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910140669.XA Expired - Fee Related CN101604660B (zh) 2008-06-12 2009-06-12 台型半导体器件及其制造方法

Country Status (5)

Country Link
US (1) US8319317B2 (zh)
JP (1) JP2010021532A (zh)
KR (1) KR101075784B1 (zh)
CN (1) CN101604660B (zh)
TW (1) TWI405268B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302222A (ja) * 2008-06-12 2009-12-24 Sanyo Electric Co Ltd メサ型半導体装置及びその製造方法
DE102010046213B3 (de) * 2010-09-21 2012-02-09 Infineon Technologies Austria Ag Verfahren zur Herstellung eines Strukturelements und Halbleiterbauelement mit einem Strukturelement
US8809942B2 (en) * 2011-09-21 2014-08-19 Kabushiki Kaisha Toshiba Semiconductor device having trench structure
CN103022088A (zh) * 2011-09-21 2013-04-03 株式会社东芝 具有沟道结构体的半导体装置及其制造方法
CN106098791A (zh) * 2016-06-16 2016-11-09 杭州赛晶电子有限公司 U型蚀刻直角台面硅二极管及其硅芯和制备方法
CN109904109B (zh) * 2019-01-31 2021-05-28 上海朕芯微电子科技有限公司 一种双极集成电路的隔离结构及隔离结构的形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746963A (en) * 1982-09-06 1988-05-24 Hitachi, Ltd. Isolation regions formed by locos followed with groove etch and refill

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1485015A (en) 1974-10-29 1977-09-08 Mullard Ltd Semi-conductor device manufacture
US3973270A (en) 1974-10-30 1976-08-03 Westinghouse Electric Corporation Charge storage target and method of manufacture
JPS51139281A (en) * 1975-05-28 1976-12-01 Hitachi Ltd Semi-conductor device
US4179794A (en) 1975-07-23 1979-12-25 Nippon Gakki Seizo Kabushiki Kaisha Process of manufacturing semiconductor devices
US4104086A (en) * 1977-08-15 1978-08-01 International Business Machines Corporation Method for forming isolated regions of silicon utilizing reactive ion etching
US4389281A (en) * 1980-12-16 1983-06-21 International Business Machines Corporation Method of planarizing silicon dioxide in semiconductor devices
JPS57196585A (en) 1981-05-28 1982-12-02 Nec Corp Manufacture of high-speed mesa type semiconductor device
US4738936A (en) 1983-07-01 1988-04-19 Acrian, Inc. Method of fabrication lateral FET structure having a substrate to source contact
US4663832A (en) 1984-06-29 1987-05-12 International Business Machines Corporation Method for improving the planarity and passivation in a semiconductor isolation trench arrangement
US4725562A (en) * 1986-03-27 1988-02-16 International Business Machines Corporation Method of making a contact to a trench isolated device
US4775643A (en) 1987-06-01 1988-10-04 Motorola Inc. Mesa zener diode and method of manufacture thereof
KR940016546A (ko) 1992-12-23 1994-07-23 프레데릭 얀 스미트 반도체 장치 및 제조방법
JP3674429B2 (ja) * 1999-12-17 2005-07-20 松下電器産業株式会社 高耐圧半導体装置
JP3492279B2 (ja) * 2000-03-21 2004-02-03 Necエレクトロニクス株式会社 素子分離領域の形成方法
US6383933B1 (en) * 2000-03-23 2002-05-07 National Semiconductor Corporation Method of using organic material to enhance STI planarization or other planarization processes
JP2002261269A (ja) 2001-02-27 2002-09-13 Matsushita Electric Ind Co Ltd メサ型半導体装置の製造方法
JP3985582B2 (ja) 2002-05-24 2007-10-03 松下電器産業株式会社 半導体装置の製造方法
JP2005051111A (ja) 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd メサ型半導体装置
JP3767864B2 (ja) 2004-02-16 2006-04-19 ローム株式会社 メサ型半導体装置の製法
JP4901300B2 (ja) 2006-05-19 2012-03-21 新電元工業株式会社 半導体装置の製造方法
JP5117698B2 (ja) 2006-09-27 2013-01-16 ルネサスエレクトロニクス株式会社 半導体装置
JPWO2008044801A1 (ja) * 2006-10-13 2010-02-18 三洋電機株式会社 半導体装置及びその製造方法
JP2009302222A (ja) 2008-06-12 2009-12-24 Sanyo Electric Co Ltd メサ型半導体装置及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746963A (en) * 1982-09-06 1988-05-24 Hitachi, Ltd. Isolation regions formed by locos followed with groove etch and refill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-51111A 2005.02.24 *

