WO2009107273A1 - 燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池 - Google Patents

燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池 Download PDF

Info

Publication number
WO2009107273A1
WO2009107273A1 PCT/JP2008/068881 JP2008068881W WO2009107273A1 WO 2009107273 A1 WO2009107273 A1 WO 2009107273A1 JP 2008068881 W JP2008068881 W JP 2008068881W WO 2009107273 A1 WO2009107273 A1 WO 2009107273A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
membrane
electrolyte membrane
reinforced
electrolyte
Prior art date
Application number
PCT/JP2008/068881
Other languages
English (en)
French (fr)
Inventor
秋田靖浩
長澤武史
鈴木健之
松浦豊洋
Original Assignee
トヨタ自動車株式会社
ジャパンゴアテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008044571A external-priority patent/JP2008288193A/ja
Application filed by トヨタ自動車株式会社, ジャパンゴアテックス株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112008003733.7T priority Critical patent/DE112008003733B4/de
Priority to CN200880127517.XA priority patent/CN101960658B/zh
Priority to US12/919,276 priority patent/US8795923B2/en
Publication of WO2009107273A1 publication Critical patent/WO2009107273A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a reinforced electrolyte membrane used in a fuel cell, a membrane-electrode assembly for a fuel cell, and a polymer electrolyte fuel cell including the same.
  • the solid polymer electrolyte fuel cell has a structure in which a solid polymer electrolyte membrane is used as an electrolyte and electrodes are joined to both surfaces of the membrane.
  • the polymer solid electrolyte membrane When used as a fuel cell, the polymer solid electrolyte membrane needs to have a low membrane resistance, and for that purpose, it is desirable that the film thickness be as thin as possible. However, if the film thickness is too thin, there are problems that pinholes are easily formed during film formation, the film is broken during electrode forming, and a short circuit between the electrodes is likely to occur. In addition, since solid polymer electrolyte membranes used in fuel cells are always used in a wet state, durability such as pressure resistance and cross leak during differential pressure operation due to swelling or deformation of the polymer electrolyte membrane due to wetting Problems will arise.
  • the longitudinal and transverse tensile yield stresses of the composite are both 12 MPa or more, and the ratio between the longitudinal tensile yield stress and the transverse tensile yield stress is an electrolyte membrane for a polymer electrolyte fuel cell having (longitudinal tensile yield stress / lateral tensile yield stress) of 2.0 or less is disclosed.
  • Japanese Patent Publication No. 2005-500022 discloses a stretch having a morphological structure including a microstructure of ultra-high elongation nodes interconnected by fibrils as an ion conductive diaphragm having high hardness and dimensional stability.
  • the ionomer is absorbed by an integral composite diaphragm made of expanded polytetrafluoroethylene.
  • An invention has been disclosed in which this composite diaphragm exhibits a surprisingly increased hardness, thus reducing electrical shorts and improving fuel cell performance and durability.
  • porous materials such as expanded polytetrafluoroethylene and electrolyte materials to reduce electrical shorts and improve performance and durability.
  • the structure of the porous material is complicated.
  • proton conductivity specifically, the performance of the fuel cell
  • a membrane made of a composite of a polytetrafluoroethylene porous material and an electrolyte material has an in-plane strength anisotropy, so that distortion is likely to occur inside the fuel cell, and the membrane is likely to be deformed or broken.
  • an object of the present invention is to provide a fuel cell electrolyte membrane reinforced with a porous substrate, which is excellent in durability and in particular, the amount of fluorine ions eluted due to deterioration of the electrolyte membrane component is reduced. It is another object of the present invention to provide a fuel cell membrane-electrode assembly with improved durability. It is another object of the present invention to provide a polymer electrolyte fuel cell having high output and excellent durability by using such a membrane-electrode assembly. In particular, an object of the present invention is to provide a polymer electrolyte fuel cell that has high output and excellent durability under environmental temperature and humidity under high-temperature and low-humidification conditions that are fuel cell operating conditions.
  • the present inventors have found that the stability of the perfluorocarbon polymer having a sulfonic acid group, which is an electrolyte, is improved by reinforcement, and only changes its strength without complicating the microstructure of the porous substrate. As a result, a highly durable composite membrane having a constant ion conductivity was obtained.
  • the present invention is an invention of a reinforced electrolyte membrane for a fuel cell in which a porous substrate is impregnated with a polymer electrolyte dispersion, and the flow direction when the electrolyte membrane is processed into a sheet shape
  • Either (MD) or the maximum tensile strength in the vertical direction (TD) of MD is 70 N / mm 2 or more at normal temperature (23 ° C., relative humidity 50%), or high temperature and high humidity (80 ° C., relative humidity 90 %) Of 40 N / mm 2 or more.
  • the electrolyte membrane that the average of the maximum tensile strength in the flow direction during processing into a sheet (MD) and vertical MD (TD) is respectively 70N / mm 2 or more, or 40N / mm 2 or more preferable.
  • the reinforced electrolyte membrane for a fuel cell according to the present invention exhibits excellent durability because the elution amount of fluorine ions is reduced by reinforcement with the reinforcing membrane.
  • the reinforced electrolyte membrane for a fuel cell according to the present invention has an elongation ratio when the maximum tensile strength of the electrolyte membrane is the larger of the elongation in the flow direction (MD) and MD vertical direction (TD). Is preferably 0.4 to 1.0. By setting the elongation ratio to 0.4 or more, the durability time can be improved.
  • porous base material a wide variety of known reinforcing membranes for fuel cells can be used.
  • a porous substrate made of a bromotrifluoroethylene copolymer, a polytetrafluoroethylene-perfluorovinyl ether copolymer, a polytetrafluoroethylene-hexafluoropropylene copolymer, or the like is preferably used.
  • the degree of polymerization and the molecular weight of such a fluororesin are not particularly limited, but the weight average molecular weight of the fluororesin is preferably about 10,000 to 10,000,000 from the viewpoint of strength and shape stability.
  • a polytetrafluoroethylene (PTFE) film made porous by a stretching method is preferably exemplified.
  • the present invention provides a pair of electrodes composed of a fuel electrode supplied with fuel gas and an oxygen electrode supplied with oxidant gas, and a polymer electrolyte membrane sandwiched between the pair of electrodes, A fuel cell membrane-electrode assembly comprising the polymer electrolyte membrane, wherein the polymer electrolyte membrane is the above-mentioned reinforced electrolyte membrane for fuel cells.
  • the present invention is a polymer electrolyte fuel cell comprising a membrane-electrode assembly having the above-described reinforced electrolyte membrane for fuel cells.
  • the reinforced electrolyte membrane for fuel cells of the present invention exhibits excellent durability because the elution amount of fluorine ions is reduced by reinforcement with the reinforcing membrane.
  • the reinforced electrolyte membrane for a fuel cell according to the present invention does not necessarily have a conventional special internal microstructure (for example, one having a large aspect ratio of reinforcing membrane portions called nodes interconnected by fibrils).
  • One of the maximum tensile strengths in the longitudinal and transverse directions in the film surface is 70 N / mm 2 or more at normal temperature (23 ° C., relative humidity 50%), or 40 N at high temperature and high humidity (80 ° C., relative humidity 90%).
  • / Mm 2 or more of the complementary membrane can reduce the fluorine ion elution amount in the 80 ° C. Fenton test by 14 to 69% compared to the conventional membrane, and the electrode assembly having a catalyst layer formed by a conventional method is a fuel cell. It has high durability without deteriorating the initial performance of the single cell.
  • those having a tensile strength ratio of 0.4 or more in the longitudinal and transverse directions at the maximum tensile strength are more durable than those having a tensile strength of less than 0.4.
  • FIG. 1 shows the correlation between the average strength of the electrolyte membrane for fuel cells and the durability time (normal temperature conditions, high temperature and high humidity conditions).
  • FIG. 2 shows the relationship between the durability time and the elongation ratio (normal temperature conditions, high temperature and high humidity conditions) of the fuel cell electrolyte membrane.
  • FIG. 3 shows the relationship between the durability time and the elastic modulus ratio of the fuel cell electrolyte membrane.
  • FIG. 4 shows the relationship between the durability time and the strength ratio of the fuel cell electrolyte membrane.
  • the porous substrate used in the present invention functions as a carrier for supporting a polymer electrolyte on its surface (especially the surface in the pores), and is a polytetrafluoropolymer that is a fluorine resin excellent in strength and shape stability.
  • a porous substrate made of a polymer, a polytetrafluoroethylene-hexafluoropropylene copolymer, or the like is preferably used.
