CN101448468B - 用于验证外科手术装置的校准的系统和方法 - Google Patents
用于验证外科手术装置的校准的系统和方法 Download PDFInfo
- Publication number
- CN101448468B CN101448468B CN2007800182633A CN200780018263A CN101448468B CN 101448468 B CN101448468 B CN 101448468B CN 2007800182633 A CN2007800182633 A CN 2007800182633A CN 200780018263 A CN200780018263 A CN 200780018263A CN 101448468 B CN101448468 B CN 101448468B
- Authority
- CN
- China
- Prior art keywords
- instrument
- mechanical interface
- interface
- surgical
- test point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1764—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
- A61B2017/00119—Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00694—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00707—Dummies, phantoms; Devices simulating patient or parts of patient
- A61B2017/00712—Dummies, phantoms; Devices simulating patient or parts of patient simulating mathematical properties, e.g. for testing of positioning in the isocentre or focus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00725—Calibration or performance testing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/108—Computer aided selection or customisation of medical implants or cutting guides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
- A61B2034/207—Divots for calibration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/363—Use of fiducial points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3983—Reference marker arrangements for use with image guided surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Robotics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Dentistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Prostheses (AREA)
Abstract
本发明涉及一种外科手术系统,特别是涉及一种用于验证外科手术装置的校准的外科手术系统和方法。外科手术系统或方法可以设置成进行以下步骤:识别病人的组织体上的界面;确定界面的检测点在参考坐标框架中的位置;使界面与外科手术装置的外科手术工具的一部分接触;确定外科手术工具的该部分在参考坐标框架中的位置;以及判断外科手术工具的该部分的位置是否与检测点的位置预期对应。界面可以包括:病人的骨的抹过部分;在骨中形成的凹窝;或者机械界面,该机械界面包括设置成安装在骨上的部分和设置成与外科手术工具的该部分接触的界面部分。
Description
相关申请的交叉引用
本申请要求美国临时专利申请No.60/801378的优先权,该美国临时专利申请No.60/801378的申请日为2006年5月19日,该文献整个被本文参引。
技术领域
本发明涉及一种外科手术系统和方法,特别是涉及一种用于验证外科手术装置的校准的外科手术系统和方法。
背景技术
微创手术(MIS)是指通过比传统外科手术方法使用的切口明显更小的切口来实施外科手术。例如,在矫形用途(例如全膝盖置换手术)中,MIS的切口长度可以在大约4至6英寸的范围内,而普通全膝盖手术中的切口长度典型的是在大约6至12英寸的范围内。由于切口长度更小,MIS过程的侵害性通常比普通的外科手术方法更小,该MIS对软组织的损伤减到最小,减轻了手术后的疼痛,促使更早地活动,缩短了住院时间,并加速康复。
MIS的一个缺点是:小的切口尺寸降低了外科医生观察和接近组织体的能力。例如,在微创矫形关节置换中,有限的观察性和有限的关节接近将增大评估正确植入位置和对骨整形的复杂性。因此,精确布置植入件可能更困难。用于克服该问题的普通技术例如包括:外科手术导航术、定位腿以便使关节最佳暴露、以及利用特别设计的小尺寸仪器和复杂的外科手术技术。但是,这些技术通常需要大量的专业仪器、长期的训练过程以及很高的技巧。而且,单个外科医生和其它不同外科医生的手术结果都没有足够的可预测性、可重复性和/或精确性。因此,植入件的性能和使用寿命在不同病人之间不同。
在矫形用途中,MIS和普通外科手术方法都有的一个缺点是:当骨准备接收植入件时,健康的和病变的骨都除去。例如,全膝盖置换可能需要在膝盖的三个隔腔上各自除去达1/2英寸的骨。
MIS和普通矫形外科手术方法都有的另一缺点是:这些方法都不能以协作的方式来提高外科医生自身的外科手术技能。例如,用于关节置换的一些普通技术包括自动机器人系统来帮助外科医生。不过,这样的系统通常主要用于提高骨的机械加工,即通过利用高速磨光来执行自动切割,或者通过使钻头引导件移动就位,并在外科医生穿过引导件插入切割工具时保持该钻头引导件的位置。尽管这些系统能够精确地进行骨切除,用于提高植入件的配合和放置,但是它们自动作用(而不是与外科医生合作),因此需要外科医生在一定程度上放弃对机器人的控制。自动系统的另一些缺点包括:机器人的尺寸较大、人机工程性较差、在对齐和切割过程中需要快速夹住骨、增加的切口长度(以便足够机器人进入),及外科医生和管理部门有限的认可(因为系统的自动特性)。
其它的普通机器人系统包括机器人,该机器人与外科医生协作地相互作用。普通的相互作用机器人系统的一个缺点是,这样的系统缺乏适应外科手术方案的能力以及对手术时的动态环境进行实时导航的能力。例如,美国专利申请No.10/470314(公开号No.US2004/0128026)(该文献整个被本文参引)公开了一种相互作用的机器人系统,该机器人系统编程有三维的虚拟限制区域,该区域与病人对齐。机器人系统包括三自由度(3-DOF)臂,该臂具有包括力传感器的手柄。外科医生利用该手柄来操纵该臂,以便使切割工具运动。需要通过手柄来使臂运动,使得力传感器能够测量由外科医生施加在手柄上的力。然后,测量的力用于控制马达,以便帮助或阻止切割工具运动。例如,在膝盖置换操作中,病人的股骨和胫骨相对于机器人系统固定就位。当外科医生向手柄施加力以便使切割工具运动时,相互作用的机器人系统可以随着切割工具接近虚拟限制区域的边界而施加增大的阻力,以便阻止切割工具运动。这样,机器人系统通过使切割工具保持在虚拟限制区域中而在骨准备中引导外科医生。不过,由于使用上述自动系统,相互作用的机器人系统主要用于提高骨的机械加工。相互作用的机器人系统也需要相关组织体刚性限制,并需要使机器人系统固定在总体位置,因此对于手术时的情况缺乏实时适应能力。而且,臂的3-DOF结构以及外科医生需要利用力手柄来操纵臂将使得灵活性和灵巧性受到限制,从而使得机器人系统不适合某些MIS用途。
因此,需要一种外科手术系统,它能够代替在微创手术中的直接观察,在矫形关节置换用途中节省健康的骨,能够有手术时的适应性和外科手术计划性,并使得产生的手术结果具有充分的可预测性、可重复性和/或精确性(不管外科手术的技能水平如何)。外科手术系统不需要一定满足前述所有或任意要求,不过满足这些要求的系统将更理想。
而且,还需要一种外科手术系统和方法,所述系统和方法能够精确地验证外科手术装置的校准。通过验证外科手术装置的校准,外科手术系统能够向外科手术装置的用户精确地提供位置信息,从而使得用户能够相对于病人的组织体定位外科手术装置,而不管用于MIS的切口尺寸如何,并能够使在外科手术过程中除去的骨的量减到最少。
发明内容
根据本发明的一个方面,一种用于验证外科手术装置的校准的方法,包括以下步骤:识别病人的组织体上的界面;确定界面的检测点在参考坐标框架中的位置;使界面与外科手术装置的外科手术工具的一部分接触;确定外科手术工具的该部分在参考坐标框架中的位置;以及判断外科手术工具的该部分的位置是否与检测点的位置预期对应。
根据另一方面,界面可以包括机械界面,该机械界面包括设置成安装在病人的骨上的部分以及设置成与外科手术工具的该部分接触的界面部分。
根据本发明的一个方面,一种用于验证外科手术装置的校准的系统,包括:外科手术装置的外科手术工具的一部分,该部分设置成与病人的组织体上的界面接触;以及计算系统,该计算系统编程,以便确定界面的检测点在参考坐标框架中的位置、确定外科手术工具的该部分在与界面接触时在参考坐标框架中的位置、以及判断外科手术工具的该部分的位置是否与界面的位置预期对应。
附图说明
附图包含在说明书中,作为说明书的组成部分,表示了本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本发明的外科手术系统的实施例的透视图。
图2A是本发明的触觉装置的实施例的透视图。
图2B是本发明的触觉装置的实施例的透视图。
图3是本发明的组织体追踪器的实施例的透视图。
图4是安装在触觉装置上的图5A末端执行器的透视图。
图5是本发明的仪器追踪器的实施例的透视图。
图6是本发明的机械追踪系统的实施例的视图。
图7A是本发明的股骨部件的实施例的透视图。
图7B是本发明的胫骨部件的实施例的透视图。
图8表示了本发明的CAS系统的显示器的实施例。
图9是根据本发明实施例的、用于单髁膝盖置换的方法的方框图。
图10是外科手术导航屏幕的实施例的视图,表示了本发明的探针校准验证步骤。
图11是外科手术导航屏幕的实施例的视图,表示了本发明的组织体追踪器安装步骤。
图12是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图13是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图14是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图15是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图16是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图17是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图18是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图19是外科手术导航屏幕的实施例的视图,表示了本发明的对齐步骤。
图20是本发明的3D几何触觉物体的实施例的视图。
图21是外科手术导航屏幕的实施例的视图,表示了本发明的检测点识别步骤。
图22是外科手术导航屏幕的实施例的视图,表示了本发明的检测点识别步骤。
图23A是本发明的机械界面500的实施例的剖视图。
图23B是图23A中所示的区域A的放大图。
图24表示了本发明的钝头探针的实施例的剖视图,该钝头探针已经插入机械界面500的界面510中。
图25表示了本发明的6mm磨石的实施例的剖视图,该6mm磨石插入机械界面的界面510中。
图26表示了本发明的2mm磨石的实施例的剖视图,该2mm磨石插入机械界面的界面510中。
图27表示了本发明的铣刀(router)的实施例的剖视图,该铣刀插入机械界面的界面510中。
图28表示了本发明的探针的可选实施例的剖视图,该探针有尖锐端,该尖锐端已经插入机械界面的界面中。
图29表示了本发明的机械界面的实施例的侧视图,该机械界面设置成撞入病人的股骨内。
图30表示了股骨机械界面从另一角度看时的侧视图。
图31表示了本发明的机械界面的实施例的侧视图,该机械界面设置成撞入病人的胫骨内。
图32表示了胫骨机械界面的俯视图。
图33表示了本发明的撞击器/抽取器工具的实施例的平面图。
具体实施方式
附图中表示了本发明的优选实施例。尽管本说明书主要针对涉及膝关节的矫形过程,但是应当知道,这里所述的主题也可用于身体的其它关节,例如肩、肘、腕、脊、髋或踝,也可用于任意其它矫形和/或肌骨骼植入件,包括普通材料的植入件和更特殊的植入件,例如生物矫形件、药物输送植入件以及细胞输送植入件。
图1表示了本发明的外科手术系统10的实施例。外科手术系统10包括计算系统20、触觉装置30和追踪(或定位)系统40。在工作时,外科手术系统10能够执行复杂的、手术时的外科手术计划。当用户执行外科手术过程时,外科手术系统10还向用户(例如外科医生)提供了触觉引导和/或限制触觉装置30的用户操纵。
外科手术系统10可以如美国临时专利申请No.60/801378(申请日为2006年5月19日,该文献整个被本文参引)中所述和如美国专利申请No.11/357197(申请日为2006年2月21日,公开为美国专利公开No.2006/0142657,该文献整个被本文参引)中所述来设置和操作。
计算系统20包括硬件和软件,用于操作和控制外科手术系统10。如图1中所示,计算系统20包括计算机21、显示装置23和输入装置25。计算系统20还可以包括手推车29,该手推车29可以安装在轮子28上。如图1中所示,计算系统20可以通过界面100a而与触觉装置30连接。计算系统20可以编程,以便执行这里所述的任意步骤和特征。
触觉装置30是一种外科手术装置,它设置成由用户操纵,以便使外科手术工具50运动,从而对病人执行手术。在该手术过程中,计算系统20执行控制参数,用于例如根据在病人的组织体和触觉装置30的一部分(例如外科手术工具50)的位置、方位、速度和/或加速度之间的关系而控制该触觉装置30。在一个实施例中,触觉装置30控制成对装置的用户操作提供限制(例如通过限制用户物理操纵触觉装置30的能力)。在另一实施例中,触觉装置30控制成对用户提供触觉引导(即触觉和/或力反馈)。“触觉”是指接触的感觉,且触觉领域涉及与人相互作用装置相关的研究,该与人相互作用装置真正向操作人员提供触觉和/或力反馈。触觉反馈通常包括触感,例如振动,而力反馈是指力(例如运动阻力)和/或力矩(也称为“扭转”)形式的反馈。扭转例如包括呈力、力矩或者力和力矩组合的形式的反馈。例如,触觉引导系统可以设置为如美国专利申请No.11/646204中所述,该美国专利申请No.11/646204的申请日为2006年12月27日,该文献整个被本文参引。
与计算机辅助外科手术(CAS)相连的触觉装置30产生的引导使得外科医生能够主动和精确地控制外科手术动作(例如骨切除)和进行局部药物传送(例如在脑中)。计算系统20可以控制触觉装置30,以便基于工具50相对虚拟物体、参数和/或组织体的位置来产生力、力矩和/或振动。因此,在操作中,当外科医生操纵触觉装置30以便使工具50运动时,可以使用虚拟通路来引导工具50至特定目标,可以使用虚拟边界来确定切割形状或防止工具50与关键组织接触,且可以使用预定参数来限制工具50的行进(例如到预定深度)。计算系统20还可以进行编程,以便在处理过程中根据身体组织体的运动来调节控制参数(例如通过监测身体组织体的检测运动,然后根据该检测运动来调节虚拟物体)。这样,外科手术系统10能够补充或代替外科手术部位的直接观察,提高外科医生的自然触感和身体灵活性,并有利于通过从普通尺寸的入口(例如12英寸或更大长度)至直径小到大约1mm的入口来瞄准、修复和更换身体中的各种结构。
在例如矫形用途中,触觉装置30可以解决在骨(或工件)准备中的不精确、不可预期和不可重复的问题,即通过帮助外科医生正确刮刻骨,从而能够精确、可重复地进行骨切除,同时保持外科医生在骨准备处理中的紧密参与。而且,因为触觉装置30在骨切割操作中触觉引导外科医生,因此外科医生的技能水平不是很关键。因此,具有不同技能水平和经验的外科医生能够进行精确、可重复的骨切除。例如,在一个实施例中,外科手术工具与触觉装置30连接。外科医生能够通过抓住和使工具运动和/或通过抓住和操纵触觉装置30以便使工具运动,从而操作该工具来刮刻骨。当外科医生进行切割操作时,外科手术系统10追踪工具的位置(通过追踪系统40),且在大部分情况下允许外科医生使该工具在工作空间自由运动。不过,当工具在与病人对齐的虚拟边界附近时,外科手术系统10控制触觉装置30,以便提供触觉引导,该触觉引导将限制外科医生用工具穿透该虚拟边界。例如,虚拟边界可以由触觉物体来确定,且触觉引导可以包括输出扭转(即力和/或力矩),该输出扭转映射了触觉物体,且外科医生感受该输出扭转为阻止工具朝着虚拟边界方向进一步运动的阻碍作用。触觉物体可以有相关的空间或几何表示,它可以以图像表示在显示装置23上。图像表示可以选择为向用户传达有用信息。例如,如图1中所示,设置成帮助用户引导工具50至外科手术部位的触觉物体300可以图像表示为漏斗形容积。当与物理工具50相对应的虚拟工具运动通过触觉物体300并与该触觉物体300相互作用时,触觉力可以反映给用户,从而使工具50导向外科手术部位。在一个实施例中,确定用于植入件的虚拟切割边界的触觉物体可以在显示装置23上表示为图像,该图像具有与植入件的形状基本相对应的形状。因此,确定股骨部件72的虚拟切割边界的触觉物体208(图7A中所示)可以有相应的图像表示。类似的,确定胫骨部件74的虚拟切割边界的触觉物体206(图7B中表示)可以有相应的图像表示。因此,外科医生可以感觉到就像工具遇到了物理实体,例如墙。这样,虚拟边界起到虚拟切割引导件的作用。因此,触觉装置30将关于工具相对虚拟边界的位置的信息发送给外科医生,并在实际切割处理中提供物理引导。触觉装置30还可以设置成限制用户操纵外科手术工具的能力,例如如美国专利申请No.10/470314(公开号为No.US2004/0128026)中所述,该文献整个被本文参引。
触觉装置30可以包括用于向用户传递触觉反馈(例如振动)和/或力反馈(例如扭转)的机械或机电装置。触觉装置30可以是机器人的、非机器人的、或者是机器人和非机器人组合的系统。例如,触觉装置30可以包括如以下专利文献中所述的触觉装置:美国专利No.7206626;美国专利No.7206627;美国专利申请No.10/384078,申请日为2003年3月6日,公开日为2004年2月19日;美国专利申请No.10/384194,申请日为2003年3月6日,公开日为2004年2月19日;美国专利申请No.10/621119,申请日为2003年7月16日,公开日为2004年6月3日;和/或美国临时专利申请No.60/655642,申请日为2005年2月22日。上述各文献都整个被本文参引。