Also Published As

Publication number Publication date
CN101604660A (zh) 2009-12-16
TWI405268B (zh) 2013-08-11
TW200952084A (en) 2009-12-16
US8319317B2 (en) 2012-11-27
US20090309193A1 (en) 2009-12-17
KR101075784B1 (ko) 2011-10-24
JP2010021532A (ja) 2010-01-28
KR20090129346A (ko) 2009-12-16

Similar Documents

Publication Publication Date Title
US10020391B2 (en) Semiconductor device and manufacturing method of the same
US7394144B2 (en) Trench semiconductor device and method of manufacturing it
CN101604660B (zh) 台型半导体器件及其制造方法
US9673317B2 (en) Integrated termination for multiple trench field plate
CN105321824B (zh) 半导体装置的制造方法
CN213124449U (zh) 电子功率器件
US8017494B2 (en) Termination trench structure for mosgated device and process for its manufacture
CN111490094B (zh) 一种带ESD保护结构的trench分离栅DMOS器件制作方法
CN110957257A (zh) 绝缘体上半导体衬底、其形成方法以及集成电路
CN101604632B (zh) 台型半导体装置及其制造方法
JP2011040431A (ja) 半導体装置およびその製造方法
JP2007242977A (ja) 高耐圧半導体集積回路装置
CN109216256B (zh) 沟槽隔离结构及其制造方法
CN111540677B (zh) 一种三层阶梯状沟槽晶体管的制造工艺
CN114156183A (zh) 分离栅功率mos器件及其制造方法
CN114512403A (zh) 半导体器件的制造方法
CN114927465B (zh) 半导体器件及其制作方法
CN116779666B (zh) 一种带esd结构的igbt芯片及其制作方法
CN117637611A (zh) 一种改善芯片切割形变的晶圆结构及其制作方法
KR101640570B1 (ko) 실리콘 카바이드 트렌치 게이트형 전력 모스 소자 및 그 제조방법
CN113054039A (zh) 基于元胞结构的沟槽型肖特基二极管器件结构及制造方法
CN117253796A (zh) 一种双沟道mosfet及其制备方法
CN118136510A (zh) 具有屏蔽栅的沟槽型功率器件的制备方法
RU2492546C1 (ru) Способ изготовления самосовмещенного высоковольтного интегрального транзистора
CN117080245A (zh) 一种功率半导体器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SANYO SEMICONDUCTOR CO., LTD. NIIGATA SANYO ELECTR

Free format text: FORMER OWNER: SANYO SEMICONDUCTOR CO., LTD. SANYO SEMICONDUCTOR MANUFACTURING CO., LTD.

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110121

Address after: Japan Osaka

Applicant after: Sanyo Electric Co., Ltd.

Co-applicant after: Sanyo Semiconductor Co., Ltd.

Co-applicant after: Niigata SANYO Electronics Corporation

Address before: Japan's Osaka Moriguchi city Beijing Sakamoto 2 D eyes 5 times 5

Applicant before: Sanyo Electric Co., Ltd.

Co-applicant before: Sanyo Semiconductor Co., Ltd.

Co-applicant before: Sanyo Semiconductor Manufacturing Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141203

Termination date: 20210612