CN101473473A - 燃料电池电解质膜用多孔膜及其制造方法 - Google Patents

燃料电池电解质膜用多孔膜及其制造方法 Download PDF

Info

Publication number
CN101473473A
CN101473473A CNA2007800224509A CN200780022450A CN101473473A CN 101473473 A CN101473473 A CN 101473473A CN A2007800224509 A CNA2007800224509 A CN A2007800224509A CN 200780022450 A CN200780022450 A CN 200780022450A CN 101473473 A CN101473473 A CN 101473473A
Authority
CN
China
Prior art keywords
film
porous
electrolyte
fuel cell
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800224509A
Other languages
English (en)
Inventor
原田浩志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101473473A publication Critical patent/CN101473473A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • B32B7/035Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features using arrangements of stretched films, e.g. of mono-axially stretched films arranged alternately
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Abstract

本发明获得一种燃料电池电解质膜用多孔膜,其具有在纵向和横向方向上相等的机械特性。多孔膜(10)是以如下方式形成的:通过单轴拉伸聚四氟乙烯薄膜而获得的在正交的两个方向上具有强度各向异性的多孔树脂层(1a,1b)在使得多孔树脂层的强度高的方向彼此交叉的状态下被互相层压,并且层压的多孔树脂层通过热熔融连接等方式被接合成一体。