  • the degree of polymerization and the molecular weight of such a fluororesin are not particularly limited, but the weight average molecular weight of the fluororesin is preferably about 10,000 to 10,000,000 from the viewpoint of strength and shape stability.
  • the average pore diameter and porosity of the porous substrate used in the present invention are not particularly limited, but the average pore diameter is preferably about 0.001 ⁇ m to 100 ⁇ m and the porosity is preferably about 10% to 99%. If the average pore diameter is less than 0.001 ⁇ m, the introduction of the polymer electrolyte into the pores tends to be inhibited, whereas if it exceeds 100 ⁇ m, the surface area of the porous substrate supporting the polymer electrolyte is insufficient. As a result, the electrical conductivity tends to decrease. On the other hand, if the porosity is less than 10%, the amount of the polymer electrolyte supported in the pores tends to be insufficient, and the electrical conductivity tends to decrease. On the other hand, if the porosity exceeds 99%, the strength of the porous base material tends to decrease. And shape stability tends to be lowered.
  • the shape of the porous substrate used in the present invention is not particularly limited.
  • the obtained composite electrolyte can be used as it is as an electrolyte membrane for a fuel cell, a film or membrane is preferred.
  • the thickness of the film-like or membrane-like porous substrate is not particularly limited, but is preferably about 1 to 50 ⁇ m.
  • the thickness of the porous substrate is less than the above lower limit, the strength of the obtained electrolyte membrane tends to decrease, and when the thickness exceeds the upper limit, the membrane resistance of the obtained electrolyte membrane increases and electric conductivity tends to decrease. It is in.
  • a porous substrate used in the reinforced electrolyte membrane for fuel cells of the present invention and a method for producing the same are disclosed in Japanese Patent Publication No. 51-18991. That is, a method for producing a porous polymer film made of polytetrafluoroethylene, (A) Extruding a polytetrafluoroethylene molded product having a crystallinity of about 95% or more by a paste molding extrusion method, (B) drying the liquid lubricant from the molded article at a temperature higher than the evaporation temperature of the liquid lubricant and lower than the crystal melting point of the polytetrafluoroethylene, (C) When the molded product is stretched in one or more directions at a temperature lower than the crystal melting point of the polytetrafluoroethylene, a stretching operation with a stretching rate per unit time of greater than 10% / second is performed. It is applied at a temperature lower than the crystalline melting point of ethylene, and thereby the stretched molded article has a matrix tens
  • Japanese Translation of PCT International Publication No. 2006-504848 discloses a porous substrate used in the reinforced electrolyte membrane for fuel cells of the present invention and a method for producing the same. That is, a composite comprising a porous polymer membrane, wherein the pores of the membrane are at least partially filled with a resin, the room temperature flexural modulus of the resin is greater than about 1 GPa, and the membrane Is a composite containing a porous polymer film satisfying the following formula: 75 MPa ⁇ (longitudinal membrane tensile modulus + lateral membrane tensile modulus) / 2, and the porous polymer membrane is expanded polytetrafluoroethylene. In some cases it is disclosed that expanded polytetrafluoroethylene is substantially free of knot material.
  • JP-T-2006-504848 discloses the following disclosure. “Unexpectedly, it has been found that the porous polymer membrane structure according to the present invention significantly contributes to the fracture toughness of the composite when used in the composite structure.
  • the membrane structure is an expanded polytetrafluoroethylene membrane that has minimal material present in a non-fibrillar form called a “node”.
  • the membrane is substantially free of node material. Isotropic fibril orientation is preferred when stress is loaded from multiple directions. When the stress is anisotropic, it is preferred that a greater number of fibrils be parallel to the direction of maximum stress.
  • the membrane of the present invention has a substantially non-linear membrane-like structure.
  • the membrane does not readily wet or adhere to other materials.
  • a membrane comprising a polymeric material is preferred.
  • Membranes containing stretched polymers are preferred.
  • Most preferred is a membrane comprising expanded PTFE.
  • the polymer membrane can be virtually any polymeric material such as vinyl polymer, styrene, acrylate, methacrylate, polyethylene, polypropylene, polyacrylonitrile, polyacrylamide, polyvinyl chloride, fluoropolymer, such as PTFE, condensation polymer, polysulfone.
  • polymeric material such as vinyl polymer, styrene, acrylate, methacrylate, polyethylene, polypropylene, polyacrylonitrile, polyacrylamide, polyvinyl chloride, fluoropolymer, such as PTFE, condensation polymer, polysulfone.
  • the porous polymer film can be produced by a known method.
  • a nodeless ePTFE membrane is preferred.
  • Such an ePTFE membrane can be manufactured, for example, according to the teaching of the above Japanese translation of PCT publication No. 2006-504848.
  • Such membranes are formed by being highly fibrillated by biaxial stretching of PTFE and eliminating a substantially coarse nodule structure.
  • the structure includes a very strong web of fine fibrils that intersect at the fibril intersection.
  • the expanded PTFE material according to US Pat. No. 5,476,589 can be produced as follows.
  • a PTFE fine powder having a low amorphous content and a crystallinity of at least 98% is used as a raw material.
  • Suitable PTFE fine powders include, for example, FLUON® CD-123 and FLUON® CD-1 fine powder manufactured by ICI Americas, and E.I. I. Examples include TEFLON (registered trademark) fine powder manufactured by duPont de Nemours.
  • the PTFE fine powder is first solidified and then lubricated with a hydrocarbon extrusion aid, preferably an odorless mineral spirit such as ISOPAR® K (manufactured by Exxon).
  • the lubricated powder is compressed into a cylindrical shape and extruded with a ram extruder to form a tape.
  • Two or more layers of tape are laminated together and compressed between two rolls.
  • the tape (single or plural) is compressed between rolls to a suitable thickness, for example, 0.1-1 mm. Stretch the wet tape in the transverse direction to 1.5 to 5 times its initial width. Heat to remove the extrusion aid.
  • the dried tape is then stretched longitudinally in the space between the roll rows heated to a temperature below the melting point of the polymer (327 ° C.). Longitudinal stretching has a ratio of the speed of the second row of rolls to the speed of the first row of rolls of 10 to 100: 1.
  • the machine direction stretching is repeated at a ratio of 1 to 1.5: 1.
  • the longitudinally stretched tape is then at a temperature of less than 327 ° C. while preventing the membrane from shrinking in the machine direction, at least 1.5 times, preferably 6 to 15 times the width of the original extrudate. Stretch in the transverse direction. While still constrained, the membrane is preferably heated above the melting point of the polymer (327 ° C.) and then cooled.
  • a particularly preferred membrane is a nodeless ePTFE membrane with a high density of fibrils oriented in the direction of maximum stress in the intended composite body. Isotropic fibril orientation is preferred when stress is loaded from multiple directions.
  • the ePTFE membrane can have a suitable void fraction. According to one aspect of the invention, the void fraction of the membrane is from about 1 to about 99.5% by volume.
  • the void fraction can be about 50 to about 90%.
  • a preferred void fraction is about 70-90%.
  • the film may be treated as necessary to facilitate adhesion to the resin component or to facilitate adhesion to the resin component. Examples of the treatment include corona, plasma, and chemical oxidation.
  • the resin is absorbed into at least a portion of the membrane pores.
  • a polymer resin is preferable, and examples thereof include a thermoplastic resin, a thermosetting resin, and combinations or mixtures thereof.
  • the resin is a polymer and the glass transition temperature of the amorphous component is> 80 ° C.
  • polymer electrolyte used for the fuel cell electrolyte membrane reinforced with the porous base material of the present invention known polymers can be widely used.
  • the liquid made is preferably exemplified.
  • Solvents include alcohols such as water, methanol, ethanol, propanol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, and tert-butyl alcohol, hydrocarbon solvents such as n-hexane, and ethers such as tetrahydrofuran and dioxane.
  • Solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, acetamides such as N, N-dimethylacetamide and N, N-diethylacetamide Solvents, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, 1,1,2,2-tetrachloroethane, 1,1,1,2-tetrachloroethane, 1,1,1 -Trichloroe Emissions, 1,2-dichloroethane, trichlorethylene, tetrachlorethylene, dichloromethane, chloroform and the like.
  • formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide
  • acetamides such as N, N-dimethylacetamide and N, N-diethylacetamide
  • 1,1,2,2-tetrachloroethane 1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,2-dichloroethane, trichloroethylene, tetrachloroethylene, dichloromethane, chloroform It is preferable that it is at least one kind.
  • These water and solvent may be used alone or in combination of two or more.
  • the electrolyte in the fuel cell membrane-electrode assembly of the present invention may be a laminate of a plurality of reinforcing porous substrates.