在一个实施例中,触觉装置30包括机器人。在该实施例中,如图2A中所示,触觉装置30可以包括基座32、臂33、末端执行器35和用户界面37。触觉装置30还可以包括平台39。该平台39可以包括滚转部件38(例如轮子或小脚轮),以便使平台39能够运动。平台39还包括用于将该平台39固定就位的机构。例如,平台39可以装备有用于滚转部件38的轮锁或制动器、脚踏板锁定装置、千斤顶和/或任意其它已知机构,用于将平台或手推车固定就位。在一个实施例中,如图2A中所示,平台39包括刚性支脚39a,该刚性支脚39a可以通过机构39b而在退回位置(图2A中所示)和伸出位置(未示出)之间驱动。
臂33设置在基座32上,并用于使得触觉装置30能够由用户操纵。臂33可以为任意合适的机械或机电结构,但优选是具有四个或更多自由度(或运动轴线)的铰接臂,例如称为“全臂操纵器(Whole-ArmManipulator)”或WAMTM的机器人臂,它目前由巴雷特科技公司(Barrett Technology Inc.)来制造。臂33包括:近端,该近端布置在触觉装置30的基座32上;以及远端,外科手术工具50与该远端连接。如后面进一步所述,臂33的远端可以包括末端执行器35和/或用于工具50的工具保持器51。在一个实施例中,臂33包括第一区段33a、第二区段33b和第三区段33c,如图2A中所示。第一区段33a和第二区段33b在第一关节33d(例如肩关节)处连接,而第二区段33b和第三区段33c在第二关节33e(例如肘关节)处连接。如图2B所示,臂33可以有例如第一自由度DOF1、第二自由度DOF2、第三自由度DOF3和第四自由度DOF4。因此,区段33a、33b、33c和关节33e、33d形成铰接机械连杆,它可以操纵至各种位置和姿势。臂33的尺寸设置成适合用于各种手术过程,例如矫形、神经科和/或外伤手术过程,且足够紧凑,以便使触觉装置30能够机动,并能够在手术室中有效定位该触觉装置30。例如,臂33的尺寸可以设置为比人的臂稍微更大。在一个实施例中,臂33有大约1m的伸出长度,区段33b和33c的直径为大约89mm。臂33还可以用于容纳和/或布置触觉装置30的部件,例如仪器、电源线、马达、传动部件、控制器、致动器、放大器、制动器、离合器、电源、传感器和/或计算机硬件。
臂33的灵活性例如可以通过增加附加自由度来提高。例如,臂33可以包括腕36。如图2A中所示,腕36可以布置在臂33上(例如在第三区段33c的远端),并包括一个或多个自由度,以便增大臂33的自由度DOF1、DOF2、DOF3和DOF4。例如,如图2B所示,腕36可以包括自由度DOF5。在一个实施例中,腕36包括两个自由度,且臂33的自由度DOF3省略。腕36还可以是由巴雷特科技公司制造的单自由度或三自由度WAMTM腕。
末端执行器35可以包括触觉装置30的工作端,并可以设置成使得用户能够执行与外科手术过程相关的各种动作。例如,在一个实施例中,末端执行器35用作在臂33和工具50之间的适配器或连接件。通过使工具50与末端执行器35脱开和用另一个工具来与该一个工具50互换,用户可以利用触觉装置30来进行不同动作,例如对齐、骨(或工件)准备、测量/验证、和/或植入件安装。在一个实施例中,如图2A所示,末端执行器35包括:近侧部分,该近侧部分用于与臂33连接;以及远侧部分,该远侧部分包括工具50和/或工具保持器51。末端执行器35的近侧部分可以以任意普通方式而与臂33电连接和机械连接。例如,工具50可以是外科手术工具(例如磨石、钻具、探针、锯等)、医疗装置、显微镜、激光测距仪、照相机、灯、内窥镜、超声波探针、冲洗装置、抽吸装置、放射治疗装置和/或用于外科手术、外科手术计划和/或外科手术导航的任意其它部件。工具50可以是单个工具,或者可以包括多个工具。
外科手术系统10的追踪(或定位)系统40设置成在外科手术过程中确定一个或多个物体的姿势(即位置和方位),以便检测物体的运动。例如,追踪系统40可以包括检测装置,该检测装置获得物体相对于检测装置的参考坐标框架(或坐标系)的姿势。当物体在参考坐标框架中运动时,检测装置追踪物体的姿势,以便检测(或使得外科手术系统10能够确定)物体的运动。因此,计算系统20能够根据被追踪物体的运动而调节控制参数(例如通过调节虚拟物体)。被追踪物体例如可以包括工具/仪器、病人组织体、植入件/假体装置、工件以及外科手术系统10的部件。利用来自追踪系统40的姿势数据,外科手术系统10也能够使一个空间中的坐标与另一空间中的坐标对齐(或映象或相关),以便获得空间对齐或对应(例如,利用坐标变换处理,如人们公知)。物理空间中的物体可以与任意合适的坐标系对齐,例如在计算机21和/或计算机31上进行的处理所使用的坐标系。例如,利用来自追踪系统40的姿势数据,外科手术系统10能够使得身体组织体和工具50(和/或触觉装置30)与组织体的表示(例如在显示装置23上显示的图像)相关联。根据被追踪物体和对齐数据,外科手术系统10可以确定例如(a)在组织体的图像和相关组织体之间的空间关系以及(b)在相关组织体和工具50之间的空间关系,这样,计算系统20可以将工具50的虚拟表示在图像上叠加(和持续更新),其中,虚拟表示和图像之间的关系基本与工具50和实际组织体之间的关系相同。此外,通过不仅追踪工具50还追踪相关组织体,外科手术系统10能够补偿相关组织体在外科手术过程中的运动(例如通过根据检测的运动来调节虚拟物体)。如图1中所示,追踪系统40可以通过界面100b而与触觉装置30连接。
追踪系统40可以为能够使得外科手术系统10持续确定(或追踪)病人的相关组织体的姿势和工具50(和/或触觉装置30)的姿势的任意追踪系统。例如,追踪系统40可以包括非机械追踪系统、机械追踪系统、或者适用于外科手术环境的非机械和机械追踪系统的任意组合。
在一个实施例中,如图1中所示,追踪系统40包括非机械追踪系统。在该实施例中,非机械追踪系统是光学追踪系统,它包括检测装置41和至少一个可追踪元件(或追踪器),该可追踪元件设置为布置在(或包含于)被追踪物体上,并由检测装置41来检测。如图1中所示,检测装置41可以包括例如立体照相机对,该立体照相机对相对于红外线辐射敏感,并可定位在要进行外科手术过程的手术室中。追踪器设置成以可靠和稳定的方式安装在被追踪物体上,并包括一组标记(例如在图3中的组S1),该组标记与被追踪物体有已知的几何关系。在工作时,检测装置41检测标记的位置,且独特的几何形状(或触发图形)和与被追踪物体的已知几何关系使得外科手术系统10能够根据标记的位置来计算被追踪物体的姿势。
非机械追踪系统可以包括可追踪元件(或追踪器),用于用户希望追踪的各个物体。例如,在一个实施例中,非机械追踪系统包括组织体追踪器43(以便追踪病人的组织体)、触觉装置追踪器45(以便追踪触觉装置30的总体或总位置)、末端执行器追踪器47(以便追踪触觉装置30的远端),和仪器追踪器49(以便追踪由用户人工保持的仪器/工具)。
如图1中所示,组织体追踪器43可以布置在病人的组织体的相关部分(例如骨或工件)上,并用于使得相关组织体能够由检测装置41来追踪。组织体追踪器43包括用于安装在组织体上的固定装置。该固定装置例如可以是骨销、外科手术钉、螺钉、夹子、可佩戴装置、髓内杆等。在一个实施例中,组织体追踪器43设置成在膝盖置换外科手术中使用,以便追踪病人的股骨F和胫骨T。在该实施例中,如图1中所示,组织体追踪器43包括用于布置在股骨F上的第一追踪器43a和用于布置在胫骨T上的第二追踪器43b。如图3中所示,第一追踪器43a包括固定装置和独特的标记(例如反射球)组S1,该固定装置包括骨销P。该组S1安装在连接机构400上,该连接机构400用于可拆卸地固定在两个骨销P上。例如,如图3所示,连接机构400可以包括第一部分442、第二部分444和螺钉445。为了将第一追踪器43a安装在股骨F上,用户将骨销P拧入股骨F中,使连接机构400滑动至骨销P上方,并拧紧螺钉445,以便将第一和第二部分442和444拉至一起,从而将连接机构400牢固固定在骨销P上。一旦固定,连接机构400向骨销P提供附加稳定性。第二追踪器43b与第一追踪器43a相同,除了第二追踪器43b安装在胫骨T上,并有它自身的独特标记组。当安装在病人上时,第一和第二追踪器43a和43b使得检测装置41能够在膝盖置换外科手术过程中追踪股骨F和胫骨T的运动。因此,外科手术系统10能够在外科手术过程中实时补偿骨运动。
如图2A中所示,触觉装置追踪器45布置在触觉装置30上,并用于使得外科手术系统10能够监测触觉装置30在物理空间中的总体位置或总位置。特别是,触觉装置追踪器45使得外科手术系统10能够确定触觉装置30是否相对于外科手术环境中的其它物体(例如病人)运动。这样的信息很重要,因为工具50安装在触觉装置30上。例如,如果当用户在用工具50切割股骨F时有意地重新定位触觉装置30或意外地碰撞触觉装置30,追踪系统40将检测触觉装置追踪器45的运动。在响应时,外科手术系统10可以合适调节在计算机21和/或计算机31上运行的程序,以便补偿触觉装置30(和安装的工具50)相对于股骨F的总体运动或总运动。因此,保持股骨准备处理的完整性。
仪器追踪器49用于与人工握在用户手中的仪器150(与例如安装在末端执行器35上的工具50相反)连接。该仪器150例如可以是探针,例如对齐探针(例如直的或钩形探针)。如图5中所示,仪器追踪器49可以包括独特的标记(例如反射球)组S5,该标记组S5与仪器150形成一体,或者以任意已知方式安装在仪器150上,例如通过机械硬件、粘接剂、焊接、螺纹连接、夹持装置、夹子等。当仪器追踪器49可拆卸地与仪器150连接(例如通过夹子或夹持装置)时,仪器追踪器49将相对仪器150进行校准,以便确定仪器追踪器49和仪器150的几何形状之间的关系。校准可以以任意合适的方式完成,例如通过具有凹窝(divot)或V形槽的工具校准器(例如如美国专利申请No.US2003/0209096中所述,该文献整个被本文参引)。使用夹子或夹持装置来使追踪器49与仪器150连接的一个优点是夹子或夹持装置可以调节,以便与各种尺寸的仪器进行配合。因此,单个夹子或夹持装置可以用于多个仪器。当已知在组S5和仪器150之间的几何关系时,外科手术系统10能够计算仪器150的顶端在物理空间中的位置。因此,仪器150可以用于通过使该仪器150的顶端与物体的相关部分接触而对齐该物体。例如,仪器150可以用于通过接触骨上的界标或在骨表面上的点而与病人的骨对齐。仪器150还可以用于通过使仪器150的顶端与位于植入件上的预定验证特征(例如凹窝)接触来验证安装在病人体内的植入件的正确对齐。
仪器追踪器49还可以设置成验证仪器150的校准。例如,另一追踪器(例如追踪器43、45或47)可以包括凹窝(divot),用户可以将仪器150的顶端插入该凹窝中。在一个实施例中,如图4中所示,末端执行器追踪器47包括凹窝47a,用户可以将仪器150的顶端插入该凹窝47a中。检测装置41可以再获得用于仪器追踪器49和末端执行器追踪器47的姿势数据,且外科手术系统10可以使得在追踪器47和49之间的实际几何关系与预期几何关系进行比较。在实际和预期几何关系之间的偏差表示仪器150的物理参数(例如平直度、顶端位置等)没有校准。如图15中所示,在验证处理过程中,外科手术系统10可以进行屏幕显示,从而在显示装置23上表示仪器150、仪器追踪器49和末端执行器追踪器47的图像表示。
追踪系统40可以附加或可选择地包括机械追踪系统。与非机械追踪系统相反(该非机械追踪系统包括远离追踪器43、45、47和49的检测装置41),机械追踪系统可以设置成包括检测装置(例如具有关节编码器的铰接臂),该检测装置与被追踪物体机械连接(即物理连接)。追踪系统40可以包括任意已知的机械追踪系统,例如如美国专利No.6033415和/或美国专利No.6322567中所述的机械追踪系统,这两篇文献都整个被本文参引。在一个实施例中,追踪系统40包括具有关节连接机械臂241(例如具有六个或更多自由度的铰接臂)的机械追踪系统,该关节连接机械臂241用于追踪病人的骨。如图6中所示,臂241的近端安装在触觉装置30的基座32上,它的可自由运动远端固定在病人的股骨F上。也可选择,近端可以安装在任意其它合适位置(例如手术台的导轨、支脚保持器等上),但优选是与触觉装置30的基座32连接(例如直接或通过托架),这样,臂241总体与触觉装置30一起运动。臂241的远端包括固定装置245,该固定装置245用于刚性固定在股骨F上,例如为骨销、骨螺钉、夹子、可佩戴装置、外科手术钉等。臂241设置成具有多个自由度。例如,在一个实施例中,如图6中所示,臂241包括在关节244处连接的多个连杆242。各关节244包括一个或多个位置传感器(未示出),以便追踪臂241的姿势。位置传感器可以包括任意合适的传感器,例如上面结合触觉装置30的臂33所述的位置传感器。在手术中,当股骨F运动时,臂的远端与股骨F一起运行。位置传感器(和合适的软件)产生臂远端相对于臂近端(该近端固定在触觉装置30上)的姿势的测量。这样,将捕获股骨F相对于触觉装置30的运动。机械追踪系统240还可以包括第二臂,该第二臂与臂241相同,但是刚性安装在胫骨T上,以便使追踪系统240能够追踪胫骨T的运动。这样,机械追踪系统240可以用于追踪股骨F和胫骨T,从而使外科手术系统10能够在外科手术过程中实时检测骨运动。当骨运动数据与合适软件结合使用时,外科手术系统10可以在外科手术过程中实时补偿骨的运动。
当追踪系统40包括机械追踪系统时,臂241可以用于对齐病人的组织体。例如,用户可以利用臂241来对齐胫骨T,同时第二臂(即与臂241相同但固定在胫骨T上的臂)追踪胫骨T的运动。对齐可以例如通过使得臂241的远端的顶端指向胫骨T上的组织体界标和/或通过使胫骨T的表面上的点与臂241的远端的顶端接触(或“涂抹”)而实现。当用户与胫骨T上的界标接触和/或抹过胫骨T表面时,外科手术系统10从臂241中的位置传感器获得数据,并确定臂241的顶端的姿势。同时,第二臂提供与胫骨T的运动相关的数据,这样,外科手术系统10能够在对齐过程中考虑到骨运动。根据骨运动数据和对臂241顶端位置的认识,外科手术系统10能够在计算系统20中使胫骨T与诊断图像和/或病人组织体的组织体模型对齐。类似地,第二臂可以用于对齐股骨F,同时臂241(它安装在股骨F上)追踪股骨F的运动。病人的组织体还可以例如使用非机械追踪系统与被追踪探针的组合(例如仪器150与仪器追踪器49)和/或使用触觉装置30(例如如后面结合图9的步骤S8所述)来对齐。
当有系统问题(例如硬件或软件问题)时、当阻塞检测算法检测到封闭状态(例如如下面结合图9的步骤S11所述)时、和/或当工具50处于不合适位置时,可能存在故障状态。在一个实施例中,外科手术系统10进行编程,以便发出故障信号,并当组织体和工具50的位置、方位、速度和/或加速度之间的关系并不与合适关系相对应时使工具50停用。在一个实施例中,触觉变换(rendering)算法根据由触觉装置30施加给用户的触觉扭转(即力和/或力矩)判断是否超出预定界限。可能激发故障信号的另一情况是当检测到组织体快速运动时。例如当组织体移动时或当某人碰撞安装在组织体上的追踪元件时可能引起快速运动。在一个实施例中,外科手术系统10可以有不同等级的故障。在一个实施例中,外科手术系统10通过使工具50停用和使触觉装置30置于自由模式(而不是施加制动)而响应故障信号,因此,臂33并不拉动组织体或向组织体施加应力。这样外科手术系统10通过当存在不安全情况时防止用户操作工具50和/或臂33来避免损坏。
在一个实施例中,一种基于工具停用特征来控制触觉装置30的方法包括(a)使触觉装置30能够操作;(b)操纵触觉装置30以便在病人身上执行处理步骤;(c)判断在病人的组织体和触觉装置30的工具50的位置、方位、速度和/或加速度之间的关系是否对应于合适关系;以及(d)当该关系并不对应合适关系时发出故障信号。该方法还包括执行控制参数,用于根据该关系来控制触觉装置30,以便提供对用户的触觉引导和对外科手术装置的用户操纵限制中的至少一个。在一个实施例中,响应故障信号,外科手术系统10停止触觉装置30的操作,将触觉装置30的一部分锁定就位,和/或使触觉装置30置于安全模式。在安全模式中,将阻止触觉装置30的操作和/或操纵。
在一个实施例中,一种在外科手术过程中补偿物体的运动的方法包括:(a)确定组织体的姿势;(b)确定工具50的姿势;(c)确定工具50的位置、方位、速度和加速度中的至少一个;(d)使得组织体的姿势、工具50的姿势以及在组织体的姿势和工具50的位置、方位、速度和加速度中的至少一个之间的关系进行关联;以及(e)根据组织体的运动和/或工具50的运动而更新该关联。该关系例如可以基于在组织体以及工具50的位置、方位、速度和/或加速度之间的合适相互作用。在一个实施例中,该关系由虚拟物体或参数来确定,该虚拟物体或参数相对于组织体定位,并表示植入件的合适位置和/或用于安装植入件的切割表面。使组织体的姿势、工具50的姿势和该关系相关联的步骤可以这样实现,即例如使用对齐处理(例如图9的步骤S8)、坐标变换处理和植入计划处理(例如图13的步骤S10和S13)。在一个实施例中,关联的步骤包括(a)确定第一变换,用于使组织体的坐标系变换成组织体的表示的坐标系;(b)确定第二变换,用于使工具50的坐标系变换成组织体的表示的坐标系;以及(c)使所述关系与组织体的表示的坐标系关联。为了使所述关系与组织体的表示的坐标系关联,用户例如可以使虚拟物体相对于组织体的图像定位(例如图9的植入计划步骤S10和S13)。为了使外科手术系统10能够在外科手术过程中补偿物体的运动,使关联更新的步骤可以包括根据组织体的运动来更新第一变换和/或根据工具50的运动来更新第二变换。
在外科手术系统10中包括触觉变换处理的一个优点是触觉变换处理能够在外科手术工具和虚拟环境之间相互作用。触觉变换处理例如可以包括如美国专利申请No.11/646204(该美国专利申请No.11/646204的申请日为2006年12月27日,该文献整个被本文参引)中所述的触觉变换处理。例如,触觉变换处理可以产生虚拟环境,该虚拟环境包括一个或多个虚拟(或触觉)物体和物理工具50的虚拟表示。物理工具50与虚拟环境和/或工具50的虚拟表示相关联(例如对齐)。因此,当用户操纵物理工具50时,工具50的虚拟表示在虚拟环境中与虚拟物体相互作用。这样,物理工具50能够与虚拟环境相互作用。在虚拟物体和工具50的虚拟表示之间的相互作用可以基于点、射线(线)、多个点和/或多边形模型。在优选实施例中,外科手术系统10使用基于点的触觉相互作用,其中,只有虚拟点或触觉相互作用点(HIP)与虚拟环境中的虚拟物体相互作用。HIP对应于触觉装置30上的物理点,例如工具50的顶端。HIP通过虚拟弹簧/阻尼器模型而与物理触觉装置30上的物理点相连。虚拟物体(HIP与它相互作用)例如可以是触觉物体705(图20中所示),该触觉物体有表面707和触觉力法向矢量Fn。穿透深度di是在HIP和表面707上的最接近点之间的距离。穿透深度di表示HIP穿入触觉物体705中的深度。