Description

燃料电池电解质膜用多孔膜及其制造方法
技术领域
本发明涉及在燃料电池电解质膜中用作增强材料的多孔膜,以及用于制造该多孔膜的方法。此外,本发明还涉及包括该多孔膜的电解质膜和膜电极组件。
背景技术
固体聚合物燃料电池作为燃料电池的一种形式是已知的。如图4中所示,固体聚合物燃料电池使用膜电极组件(MEA)50作为主体部件。膜电极组件被保持在具有燃料(氢)气体通路和空气气体通路的隔板51和51之间,由此形成被称为单元电池的燃料电池52。膜电极组件50具有这样的结构:正极侧电极催化剂层56a和扩散层57a被层压在为离子交换膜的电解质膜55的一侧,且负极侧电极催化剂层56b和扩散层57b被层压在电解质膜55的另一侧。
关于电解质膜55,主要使用为电解质树脂(离子交换树脂)的全氟磺酸聚合物(美国杜邦有限公司制造的Nafion膜)薄膜。然而,通过全氟磺酸聚合物本身不可能获得足够的强度。因此,例如,还以如下方式形成增强型电解质膜:使用通过单轴或者双轴拉伸由聚四氟乙烯及高分子量聚乙烯树脂等制成的薄膜而多孔化的多孔膜作为增强材料,并且将电解质树脂溶液浸入到多孔膜中(见专利文献1、专利文献2等)。
专利文献1:日本专利公报(特开)No.8-13179
专利文献2:日本专利公报(特开)No.9-194609
在使用上述增强型电解质膜形成的膜电极组件中,要求在用作增强材料的多孔膜的膜表面内的机械特性在纵向和横向方向上相等。如果纵向和横向方向之间的机械特性之比很大,则当电解质膨胀时在纵向和横向上的尺寸改变之间的差异也增加。因此,在电极催化剂层和电解质膜之间的界面上产生纵向和横向方向之间大的应力应变差异。当产生这种应力应变差异时,可能导致反应不均衡、界面剥离等,以致于显著影响电池的耐久性。
通过单轴拉伸获得的多孔膜在拉伸方向上被高度定向(配向,orient),并且具有排列在拉伸方向上的纤维方向。因此,在拉伸方向上多孔膜的强度增大。然而,多孔膜在正交于拉伸方向的方向上具有低定向性。这就不可避免地导致在正交的两个方向上产生大的强度各向异性。因此,在多孔膜的膜表面内,在纵向和横向方向上机械特性之比变大。因而,在使用通过单轴拉伸获得的多孔膜作为增强材料的电解质膜中,燃料电池工作时在电极催化剂层和电解质膜之间的界面上可能产生可观的应力应变差异。
通过在正交的两个方向上拉伸而获得(即,通过等向拉伸而形成)的多孔膜中,与通过单轴拉伸获得的多孔膜相比,在膜表面内纵向和横向方向上的强度各向异性降低。然而,消除强度各向异性非常困难。另外,在双轴拉伸的情形中,与单轴拉伸的情形相比形成高拉伸率(高定向性)的膜很困难,从而可能无法获得作为多孔膜所要求的强度。
在制造如专利文献1和专利文献2记载的常规增强型电解质膜时,由在制造膜时的拉伸处理引起的与多孔膜的强度各向异性相关的上述问题还没有被特别地认识到。近年来,根据具有更高发电性能的燃料电池的实际使用的要求,向用作增强材料的多孔膜赋予在纵向和横向方向上相等的机械特性已成为一个重要的课题。
本发明是鉴于上述情况而作出的。本发明的目的是提供一种具有在纵向和横向方向上相等的机械特性的燃料电池电解质膜用多孔膜,并提供一种用于制造该多孔膜的方法。本发明的另一个目的是提供一种包括该多孔膜的增强型电解质膜和膜电极组件。
发明内容
根据本发明的燃料电池电解质膜用多孔膜的特征在于:在正交的两个方向上具有强度各向异性的两层(片,sheet)或更多层多孔树脂层在使得所述多孔树脂层的强度高的方向彼此交叉的状态下被彼此层压和接合。
此外,根据本发明,用于制造燃料电池电解质膜用多孔膜的方法的特征在于至少包括:在使得多孔树脂层的强度高的方向彼此交叉的状态下互相层压两层或更多层在正交的两个方向上具有强度各向异性的所述多孔树脂层的步骤;以及使所述层压的多孔树脂层彼此接合的步骤。
在本发明中,用作多孔树脂层的起始材料的树脂材料可以是用于制造在常规增强型电解质膜中使用的多孔膜的树脂材料。优选地,关于这类树脂材料可以列举出聚四氟乙烯树脂、高分子量聚乙烯树脂等等。尤其是,就拉伸的容易性而言优选聚四氟乙烯树脂。通过规定的方法形成树脂薄膜,并且用常规已知方法对其进行单轴拉伸。由此,获得在正交的两个方向上具有强度各向异性的多孔树脂层。根据本发明的燃料电池电解质膜用多孔膜通过以下方式获得:在使所获得的多孔树脂层的强度高的方向彼此交叉的状态下互相层压两层或更多层多孔树脂层,且通过合适的方法使层压的多孔树脂层彼此接合。使高强度方向彼此交叉的角度优选为90度,但是,该角度可以小于或大于90度。