  • at least one porous substrate among the plurality of porous substrates is the reinforced electrolyte membrane of the present invention.
  • the electrolyte membrane to be laminated is not particularly limited as long as it is a polymer membrane that can be used as an electrolyte.
  • the laminated electrolyte membranes may be the same electrolyte membrane, or different types of electrolyte membranes may be mixed and used.
  • perfluorinated sulfonic acid films perfluorinated phosphonic acid films, perfluorinated carboxylic acid films, and perfluorinated films such as PTFE composite films in which polytetrafluoroethylene (PTFE) is compounded with these perfluorinated films.
  • PTFE polytetrafluoroethylene
  • a liquid obtained by dispersing or dissolving an electrolyte membrane, a fluorine-containing hydrocarbon-based graft membrane, a hydrocarbon-based electrolyte membrane such as a wholly hydrocarbon-based graft membrane, or a wholly aromatic membrane in a solvent can be used.
  • the polymer electrolyte fuel cell of the present invention is a polymer electrolyte fuel cell using the above-described fuel cell membrane-electrode assembly of the present invention. Except for using the membrane-electrode assembly for a fuel cell of the present invention, the configuration of a generally known polymer electrolyte fuel cell may be followed. By using the fuel cell membrane-electrode assembly of the present invention, the polymer electrolyte fuel cell of the present invention is a solid polymer fuel cell having a large output, low cost and high durability.
  • porous substrate used in Examples and Comparative Examples was prepared by biaxially stretching a PTFE tape and highly fibrillating by the following method.
  • Extrusion aid (Isoper K, manufactured by Exxon) was added to PTFE fine powder (PTFE601A, manufactured by Dupont) in an amount of 285 mg per 1 kg of PTFE fine powder.
  • the PTFE fine powder to which the extrusion aid was added was compressed into a cylindrical shape, which was extruded with a ram extruder to form a tape.
  • the extruded tape was rolled to a thickness of about 20 ⁇ m between rolling rolls. The extruded tape was removed from the rolled tape at 210 ° C. in a blowing oven.
  • the temperature was adjusted to the stretching temperature in the length direction shown in Table 1 below.
  • the film is stretched in the length direction between the roll rows in the heating zone, and then in the transverse direction in the heating zone adjusted to the stretching temperature in the width direction shown in Table 1 while preventing the film from shrinking in the longitudinal direction.
  • Drawing was performed. Thereafter, heat treatment was performed at 380 ° C. in a state where the membrane was fixed so as not to shrink, and a porous substrate was obtained.
  • the prepared porous substrate was impregnated with a mixed liquid of perfluorocarbon sulfonic acid resin / alcohol solvent and water (referred to as polymer electrolyte dispersion).
  • the porous substrate was fixed to a fixed frame so as not to shrink, the polymer electrolyte dispersion was applied to both sides of the porous substrate, and then dried with a hair dryer to remove the solvent.
  • the porous substrate and the fixed frame were dried in an oven at 180 ° C. for 8 minutes.
  • the porous substrate and the fixed frame were removed from the oven, and the porous substrate was removed from the fixed frame.
  • the removed porous substrate / polymer electrolyte composite membrane was transparent, and complete impregnation of the porous substrate with the polymer electrolyte was confirmed.
  • a polymer electrolyte was applied between three layers of porous substrate / polymer electrolyte composite membrane prepared in such a process, laminated, and heated under pressure at 100 ° C. and 3 MPa for 3 minutes to prepare
  • Table 2 shows the results of the tensile test under normal temperature conditions of the obtained composite membrane
  • Table 3 shows the results of the tensile test under high temperature and high humidity conditions of the obtained composite membrane
  • Table 4 shows the ionic conductivity.
  • Table 5 shows the ion elution amount.
  • a test piece having a width of 10 mm is attached to a jig with a platinum electrode having a distance between electrodes of 5 mm, and the whole jig is immersed in distilled water at 30 ⁇ 0.5 ° C. for 1 hour. Thereafter, the impedance is measured using a LCR meter at a measurement frequency of 100 kHz. Thereafter, the proton conductivity is calculated using the following formula.
  • ⁇ (S / cm) 1 / impedance ( ⁇ ) ⁇ distance between terminals (cm) / sample cross-sectional area (cm 2 ) [F ion elution amount]
  • the film cut out to 4 ⁇ 5 cm is immersed in Fenton test solution (H 2 O 2 : 1%, Fe 2+ : 100 ppm), and the amount of F ions in the test solution after holding at 80 ° C. for 8 hours is measured with an ion electrode. did.
  • the reinforced electrolyte membranes for fuel cells of Examples 1 to 3 under normal temperature conditions show the flow direction (MD) when the electrolyte membrane is processed into a sheet shape and
  • One of the maximum tensile strengths in the vertical direction (TD) of MD is 70 N / mm 2 or more, whereas the reinforced electrolyte membrane for fuel cell of the comparative example is outside the above definition.
  • the fuel cell reinforced electrolyte membranes of Examples 1 to 3 under high temperature and high humidity conditions show the flow direction (MD) when the electrolyte membrane is processed into a sheet shape.
  • MD (TD) maximum tensile strength is 40 N / mm 2 or more, whereas the fuel cell reinforced electrolyte membrane of the comparative example is not within the above range. I understand.
  • the reinforced electrolyte membranes for fuel cells of Examples 1 to 3 have a marked decrease in the amount of ion elution as the tensile strength is improved as compared with the reinforced electrolyte membrane for fuel cells of the comparative example. I understand that That is, it can be seen that the reinforced electrolyte membrane for fuel cells of the present invention is excellent in durability.
  • a fuel cell was produced by a conventional method, and the initial performance and durability were evaluated.
  • the initial voltage was evaluated as follows.
  • the operating temperature was set at 80 ° C, the hydrogen bubbler temperature and the air bubbler temperature at 50 ° C.
  • Hydrogen was supplied to the fuel electrode as a fuel gas at a back pressure of about 0.1 MPa and 2.0 times the stoichiometric ratio.
  • Air was supplied to the oxygen electrode as an oxidant gas at a back pressure of about 0.1 MPa and a stoichiometric ratio of 2.5 times.
  • the load was discharged at 0.84 A / cm 2 , and the voltage value after 20 minutes was taken as the initial voltage.
  • the endurance time was the time when the amount of hydrogen cross leak from the anode to the cathode increased due to repeated film on-off in the above-mentioned environment and accompanying film deterioration.
  • Table 6 shows the result of measuring the initial voltage
  • Table 7 shows the result of the durability time compared with the average strength.
  • FIG. 1 shows the results of Table 7.
  • the fuel cell reinforced electrolyte membranes of Examples 1 to 3 have the same or higher initial voltage than the fuel cell reinforced electrolyte membrane of the comparative example, and have excellent power generation performance. I understand that.
  • the initial performance was maintained at the same level as the conventional membrane, and the durability time was improved more than twice.
  • Table 8 summarizes the durability time, elongation ratio (room temperature conditions, high temperature and high humidity conditions), elastic modulus ratio, and strength ratio of the reinforced electrolyte membranes for fuel cells of Examples 1 to 3 and Comparative Example.
  • FIG. 2 illustrates the relationship between the durability time and the elongation ratio
  • FIG. 3 illustrates the relationship between the durability time and the elastic modulus ratio
  • FIG. 4 illustrates the relationship between the durability time and the strength ratio.
  • the durability time of the reinforced electrolyte membrane for fuel cells did not show a good correlation with either the elastic modulus ratio or the strength ratio, whereas the elongation ratio A strong correlation was seen.
  • the reinforced electrolyte membranes for fuel cells of Examples 1 to 3 having an elongation ratio in the range of 0.4 to 1.0 are fuel cells of comparative examples having an elongation ratio of less than 0.4. It was confirmed that it was superior in durability compared to the reinforced electrolyte membrane for use.
  • the reinforced electrolyte membranes for fuel cells of Examples 1 to 3 under high temperature and high humidity conditions are the flow direction (MD) of the electrolyte membrane when processed into a sheet shape and the vertical direction of MD.
  • MD flow direction
  • the durability time is long. That is, it can be seen that there is a correlation between the durability time and the elongation.
  • the reason for the good correlation between the durability time and the elongation ratio is that if the elongation ratio of the electrolyte membrane for a fuel cell is 0.4 or more in a fuel cell where wetting or differential pressure operation is repeated, This is considered to be because the deformation follows the deformation uniformly. Furthermore, even in high-temperature and high-humidity conditions that are close to the environment inside the fuel cell, the same can be said for normal temperature conditions. Strong and durable.
  • the durability of the electrolyte membrane for a fuel cell of the present invention is improved, it is possible to improve the durability of a fuel cell using the membrane. This contributes to the practical application and spread of fuel cells.