在外科手术过程中,计算系统20引导用户通过该过程。例如,计算系统20可以进行编程,以便产生显示,该显示设置成引导用户操纵触觉装置30通过该过程。显示可以包括在显示装置23上表示的屏幕,它包括例如与过程的特定步骤相对应的预定页和/或图像。该显示还促使用户执行一个或多个任务。例如,显示可以教导用户选择在组织体的表示上的组织体界标(下面结合图9的步骤S3和S4介绍)。在一个实施例中,如图8中所示,屏幕可以包括:导航方格600,用于显示与过程的当前步骤相关的图像;被追踪物体方格600,用于显示被追踪物体的相互关系;信息方格604,用于显示与过程的当前步骤相关的信息,例如测量数据、误差数据、状态信息、选择按钮等;以及方格606,用于前进至过程的随后步骤和/或返回前一步骤。
与外科手术过程相关的显示或屏幕可以设置成向用户发送关于该过程的视觉信息。例如,如图8中所示,导航方格600可以产生和显示组织体的表示(例如骨的图像或表示)以及外科手术工具50的表示616。对于骨准备处理,外科手术系统10可以方便执行使得骨准备接收植入件的步骤,即通过产生要从骨上除去的材料部分的表示612,使要除去的材料部分的表示612叠加在骨的表示上,并当用户操纵触觉装置30时由通过工具50实际除去的材料部分的表示614来更新要除去的材料部分的表示612。为了进一步帮助用户,外科手术系统10可在骨和工具50运动时更新骨的表示和工具50的表示616。在一个实施例中,要除去的材料部分的表示612对应于与骨相关(对齐)的虚拟物体部分。因此,虚拟物体表示要从组织体上除去的材料部分。例如,虚拟物体的形状可以与要装配在组织体上的植入件的表面形状相对应(例如在无接合剂植入用途中)。对于有接合剂的植入用途,虚拟物体的形状可以比植入件的形状更大,以便在植入件和骨之间有用于接合剂覆层的空间。上述骨准备步骤例如可以在第一骨(例如胫骨T)上进行,然后对于第二骨(例如股骨F)进行重复。
除了与用户视觉通信,计算系统20还可以编程以便发出听觉信号(例如通过声学装置)。例如,在一个实施例中,计算系统20可以发出声音(例如蜂鸣声),从而指示工具50的切割深度太浅、近似正确或者太深。在另一实施例中,外科手术系统10可以在与病人对齐时提供在工具50的顶端和触觉物体的表面之间的距离的声音指示,例如在美国专利申请No.10/621119(公开号No.US2004/0106916)中所述,该文献整个被本文参引。计算系统20还可以进行编程,以便控制触觉装置30,从而向用户提供触觉反馈,例如振动,从而指示工具50已经达到或超过合适切割深度。计算系统20的软件还可以包括自动促使用户执行特定任务的程序或处理,例如分段诊断图像数据组的图像、选择在病人组织体上的点以便确定机械轴线、使骨的表面上的点与对齐探针接触(或“抹过”)、输入数据(例如植入件尺寸、磨石尺寸等)等。
图9表示了外科手术系统10用于外科手术计划和单髁膝盖置换导航的方法实施例。图9的方法将只是作为示例。在其它实施例中,方法的步骤顺序可以以适合特定外科手术用途的任意方式重新布置。另外,其它实施例可以包括图9中所示的步骤的全部、一些或仅仅一部分,并可以使图9的任意步骤与现有和/或以后发展的外科手术方法组合。在图9的方法中详细说明的单髁膝盖置换过程用于膝盖的内侧,不过,相同方法也可以用于膝盖的外侧。而且,所示的单髁过程只是示例。外科手术系统10还可以用于执行全膝盖置换过程或涉及植入件安装的其它关节置换过程。植入件可以包括任意植入件或假体装置,例如:全膝盖植入件、单髁膝盖植入件、模块式膝盖植入件、用于其它关节(包括髋、肩、肘、腕、踝和脊)的植入件、和/或其它矫形和/或肌骨骼植入件(包括普通材料的植入件和更特殊的植入件,例如生物矫形植入件、药物输送植入件和细胞输送植入件)。在一个实施例中,植入件是模块式膝盖植入件,如美国专利申请No.11/312741(该文献的申请日为2005年12月30日,公开日为2006年8月24日)或美国专利申请No.11/684514(该文献的申请日为2007年3月9日)中所述,各文献整个被本文参引。
在图9的实施例中,步骤S1至S4在手术前进行,步骤S5至S14在手术中进行。在步骤S1中,病人信息或数据可以输入外科手术系统10中。在步骤S2中,将手术前的诊断图像(例如CT数据文件)装载至外科手术系统10中,并进行分段。在步骤S3中,选择股骨界标。在步骤S4中,选择胫骨界标。在步骤S5中,对触觉装置30进行复位处理,以便初始化触觉装置30的臂33中的位置传感器。在步骤S6中,验证对齐探针的校准。在步骤S7中,组织体追踪器43a和43b安装在病人身上。在步骤S8中,对齐病人组织体。在步骤S9中,校准触觉装置30。在步骤S10中,对胫骨植入件(例如如图7B中所示的胫骨部件74)的初始布置进行计划。初始布置的深度可以由在胫骨坪软骨表面上选定的点来引导,并利用在步骤S8中计算的对齐而将该深度传送至显示装置23的计划屏幕上。在步骤S11中,胫骨T进行准备或刮刻。在步骤S12中,将胫骨试验植入件装配在胫骨T的准备表面上。在步骤S13中,对股骨植入件(例如如图7A中所示的股骨部件72)的初始布置进行计划,例如利用与胫骨试验植入件在腿的各个弯曲的位置相关的点。在步骤S14中,股骨F进行准备或刮刻。在步骤S15中,将股骨试验植入件装配在股骨F的准备表面上。在安装股骨部件72和胫骨部件74之前执行试验缩减处理,其中,用户评估股骨和胫骨试验植入件的配合,并进行任意合适调整(例如重复植入计划和/或骨刮刻)。
对于图13的步骤,更详细的说,在步骤S3和S4中,用户指定在第一骨的表示和第二骨的表示上的界标。例如,在步骤S3中,用户可以在股骨F的图像上指定股骨界标。外科手术系统10利用股骨界标来使病人的身体组织体与组织体的表示(例如诊断图像、由分段产生的模型、组织体模型等)相关联(或对齐)。在一个实施例中,用户可以利用鼠标或接触屏而在显示图像上选择股骨界标。在另一实施例中,计算机可以编程,以便确定股骨界标在图像中的位置,例如利用设计成在诊断图像中定位区别特征的算法。
类似的,在图4中,用户可以在胫骨T的图像上指定胫骨界标。外科手术系统10利用胫骨界标来使病人的身体组织体与组织体的表示(例如诊断图像、由分段产生的模型、组织体模型等)相关联(或对齐)。如图20至23所示,外科手术系统10分别产生屏幕83a、83b、83c和83d,以引导用户指定胫骨界标。例如,外科手术系统10可以引导用户来指定内踝、外踝、旋转界标和膝盖中心。在一个实施例中,用户可以利用鼠标或接触屏而在显示图像上选择胫骨界标。在另一实施例中,计算机可以编程,以便确定胫骨界标,例如利用设计成在诊断图像中定位区别特征的算法。
在步骤S5中,复位处理使触觉装置30的位置传感器(例如编码器)进行初始化,以便确定臂33的初始姿势。复位可以这样进行,例如通过操纵臂33以便使各关节编码器旋转,直到读出在编码器上的索引标记。索引标记是在编码器上的绝对基准,它与关节的已知绝对位置相关联。因此,一旦读出索引标记,触觉装置30的控制系统就知道关节处于绝对位置。当臂33继续运动时,关节的随后位置可以根据绝对位置和编码器的随后位移而进行计算。外科手术系统10可以通过提供关于用户应当将臂33布置的位置的指令来引导用户通过复位处理。这些指令可以包括例如显示在显示装置23上的图像,该图像显示臂33应当运动至的位置。
在步骤S6中,仪器(例如对齐探针,如仪器150)进行检查,以便验证仪器已校准。例如,步骤S6可以用于验证对齐探针已经有合适的物理结构。如上面结合仪器追踪器49所述,包括仪器追踪器49的探针的校准可以这样进行,即通过使探针的顶端插入末端执行器追踪器47的凹窝47a中,使该顶端保持就位,并利用检测装置41来检测仪器追踪器49和末端执行器追踪器47。检测装置41获得姿势数据,且外科手术系统10使得追踪器49和47之间的实际几何关系与在追踪器49和47之间的预期几何关系进行比较。在实际和预期几何关系之间的偏差指示探针的一个或多个物理参数没有校准。如图10中所示,在验证处理过程中,外科手术系统10可以显示屏幕84,该屏幕84显示探针、仪器追踪器49和末端执行器追踪器47在显示装置23上的图像表示。
在步骤S7中,外科手术系统10促使用户将组织体追踪器43a和43b安装在病人身上。如图11中所示,外科手术系统10还可以产生屏幕85,以便使用户能够优化被追踪物体相对于检测装置41的定位。例如,屏幕85可以包括检测装置41的表示85a和检测装置41的视域的表示85b。屏幕还可以显示组织体追踪器43a的表示F1、组织体追踪器43b的表示T1、触觉装置追踪器45的表示H和/或任意其它可追踪元件相对于检测装置41的视域85a的表示。在一个实施例中,各表示F1、T1和H以不同颜色显示,以便使用户在各被追踪物体两两之间进行区分。在另一实施例中,当被追踪物体接近检测装置41的视域边界时,表示F1、T1和H1可以变化成不同颜色。这样,用户可以确定被追踪物体是否充分定位在检测装置41的视域中。
在一个实施例中,一旦安装了组织体追踪器43a和43b,就将获得膝盖关节的运动范围(ROM)(例如通过使膝盖关节在整个ROM中运动,同时由追踪系统40来追踪组织体追踪器43a和43b)。捕获的ROM数据可以用于估计股骨和胫骨植入件的相关布置。这样,用于两个植入件的复杂布置计划可以在切割任何骨之前进行。ROM数据还可以用于在显示装置23上显示股骨和胫骨植入件在延伸、弯曲和在延伸和弯曲之间的各种角度时的相关位置(例如在植入计划步骤S10和S13的过程中)。
在组织体追踪器43a和43b固定在病人身上之后,处理前进至步骤S8,在步骤S8中,病人的身体组织体与组织体的表示对齐。换句话说,身体组织体与图像空间对齐。例如,病人的股骨F和胫骨T可以根据分别在步骤S3和S4中指定的股骨和胫骨界标利用成对点/表面匹配方法而以标准形式来对齐。外科手术系统10产生屏幕,以便引导用户通过对齐处理。例如,屏幕86a(图12)教导用户使股骨F旋转,以便找到腿L的髋部中心。在一个实施例中,在股骨F的旋转过程中,外科手术系统10通过根据组织体追踪器43a的运动确定股骨F的枢转点中心而确定髋部中心。屏幕86b、86c、86d、86e和86f(分别在图27、28、29、30和31中表示)教导用户将对齐探针指向各组织体界标(例如内踝、外踝、内上髁、外上髁、前十字韧带(ACL)附件的后边界等),并选择界标。例如,用户可以将被追踪的对齐探针的顶端布置在相关界标上,并通过脚踏板或其它输入装置25来选择界标。当用户选择界标时,检测装置41获得与对齐探针的姿势相关的数据,该数据再用于计算界标的位置。根据界标姿势数据和在诊断图像中的界标指定(在步骤S3和S4中),外科手术系统10通过确定在病人的物理界标和诊断图像中的界标之间的对应而使得身体组织体与诊断图像对齐。基于界标的对齐的精确性可以通过获得股骨F和胫骨T的表面数据而提高。例如,外科手术系统10可以产生屏幕86g(图18),该屏幕86g教导用户使得股骨F的远端表面上的点与对齐探针接触(或“抹过”)。当用户抹过表面(例如通过使对齐探针的顶端穿过切口128插入)时,外科手术系统10周期性地获得探针顶端的位置,并使获得的顶端位置在屏幕86g上显示为点900。对于由软骨覆盖的骨表面,尖锐的探针可以用于穿刺该软骨,并收集在骨表面上的点(与在软骨表面上的点相对)。类似的,外科手术系统10产生屏幕86h(图19),并教导用户用对齐探针抹过胫骨T的近端表面。当用户抹过表面(例如通过使对齐探针的顶端穿过切口128插入)时,外科手术系统10周期性地获得探针顶端的位置,并使获得的顶端位置作为点900显示在屏幕上。与股骨相同,尖锐的探针可以用于穿刺任意软骨,从而收集在骨表面上的点(与软骨表面相对)。另外,钩形探针可以用于方便收集在胫骨坪后边缘处的点。步骤S8的对齐处理的结果是使得身体组织体的坐标系与组织体的表示的坐标系相关联的对齐变换。
优选是,步骤S8包括识别在组织体上的至少一个界面,并确定界面的检测点在参考坐标框架中的位置,例如通过当对齐探针与界面接触时数字化该检测点。界面例如可以是在病人的骨上的抹过部分、在骨中形成的凹窝、或者布置在骨上的机械界面。在外科手术过程中,检测点使得用户能够验证外科手术系统10已经正确设置。例如,用户可以使工具50的顶端与界面接触,以便确认追踪系统40合适设置(例如追踪元件没有被阻塞,仍然相对于组织体和/或触觉装置30等合适对齐),确认工具50正确安装(例如合适就位,轴没有弯曲等),和/或确认任意其它物体合适安装、装配、校准等。这样,检测点使得外科手术系统10能够确认在使工具50的顶端与病人组织体相关联时涉及的所有元件都保持校准,且追踪元件合适更新。
在一个实施例中,检测点建立如下。在步骤S8中,在定位髋部中心(图12的屏幕86a)之后和在收集任何界标(图13的屏幕86b)之前,用户指定在组织体上的两个界面,这两个界面能够确定两个参考点(或检测点)-在股骨F上的第一界面,用于确定与股骨F相关的第一检测点;以及在胫骨T上的第二界面,用于确定与胫骨T相关的第二检测点。各界面应当布置成这样,它可由对齐探针接近,但是并不位于骨的、将在外科手术过程中除去的部分上。界面例如可以通过以亚甲基蓝(或其它临床标记产品)标记骨、通过(例如使用钻头)在骨上产生小凹窝(例如大约1mm直径)、和/或通过将暂时基准标记(或机械界面)植入在骨上而形成。当界面是骨上的标记或凹窝时,界面自身是包括检测点的组织体参考点。相反,当界面是机械界面时,检测点是根据对齐探针与机械界面的接合而确定的基准,如下面结合机械界面510所述。在一个实施例中,外科手术系统10显示了屏幕186a(图21中所示),该屏幕186a教导用户识别(例如触摸或接触)股骨F上的第一界面。当用户使第一界面与对齐探针的顶端接触时,外科手术系统10数字化第一检测点,并在组织体追踪器43a的坐标空间中建立点。外科手术系统10还可以教导用户验证(或重新接触)第一界面,以便保证精确捕获第一检测点。然后,外科手术系统10显示屏幕186b(图22中所示),从而教导用户识别(例如触摸或接触)在胫骨T上的第二界面。当用户利用对齐探针的顶端接触第二界面时,外科手术系统10数字化第二检测点,并在组织体追踪器43b的坐标空间中建立点。外科手术系统10还可以教导用户验证(或重新接触)第二界面,以便保证精确捕获第二检测点。在建立第一和第二检测点之后,用户通过选择界标和抹过股骨F和胫骨T的表面而进行对齐(如上面结合步骤S8所述)。需要时,第一和第二检测点可以变换成图像空间(例如利用在步骤S8中获得的对齐变换),并在显示装置23上显示,以便帮助评估该对齐的成功性。
根据另一实施例,界面是机械界面,它有设置成安装在组织体上的部分和设置成与仪器接合的部分。例如,机械界面可以设置成与磨石、铣刀、探针等接合。机械界面的一个优点是该机械界面相对于骨和骨坐标系稳定。因此,通过使仪器(例如探针/磨石)能够在具有高度的可重复性的情况下相对于检测点定位,机械界面可以改进检测点验证过程。而且,优选是机械界面可以提供精确验证,因为机械界面并不受到体液或组织的影响而变模糊,也不会由于重复探测而变形。
根据一个实施例,外科手术系统10可以使用机械界面来确定仪器的位置。这样的步骤可以验证仪器相对于病人的组织体是否处于正确位置,并能够验证仪器是否为正确尺寸。这样的验证步骤可以快速地向用户提供有用信息,用于在对病人的组织体进行任何不可逆的切割之前确定系统是否如预期进行和/或是否合适使用。机械界面的检测点的位置可以数字化,例如通过对齐探针,如上面的数字化步骤中所述。而且,机械界面的检测点的位置可以在外科手术处理过程中重复地验证。在另一实例中,不同尺寸的仪器可以与机械界面接触,以便确定在仪器的顶端(例如当仪器是尖锐探针、钝头探针或铣刀时)或仪器的顶端中心(例如当仪器是磨石时)和检测点之间的距离是否小于预定公差。机械界面的检测点可以为任意合适的基准,例如机械界面的一部分(例如表面)、相对于机械界面的一部分确定的基准、或者相对于与机械界面接合的仪器确定的基准。例如,基准可以是相对于机械界面的表面确定的点、线或平面。不过优选是,当探针在机械界面中降到最低点(即尽可能远地插入)时,基准由探针顶端的位置来确定,例如图24中所示的基准Db(用于钝头探针600)或在图28中所示的基准点Ds(用于尖锐探针640)。在一个实施例中,机械界面与仪器的接触可以验证外科手术工具的位置是否与检测点(或基准)的位置如预期对应。如果这样,涉及使病人的组织体与仪器(例如磨石)相关联的所有步骤都正确完成,且所有追踪装置都精确地更新。
根据一个实施例,外科手术系统10可以包括验证检测点系统,该验证检测点系统可以设置成例如对于从机械界面收集的信息进行各种测试。例如,验证检测点系统可以对三种条件进行测试:1)骨追踪器(例如组织体追踪器43a、43b)是否没有运动;2)仪器例如磨石(即外科手术工具50)在末端执行器上的位置是否正确;3)仪器例如磨石是否为正确尺寸。根据还一实施例,验证检测点系统使实际偏移(在仪器的顶端或仪器的顶端中心和机械界面的检测点之间的距离)与理想偏移(当全部三个条件都满足时在仪器的顶端或仪器的顶端中心的预期或理想位置和机械界面的检测点之间的预定距离)进行比较。预定距离从机械界面和工具顶端的已知几何形状来计算。当全部三个条件都满足时,在实际偏移和理想偏移之间的差异将低于预定界限值。例如,1.0mm的预定界限值可以用于验证是否满足全部三个条件。
根据一个实施例,一旦机械界面安装在病人组织体的一部分上,仪器例如钝头探针或磨石可以插入机械界面的界面部分中。例如,机械界面的界面部分可以包括凹窝或者设置成与仪器接合的界面表面。
图23A是根据一个实施例的机械界面500的剖视图。图23B是图23A中所示的区域A的放大图。如图23B的实例中所示,机械界面500可以包括界面510或凹窝,该界面510或凹窝设置成与仪器接合。特别是,界面510可以包括设置成与仪器接合的界面表面520。界面表面520可以有利地将仪器定位在机械界面500的界面510中,从而用于精确确定机械界面500的位置、仪器的尺寸以及这里所述的其它特征。例如,界面表面520可以是锥形或截头锥形表面。这样的界面表面形状可以用作机械放大器,原因在于不同尺寸的仪器的位置可以变化,该变化程度足够被检测到。因为不同尺寸的仪器的位置有这样程度的变化,因此验证检测点系统能够确定哪一种特殊仪器(例如磨石或探针)置于机械界面500的界面510中。
机械界面510的界面510或凹窝可以设计成这样,仪器(例如探针)的顶端将在界面或凹窝内的预定位置处“降至最低点”。为了使仪器降至最低点,外科医生将仪器的顶端插入机械界面510中,直到仪器到达硬停止处,且不能插入更远。然后,预定3D位置成为建立的检测点,它是骨追踪器(例如组织体追踪器43a、43b)的物理空间中的参考点。因为机械界面相对于骨追踪器的位置为已知,因此通过骨追踪器、触觉引导系统、仪器的几何形状和仪器的安装件,还知道仪器顶端的位置,从而知道检测点(或基准)的位置。一旦建立检测点,其它仪器(例如外科手术磨石)可以插入机械界面510中,且仪器的顶端或顶端中心的位置将确定并与检测点的位置比较。具体地说,在机械界面的检测点的位置和仪器的位置(例如仪器顶端的位置或仪器顶端中心的位置)之间的距离可以计算。当该计算距离小于预定值时,验证检测点系统将因此确定外科手术过程继续进行。当不是这样时,外科手术系统10可以设置成向操作人员提供警告,例如视觉警告、听觉警告、或者本领域已知的任意其它警告。例如,在检测点的位置和仪器的位置之间的距离计算可以用于验证组织体追踪器的任何运动,用于验证机械界面对齐的精确性,用于校准触觉引导系统,用于验证仪器在末端执行器中的合适安装,和/或用于验证是否安装了正确的仪器。在另一实例中,机械界面可以用于验证标记组的运动。当该组运动时,新数字化的机械界面将出现在与该机械界面初始数字化时的位置不同的位置处。当在这些位置之间的距离大于预定界限值(例如大约2.00mm)时,该组将认为已经运动,且病人组织体(例如骨)的该部分的对齐必须重新进行。