在通过根据本发明的制造方法获得的燃料电池电解质膜用多孔膜中,基本上通过仅仅在一个轴向方向上拉伸而获得的多孔树脂层被彼此层压来使用。当树脂层仅仅在一个轴向方向上被拉伸时,与同一个树脂层在正交的两个方向上被拉伸的情形相比,有可能使树脂层具有更高的分子定向性。因此,与被双轴拉伸的树脂层的机械特性相比,在拉伸方向上被单轴拉伸的树脂层的机械特性(强度)提高。
这样获得的多孔树脂层以使树脂层的强度高的方向(拉伸方向)彼此交叉的方式被互相层压。因而,在交叉的两个方向(纵向和横向)上层压体的机械特性变得实质上相同。同时,在两个方向上的机械强度也比通过在正交的两个方向上拉伸单个层而获得的机械强度更高。即,根据本发明的多孔膜为具有强度各向同性和高强度的燃料电池电解质膜用多孔膜。
优选地,所述层压的多孔树脂层在所述层压的多孔树脂层的熔点温度或者更高温度下被彼此热熔融连接,但本发明并不局限于此。也可以采用通过热压进行的压力接合方法,以及基于通过在层压状态下拉伸多孔树脂层进行的界面纤维化的接合方法等等。在这种情形中,在拉伸处理前通过在熔点或者更低温度下热压被层压的多孔树脂层,能够进一步提高界面的接合度。
燃料电池电解质膜用膜通过用常规方法结合根据上述制造的多孔膜和电解质树脂而形成。膜电极组件通过用常规方法在电解质膜上层压电极催化剂层和扩散层而形成。在获得的膜电极组件中,在作为增强材料设置在电解质膜中的多孔膜的膜表面内的机械特性在纵向和横向方向上相等。因而,不会由于发电时膨胀而在电极催化剂层和电解质膜之间的界面上产生纵向和横向方向上的应力应变差异。结果是,有可能获得具有高发电性能和长寿命的膜电极组件。
根据本发明,有可能获得没有强度各向异性且具有高强度的燃料电池电解质膜用多孔膜。包括将根据本发明的多孔膜用作增强材料的电解质膜的膜电极组件具有高发电性能和长寿命。
附图说明
图1为说明通过根据本发明的方法制造燃料电池电解质膜用多孔膜的一个方面的图。
图2为说明图1中示出的多孔膜与电解质树脂相结合从而被形成电解质膜的一个方面的图。
图3为示出了实施例和比较例的多孔膜的表面SEM图像的图。
图4为示出了燃料电池一示例的示意图。
符号说明
1:单轴拉伸的长尺寸多孔树脂层;1a、1b:被切割成预定的尺寸且被层压成使得拉伸方向彼此正交的两层多孔树脂层;10:根据本发明的燃料电池电解质膜用多孔膜;11:电解质树脂薄膜;20:电解质膜
具体实施方式
下面,参考附图说明根据本发明的一实施例。图1为说明通过根据本发明的方法制造燃料电池电解质膜用多孔膜的一个方面的图。图2为说明图1中示出的多孔膜与电解质树脂相结合从而被形成电解质膜的状态的图。图3为示出了实施例和比较例的多孔膜的表面SEM图像的图。
根据本发明,在制造燃料电池电解质膜用多孔膜10时,如图1a中所示首先制成在一个轴向方向(箭头方向)被拉伸(定向)的多孔树脂层1。多孔树脂层1可以通过用常规方法单轴拉伸未烧制带(unbaked tape)而获得,该未烧制带用这样的方式获得:例如,聚四氟乙烯的细粉末与润滑添加剂一起揉捏成糊状,接着通过挤出等形成为圆棒状的珠子(bead),且圆棒状的珠子在一对金属轧制滚筒之间被轧制。考虑将要获得的多孔膜所要求的强度等,来确定多孔树脂层1的拉伸率和厚度。
从获得的长尺寸多孔树脂层1切割出预定尺寸的多孔树脂层1a和1b。接着,如图1b中所示,多孔树脂层1a和1b在各个层的拉伸方向(即,纤维定向方向)设置为彼此正交的状态下被层压。层压处理后,这两个树脂层1a和1b通过合适的方法被彼此接合,由此如图1c中所示获得根据本发明的燃料电池电解质膜用多孔膜10。接合处理可以通过在构成多孔树脂层1a和1b的树脂的熔点或者更高温度下执行热熔融连接的方法、用热压进行的压力接合方法等来进行。在任何情形中,可能通过在层压处理时将构成多孔树脂层的树脂的悬浊液涂布到界面上而获得牢固的接合。