Abstract

 多孔質基材に高分子電解質分散液を含浸した燃料電池用補強型電解質膜であって、該電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか一方が、23°C、相対湿度50%の時に70N/mm以上、又は、80°C、相対湿度90%の時に40N/mm以上であることを特徴とする。この燃料電池用補強型電解質膜は、電解質膜成分の劣化によるフッ素イオンの溶出量が低減され、耐久性に優れている。

Description

燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池
 本発明は、燃料電池に用いられる補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池に関する。
 固体高分子電解質型燃料電池は、電解質として固体高分子電解質膜を用い、この膜の両面に電極を接合した構造を有する。
 燃料電池として使用する際に高分子固体電解質膜は、それ自体の膜抵抗が低い必要があり、その為には膜厚はできるだけ薄い方が望ましい。しかしながら、膜厚を余り薄くすると、製膜時にピンホールが生じたり、電極成形時に膜が破れてしまったり、電極間の短絡が発生したりしやすいという問題点があった。また、燃料電池に使用される高分子固体電解質膜は、常に湿潤状態で使用されるため、湿潤による高分子電解質膜の膨潤、変形等による差圧運転時の耐圧性やクロスリーク等、耐久性に問題が生じるようになる。
 そこで、縦方向及び横方向の両方向で均等な強度を有した薄くて厚さの均一な補強膜が開発されている。例えば、特開2004-288495号公報には、複合体の縦方向及び横方向の引張降伏応力が、ともに12MPa以上であり、かつ、縦方向の引張降伏応力と横方向の引張降伏応力との比(縦方向の引張降伏応力/横方向の引張降伏応力)が2.0以下である固体高分子形燃料電池用電解質膜が開示されている。
 一方、特表2005-520002号公報には、高硬度及び寸法安定性を有するイオン伝導性隔膜として、フィブリルによって相互に結合された超高伸長ノードの微細構造を含む形態学的構造を備えた延伸膨脹ポリテトラフルオロエチレンからなる一体化複合隔膜にイオノマーを吸収させる。この複合隔膜は、驚異的に高められた硬度を示し、よって、電気的ショートを低減し、かつ燃料電池の性能及び耐久性を改良する発明が開示されている。
 一般に、延伸ポリテトラフルオロエチレンなどの多孔質体と電解質材料を複合化し、電気的ショートを低減し、性能、耐久性を改良する取組みがなされているが、多孔質体の構造が複雑となる上に、さらに膜強度を高めるためには、プロトン伝導性(具体的には燃料電池セルの性能)を犠牲にする問題がある。
 また、プロトン伝導性が高く、耐久性に優れる高分子電解質材料が検討されているが、化学耐性を付与するために、高分子構造が複雑化する上に、それによる合成プロセスの歩留り悪化、新規材料の合成等、材料コストが高コストになることが懸念される。さらに高分子電解質材料の強度も十分であると言えない。これらに加え、ポリテトラフルオロエチレン多孔質体と電解質材料を複合化した膜は、面内に強度異方性を有するため、燃料電池内部で歪みが生じやすく膜の変形や破壊を生じやすいという問題を有していた。
 上記のような問題点が発生する理由としては、電解質膜の強度改良と化学耐性の付与が同時に実現されていないことにある。また、従来技術で強度をさらに向上するためには、多孔質基材の厚みを厚くするか、多孔質基材の微細構造を変更する必要が有る。
 これまで、ポリテトラフルオロエチレン多孔質基材は、延伸法によって多孔質化されるため、シート状に加工する際の流れ方向(MD)とMDに垂直な方向(TD)の延伸度合いの違いができやすく、微細構造を変更したり、MDとTD方向の強度異方性を低減させるのは困難とされていた。
 そこで、本発明は、耐久性に優れ、特に電解質膜成分の劣化によるフッ素イオンの溶出量が低減された、多孔質基材で補強された燃料電池用電解質膜を提供することを目的とする。又、耐久性が向上された燃料電池用膜-電極接合体を提供することを目的とする。更に、そのような膜-電極接合体を用いることにより、出力が高く、かつ耐久性に優れた固体高分子形燃料電池を提供することを目的とする。特に、燃料電池の運転条件である高温低加湿条件での環境温湿度で、出力が高く、かつ耐久性に優れた固体高分子形燃料電池を提供することを目的とする。
 本発明者らは、電解質であるスルホン酸基を有するパーフルオロカーボン重合体の安定性が補強によって向上することを見い出し、しかも多孔質基材の微細構造を複雑にすることなく、その強度のみを変えることで、イオン伝導度が一定で高耐久の複合膜を得た。
 即ち、第1に、本発明は、多孔質基材に高分子電解質分散液を含浸した燃料電池用補強型電解質膜の発明であって、該電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか一方が、常温(23℃、相対湿度50%)で70N/mm以上、又は、高温高湿(80℃、相対湿度90%)で40N/mm以上であることを特徴とする。更に、該電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度の平均がそれぞれ70N/mm以上又は40N/mm以上であることが好ましい。本発明の燃料電池用補強型電解質膜は、補強膜による強化によりフッ素イオンの溶出量が低減され、優れた耐久性を示す。
 本発明の燃料電池用補強型電解質膜は、電解質膜の最大時引張強度の、流れ方向(MD)及びMDの垂直方向(TD)伸度のいずれか大きい方を分母とした時の伸度比が0.4~1.0であることが好ましい。伸度比を0.4以上とすることで、耐久時間の向上が可能となる。
 前記多孔質基材としては、燃料電池用補強膜として公知のものを広く用いることが出来る。例えば、強度及び形状安定性に優れたフッ素系樹脂であるポリテトラフルオロエチレン、ポリテトラフルオロエチレン-クロロトリフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリブロモトリフルオロエチレン、ポリテトラフルオロエチレン-ブロモトリフルオロエチレン共重合体、ポリテトラフルオロエチレン-パーフルオロビニルエーテル共重合体、ポリテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体等からなる多孔質基材が好適に用いられる。このようなフッ素系樹脂の重合度や分子量は特に制限されないが、強度及び形状安定性等の観点からフッ素系樹脂の重量平均分子量は10000~10000000程度であることが好ましい。これらの中で、延伸法によって多孔質化されたポリテトラフルオロエチレン(PTFE)膜が好ましく例示される。
 第2に、本発明は、燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜とを含む燃料電池用膜-電極接合体の発明であって、該高分子電解質膜は、上記の燃料電池用補強型電解質膜であることを特徴とする。