根据一个实施例,机械界面500的界面510可以设置成具有适合与各种仪器接合的尺寸。例如,如图23A的实例中所示,机械界面500的界面510可以设置成尺寸X1为大约2.0至3.0mm,或者更优选是大约2.5至3.5mm,或者更优选是大约3.0mm;尺寸X2为大约0.5至2.5mm,或者更优选是大约1.0至2.0mm,或者更优选是大约1.5mm;尺寸X3为大约1.0至3.0mm,或者更优选是大约1.5mm至2.5mm,或者更优选是大约2mm;角度D1为大约110°至130°,或者更优选是115°至125°,或者更优选是大约118°;角度D2为大约50°至70°,或者更优选是55°至65°,或者更优选是大约60°。
图24表示了根据一个实施例已经插入机械界面500的界面510中的钝头探针600的剖视图。如图24的实例中所示,钝头探针600可以设置成插入机械界面500的界面510中,这样,钝头探针600降至最低点。当钝头探针600降至最低点时该钝头探针600的顶端的位置可以用于确定检测点,例如基准Db。基准Db例如可以定位成离机械界面500的界面510的表面为距离X4。在一个实施例中,对于钝头探针600,该距离X4可以为大约1.00至3.00mm,或者优选是大约1.50至2.50mm,或者更优选是大约1.88mm。钝头探针600的顶端的位置(即基准Db)将成为建立的检测点,它能够用于确定其它仪器的距离和用于在不同仪器之间进行区分,如下面所述。在由钝头探针600的顶端测量的检测点(基准Db)和要检查的工具的顶端或顶端中心之间的实际距离将进行确定(如上所述),并与预定值或理想偏移比较。该预定值可能取决于钝头探针600的尺寸和界面510的尺寸,如上所述。也可选择,代替钝头探针600,尖锐探针640可以用于建立检测点。利用尖锐探针640建立的检测点可以对应于基准Ds,该基准Ds是当尖锐探针640在机械界面510中降至最低点时该尖锐探针640的顶端的位置,如图28中所示。
与钝头探针600以及通过使钝头探针600在机械界面510中降至最低点而建立的检测点(由基准Db表示)相比,仪器例如磨石可以设置成具有不同尺寸,这样,不同尺寸仪器具有在检测点和仪器上的位置之间的不同距离。例如,机械界面510可以设置成这样,1mm的磨石可以比钝头探针600更深地插入界面510中,例如深大约0.10至0.30mm,或者更优选是深大约0.26mm。类似地,机械界面510可以设置成这样,2mm的磨石不能像钝头探针600一样深地插入机械界面510中。例如,2mm的磨石可以是浅大约1.28mm。因为1mm磨石和2mm磨石在机械界面510中的不同位置处降至最低点,因此它们离建立的检测点有不同距离。在另一实例中,图25表示了根据一个实施例将6mm磨石610插入机械界面的界面510中的剖视图。确定从6mm磨石610的位置(例如6mm磨石610的顶端中心)至与钝头探针600的顶端相对应的对齐检测点(由基准Db表示)的距离X5。该距离X5再与预定值或理想偏移比较。距离X5和预定值的比较可以用于提供关于机械界面的位置、仪器的类型或尺寸和组织体追踪器的运动的信息以及上述其它信息。根据另一实施例,距离X5可以为大约3.50至5.50mm,或者更优选是大约4.00至5.00mm,或者更优选是大约4.49mm。
图26表示了根据一个实施例插入机械界面的界面510中的2mm磨石620的剖视图。确定从2mm磨石620的位置(例如2mm磨石620的顶端中心)至与钝头探针600的顶端相对应的对齐检测点(由基准Db表示)的距离X6。该距离X6再与预定值或理想偏移比较。距离X6和预定值的比较可以用于提供关于机械界面的位置、仪器的类型或尺寸和组织体追踪器的运动的信息以及上述其它信息。根据另一实施例,距离X6可以为大约0.50至2.00mm,或者更优选是大约0.75至1.75mm,或者更优选是大约1.28mm。
图27表示了根据一个实施例插入机械界面的界面510中的铣刀630的剖视图。例如,铣刀630可以是1.2mm铣刀。确定从铣刀630的位置(例如铣刀630的顶端)至与钝头探针600的顶端相对应的对齐检测点(由基准Db表示)的距离X7。该距离X7再与预定值或理想偏移比较。距离X7和预定值的比较可以用于提供关于机械界面的位置、仪器的类型或尺寸和组织体追踪器的运动的信息以及上述其它信息。根据另一实施例,距离X7可以为大约0.05至0.35mm,或者更优选是大约0.15至0.25mm,或者更优选是大约0.21mm。
图28表示了具有尖锐尖端的探针640的可选实施例的剖视图,该尖锐尖端已经插入机械界面的界面510中。探针640的尖锐尖端使得探针能够更深地插入机械界面的界面510中。因此,更尖锐的探针的几何形状提供了用于探针的对齐检测点,该更尖锐的探针与具有钝头顶端几何形状的探针相比更靠近界面510的底部。当人们希望对齐的检测点(它对应于探针的顶端)更靠近机械界面的界面510的底部时可以使用这样的尖锐顶端几何形状。在一个实施例中,当尖锐探针640用于建立检测点(由基准Ds表示),在钝头探针600的顶端和基准Ds之间的距离为大约0.5mm;在1mm磨石的顶端中心和基准Ds之间的距离为大约0.24mm;在2mm磨石的顶端中心和基准Ds之间的距离为大约1.78mm;在6mm磨石的顶端中心和基准Ds之间的距离为大约4.99mm。
由于它们的几何形状,一些仪器更容易与其它仪器区分开。例如,6mm磨石具有最大偏移,因此6mm磨石最容易与其它磨石区分,它可以有更类似的偏移值。根据另一实施例,机械界面的界面可以设计成增大在理想偏移之间的差别,并增加检测点验证过程的能力,以便在各种磨石之间区分开。
根据一个实施例,机械界面可以包括用于提醒外科医生在封闭切口之前取出机械界面的特征。例如,缝合线可以安装在机械界面上,且缝合线具有延伸至切口外部的剩余长度,以便用于提醒外科医生在封闭切口之前取出检测点。在另一实例中,外科手术带可以应用在机械界面上,且有用于取出检测点的书面提醒,或者可以提供有警告屏幕,它提醒外科医生取出安装在病人身上的任何检测点。
图29表示了根据一个实施例的机械界面530的侧视图,该机械界面530设置成撞入病人的股骨中。该机械界面530可以用于建立在病人股骨上的参考点。股骨机械界面530可以设置成具有较低型面,以便对软组织的冲撞减到最小。例如,机械界面530可以包括头部部分540和用于插入股骨中的杆550。例如,头部部分540可以包括在圆形凸缘上方的正方形头部,如图29的实例中所示,且杆550可以包括螺纹,以便于该机械界面530插入骨内。图30表示了股骨机械界面530从一个角度看时的侧视图,以便更清楚地表示在机械界面530的头部部分540中的界面510。如图30的实例中所示,股骨机械界面530的界面510可以设置成位于头部部分540的侧部(与头部部分540的顶表面相对),以便能够在外科手术过程中更容易接近界面510。界面510可以根据这里所述的任意实施例来构成。
图31表示了机械界面560的侧视图,该机械界面560设置成撞入病人的胫骨内。该机械界面560可以用于建立在病人胫骨上的参考点。机械界面560可以包括头部部分570和用于插入胫骨中的杆550。胫骨机械界面560可以设置成具有低的型面,以便对软组织的冲撞减到最小。例如,头部部分570可以包括在圆形凸缘上方的扁平头部,如图31的实例中所示,且杆550可以包括螺纹,以便于该机械界面560插入骨内。图32表示了胫骨机械界面560的俯视图,以便更清楚地表示在机械界面560的头部部分570中的界面510。界面510可以根据这里所述的任意实施例来构成。
图33表示了根据一个实施例的撞击器/抽取器工具700。如图33的实施例中所示,撞击器/抽取器工具700可以有正方形轴710,该正方形轴710设置成装配在机械界面530、560的正方形头部部分540、570上方,这样,机械界面(或检测点)可以“拧入”或“拧出”骨。例如,如图33中所示,轴710的端部可以有凹形部分,该凹形部分包括狭槽720,该狭槽720为大约6mm长,并延伸至轴710的端部。凹形部分还可以包括底切特征。在操作中,外科医生可以使撞击器/抽取器工具700从侧部滑动至检测点530、560上方,这样,检测点530、560的圆形凸缘与底切特征接合。通过使机械界面530、560保持在撞击器/抽取器工具700中,外科医生可以将检测点530、560的顶端定位在骨插入部位上,并通过槌棒撞击在撞击器/抽取器工具700相对端上的撞击垫,以便将机械界面530、560钉入骨中。在插入过程中,狭槽720还可以用作“窗口”,这样,外科医生可以看见机械界面530的方位。为了除去机械界面530、560,外科医生可以使撞击器/抽取器工具700与机械界面接合,如上所述,并从骨上拧下机械界面530、560。
根据一个实施例,机械界面可以由通常用于矫形装置的材料来制造,例如316L SST、17-4PH SST、Ti6AL4V(钛合金)、钛CP(商业纯度)。也可选择,机械界面可以由可生物吸收的材料来制造,这样,检测点可以留在病人体内,最终由病人的身体吸收。例如,机械界面的头部可以在使用后折断,且杆将保留在原位,以便由骨重新吸收。
根据上述实施例,当机械界面安装在骨上时,机械界面的方位可能并不知道。确定机械界面的方位的一种方法是确定界面的长轴的方位或机械界面的凹窝的方位。不过,当机械界面没有被追踪时,凹窝的轴线也不知道。相反,凹窝47A(上面在介绍末端执行器追踪器47时所述)的轴线的位置相对于末端执行器追踪器47上的反射球S4的几何形状为已知。因为球S4由照相机追踪,且已知在球S4和轴线之间的相对几何形状,因此知道凹窝47A的轴线的方位。
根据一个实施例,机械界面可以设置成这样,使得机械界面的方位能够通过例如确定机械界面的凹窝轴线来确定。当不知道机械界面的方位时,验证处理只是检测仪器(例如与机械界面接合的探针的顶端或磨石的顶端中心)是否近似在离检测点的“理想”距离处,该检测点已经预先通过钝头或尖锐探针而建立。因为机械界面的方位并不知道,因此不知道仪器的顶端或顶端中心的预期位置,从而只知道仪器的顶端或顶端中心离建立的检测点的理想距离(基于机械凹窝的几何形状)。为了计算仪器的顶端或顶端中心的预期位置(与前面它离建立的检测点的距离相反),必须知道或估计机械界面的界面的方位。例如,机械界面的界面的方位可以从当建立用于探针顶端的检测点时钝头或尖锐探针的方位来确定。也可选择,机械界面的界面可以重新设计,这样,它具有用于专门设计的探针的匹配表面,这样,探针置于界面中,从而能够精确确定界面的方位。根据另一实例,机械界面可以被追踪,以便提供它的方位。不过,机械界面将很难追踪,因为它必须足够小,以便不会在外科手术过程中与任何软组织或使用的仪器干涉。因此,添加反射球以便追踪机械界面是不现实的,因为所述球将使得机械界面庞大。不过,机械界面可以通过非光学追踪系统来追踪,例如电磁或射频系统,或者通过传感器,例如RFID传感器。
一旦知道或估计到界面或凹窝的方位,磨石的顶端中心(即磨石中心)的预期位置可以通过简单的公式来计算:
Cb=Cp+(O*Ad)
其中,Cb是磨石中心的位置,Cp是由探针拾取的检测点,O是相对磨石中心的偏移(由机械界面的界面的几何形状给出),且Ad是确定凹窝的中心轴线的矢量,它从基部指向凹窝的顶部。那么,磨石中心的“预期位置”可以直接与磨石中心的实际位置来比较。
根据一个实施例,机械界面可以包括设置成提供关于机械界面的信息的至少一个特征。该特征可以设置成由检测装置来检测,且由该特征提供的信息例如可以包括位置、方位、尺寸、身份(例如部件号)和/或关于机械界面的任意其它有用信息。例如,在操作中,该特征可以用作机械界面的参考点或基准(例如形状、曲线、点、轴线等)。因此,该特征可以用作计算或确定机械界面的位置和/或方位的基础。这样,该特征可以用于提供机械界面的附加自由度。
根据另一实施例,设置成提供关于机械界面的信息的特征可以以任意已知方式与机械界面成一体。例如,该特征可以嵌入机械界面中、安装在机械界面上(例如利用粘接剂)、形成于机械界面的表面上(例如通过蚀刻、切割、印记等)、和/或与机械界面形成一体。该特征可以采取任何形式,它们中的一些将在后面介绍。
根据另一实施例,设置成提供关于机械界面的信息的特征可以设置成可由检测装置(或检测系统)利用任意合适的检测方法来检测(或读出)。例如,该特征可以利用光、电磁、无线电和/或声音方法来检测,如大家公知。作为另外的实例,该特征可以使用激光扫描仪或红外线照相机来检测。作为另外的实例,该特征可以利用可追踪探针或仪器与红外线照相机或具有关节编码器的机械臂组合来检测。检测装置可以在机械界面植入病人体内后读出该特征。
下面介绍一些特定特征和检测装置。本发明并不局限于所述特定特征,它也不局限于所述特征和检测装置的组合。该特征例如可以包括光学特征,例如光学蚀刻(例如激光蚀刻)、光学标记(例如条形码、棋盘图形、或者点的栅格或组)、和/或能够形成或布置在机械界面的表面上的标记物(例如无源红外线标记物)。这样的特征例如可以由例如检测装置(该检测装置包括激光扫描仪或红外线照相机)来检测。
作为另一实例,设置成提供关于机械界面的信息的特征可以包括布置在机械界面的表面上的图形。该图形例如可以包括纹理、槽、蚀刻等。这样的特征例如可以由检测装置来检测,该检测装置包括可以滑过该图形的可追踪探针以及能够检测该探针的红外线照相机。
作为另一实例,设置成提供关于机械界面的信息的特征可以包括界标或表面特征。界标或表面特征可以是机械界面的整体部分或固有部分,它被充分定义和可识别,以便用作可认识的标记物(例如关节表面、组织体结构的轮廓、形状、颜色等)。
能够通过该特征和检测装置而从机械界面传送信息的能力提供了广泛的用途。例如,当该特征向检测装置提供了关于特征的位置和/或方位的信息时,计算装置能够基于该信息和在该特征和机械界面之间的已知几何关系来计算或确定机械界面的位置和/或方位。能够确定机械界面的位置使得能够确定机械界面相对于另一物体、相对于多个其它物体和/或相对于病人骨的定位。例如,计算装置(与检测装置组合)能够计算或确定机械界面相对于一个或多个追踪组(例如组织体追踪器)的位置和方位。然后,计算装置能够使机械界面和追踪器的相对位置与在病人对齐过程中建立的所希望关系进行比较。当实际关系偏离所希望的关系时,可以采取校正动作,例如重复病人对齐。
作为另一实例,特征可以是发射提供信息的一个或多个信号的结构。该特征例如可以发出定向信号,该定向信号具有相对于部件的已知方位。这样的定向信号能够确定机械界面的位置和/或方位。可以用于提供该定向信号的结构例如包括位于机械界面的边缘上的发射器。可以用于检测定向信号的检测装置例如包括能够做三角测量和识别位置的接收器。作为另一实例,信号发射结构可以包括至少一个传感器。传感器例如可以是灵巧标签,例如无源射频识别(RFID)标签。RFID标签安装在机械界面的表面上和/或嵌入机械界面中,并可由发射无线电波的RFID阅读器来检测。当用户用RFID阅读器来扫描机械界面时,无线电波向RFID标签供能,该RFID标签再与RFID阅读器通信。使用信号发射结构的一个优点是,即使当机械界面不可见或不暴露时(例如当机械界面由组织例如肌肉和皮肤覆盖或者由其它组织体阻塞时),检测装置也可以从该结构获得信息。
在操作时,用户在任何希望确认外科手术系统10的结构的时候(例如当工具50从病人体内抽出和然后重新插入时),都可以接触股骨和胫骨检测点验证界面。基于在第一和第二检测点的建立过程中获得的几何数据,外科手术系统10知道第一检测点相对于组织体追踪器43a的位置以及第二检测点相对于组织体追踪器43b的位置。基于在触觉装置30的校准过程中获得的几何数据(如下面结合步骤S9所述),外科手术系统10从触觉装置追踪器45的姿势、触觉装置30的臂33的姿势、工具50的几何形状以及在工具50和末端执行器35之间的几何关系知道工具50的顶端中心的位置。根据这些数据,当用户使工具50的顶端与界面接触时,外科手术系统10能够计算在工具50的顶端中心的位置和相关检测点的位置之间的距离。从该距离中减去工具50的顶端半径以获得校准值。优选是,校准值近似为0.00mm,这表示工具50的顶端的位置和检测点的位置相应。不过允许有一些误差。例如,在一个实施例中,当校准值等于或小于预定公差值(例如大约1mm)时,系统结构将认为可以接受,且用户可以继续进行外科手术过程。相反,当校准值超过预定公差值时,外科手术系统10将发出警告(例如视觉、听觉和/或触觉警告),指示系统结构的问题。例如,当一个追踪元件由用户在更换工具的过程中撞上且这时错配时、当工具轴弯曲时等可能存在问题。当发出警告时,将重复对齐(步骤S8)和/或校准(步骤S9)。
根据另一实施例,检测点校准系统/方法可以设置成确定仪器(例如探针或磨石)是否以稳定方式位于机械界面内。优选是,稳定位置的确认将确认位置读出以精确方式来进行。为了使得验证处理尽可能精确,例如以便考虑照相机运动和提供一种方法来检测应当进行验证的时间,检测点验证系统/方法可以设置成获取多个磨石顶端位置、计算位置的平均值和计算该位置的标准偏差。通过仪器例如探针来获得机械界面位置将通过平均多个(例如10个)仪器相对骨追踪器的位置读数来进行。与单个测量相比,平均多个位置将更好地估计机械界面的界面位置。例如,系统/方法可以设置成保持移动平均仪器位置,以便计算仪器相对于骨追踪器的估计位置。然后计算在仪器的位置(例如仪器的顶端或顶端中心的位置)和当前表中的各仪器位置之间的距离,且该表距离的标准偏差与界限值比较。当标准偏差低于预定界限值时,探针假定为静态(即静止和不运动)。例如,可以使用大约0.20的界限值,或者更优选是使用0.15。标准偏差可以用于指示仪器已经保持稳定一段时间,因此可以进行机械界面比较。另一测量(例如相对机械界面位置的最大距离)也可以用于确定仪器稳定的时间。
除了检查整个系统结构,检测点还可以用于确定组织体追踪器43a和43b是否已经分别相对于股骨F和胫骨T运动。例如,为了确定组织体追踪器43a是否已经相对于股骨F运动,用户返回检测点识别屏幕(例如图56的屏幕186a),并使第一检测点重新数字化。当组织体追踪器43a已经运动时,新数字化的检测点将在显示装置23上显示在与初始第一检测点不同的位置处。当在初始第一检测点的位置和新的检测点的位置之间的差值大于预定公差(例如大约2mm)时,外科手术系统10确定组织体追踪器43a已经运动。在这种情况下,将重复进行对齐(步骤S8)。类似地,为了确定组织体追踪器43b是否已经相对于胫骨T运动,用户返回检测点识别屏幕(例如图57的屏幕186b),并使第二检测点重新数字化。当组织体追踪器43b已经运动时,新数字化的检测点将在显示装置23上显示在与初始第二检测点不同的位置处。当在初始第二检测点的位置和新的检测点的位置之间的差值大于预定公差时,外科手术系统10确定组织体追踪器43b已经运动。在这种情况下,将重复进行对齐(步骤S8)
在一个实施例中,一种使用检测点来验证外科手术系统10的校准的方法包括(a)识别组织体上的界面(例如在骨上的标记、凹窝或者机械界面);(b)确定界面的检测点在参考坐标框架中的位置(例如组织体的参考坐标框架或者组织体的表示);(c)使界面与触觉装置30的外科手术工具的一部分接触(例如与工具50的顶端接触);(d)确定外科手术工具的该部分在参考坐标框架中的位置;以及(e)确定外科手术工具的该部分的位置是否与检测点的位置预期对应。该方法还包括(f)识别在组织体上的第二界面(例如在第二骨上的第二标记、凹窝或机械界面);(g)确定第二界面的第二检测点在参考坐标框架中的位置;(h)使第二界面与外科手术工具的该部分接触(例如与工具50的顶端接触);以及(i)确定外科手术工具的该部分的位置是否与第二检测点的位置预期对应。为了确定第一和第二检测点的位置,外科手术系统10可以使第一和第二检测点与组织体的表示(例如在显示装置23上的图像)相关联。在一个实施例中,为了确定外科手术工具的该部分的位置是否与第一或第二检测点的位置预期对应,外科手术系统10判断在工具50的顶端或顶端中心和第一或第二检测点之间的距离是否等于或小于预定值(例如1mm)。