注意,还可以使用通过使获得的多孔膜10进一步在一个轴向方向上被拉伸或在正交的两个轴向方向上被拉伸而形成的多孔膜作为燃料电池电解质膜用多孔膜。在这种情形中,可能进一步促进膜的纤维化,由此进一步提高膜的强度。多孔膜10还可以用如下方式形成:准备多个长尺寸多孔树脂层1,并彼此层压从各个长尺寸多孔树脂层切割出的多孔树脂层1a和1b。在这种情形中,优选地,各个层的机械特性相同,但是各个层的机械特性也可以不同。在任何情形中,各个层可以在使各层的拉伸方向(纤维定向方向)彼此交叉的状态下被互相层压。
接着,获得的多孔膜10与电解质树脂相组合。组合处理以如下方式进行:通过将多孔膜10浸渍于电解质树脂的溶液内而使电解质树脂浸入多孔膜10,随后使其变干;或者如图2中所示,电解质树脂前体的薄膜11和11被层压在多孔膜10上,并且层压的膜在多孔膜的熔点或者更低的且为电解质树脂前体的熔点(软化点)或者更高的温度下通过热压接合被彼此接合。在后一种情形中,电解质膜是通过使接合的层压膜经受用碱(NaOH、KOH等)的水解并随后经受与酸的质子置换而获得的。由此,可能获得电解质膜20,其具有根据本发明的燃料电池电解质膜用多孔膜10作为增强膜。此外,尽管未示出,通过在获得的电解质膜20的正极侧和负极侧分别层压电极催化剂层和扩散层而形成膜电极组件。
如上所述,在根据本发明的多孔膜10中,强度为各向同性,并且机械特性在纵向和横向方向上实质上相同。因而,在设有具有多孔膜10作为增强膜的电解质膜的膜电极组件中,可能防止由于发电时的膨胀和收缩而在电极催化剂层和电解质膜之间的界面产生在纵向和横向方向之间的大应力应变差异,且由此获得高发电性能和长寿命。
实施例
下面,将通过实施例和比较例说明本发明。
[实施例]
在将石油脑作为液体润滑剂均匀分散到聚四氟乙烯(PTEE)的细粉末中的处理和将获得的混合物预成形的处理之后,通过对从预成形的混合物进行糊状挤出而获得圆棒状珠子。通过在一对金属制轧制滚筒之间轧制该珠子而形成长尺寸的未烧制带。通过单轴和高度定向(高度拉伸)带(拉伸率为10),获得厚度为7μm的纤维状聚四氟乙烯树脂多孔层。
从获得的多孔树脂层切割出尺寸为100mm×100mm的两层,层压这两层使得拉伸方向彼此正交交叉。在层压层时,层之间的层压界面通过喷涂聚四氟乙烯悬浊液而被涂敷。层压的层在360℃被加热,从而被热熔融接合成一体。结果是,获得了具有14至15μm厚度的电解质膜用多孔膜。
[比较例]
通过与实施例相似的处理获得长尺寸的未烧制带A。通过使带A双轴拉伸(MD方向上10次以及TD方向上10次)而获得厚度为14至15μm及物理特性(定向性和强度)为小各向异性的电解质膜用纤维状多孔膜。
[评价法]
a.评价1(多孔结构):为了进行分别形成为实施例和比较例的电解质膜用多孔膜的多孔结构(纤维状态)之间的对比,用电子显微镜观察多孔膜的表面结构。获得的SEM图像在图3中示出。
b.评价2(气孔率):为了进行多孔结构之间的对比,测量多孔膜的体积(尺寸×膜厚)和重量,并使用下面的公式1计算多孔膜的气孔率。获得的结果在表1中示出。
公式1:气孔率(%)=[1-膜重量/(PTFE真实密度×膜体积)]×100
c.评价3(机械强度):为了进行多孔膜的物理特性之间的对比,进行多孔膜抗拉试验并测量多孔膜的屈服应力。通过用截面面积补偿获得的抗拉应力而计算出多孔膜的膜强度,并且如下面的公式2中所示用气孔率补偿获得的膜强度,来计算构成多孔膜的树脂本身的机械强度。对于MD方向和TD方向均进行计算。计算结果在表1中示出。
公式2:树脂强度(MPa)=膜强度/(1-气孔率/100)
[表1]
Figure A200780022450D00091
[结果]
如图3中的膜表面的SEM图像所示,可看出在比较例中,在两个轴向方向上同样地执行拉伸处理,且由此多孔结构呈现放射状均匀的结构。另一方面,在本实施例中,在一个轴向方向上执行拉伸处理,从而使纤维方向对齐。因此,期望在纤维方向上的强度高。注意,图3中示出的膜表面的SEM图像是通过从一侧观察而获得的,但是根据本实施例的膜的后表面呈现通过使图中示出的结构旋转90°而形成的结构(通过在横向方向上定向纤维形成的结构)。因此,根据本实施例的膜的纤维在前后表面的两个轴线方向上被分别高度定向。因此,期望根据本实施例的膜具有与比较例的强度相比更高的强度。
实际上,如在表1中示出的,根据本实施例的膜的强度与比较例相比在两个正交的轴向方向(MD方向和TD方向)上很高。此外,还可以看出MD方向和TD方向之间的物理特性差异被减小。这显示了根据本发明的多孔膜的优越性。