 第3に、本発明は、上記の燃料電池用補強型電解質膜を有する膜-電極接合体を備えた固体高分子型燃料電池である。
 本発明の、燃料電池用補強型電解質膜は、補強膜による強化によりフッ素イオンの溶出量が低減され、優れた耐久性を示す。
 本発明の、燃料電池用補強型電解質膜は、必ずしも従来の特殊な内部微細構造(例えばフィブリルによって相互に結合されたノードと呼ばれる補強膜部位のアスペクト比の大きいもの)を取らなくとも高強度にスルホン酸基を有するパーフルオロカーボン複合体を補強した複合膜であり、その補強の強さを変えることでスルホン酸基を有するパーフルオロカーボン重合体の化学安定性の指標となるフェントン試験耐性を同時に向上した複合膜である。膜面内の縦および横方向の最大引張強度のいずれか一方が常温(23℃、相対湿度50%)で70N/mm以上、又は、高温高湿(80℃、相対湿度90%)で40N/mm以上の補合膜は、80℃フェントン試験におけるフッ素イオン溶出量を従来膜に比べ14~69%低減することができ、さらに常法により触媒層を形成した電極接合体は、燃料電池単セルの初期性能を低下させること無く、高耐久性を有する。
 また、本複合膜において、最大時の引張強度の縦および横方向の伸度比が0.4以上のものは、0.4未満のものに比べ高耐久性を有する。
図1は、燃料電池用電解質膜の強度平均と耐久時間(常温条件、高温高湿条件)の相関関係を示す。 図2は、燃料電池用電解質膜の耐久時間と伸度比(常温条件、高温高湿条件)の関係を示す。 図3は、燃料電池用電解質膜の耐久時間と弾性率比の関係を示す。 図4は、燃料電池用電解質膜の耐久時間と強度比の関係を示す。
 以下、本発明の燃料電池用補強型電解質膜、その製造方法、及び機能を説明する。
 本発明で用いる多孔質基材は、その表面(特に細孔内表面)に高分子電解質を担持する担体として機能するものであり、強度及び形状安定性に優れたフッ素系樹脂であるポリテトラフルオロエチレン、ポリテトラフルオロエチレン-クロロトリフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリブロモトリフルオロエチレン、ポリテトラフルオロエチレン-ブロモトリフルオロエチレン共重合体、ポリテトラフルオロエチレン-パーフルオロビニルエーテル共重合体、ポリテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体等からなる多孔質基材が好適に用いられる。このようなフッ素系樹脂の重合度や分子量は特に制限されないが、強度及び形状安定性等の観点からフッ素系樹脂の重量平均分子量は10000~10000000程度であることが好ましい。
 また、本発明で用いる多孔質基材の平均細孔径や空隙率も特に制限されないが、平均細孔径は0.001μm~100μm程度、空隙率は10%~99%程度であることが好ましい。平均細孔径が0.001μm未満では高分子電解質の細孔内への導入が阻害され易くなる傾向にあり、他方、100μmを超えると高分子電解質を担持する多孔質基材の表面積が不十分となって電気伝導性が低下する傾向にある。また、空隙率が10%未満では細孔内に担持される高分子電解質の量が不十分となって電気伝導性が低下する傾向にあり、他方、99%を超えると多孔質基材の強度及び形状安定性が低下する傾向にある。
 本発明で用いる多孔質基材の形状も特には制限されないが、得られた複合電解質をそのまま燃料電池用の電解質膜として用いることができることからフィルム状又は膜状のものが好ましい。その場合、フィルム状又は膜状の多孔質基材の厚さは特に制限されないが、1~50μm程度が好ましい。多孔質基材の厚さが上記下限未満では得られる電解質膜の強度が低下する傾向にあり、他方、上記上限を超えると得られる電解質膜の膜抵抗が増加して電気伝導性が低下する傾向にある。
 本発明の燃料電池用補強型電解質膜に用いられる多孔質基材及びその製造方法は、特公昭51-18991号公報に開示されている。即ち、ポリテトラフルオロエチレンからなる多孔質高分子膜の製造方法であって、
(a)ペースト成形押出方法によって、約95%以上の結晶化度を有するポリテトラフルオロエチレン成形品を押出し、
(b)該成形品から液状潤滑剤を、該液状潤滑剤の蒸発温度より高く且つ該ポリテトラフルオロエチレンの結晶融点より低い温度で、該成形品を乾燥し、
(c)該成形品を該ポリテトラフルオロエチレンの結晶融点よりも低い温度で、1方向以上に延伸するに際し、単位時間当たりの延伸比率が10%/秒より大きな延伸操作を、該ポリテトラフルオロエチレンの結晶融点よりも低い昇温で施し、それによって延伸された成形品のマトリックス引張強さを14kg/cm以上とする、
ことが開示されている。
 同様に、特表2006-504848号公報には、本発明の燃料電池用補強型電解質膜に用いられる多孔質基材及びその製造方法が開示されている。即ち、多孔質高分子膜を含む複合体であって、前記膜の細孔に、少なくとも部分的に樹脂が充填されており、前記樹脂の室温曲げ弾性率が約1GPa超であり、且つ前記膜が下式:75MPa<(縦膜引張弾性率+横膜引張弾性率)/2を満たす多孔質高分子膜を含む複合体が開示され、また、多孔質高分子膜が延伸ポリテトラフルオロエチレンである場合に、延伸ポリテトラフルオロエチレンが実質的に結節材料を含まないことが開示されている。
 特表2006-504848号公報には、より具体的に以下の開示がある。『予想外にも、複合体構造で使用したときに、本発明による多孔質高分子膜構造は、複合体の破壊靱性に顕著に寄与することが判明した。本発明の一態様によれば、膜構造体は、「ノード」と称される非フィブリル形態で存在する材料が最小である延伸ポリテトラフルオロエチレン膜である。本発明のさらなる態様によれば、膜には、実質的にノード材料が存在しない。応力が複数の方向からロードされるときには、等方的フィブリル配向が好ましい。応力が異方性であるときは、より多くの数のフィブリルが最大応力の方向に平行であることが好ましい。多層構造が意図されるときには、層をクロスプライして性能を最大化することが望ましい。フィブリル配向と密度の一つの尺度は、膜の引張弾性率である。弾性率が高い膜ほど、好ましい。通常の高弾性率繊維強化材(例えば、ガラス、カーボン等)とは異なり、本発明の膜は、実質的に非線形膜様構造を有する。延伸ポリテトラフルオロエチレン膜の特定の場合において、膜は、容易には他の材料に濡れたり又は接着したりしない。高分子材料を含む膜が、好ましい。伸張ポリマーを含む膜が好ましい。延伸PTFEを含む膜が、最も好ましい。高分子膜は、実質的にいずれの高分子材料、例えば、ビニルポリマー、スチレン、アクリレート、メタクリレート、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリアクリルアミド、ポリ塩化ビニル、フルオロポリマー、例えば、PTFE、縮合ポリマー、ポリスルホン、ポリイミド、ポリアミド、ポリカーボネート、ポリスルフィド、ポリエステル、ポリ酸無水物、 ポリアセタール、ポリウレタン、ポリウレア、セルロース、セルロース誘導体、多糖類、ペクチンポリマー及び誘導体、アルギンポリマー及び誘導体、キチン及び誘導体、フェノール樹脂、アルデヒドポリマー、ポリシロキサン、それらの誘導体、コポリマー及びブレンドを含むことができる。多孔質高分子膜フィルムは、公知の方法により製造できる。好ましいものとして、最小結節材料を有するePTFE膜と呼ばれる高分子膜が挙げられる。最も好ましいものは、ノードのないePTFE膜である。このようなePTFE膜は、例えば、上記特表2006-504848号公報の教示により製造できる。このような膜は、PTFEの二軸延伸により高度にフィブリル化され、実質的に粗い結節構造をなくすことにより形成される。その結果、構造体は、フィブリル交差点で交差する微細フィブリルの極めて強度の高いウエブを含む。このような構造体をSEMで見ると、大きなノード構造は、このような膜フィルムには存在しない。