检测点验证过程的一个优点是,该过程使用户能够在对病人的组织体进行任何不可逆的切割之前确认外科手术系统10的各部分如预期进行。例如,检测点可以用于验证对齐、触觉装置30的校准以及追踪系统40和追踪元件的合适操作。因此,检测点使得外科手术系统10能够同时验证组织体追踪器43a和43b的运动、对齐的精确性、触觉装置追踪器45的运动、触觉装置30的动态校准、工具50的合适安装以及正确的工具尺寸。
在步骤S9中,触觉装置30进行校准,以便建立在触觉装置追踪器45的坐标系和触觉装置30的坐标系之间的几何关系或变换(即位置和方位)。当触觉装置追踪器45固定在触觉装置30上的永久性位置时,并不需要校准,因为在追踪器45和触觉装置30之间的几何关系固定和已知(例如由在制造或装配过程中的初始校准)。相反,当追踪器45可相对于触觉装置30运动时(例如当安装追踪器45的臂34可调时),需要进行校准,以便确定在追踪器45和触觉装置30之间的几何关系。
外科手术系统10可以通过产生教导用户校准触觉装置30的屏幕来开始校准过程。校准包括将触觉装置追踪器45固定在触觉装置30上的固定位置,并暂时将末端执行器追踪器47安装在末端执行器35上。然后,末端执行器35运动至组织体附近的各个位置(例如膝关节上面和下面的位置、膝关节内侧和外侧的位置),同时追踪系统40获得追踪器47和45在各位置相对于追踪系统40的姿势数据。当触觉装置追踪器45并不相对于触觉装置30运动时,步骤S9的校准处理不需要执行,因为在先的校准和在先获得的校准数据仍然可靠。
在步骤S10中,用户计划骨准备,用于将第一植入件植入至第一骨上。在优选实施例中,第一骨是胫骨T,第一植入件是胫骨部件74,骨准备将通过在胫骨T的近端选择安装胫骨部件74的位置而进行计划。为了方便植入件计划,外科手术系统10可以产生屏幕,该屏幕包括第一和第二骨的各种表示图(即分别胫骨T和股骨F)。
步骤S11至S15包括骨准备处理。在步骤S11中,通过操纵工具50来刮刻第一骨,第一骨(例如胫骨T)准备接收第一植入件(例如胫骨部件74)。在步骤S12中,试验植入件装配在第一骨的准备特征上。在步骤S13中,第二植入件(例如股骨部件)的初始布置进行计划(或者第二植入件可以重复前述计划布置并进行调整)。在步骤S14中,在准备第一骨之后,第二骨(例如股骨F)准备接收第二植入件。在步骤S15中,试验植入件装配在第二骨上的准备特征上。
在整个外科手术过程中,外科手术系统10监测组织体的运动,以便检测组织体的运动,并对在计算机21和/或计算机31上运行的程序进行合适调节。外科手术系统10还可以根据组织体的检测运动来调节与组织体相关的虚拟物体。
在步骤S11中,通过操纵工具50以便刮刻第一骨,第一骨准备接收第一植入件。在一个实施例中,通过在胫骨T的近端上形成中间胫骨凹穴特征,胫骨T进行准备。当安装胫骨部件74时,中间胫骨凹穴特征将与胫骨部件74的表面74a匹配(如图7B中所示)。
阻塞检测算法是在切割操作过程中在与触觉装置30和/或组织体相连的追踪元件(例如触觉装置追踪器45、组织体追踪器43a和43b)变得阻塞时用于减小危险的安全特征。例如在检测装置41不能检测追踪元件时(例如当人或物体置于追踪元件和检测装置41之间时)、当检测装置41的透镜阻塞时(例如由灰尘)、和/或当追踪元件上的标记反射能力被阻塞时(例如由血液、组织、灰尘、骨屑等),阻塞状态可能存在。当检测到阻塞状态时,阻塞检测算法例如通过使警告信息显示在显示装置23上、产生可听到的声音警告、和/或产生触觉反馈(例如振动)来警告用户。阻塞检测算法还可以向外科手术系统10发出控制信号例如指令,以便切断电源或以其它方式停用工具50。这样,当追踪系统40不能追踪工具50和组织体的相对位置时,阻塞检测算法防止工具50损坏组织体。
步骤S12是试验缩减处理,其中,第一植入件(即胫骨部件74)或试验植入件(例如胫骨试验件)装配在第一骨上(即胫骨T上的准备中间胫骨凹穴特征)。用户评估胫骨部件或胫骨试验件的配合,并可以进行任意合适调整(例如重复植入计划和/或骨刮刻),以便实现改进配合。
在步骤S13中,在准备第一骨之后,用户计划骨准备,用于在第二骨上植入第二植入件。在优选实施例中,第二骨是股骨F,第二植入件是股骨部件72,且骨准备通过在股骨F远端选择安装股骨部件72的位置来进行计划。当股骨部件72已经预先计划时(例如在步骤S10中),在先布置可以进行重复,并在需要时进行调节。
在步骤S14中,通过操纵工具50来刮刻第二骨,第二骨准备接收第二植入件。在一个实施例中,股骨F通过在股骨F远端上形成中间股骨表面、杆和龙骨特征来准备股骨F。当安装股骨部件72时,中间股骨表面、杆和龙骨特征将分别与股骨部件72的表面72a、杆72b和龙骨72c匹配(图7A中所示)。股骨特征的准备基本与中间胫骨表面特征的准备类似。
步骤S15是试验缩减处理,其中,第二植入件(即股骨部件72)或试验植入件(例如股骨试验件)装配在股骨F上的准备中间股骨表面、杆和龙骨特征上。用户评估股骨部件72或股骨试验件的配合,并可以进行任意合适调整(例如重复植入计划和/或骨刮刻),以便改进配合。在步骤S15中,也可以对胫骨T进行调节。当用户对于试验植入件的配合满意时,用户可以进行股骨部件72和胫骨部件74的安装,并完成外科手术过程。
因此,本发明的实施例可以设置成提供触觉引导系统和方法,该系统和方法可以在微创外科手术中代替直接观察,在矫形关节置换用途中节省健康的骨,能够有手术时的适应性和计划性,并使得产生的手术结果具有充分的可预测性、可重复性和/或精确性(不管外科手术的技能水平如何)。
用于控制触觉装置的方法和设备在美国专利申请No.____中(该美国专利申请的标题是用于控制触觉装置的方法和设备,申请人为Hyosig Kang、Dennis Moses和Arthur Quaid,申请日为2007年5月18日,代理人卷号No.051892-0248,该文献整个被本文参引)、在美国专利申请No.____中(该美国专利申请的标题是用于控制触觉装置的方法和设备,申请人为Arthur Quaid、Hyosig Kang和DennisMoses,申请日为2007年5月18日,代理人卷号No.051892-0250,该文献整个被本文参引)和在美国专利申请No.____中(该美国专利申请的标题是用于控制触觉装置的方法和设备,申请人为DennisMoses、Arthur Quaid和Hyosig Kang,申请日为2007年5月18日,代理人卷号No.051892-0253,该文献整个被本文参引)公开。
本领域技术人员通过这里所述的本发明说明书和实施方式显然可以知道本发明的其它实施例。应当知道,说明书和实例只是作为示例。
Claims (16)
1.一种用于验证外科手术装置的校准的系统,包括:
外科手术装置的外科手术切割工具的顶端,该顶端设置成与病人的组织体上的界面接触,其中所述界面构造成由外科手术切割工具的所述顶端接触以便允许验证外科手术装置的校准,所述界面包括安装在病人的骨上的机械界面、病人的骨的抹过部分以及在病人的骨中形成的凹窝中的至少一个;以及
计算系统,该计算系统进行编程,以便:
确定界面的检测点在参考坐标框架中的位置;
确定外科手术切割工具的该顶端在与界面接触时在参考坐标框架中的位置;
判断外科手术切割工具的该顶端的位置是否与检测点的位置具有预期的对应关系,以及
当在外科手术切割工具的顶端的确定位置和检测点的确定位置之间的距离等于或小于预定值时,确定用户可以进行外科手术过程。
2.根据权利要求1所述的系统,其中:外科手术切割工具的该顶端设置成与病人的组织体上的第二界面接触,且计算系统进行编程,以便:
确定第二界面的第二检测点在参考坐标框架中的位置;以及
判断外科手术切割工具的该顶端的位置是否与第二检测点的位置具有预期的对应关系。
3.根据权利要求1所述的系统,其中:计算系统进行编程,以便通过至少使检测点与组织体的表示相关联来确定检测点的位置。
4.根据权利要求1所述的系统,其中:计算系统进行编程,以便至少在外科手术切割工具再次插入病人体内之前判断外科手术切割工具的该顶端的位置是否与检测点的位置具有预期的对应关系。
5.根据权利要求1所述的系统,其中:计算系统进行编程,以便至少利用外科手术切割工具的该顶端的位置是否与检测点的位置具有 预期的对应关系的判断来判断以下的至少一个:病人的组织体是否相对于与组织体相连的追踪元件运动;外科手术切割工具的该顶端是否在参考坐标框架中正确定位;外科手术装置是否相对于与该外科手术装置相连的追踪元件运动;外科手术切割工具是否以合适方位安装在外科手术装置上;以及是否合适的外科手术切割工具安装在外科手术装置上。
6.根据权利要求1所述的系统,其中:该机械界面包括设置成安装在病人的骨上的部分和设置成与外科手术切割工具的该顶端接触的部分。
7.根据权利要求6所述的系统,其中:机械界面至少包括可生物吸收的材料。
8.根据权利要求6所述的系统,其中:机械界面包括截头锥形表面和圆锥表面中的至少一个。
9.根据权利要求8所述的系统,其中:计算系统进行编程,以便确定以下至少一个:外科手术切割工具的该顶端穿入机械界面的截头锥形表面和圆锥表面中的至少一个中的深度;以及在外科手术切割工具的该顶端和检测点之间的距离。
10.根据权利要求6所述的系统,其中,机械界面包括设置成提供关于机械界面的信息的特征。
11.根据权利要求10所述的系统,其中:该特征提供机械界面的位置和方位中的至少一个。
12.根据权利要求10所述的系统,其中,该特征是以下的至少一种:嵌入机械界面中;与机械界面成一体;以及形成于机械界面的表面上。
13.根据权利要求10所述的系统,其中:该特征设置成发射信号,该信号提供信息。
14.根据权利要求1所述的系统,其中:计算系统进行编程,以便判断外科手术切割工具的该顶端的位置是否为静态。
15.根据权利要求14所述的系统,其中,计算系统进行编程,以 便通过以下步骤来判断外科手术切割工具的该顶端的位置是否为静态:
多次确定外科手术切割工具的该顶端在参考坐标框架中的位置;
确定外科手术切割工具的该顶端的多个确定位置的标准偏差;以及
判断该标准偏差是否超过界限值。
16.根据权利要求1所述的系统,其中,构造成与所述界面接触的所述外科手术切割工具的所述顶端具体为外科手术切割工具的顶端中心。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80137806P | 2006-05-19 | 2006-05-19 | |
US60/801,378 | 2006-05-19 | ||
PCT/US2007/011941 WO2007136770A2 (en) | 2006-05-19 | 2007-05-18 | System and method for verifying calibration of a surgical device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101448468A CN101448468A (zh) | 2009-06-03 |
CN101448468B true CN101448468B (zh) | 2011-10-12 |
Family
ID=38646620
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780018181.9A Active CN101448467B (zh) | 2006-05-19 | 2007-05-18 | 用于控制触觉设备的方法和装置 |
CN2007800255583A Active CN101484086B (zh) | 2006-05-19 | 2007-05-18 | 用于控制触觉装置的方法和设备 |
CN2007800182633A Active CN101448468B (zh) | 2006-05-19 | 2007-05-18 | 用于验证外科手术装置的校准的系统和方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780018181.9A Active CN101448467B (zh) | 2006-05-19 | 2007-05-18 | 用于控制触觉设备的方法和装置 |
CN2007800255583A Active CN101484086B (zh) | 2006-05-19 | 2007-05-18 | 用于控制触觉装置的方法和设备 |
Country Status (7)
Country | Link |
---|---|
US (16) | US8287522B2 (zh) |
EP (3) | EP2023844B1 (zh) |
JP (3) | JP2009537230A (zh) |
CN (3) | CN101448467B (zh) |
AU (3) | AU2007254158A1 (zh) |
CA (3) | CA2651784C (zh) |
WO (4) | WO2007136769A2 (zh) |
Families Citing this family (1076)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
AU2003218010A1 (en) * | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US8010180B2 (en) * | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US8996169B2 (en) * | 2011-12-29 | 2015-03-31 | Mako Surgical Corp. | Neural monitor-based dynamic haptics |
US11202676B2 (en) | 2002-03-06 | 2021-12-21 | Mako Surgical Corp. | Neural monitor-based dynamic haptics |
US9155544B2 (en) * | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US20040162637A1 (en) | 2002-07-25 | 2004-08-19 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
US20040243148A1 (en) | 2003-04-08 | 2004-12-02 | Wasielewski Ray C. | Use of micro- and miniature position sensing devices for use in TKA and THA |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7813836B2 (en) | 2003-12-09 | 2010-10-12 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US20100312129A1 (en) | 2005-01-26 | 2010-12-09 | Schecter Stuart O | Cardiovascular haptic handle system |
AU2006214249B8 (en) * | 2005-02-18 | 2011-11-17 | Komistek, Richard D | Smart joint implant sensors |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7806121B2 (en) * | 2005-12-22 | 2010-10-05 | Restoration Robotics, Inc. | Follicular unit transplantation planner and methods of its use |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20120209117A1 (en) * | 2006-03-08 | 2012-08-16 | Orthosensor, Inc. | Surgical Measurement Apparatus and System |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US20090124891A1 (en) * | 2006-03-31 | 2009-05-14 | Koninklijke Philips Electronics N.V. | Image guided surgery system |
US7683565B2 (en) * | 2006-05-19 | 2010-03-23 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
CA2651784C (en) * | 2006-05-19 | 2015-01-27 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
WO2007135609A2 (en) * | 2006-05-24 | 2007-11-29 | Koninklijke Philips Electronics, N.V. | Coordinate system registration |
WO2007141784A2 (en) * | 2006-06-05 | 2007-12-13 | Technion Research & Development Foundation Ltd. | Controlled steering of a flexible needle |
US8062211B2 (en) * | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US20080049993A1 (en) * | 2006-08-25 | 2008-02-28 | Restoration Robotics, Inc. | System and method for counting follicular units |
US7477782B2 (en) * | 2006-08-25 | 2009-01-13 | Restoration Robotics, Inc. | System and method for classifying follicular units |
US20080086051A1 (en) * | 2006-09-20 | 2008-04-10 | Ethicon Endo-Surgery, Inc. | System, storage medium for a computer program, and method for displaying medical images |