Claims (6)

1.一种燃料电池电解质膜用多孔膜,其中在正交的两个方向上具有强度各向异性的两层或更多层多孔树脂层在使得所述多孔树脂层的强度高的方向彼此交叉的状态下被彼此层压和接合。
2.一种用于制造燃料电池电解质膜用多孔膜的方法,所述方法至少包括:在使得多孔树脂层的强度高的方向彼此交叉的状态下互相层压两层或更多层在正交的两个方向上具有强度各向异性的所述多孔树脂层的步骤;以及使所述层压的多孔树脂层彼此接合的步骤。
3.根据权利要求2所述的用于制造燃料电池电解质膜用多孔膜的方法,其中,在所述接合步骤中,所述层压的多孔树脂层在所述层压的多孔树脂的熔点温度或者更高温度下被彼此热熔融连接。
4.根据权利要求2或3所述的用于制造燃料电池电解质膜用多孔膜的方法,其中,使用通过使聚四氟乙烯单轴拉伸并多孔化而形成的层作为要被层压的所述多孔树脂层。
5.一种增强型电解质膜,所述增强型电解质膜包括根据权利要求1所述的燃料电池电解质膜用多孔膜。
6.一种膜电极组件,所述膜电极组件包括根据权利要求5所述的增强型电解质膜。
CNA2007800224509A 2006-06-26 2007-06-26 燃料电池电解质膜用多孔膜及其制造方法 Pending CN101473473A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP175631/2006 2006-06-26
JP2006175631A JP2008004500A (ja) 2006-06-26 2006-06-26 燃料電池電解質膜用の多孔質膜とその製造方法

Publications (1)

Publication Number Publication Date
CN101473473A true CN101473473A (zh) 2009-07-01

Family

ID=38845681

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800224509A Pending CN101473473A (zh) 2006-06-26 2007-06-26 燃料电池电解质膜用多孔膜及其制造方法

Country Status (6)