 米国特許第5,476,589号明細書による延伸PTFE材料は、以下のようにして製造できる。非晶質含量が低く、結晶化度が少なくとも98%であるPTFE微粉末を、原料として使用する。好適なPTFE微粉末として、例えば、ICI Americans社製FLUON(登録商標)CD-123及びFLUON(登録商標)CD-1微粉末、並びにE.I.duPont de Nemours社製TEFLON(登録商標)微粉末が挙げられる。PTFE微粉末を、まず凝固させた後、炭化水素押出し助剤、好ましくは、無臭ミネラルスピリット、例えば、ISOPAR(登録商標)K(Exxon社製)で潤滑する。潤滑した粉末を、圧縮して円筒形にし、ラムエキストルーダーで押出してテープを形成する。テープの2層以上をいっしょに積層し、2つのロールの間で圧縮する。テープ(単一又は複数)を、ロール間で圧縮して適当な厚さ、例えば、0.1~1mm等とする。湿ったテープを横方向に伸張してその最初の幅の1.5~5倍とする。加熱して、押出し助剤を除去する。次に、乾燥したテープを、ポリマーの融点(327℃)より低い温度に加熱されたロール列間のスペースで縦方向に延伸する。縦方向の延伸は、ロールの第二列の速度の、ロールの第一列の速度に対する比が、10~100:1である。縦方向の延伸を、1~1.5:1の比で反復する。次に、縦方向の延伸後のテープを、327℃未満の温度で、膜が縦方向に収縮しないようにしながら、最初の押出し物の入幅の少なくとも1.5倍、好ましくは6~15倍に横方向に延伸する。まだ、拘束しながら、膜を、好ましくはポリマーの融点(327℃)より高くまで加熱した後、冷却する。特に好ましい膜は、意図する複合体ボディにおける最大応力の方向において配向した高密度のフィブリルを有するノードのないePTFE膜である。応力が、複数の方向からロードされるときには、等方的フィブリル配向が好ましい。ePTFE膜は、好適なボイド率を有することができる。本発明の一態様によれば、膜のボイド率は、約1~約99.5容積%である。本発明のさらなる態様によれば、ボイド率は、約50~約90%であることができる。好ましいボイド率は、約70~90%である。膜は、必要に応じて樹脂成分への接着を容易にしたり、又は樹脂成分への接着を容易にするために処理してもよい。処理としては、例えば、コロナ、プラズマ、化学酸化などが挙げられる。本発明の複合体を形成するために、樹脂を、膜の細孔の少なくとも一部分に吸収させる。高分子樹脂が好ましく、熱可塑性樹脂、熱硬化樹脂及びそれらの組み合わせ又は混合物などが挙げられる。本発明の一態様によれば、樹脂は、高分子であり、非晶質成分のガラス転移温度が>80℃である。
 本発明の多孔質基材で補強された燃料電池用電解質膜に用いられる高分子電解質としては、公知のものを広く用いることが出来る。その中で、下記一般式で表される(式中、a:b=1:1~9:1、n=0,1,2)イオン交換能を有する固体高分子電解質を溶媒に分散もしくは溶解させた液が好ましく例示される。
Figure JPOXMLDOC01-appb-C000001
 溶媒は、水、メタノール、エタノール、プロパノール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、及びtert-ブチルアルコール等のアルコール類や、n-ヘキサンなどの炭化水素溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン、1,1,1-トリクロロエタン、1,2-ジクロロエタン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、クロロホルムなどが挙げられる。本発明において、特に1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン、1,1,1-トリクロロエタン、1,2-ジクロロエタン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、クロロホルムから選択される少なくとも1種であることが好ましい。これらの水及び溶媒は単独でも、2種以上混合しても良い。
 本発明の燃料電池用膜-電極接合体における電解質は、複数の補強用多孔質基材が積層されていても良い。この場合、該複数の多孔質基材のうち少なくとも一枚の多孔質基材は、本発明の補強型電解質膜である。積層される電解質膜は、電解質として使用できる高分子膜であれば、その種類を特に限定するものではない。また、積層される電解質膜は、すべて同じ電解質膜でもよく、また、異なる種類の電解質膜を混合して用いてもよい。例えば、全フッ素系スルホン酸膜、全フッ素系ホスホン酸膜、全フッ素系カルボン酸膜、それらの全フッ素系膜にポリテトラフルオロエチレン(PTFE)を複合化したPTFE複合化膜等の全フッ素系電解質膜や、含フッ素炭化水素系グラフト膜、全炭化水素系グラフト膜、全芳香族膜等の炭化水素系電解質膜等を溶媒に分散もしくは溶解させた液を用いることができる。
 本発明の固体高分子形燃料電池は、上述した本発明の燃料電池膜-電極接合体を用いた固体高分子形燃料電池である。本発明の燃料電池用膜-電極接合体を用いる以外は、一般に知られている固体高分子形燃料電池の構成に従えばよい。上記本発明の燃料電池用膜-電極接合体を用いることで、本発明の固体高分子形燃料電池は、出力が大きく、かつ安価で耐久性の高い固体高分子形燃料電池となる。
 以下、本発明の実施例及び比較例を説明する。
 実施例及び比較例に用いる多孔質基材は、下記の方法によりPTFEテープを二軸延伸し高度にフィブリル化することにより作製した。
 PTFE微粉末(PTFE601A、Dupont社製)に押出し助剤(IsoperK,Exxon社製)をPTFE微粉末1kg当たり285mg加えた。押出し助剤を添加したPTFE微粉末を圧縮して円柱状に成形し、それをラムエクストルダーで押出し、テープ状に形成した。押出されたテープを圧延ロール間にて20μm程度の厚さにまで圧延した。圧延したテープを送風オーブンにて210℃で押出し助剤の除去を行なった。
 次に、下記表1に示した長さ方向時の延伸温度に調温した。加熱ゾーン中のロール列間で長さ方向に延伸し、その後、膜が縦方向に収縮しないようにしながら表1に示した幅方向時の延伸温度に調温された加熱ゾーン中で横方向に延伸を行なった。その後、膜が収縮しないように固定した状態で380℃にて熱処理を行い多孔質基材を得た。