US7668084B2 (en) * | 2006-09-29 | 2010-02-23 | Honeywell International Inc. | Systems and methods for fault-tolerant high integrity data propagation using a half-duplex braided ring network |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
DE102006049956A1 (de) * | 2006-10-19 | 2008-04-24 | Abb Ag | System und Verfahren zur automatisierten Ver- und/oder Bearbeitung von Werkstücken |
US7656881B2 (en) * | 2006-12-13 | 2010-02-02 | Honeywell International Inc. | Methods for expedited start-up and clique aggregation using self-checking node pairs on a ring network |
US7912094B2 (en) * | 2006-12-13 | 2011-03-22 | Honeywell International Inc. | Self-checking pair-based master/follower clock synchronization |
US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data |
US9104195B2 (en) | 2006-12-20 | 2015-08-11 | Lincoln Global, Inc. | Welding job sequencer |
US9937577B2 (en) | 2006-12-20 | 2018-04-10 | Lincoln Global, Inc. | System for a welding sequencer |
KR101486889B1 (ko) | 2006-12-27 | 2015-01-28 | 마코 서지컬 코포레이션 | 공간 내에 조절가능한 포지티브 스톱을 제공하기 위한 장치 및 방법 |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US8457718B2 (en) * | 2007-03-21 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Recognizing a real world fiducial in a patient image data |
US20080319307A1 (en) * | 2007-06-19 | 2008-12-25 | Ethicon Endo-Surgery, Inc. | Method for medical imaging using fluorescent nanoparticles |
US8155728B2 (en) * | 2007-08-22 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Medical system, method, and storage medium concerning a natural orifice transluminal medical procedure |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US20080234544A1 (en) * | 2007-03-20 | 2008-09-25 | Ethicon Endo-Sugery, Inc. | Displaying images interior and exterior to a body lumen of a patient |
US8081810B2 (en) * | 2007-03-22 | 2011-12-20 | Ethicon Endo-Surgery, Inc. | Recognizing a real world fiducial in image data of a patient |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
EP2211749B1 (en) * | 2007-04-16 | 2018-10-10 | NeuroArm Surgical, Ltd. | Methods, devices, and systems useful in registration |
CA2683717C (en) | 2007-04-19 | 2016-10-11 | Mako Surgical Corp. | Implant planning using captured joint motion information |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9469034B2 (en) * | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
WO2009042644A2 (en) * | 2007-09-25 | 2009-04-02 | Perception Raisonnement Action En Medecine | Methods and apparatus for assisting cartilage diagnostic and therapeutic procedures |
US7778159B2 (en) * | 2007-09-27 | 2010-08-17 | Honeywell International Inc. | High-integrity self-test in a network having a braided-ring topology |
JP5250251B2 (ja) * | 2007-12-17 | 2013-07-31 | イマグノーシス株式会社 | 医用撮影用マーカーおよびその活用プログラム |
US11344370B2 (en) | 2007-12-18 | 2022-05-31 | Howmedica Osteonics Corporation | Arthroplasty system and related methods |
WO2009085270A2 (en) | 2007-12-21 | 2009-07-09 | Coda Therapeutics, Inc. | Use of inhibitors of c0nnexin43 for treatment of fibrotic conditions |
CH701932B1 (de) * | 2008-01-03 | 2011-04-15 | Clemens Dr Med Gutknecht | Patientenbett mit Überwachungs- und Therapieeinrichtung. |
KR100927009B1 (ko) * | 2008-02-04 | 2009-11-16 | 광주과학기술원 | 증강 현실에서의 햅틱 상호 작용 방법 및 그 시스템 |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
EP2242453B1 (en) | 2008-02-20 | 2018-11-28 | Mako Surgical Corp. | Implant planning using corrected captured joint motion information |
US8494825B2 (en) * | 2008-03-13 | 2013-07-23 | Robert L. Thornberry | Computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US8684962B2 (en) | 2008-03-27 | 2014-04-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter device cartridge |
US9161817B2 (en) | 2008-03-27 | 2015-10-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US8641664B2 (en) * | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system with dynamic response |
US9241768B2 (en) * | 2008-03-27 | 2016-01-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
US8641663B2 (en) * | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system input device |
US8343096B2 (en) * | 2008-03-27 | 2013-01-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US8317744B2 (en) | 2008-03-27 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter manipulator assembly |
US8317745B2 (en) | 2008-03-27 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter rotatable device cartridge |
EP2106765B1 (de) * | 2008-04-03 | 2013-04-03 | BrainLAB AG | Bildliche Orientierungshilfe für medizinische Instrumente |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US8170241B2 (en) | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US8209054B2 (en) * | 2008-05-09 | 2012-06-26 | William Howison | Haptic device grippers for surgical teleoperation |
CN104382650B (zh) * | 2008-05-28 | 2017-04-12 | 泰克尼恩研究和发展基金有限公司 | 用于柔性针操纵的超声引导机器人 |
US8029566B2 (en) | 2008-06-02 | 2011-10-04 | Zimmer, Inc. | Implant sensors |
WO2009152055A2 (en) * | 2008-06-09 | 2009-12-17 | Mako Surgical Corp. | Self-detecting kinematic clamp assembly |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
WO2010020397A1 (de) * | 2008-08-18 | 2010-02-25 | Naviswiss Ag | Medizinisches messsystem, verfahren zum chirurgischen eingriff sowie die verwendung eines medizinischen messsystems |
US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator |
US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator |
US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US8851896B2 (en) * | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator |
US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing |
US8332072B1 (en) | 2008-08-22 | 2012-12-11 | Titan Medical Inc. | Robotic hand controller |
US10532466B2 (en) * | 2008-08-22 | 2020-01-14 | Titan Medical Inc. | Robotic hand controller |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US8848974B2 (en) * | 2008-09-29 | 2014-09-30 | Restoration Robotics, Inc. | Object-tracking systems and methods |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US20100125284A1 (en) * | 2008-11-20 | 2010-05-20 | Hansen Medical, Inc. | Registered instrument movement integration |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
KR101474765B1 (ko) * | 2008-12-05 | 2014-12-22 | 삼성전자 주식회사 | 로봇 팔 및 그 제어방법 |
US9364291B2 (en) | 2008-12-11 | 2016-06-14 | Mako Surgical Corp. | Implant planning using areas representing cartilage |
US8992558B2 (en) | 2008-12-18 | 2015-03-31 | Osteomed, Llc | Lateral access system for the lumbar spine |
JP5083194B2 (ja) * | 2008-12-18 | 2012-11-28 | 株式会社デンソーウェーブ | ロボットのキャリブレーション方法及びロボットの制御装置 |
US8347755B2 (en) * | 2008-12-23 | 2013-01-08 | Mako Surgical Corp. | Transmission with adjustment member for varying tension force |
US20110238010A1 (en) * | 2008-12-31 | 2011-09-29 | Kirschenman Mark B | Robotic catheter system input device |
DE102009007291A1 (de) | 2009-01-27 | 2010-07-29 | Aesculap Ag | Chirurgische Referenzierungseinheit, chirurgisches Instrument und chirurgisches Navigationssystem |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
BRPI1008667A2 (pt) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | aperfeiçoamento do grampeador cirúrgico acionado |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
US20100217400A1 (en) | 2009-02-24 | 2010-08-26 | Mako Surgical Corp. | Prosthetic device, method of planning bone removal for implantation of prosthetic device, and robotic system |
US8274013B2 (en) | 2009-03-09 | 2012-09-25 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
US8337397B2 (en) * | 2009-03-26 | 2012-12-25 | Intuitive Surgical Operations, Inc. | Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient |
US20120130180A1 (en) | 2009-04-13 | 2012-05-24 | Physcient, Inc. | Methods and devices to decrease tissue trauma during surgery |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US20100328235A1 (en) * | 2009-06-29 | 2010-12-30 | Frederick Charles Taute | Medical Code Lookup Interface |
US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system |
US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training |
US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system |
US10748447B2 (en) | 2013-05-24 | 2020-08-18 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US9330497B2 (en) | 2011-08-12 | 2016-05-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | User interface devices for electrophysiology lab diagnostic and therapeutic equipment |