Country Link
US (2) US20090269641A1 (zh)
JP (1) JP2008004500A (zh)
CN (1) CN101473473A (zh)
CA (1) CA2654921C (zh)
DE (1) DE112007001517T5 (zh)
WO (1) WO2008001923A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020786A (zh) * 2018-03-30 2020-12-01 本田技研工业株式会社 燃料电池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944864B2 (ja) * 2008-11-04 2012-06-06 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜およびその製造方法ならびに防水通気フィルタ
JP5299622B2 (ja) * 2009-01-19 2013-09-25 トヨタ自動車株式会社 燃料電池用膜‐電極接合体
JP5155927B2 (ja) * 2009-04-08 2013-03-06 日東電工株式会社 防水通音膜とそれを用いた防水通音部材および電気製品
JP5347745B2 (ja) * 2009-06-17 2013-11-20 トヨタ自動車株式会社 燃料電池電解質膜用の多孔質膜の製造方法
KR101481187B1 (ko) 2009-12-03 2015-01-09 현대자동차주식회사 연료전지용 기체확산층및 그 제조방법
WO2011142732A1 (en) * 2010-05-10 2011-11-17 Utc Power Corporation Cross laminated electrochemical cell membranes
BRPI1100062A2 (pt) 2011-07-01 2016-08-02 Shiseido Co Ltd promotor de produção de fator bb de crescimento derivado de plaqueta, e acelerador de produção de célula-tronco mesenquimal, estabilizante de célula-tronco e regenerador dérmico que compreende o mesmo
KR20140048289A (ko) 2011-08-18 2014-04-23 유나이티드 테크놀로지스 코포레이션 연료 전지 및 이를 위한 멤브레인
US9761897B2 (en) * 2012-03-08 2017-09-12 GM Global Technology Operations LLC Fuel cell durability by orthogonally oriented anisotropic external reinforce layers
JP2013235665A (ja) * 2012-05-07 2013-11-21 Nitto Denko Corp 高分子電解質膜およびそれを用いた燃料電池
KR101532380B1 (ko) * 2012-08-03 2015-06-29 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 그를 포함하는 전기화학소자
US20140080031A1 (en) * 2012-09-14 2014-03-20 GM Global Technology Operations LLC Dual Layered ePTFE Polyelectrolyte Membranes
JP2014067606A (ja) * 2012-09-26 2014-04-17 Nitto Denko Corp 高分子電解質膜およびそれを用いた燃料電池
JP2014067605A (ja) * 2012-09-26 2014-04-17 Nitto Denko Corp 高分子電解質膜およびそれを用いた燃料電池
JP6434732B2 (ja) * 2014-07-24 2018-12-05 株式会社アストム イオン交換膜の製造方法
TWI612715B (zh) * 2015-08-11 2018-01-21 多孔性薄膜的生產裝置
KR102038546B1 (ko) 2016-02-23 2019-10-30 주식회사 엘지화학 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
JP6517404B2 (ja) * 2018-06-04 2019-05-22 株式会社アストム イオン交換膜

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300366A (en) * 1964-03-19 1967-01-24 Jr Day Krolik Perforated sheet material
US4110392A (en) * 1976-12-17 1978-08-29 W. L. Gore & Associates, Inc. Production of porous sintered PTFE products
JPS58201823A (ja) * 1982-05-18 1983-11-24 Asahi Glass Co Ltd イオン交換膜の製造方法
US4946526A (en) * 1987-10-29 1990-08-07 Ltv Aerospace And Defense Company Method for compression molding of laminated panels
JP3480988B2 (ja) 1994-07-01 2003-12-22 ジャパンゴアテックス株式会社 フッ素系高分子固体電解質膜のためのシール兼補強用膜材及びそれを用いたフッ素系高分子固体電解質膜及びそのメッキ方法
JP3555999B2 (ja) * 1994-12-07 2004-08-18 ジャパンゴアテックス株式会社 高分子電解質型燃料電池用高分子固体電解質・電極接合体の製造方法
JPH09194609A (ja) 1996-01-25 1997-07-29 Sumitomo Electric Ind Ltd イオン交換膜およびその製造方法
EP0970987B1 (en) * 1997-03-28 2003-10-22 Asahi Glass Company Ltd. Fluororesin films, laminate produced by using the same, and process for producing laminate
JP2000071398A (ja) * 1998-08-31 2000-03-07 Nippon Valqua Ind Ltd 補強ptfe製多孔質膜
JP2001035508A (ja) * 1999-07-19 2001-02-09 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2001035510A (ja) * 1999-07-21 2001-02-09 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2002144451A (ja) * 2000-11-09 2002-05-21 Nippon Petrochem Co Ltd 網状強化材層で補強された包装材を用いた包装体の製造方法、および前記包装材からなる包装体
JP2003100318A (ja) * 2001-09-26 2003-04-04 Asahi Glass Co Ltd 塗工膜の製造方法、該方法による塗工膜及び固体高分子型燃料電池の製造方法
AU2003268695A1 (en) * 2002-09-30 2004-04-19 Asahi Glass Company, Limited Electrolyte film, process for producing the same, and solid polymer type fuel cell
JP2004178995A (ja) * 2002-11-27 2004-06-24 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用電解質膜及びその製造方法
JP4198009B2 (ja) * 2003-08-07 2008-12-17 ジャパンゴアテックス株式会社 固体高分子電解質膜及び燃料電池
JP4234573B2 (ja) * 2003-12-01 2009-03-04 旭化成ケミカルズ株式会社 固体高分子型燃料電池用電解質膜の製造方法
CN100573989C (zh) * 2004-03-04 2009-12-23 松下电器产业株式会社 复合电解质膜、催化剂层膜复合体、膜电极复合体及高分子电解质型燃料电池
JP4618707B2 (ja) * 2004-03-19 2011-01-26 日東電工株式会社 電解質膜および固体高分子型燃料電池
JP2006049002A (ja) * 2004-08-02 2006-02-16 Toyota Motor Corp 固体高分子電解質の製造方法、固体高分子電解質膜、及び燃料電池
JP2006160902A (ja) * 2004-12-08 2006-06-22 Asahi Glass Co Ltd 高分子電解質膜及びその製造方法
US20060129221A1 (en) * 2004-12-10 2006-06-15 Medtronic, Inc. Tunneling guide
JP4504822B2 (ja) * 2005-01-07 2010-07-14 新日石プラスト株式会社 遮熱性および光透過性を有するネット状資材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020786A (zh) * 2018-03-30 2020-12-01 本田技研工业株式会社 燃料电池
CN112020786B (zh) * 2018-03-30 2023-11-28 本田技研工业株式会社 燃料电池