 用いる延伸速度及び延伸倍率を変えることにより比較例及び実施例1~3に用いられる多孔質基材を得た。
Figure JPOXMLDOC01-appb-T000002
 さらに、作製した多孔質基材に、パーフルオロカーボンスルホン酸樹脂/アルコール溶媒と水との混合液(高分子電解質分散液と呼ぶ)を含浸した。多孔質基材を収縮しないように固定枠に固定し、高分子電解質分散液を多孔質基材の両側に塗布し、次にヘアドライアで乾燥して、溶媒を除去した。多孔質基材と固定枠とを180℃のオーブンで8分間乾燥した。多孔質基材と固定枠をオーブンから取り出し、多孔質基材を固定枠から取り外した。取り外した多孔質基材/高分子電解質複合膜は透明であり、多孔質基材への高分子電解質による完全な含浸を確認した。このような工程で作製した多孔質基材/高分子電解質複合膜3枚に高分子電解質を層間に塗布、重ね合わせ、100℃、3MPaで3分間加圧加熱を実施し、複合膜を作製した。
 得られた複合膜の常温条件での引張試験を実施した結果を表2に、得られた複合膜の高温高湿条件での引張試験を実施した結果を表3に、イオン伝導度を表4に、イオン溶出量を表5に示す。
[最大強度引張強度、伸度、弾性率]
 引っ張り試験機にて、常温条件での環境温湿度(23℃、50%RH)又は高温多湿条件での環境温湿度(80℃、90%RH)において、初期チャック間距離:80mm、試験片形状:10mm幅矩形、引張速度200mm/minにて測定を行い、強度が最大になった時点での強度及び伸度を求めた。また、弾性率は伸度が2%の際の値を用いた。
[イオン伝導度]
 10mm幅の試験片を電極間距離5mmの白金電極の付いた治具に取り付け、治具ごと30±0.5℃の蒸留水に1時間浸漬させる。その後に、LCRメーターを用いて測定周波数100kHzにてインピーダンスを測定する。その後、次式を用いてプロトン伝導度を計算する。
 κ(S/cm)=1/インピーダンス(Ω)×端子間距離(cm)/試料断面積(cm
[Fイオン溶出量]
 4×5cmに切り出した膜をフェントン試験液(H:1%、Fe2+:100ppm)に浸漬し、80℃、8時間保持させた後の試験液のFイオン量をイオン電極により測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2の結果より、常温条件(23℃、50%RH)での実施例1~3の燃料電池用補強型電解質膜は、電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか一方が70N/mm以上であるのに対して、比較例の燃料電池用補強型電解質膜は、上記規定から外れていることが分かる。
 表3の結果より、高温高湿条件(80℃、90%RH)での実施例1~3の燃料電池用補強型電解質膜は、電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか一方が40N/mm以上であるのに対して、比較例の燃料電池用補強型電解質膜は、上記規定から外れていることが分かる。
 表4の結果より、実施例1~3の燃料電池用補強型電解質膜は、比較例の燃料電池用補強型電解質膜に比べて、イオン伝導度において遜色ないことが分かる。
 表5の結果より、実施例1~3の燃料電池用補強型電解質膜は、比較例の燃料電池用補強型電解質膜に比べて、引張強度の向上に伴い、イオン溶出量が格段に減少していることが分かる。即ち、本発明の燃料電池用補強型電解質膜は耐久性に優れていることが分かる。
 次に、実施例1~3及び比較例の燃料電池用補強型電解質膜を用いた燃料電池の発電性能を調べた。
 得られた各複合膜を用いて、燃料電池セルを常法により作製し、初期性能および耐久性を評価した。初期電圧の評価は、以下のように行なった。作動温度を80℃、水素バブラ温度及び空気バブラ温度を50℃に設定した。燃料極には、燃料ガスとして水素を背圧約0.1MPa、ストイキ比の2.0倍量で供給した。酸素極には、酸化剤ガスとして空気を背圧約0.1MPa、ストイキ比の2.5倍量で供給した。負荷を0.84A/cmとして放電し、20分間後の電圧値を初期電圧とした。また、耐久時間は、前述環境でオン-オフを繰返し、これに伴う膜劣化により、アノードからカソードへの水素のクロスリーク量が増大した時間とした。
 初期電圧を測定した結果を表6に、強度平均と対比した耐久時間の結果を表7に示す。また、図1に、表7の結果を図示した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表6の結果より、実施例1~3の燃料電池用補強型電解質膜は、比較例の燃料電池用補強型電解質膜に比べて、初期電圧が同等もしくはそれ以上であり、発電性能が優れていることが分かる。
 表7の結果より、強度平均と耐久時間には強い相関関係があり、実施例1~3の燃料電池用補強型電解質膜は、比較例の燃料電池用補強型電解質膜に比べて、耐久時間において格段に優れていることが分かる。
 即ち、初期性能は従来膜と同等を維持し、耐久時間が2倍以上向上した。
 次に、燃料電池の耐久時間が、燃料電池用補強型電解質膜の流れ方向(MD)及びMDの垂直方向(TD)のそれぞれ最大強度を示した時の、伸度、弾性率、強度のいずれか大きい方を分母とした時の、伸度比、弾性率比、及び強度比のいずれと相関関係を有するかを検討した。表8に、実施例1~3及び比較例の燃料電池用補強型電解質膜について、耐久時間、伸度比(室温条件、高温高湿条件)、弾性率比、及び強度比をまとめた。また、図2に、耐久時間と伸度比の関係を図示し、図3に、耐久時間と弾性率比の関係を図示し、図4に、耐久時間と強度比の関係を図示した。
Figure JPOXMLDOC01-appb-T000009
 表8、図2~図4の結果より、燃料電池用補強型電解質膜の耐久時間は、その弾性率比及び強度比とはどちらも良い相関が見られなかったのに対して、伸度比とは強い相関が見られた。具体的には、伸度比が0.4~1.0の範囲である実施例1~3の燃料電池用補強型電解質膜は、伸度比が0.4未満である比較例の燃料電池用補強型電解質膜に比べて、耐久性において優れていることが確認された。又、常温条件と同様に、高温高湿条件での実施例1~3の燃料電池用補強型電解質膜は、電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか大きい方を分母としたときの伸度が0.4以上となる場合に、耐久時間が長い。つまり、耐久時間と伸度に相関関係があることが分かる。
 耐久時間と伸度比とが良い相関を示した理由として、湿潤や差圧運転が繰り返される燃料電池内で燃料電池用電解質膜の伸度比が0.4以上であると、電池内での変形に均一に追従するからであると考えられる。更に、燃料電池内環境に近い高温高湿条件でも常温条件と同様のことが言え、高温高湿条件でも電池内での湿潤に対しても等方的に変形に追従するため、乾湿の繰返しに強く、耐久性に優れる。
産業上の利用の可能性
 本発明の燃料電池用電解質膜は耐久性が向上しているので、それを用いた燃料電池の耐久性を向上させることが可能となる。これにより、燃料電池の実用化と普及に貢献する。