WO2011123669A1 (en) | 2010-03-31 | 2011-10-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user interface control for remote catheter navigation and 3d mapping and visualization systems |
US9439736B2 (en) | 2009-07-22 | 2016-09-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling a remote medical device guidance system in three-dimensions using gestures |
DE102009036941B4 (de) * | 2009-08-11 | 2014-03-20 | Siemens Aktiengesellschaft | Medizinisches Gerät und Verfahren |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
DE102009041734B4 (de) * | 2009-09-16 | 2023-11-02 | Kuka Roboter Gmbh | Vermessung eines Manipulators |
KR101606097B1 (ko) * | 2009-10-01 | 2016-03-24 | 마코 서지컬 코포레이션 | 보철 부품의 위치 선정 및/또는 수술 도구의 이동 제한용 수술 시스템 |
US8569655B2 (en) | 2009-10-13 | 2013-10-29 | Lincoln Global, Inc. | Welding helmet with integral user interface |
US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
EP2512360B1 (en) | 2009-12-14 | 2022-08-24 | Smith&Nephew, Inc. | Visualization guided acl localization system |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US20110187875A1 (en) * | 2010-02-04 | 2011-08-04 | Intouch Technologies, Inc. | Robot face used in a sterile environment |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US20110218550A1 (en) * | 2010-03-08 | 2011-09-08 | Tyco Healthcare Group Lp | System and method for determining and adjusting positioning and orientation of a surgical device |
NO20100339A1 (no) * | 2010-03-10 | 2011-05-23 | Seabed Rig As | Fremgangsmåte og anordning for å sikre drift av automatisk eller autonomt utstyr |
US9706948B2 (en) * | 2010-05-06 | 2017-07-18 | Sachin Bhandari | Inertial sensor based surgical navigation system for knee replacement surgery |
TWI391124B (zh) * | 2010-05-12 | 2013-04-01 | Univ Chang Gung | 手術定位裝置 |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US9050108B2 (en) | 2010-06-17 | 2015-06-09 | DePuy Synthes Products, Inc. | Instrument for image guided applications |
WO2011162753A1 (en) | 2010-06-23 | 2011-12-29 | Mako Sugical Corp. | Inertially tracked objects |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US9554864B2 (en) * | 2010-08-02 | 2017-01-31 | The Johns Hopkins University | Tool exchange interface and control algorithm for cooperative surgical robots |
FR2963693B1 (fr) | 2010-08-04 | 2013-05-03 | Medtech | Procede d'acquisition automatise et assiste de surfaces anatomiques |
WO2012029227A1 (ja) | 2010-08-31 | 2012-03-08 | パナソニック株式会社 | マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、制御プログラム、並びに、集積電子回路 |
US8679125B2 (en) | 2010-09-22 | 2014-03-25 | Biomet Manufacturing, Llc | Robotic guided femoral head reshaping |
US8617170B2 (en) | 2010-09-29 | 2013-12-31 | DePuy Synthes Products, LLC | Customized patient-specific computer controlled cutting system and method |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US9486189B2 (en) | 2010-12-02 | 2016-11-08 | Hitachi Aloka Medical, Ltd. | Assembly for use with surgery system |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
WO2012077335A1 (ja) * | 2010-12-08 | 2012-06-14 | パナソニック株式会社 | ロボットの制御装置及び制御方法、ロボット、並びに、制御プログラム |
US9498289B2 (en) | 2010-12-21 | 2016-11-22 | Restoration Robotics, Inc. | Methods and systems for directing movement of a tool in hair transplantation procedures |
US8911453B2 (en) | 2010-12-21 | 2014-12-16 | Restoration Robotics, Inc. | Methods and systems for directing movement of a tool in hair transplantation procedures |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US9921712B2 (en) | 2010-12-29 | 2018-03-20 | Mako Surgical Corp. | System and method for providing substantially stable control of a surgical tool |
KR101902033B1 (ko) * | 2010-12-29 | 2018-09-27 | 마코 서지컬 코포레이션 | 상당히 안정된 햅틱스를 제공하기 위한 시스템 및 방법 |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
WO2012101286A1 (en) | 2011-01-28 | 2012-08-02 | Virtual Proteins B.V. | Insertion procedures in augmented reality |
CN104898652B (zh) | 2011-01-28 | 2018-03-13 | 英塔茨科技公司 | 与一个可移动的远程机器人相互交流 |
KR101195994B1 (ko) * | 2011-02-11 | 2012-10-30 | 전남대학교산학협력단 | 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템 |
WO2012131658A1 (en) * | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Small active medical robot and passive holding structure |
WO2012131660A1 (en) * | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
US8942828B1 (en) | 2011-04-13 | 2015-01-27 | Stuart Schecter, LLC | Minimally invasive cardiovascular support system with true haptic coupling |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
BR112013027794B1 (pt) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos |
US20140139616A1 (en) | 2012-01-27 | 2014-05-22 | Intouch Technologies, Inc. | Enhanced Diagnostics for a Telepresence Robot |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
WO2012159123A2 (en) | 2011-05-19 | 2012-11-22 | Alec Rivers | Automatically guided tools |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US8523787B2 (en) * | 2011-06-03 | 2013-09-03 | Biosense Webster (Israel), Ltd. | Detection of tenting |
KR101214846B1 (ko) | 2011-06-10 | 2012-12-24 | 한국과학기술원 | 레이저 스캐너를 이용한 뼈 위치 매칭장치, 그 매칭장치를 이용한 뼈 위치 매칭 방법, 레이저 스캐너를 구비한 관절수술용 로봇 및 그 관절수술용 로봇을 이용한 관절수술방법 |
KR101214849B1 (ko) | 2011-06-10 | 2012-12-24 | 한국과학기술원 | 절삭아암을 갖는 로봇을 이용한 관절수술에 이용되는 뼈의 위치 재탐색장치, 그 재탐색장치를 이용한 뼈의 위치 재탐색방법, 그 재탐색장치를 갖는 관절수술용 로봇 및 그 관절수술용 로봇을 이용한 관절수술방법 |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10219811B2 (en) | 2011-06-27 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US9188973B2 (en) | 2011-07-08 | 2015-11-17 | Restoration Robotics, Inc. | Calibration and transformation of a camera system's coordinate system |
DE102011080483B4 (de) * | 2011-08-05 | 2015-07-09 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung eines Bauteils oder eines aus mehreren Bauteilen bestehenden Bauteilverbunds |
US10299773B2 (en) * | 2011-08-21 | 2019-05-28 | Transenterix Europe S.A.R.L. | Device and method for assisting laparoscopic surgery—rule based approach |
EP2750620B1 (en) | 2011-09-02 | 2017-04-26 | Stryker Corporation | Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing |
TWI452270B (zh) * | 2011-10-21 | 2014-09-11 | Univ Nat Central | 量測裝置及其量測方法 |
JP5855423B2 (ja) | 2011-11-01 | 2016-02-09 | オリンパス株式会社 | 手術支援装置 |
US20130274712A1 (en) * | 2011-11-02 | 2013-10-17 | Stuart O. Schecter | Haptic system for balloon tipped catheter interventions |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US9642725B2 (en) * | 2011-11-14 | 2017-05-09 | Advanced Mechanical Technology, Inc. | System and method for joint testing |
FR2983059B1 (fr) | 2011-11-30 | 2014-11-28 | Medtech | Procede assiste par robotique de positionnement d'instrument chirurgical par rapport au corps d'un patient et dispositif de mise en oeuvre. |
WO2013080124A1 (en) | 2011-12-03 | 2013-06-06 | Koninklijke Philips Electronics N.V. | Robotic guidance of ultrasound probe in endoscopic surgery |
US9639156B2 (en) | 2011-12-29 | 2017-05-02 | Mako Surgical Corp. | Systems and methods for selectively activating haptic guide zones |
US9289264B2 (en) * | 2011-12-29 | 2016-03-22 | Mako Surgical Corp. | Systems and methods for guiding an instrument using haptic object with collapsing geometry |
US10363102B2 (en) | 2011-12-30 | 2019-07-30 | Mako Surgical Corp. | Integrated surgery method |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
EP3300700A3 (en) * | 2012-03-19 | 2018-07-25 | Massachusetts Institute of Technology | Variable impedance mechanical interface |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
US9539112B2 (en) | 2012-03-28 | 2017-01-10 | Robert L. Thornberry | Computer-guided system for orienting a prosthetic acetabular cup in the acetabulum during total hip replacement surgery |
BR112014024194B1 (pt) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos para um grampeador cirúrgico |
US8961500B2 (en) * | 2012-03-28 | 2015-02-24 | Medtronic Navigation, Inc. | Navigated instrument with a stabilizer |
RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
WO2013158636A1 (en) * | 2012-04-16 | 2013-10-24 | Azizian Mahdi | Dual-mode stereo imaging system for tracking and control in surgical and interventional procedures |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