Also Published As

Publication number Publication date
WO2008001923A1 (fr) 2008-01-03
US20110287342A1 (en) 2011-11-24
CA2654921A1 (en) 2008-01-03
CA2654921C (en) 2011-10-18
US20090269641A1 (en) 2009-10-29
JP2008004500A (ja) 2008-01-10
DE112007001517T5 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
CN101473473A (zh) 燃料电池电解质膜用多孔膜及其制造方法
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
US8420701B2 (en) Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
US9118043B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cells and polymer electrolyte fuel cell
JP5411543B2 (ja) 燃料電池用補強型電解質膜、燃料電池用膜−電極接合体、及びそれを備えた固体高分子形燃料電池
JP5868337B2 (ja) 燃料電池用セパレータ
US6416896B1 (en) Material for electrode comprising a non-woven fabric composed of a fluorine-containing resin fiber
US9070910B2 (en) Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
WO2018201264A1 (zh) 一种用于电池隔离的增强膜及其制备方法
JP2008277288A (ja) 複合高分子電解質膜の製造装置、複合高分子電解質膜の製造方法、機能性膜、及び燃料電池
JP6868685B2 (ja) 複合高分子電解質膜
JP5114907B2 (ja) 補強型電解質膜の製造方法およびその製造方法で製造される補強型電解質膜
US6797316B2 (en) Process for producing a coating film and process for producing a solid polymer electrolyte fuel cell
JP2009252723A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
CA2678108A1 (en) Carrier film for fuel cell production process and its production method
JP2009032503A (ja) 複合電解質膜、複合電解質膜の製造方法、及び固体高分子型燃料電池
WO2009107273A1 (ja) 燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池
JP5347745B2 (ja) 燃料電池電解質膜用の多孔質膜の製造方法
CN113823807A (zh) 一种组合物及其复合导电陶瓷双极板与制备方法
JPH07138390A (ja) 高分子イオン交換膜とその製造方法
KR20180004575A (ko) 주름구조를 갖는 연료전지의 전극막접합체 및 그 제조방법
JP2023081116A (ja) 複合膜
JP2011028867A (ja) 固体高分子燃料電池用電極シート
JP2019517111A (ja) 膜及び方法
JP2013235665A (ja) 高分子電解質膜およびそれを用いた燃料電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090701