Claims (6)

  1.  多孔質基材に高分子電解質分散液を含浸した燃料電池用補強型電解質膜であって、該電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか一方が、23℃、相対湿度50%の時に70N/mm以上であることを特徴とする燃料電池用補強型電解質膜。
  2.  多孔質基材に高分子電解質分散液を含浸した燃料電池用補強型電解質膜であって、該電解質膜の、シート状に加工する際の流れ方向(MD)及びMDの垂直方向(TD)の最大引張強度のいずれか一方が、80℃、相対湿度90%の時に40N/mm以上であることを特徴とする燃料電池用補強型電解質膜。
  3.  前記電解質膜の最大時引張強度の、流れ方向(MD)及びMDの垂直方向(TD)伸度のいずれか大きい方を分母とした時の伸度比が0.4~1.0であることを特徴とする請求の範囲第1又は2項に記載の燃料電池用補強型電解質膜。
  4.  前記多孔質基材が、延伸法によって多孔質化されたポリテトラフルオロエチレン(PTFE)膜であることを特徴とする請求の範囲第1乃至3項のいずれかに記載の燃料電池用補強型電解質膜。
  5.  燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜とを含む燃料電池用膜-電極接合体であって、該高分子電解質膜は、請求の範囲第1乃至4項のいずれかに記載の燃料電池用補強型電解質膜であることを特徴とする燃料電池用膜-電極接合体。
  6.  請求の範囲第1乃至4項のいずれかに記載の燃料電池用補強型電解質膜を有する膜-電極接合体を備えた固体高分子型燃料電池。
PCT/JP2008/068881 2007-04-19 2008-10-17 燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池 WO2009107273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112008003733.7T DE112008003733B4 (de) 2008-02-26 2008-10-17 Verstärkte Polyelektrolytmembran für eine Brennstoffzelle, Brennstoffzellenelektrodenmembran und feste Polymerelektrolytbrennstoffzelle umfassend die Brennstoffzellenmembranelektrodenanordnung
CN200880127517.XA CN101960658B (zh) 2008-02-26 2008-10-17 燃料电池用增强型电解质膜、燃料电池用膜-电极接合体以及具备该膜-电极接合体的固体高分子型燃料电池
US12/919,276 US8795923B2 (en) 2007-04-19 2008-10-17 Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-044571 2008-02-26
JP2008044571A JP2008288193A (ja) 2007-04-19 2008-02-26 燃料電池用補強型電解質膜、燃料電池用膜−電極接合体、及びそれを備えた固体高分子形燃料電池

Publications (1)

Publication Number Publication Date
WO2009107273A1 true WO2009107273A1 (ja) 2009-09-03

Family

ID=41020960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068881 WO2009107273A1 (ja) 2007-04-19 2008-10-17 燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池

Country Status (3)

Country Link
CN (1) CN101960658B (ja)
DE (1) DE112008003733B4 (ja)
WO (1) WO2009107273A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960974B1 (en) * 2013-04-29 2018-02-21 LG Chem, Ltd. Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
EP3817114A4 (en) * 2018-06-29 2022-04-06 Kolon Industries, Inc. POLYMER ELECTROLYTIC MEMBRANE, METHOD FOR MANUFACTURING IT AND ELECTRODE-MEMBRANE ASSEMBLY COMPRISING IT
JP6992710B2 (ja) * 2018-09-03 2022-01-13 トヨタ自動車株式会社 複合固体電解質層、及びそれの製造方法、並びに、全固体電池の製造方法
CN113557248B (zh) * 2019-03-13 2023-09-05 Agc株式会社 膜电极接合体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050561A (ja) * 2003-07-29 2005-02-24 Toyobo Co Ltd 複合イオン交換膜
JP2005520002A (ja) * 2001-09-10 2005-07-07 ゴア エンタープライズ ホールディングス,インコーポレイティド 高硬度及び寸法安定性を有するイオン伝導性隔膜
JP2005285757A (ja) * 2004-03-04 2005-10-13 Matsushita Electric Ind Co Ltd 複合電解質膜、触媒層膜接合体、膜電極接合体および高分子電解質型燃料電池
JP2006059756A (ja) * 2004-08-23 2006-03-02 Toyota Motor Corp 固体高分子電解質膜及びこれを用いた固体高分子型燃料電池、並びに、これらの製造方法
WO2006087995A1 (ja) * 2005-02-15 2006-08-24 Toray Industries, Inc. 高分子電解質成形体の製造方法、高分子電解質材料、高分子電解質膜および高分子電解質型燃料電池
JP2007112907A (ja) * 2005-10-20 2007-05-10 Asahi Kasei Chemicals Corp 芳香族炭化水素系樹脂を含有する高分子電解質組成物
JP2007280688A (ja) * 2006-04-04 2007-10-25 Tokuyama Corp 直接液体型燃料電池用隔膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE392582B (sv) 1970-05-21 1977-04-04 Gore & Ass Forfarande vid framstellning av ett porost material, genom expandering och streckning av en tetrafluoretenpolymer framstelld i ett pastabildande strengsprutningsforfarande
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US6737158B1 (en) 2002-10-30 2004-05-18 Gore Enterprise Holdings, Inc. Porous polymeric membrane toughened composites
JP2004288495A (ja) 2003-03-24 2004-10-14 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用電解質膜及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520002A (ja) * 2001-09-10 2005-07-07 ゴア エンタープライズ ホールディングス,インコーポレイティド 高硬度及び寸法安定性を有するイオン伝導性隔膜
JP2005050561A (ja) * 2003-07-29 2005-02-24 Toyobo Co Ltd 複合イオン交換膜
JP2005285757A (ja) * 2004-03-04 2005-10-13 Matsushita Electric Ind Co Ltd 複合電解質膜、触媒層膜接合体、膜電極接合体および高分子電解質型燃料電池
JP2006059756A (ja) * 2004-08-23 2006-03-02 Toyota Motor Corp 固体高分子電解質膜及びこれを用いた固体高分子型燃料電池、並びに、これらの製造方法
WO2006087995A1 (ja) * 2005-02-15 2006-08-24 Toray Industries, Inc. 高分子電解質成形体の製造方法、高分子電解質材料、高分子電解質膜および高分子電解質型燃料電池
JP2007112907A (ja) * 2005-10-20 2007-05-10 Asahi Kasei Chemicals Corp 芳香族炭化水素系樹脂を含有する高分子電解質組成物
JP2007280688A (ja) * 2006-04-04 2007-10-25 Tokuyama Corp 直接液体型燃料電池用隔膜

Also Published As

Publication number Publication date
DE112008003733B4 (de) 2021-02-04
DE112008003733T5 (de) 2011-02-03
CN101960658B (zh) 2014-07-16
CN101960658A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
JP5411543B2 (ja) 燃料電池用補強型電解質膜、燃料電池用膜−電極接合体、及びそれを備えた固体高分子形燃料電池
US10644339B2 (en) Polymer electrolyte membrane
KR101797274B1 (ko) 레독스 플로우 이차 전지 및 레독스 플로우 이차 전지용 전해질막
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
WO2010044436A1 (ja) 燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池
US20020064700A1 (en) Solid polymer electrolyte fuel cell and method of its production
KR20160102187A (ko) 이축 연신 β-다공성 필름으로 제조된 이온-교환막
JP2015076201A (ja) 高分子電解質膜の製造方法及び高分子電解質膜の製造装置
WO2009107273A1 (ja) 燃料電池用補強型電解質膜、燃料電池用膜-電極接合体、及びそれを備えた固体高分子形燃料電池
JP2002025583A (ja) 固体高分子型燃料電池用電解質膜及びその製造方法
JP5189394B2 (ja) 高分子電解質膜
JP2014110232A (ja) フッ素系高分子電解質膜
JP2006160902A (ja) 高分子電解質膜及びその製造方法
JP2002343380A (ja) 固体高分子型燃料電池用電解質膜及びその製造方法
JP2003059512A (ja) 固体高分子型燃料電池用電解質膜の製造方法
JP2006164777A (ja) 直接メタノール燃料電池用膜電極接合体及びその製造方法
JP2001210337A (ja) 固体高分子電解質膜および固体高分子電解質型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127517.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12919276

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008003733

Country of ref document: DE

Date of ref document: 20110203

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08872898

Country of ref document: EP

Kind code of ref document: A1