WO2013163588A1 (en) | 2012-04-26 | 2013-10-31 | Alec Rothmyer Rivers | Systems and methods for performing a task on a material, or locating the position of a device relative to the surface of the material |
WO2013170099A1 (en) | 2012-05-09 | 2013-11-14 | Yknots Industries Llc | Calibration of haptic feedback systems for input devices |
US9977499B2 (en) | 2012-05-09 | 2018-05-22 | Apple Inc. | Thresholds for determining feedback in computing devices |
JP5949208B2 (ja) * | 2012-06-26 | 2016-07-06 | セイコーエプソン株式会社 | 医療機器 |
JP5949209B2 (ja) * | 2012-06-26 | 2016-07-06 | セイコーエプソン株式会社 | 医療機器 |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
WO2013176758A1 (en) | 2012-05-22 | 2013-11-28 | Intouch Technologies, Inc. | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10013082B2 (en) | 2012-06-05 | 2018-07-03 | Stuart Schecter, LLC | Operating system with haptic interface for minimally invasive, hand-held surgical instrument |
US20150109223A1 (en) | 2012-06-12 | 2015-04-23 | Apple Inc. | Haptic electromagnetic actuator |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US10350013B2 (en) * | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US10874466B2 (en) | 2012-06-21 | 2020-12-29 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
WO2013192598A1 (en) * | 2012-06-21 | 2013-12-27 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
RU2636861C2 (ru) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Блокировка пустой кассеты с клипсами |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US20160093233A1 (en) | 2012-07-06 | 2016-03-31 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures |
US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US9886116B2 (en) | 2012-07-26 | 2018-02-06 | Apple Inc. | Gesture and touch input detection through force sensing |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
US9820818B2 (en) | 2012-08-03 | 2017-11-21 | Stryker Corporation | System and method for controlling a surgical manipulator based on implant parameters |
KR102235965B1 (ko) | 2012-08-03 | 2021-04-06 | 스트리커 코포레이션 | 로봇 수술을 위한 시스템 및 방법 |
WO2014028394A1 (en) | 2012-08-14 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Systems and methods for registration of multiple vision systems |
DE102012217942A1 (de) * | 2012-10-01 | 2014-06-12 | Siemens Aktiengesellschaft | Medizinisches Instrument, Medizinsystem und Verfahren zur Darstellung der Position einer Ortsmarke |
EP2916778B1 (en) | 2012-11-09 | 2021-08-11 | Blue Belt Technologies, Inc. | Systems for navigation and control of an implant positioning device |
US9770302B2 (en) * | 2012-12-21 | 2017-09-26 | Mako Surgical Corp. | Methods and systems for planning and performing an osteotomy |
US10398449B2 (en) | 2012-12-21 | 2019-09-03 | Mako Surgical Corp. | Systems and methods for haptic control of a surgical tool |
US10292887B2 (en) * | 2012-12-31 | 2019-05-21 | Mako Surgical Corp. | Motorized joint positioner |
KR102217395B1 (ko) * | 2013-01-04 | 2021-02-23 | 디퍼이 신테스 프로덕츠, 인코포레이티드 | 골 임플란트를 설계 및 제조하기 위한 방법 |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
RU2672520C2 (ru) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов |
RU2669463C2 (ru) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Хирургический инструмент с мягким упором |
AU2014248758B2 (en) | 2013-03-13 | 2018-04-12 | Stryker Corporation | System for establishing virtual constraint boundaries |
EP2996615B1 (en) | 2013-03-13 | 2019-01-30 | Stryker Corporation | System for arranging objects in an operating room in preparation for surgical procedures |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
WO2014139023A1 (en) | 2013-03-15 | 2014-09-18 | Synaptive Medical (Barbados) Inc. | Intelligent positioning system and methods therefore |
US11747895B2 (en) * | 2013-03-15 | 2023-09-05 | Intuitive Surgical Operations, Inc. | Robotic system providing user selectable actions associated with gaze tracking |
US9167999B2 (en) | 2013-03-15 | 2015-10-27 | Restoration Robotics, Inc. | Systems and methods for planning hair transplantation |
KR102380980B1 (ko) | 2013-03-15 | 2022-04-01 | 스트리커 코포레이션 | 수술 로봇 조작기의 엔드 이펙터 |
US9014851B2 (en) * | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US9283046B2 (en) | 2013-03-15 | 2016-03-15 | Hansen Medical, Inc. | User interface for active drive apparatus with finite range of motion |
WO2015135055A1 (en) * | 2014-03-14 | 2015-09-17 | Synaptive Medical (Barbados) Inc. | System and method for projected tool trajectories for surgical navigation systems |
US9320593B2 (en) | 2013-03-15 | 2016-04-26 | Restoration Robotics, Inc. | Systems and methods for planning hair transplantation |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
AU2014231341B2 (en) * | 2013-03-15 | 2019-06-06 | Synaptive Medical Inc. | System and method for dynamic validation, correction of registration for surgical navigation |
US20140303631A1 (en) * | 2013-04-05 | 2014-10-09 | Thornberry Technologies, LLC | Method and apparatus for determining the orientation and/or position of an object during a medical procedure |
JP2014204794A (ja) * | 2013-04-11 | 2014-10-30 | 株式会社デンソー | 身体支持追従装置用状態表示装置及び身体支持追従装置 |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
JP6138566B2 (ja) * | 2013-04-24 | 2017-05-31 | 川崎重工業株式会社 | 部品取付作業支援システムおよび部品取付方法 |
WO2014181222A1 (en) | 2013-05-09 | 2014-11-13 | Koninklijke Philips N.V. | Robotic control of an endoscope from anatomical features |
US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
JP5962590B2 (ja) * | 2013-05-31 | 2016-08-03 | 株式会社安川電機 | ロボットシステムおよび被加工物の製造方法 |
US10725478B2 (en) * | 2013-07-02 | 2020-07-28 | The Boeing Company | Robotic-mounted monument system for metrology systems |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
US20150072323A1 (en) | 2013-09-11 | 2015-03-12 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment |
DE102013218823A1 (de) * | 2013-09-19 | 2015-04-02 | Kuka Laboratories Gmbh | Verfahren zum manuell geführten Verstellen der Pose eines Manipulatorarms eines Industrieroboters und zugehöriger Industrieroboter |
US9610102B2 (en) * | 2013-09-26 | 2017-04-04 | Stryker European Holdings I, Llc | Bone position tracking system |
CN105979919B (zh) * | 2013-09-27 | 2019-09-20 | 埃斯顿(南京)医疗科技有限公司 | 多活动轴线的非外骨骼式康复设备 |
US10390737B2 (en) * | 2013-09-30 | 2019-08-27 | Stryker Corporation | System and method of controlling a robotic system for manipulating anatomy of a patient during a surgical procedure |
AU2014329381B2 (en) * | 2013-10-04 | 2019-05-23 | Stryker Corporation | System and method for interacting with an object |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
US10561465B2 (en) * | 2013-10-09 | 2020-02-18 | Nuvasive, Inc. | Surgical spinal correction |
US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
WO2015071851A2 (en) * | 2013-11-13 | 2015-05-21 | Stryker Global Technology Center | System for surgical tracking |
WO2015084837A1 (en) * | 2013-12-02 | 2015-06-11 | Immersive Touch, Inc. | Improvements for haptic augmented and virtual reality system for simulation of surgical procedures |
US10056010B2 (en) | 2013-12-03 | 2018-08-21 | Illinois Tool Works Inc. | Systems and methods for a weld training system |
CN103632595B (zh) * | 2013-12-06 | 2016-01-13 | 合肥德易电子有限公司 | 多种腔内治疗性内镜手术医教训练系统 |
AU2014374084B2 (en) | 2013-12-31 | 2019-09-12 | Mako Surgical Corp. | Systems and methods for preparing a proximal tibia |
JP6594883B2 (ja) | 2013-12-31 | 2019-10-23 | マコ サージカル コーポレーション | カスタマイズされた触覚境界線を生成するためのシステムおよび方法 |
FR3015883B1 (fr) * | 2013-12-31 | 2021-01-15 | Inria Inst Nat Rech Informatique & Automatique | Systeme et procede de suivi du deplacement d'un instrument medical dans le corps d'un sujet |
US10170019B2 (en) | 2014-01-07 | 2019-01-01 | Illinois Tool Works Inc. | Feedback from a welding torch of a welding system |
US9589481B2 (en) * | 2014-01-07 | 2017-03-07 | Illinois Tool Works Inc. | Welding software for detection and control of devices and for analysis of data |
US10105782B2 (en) | 2014-01-07 | 2018-10-23 | Illinois Tool Works Inc. | Feedback from a welding torch of a welding system |
US10064687B2 (en) * | 2014-01-13 | 2018-09-04 | Brainlab Ag | Estimation and compensation of tracking inaccuracies |
US20150242037A1 (en) | 2014-01-13 | 2015-08-27 | Apple Inc. | Transparent force sensor with strain relief |
US9241771B2 (en) | 2014-01-15 | 2016-01-26 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
US10039605B2 (en) | 2014-02-11 | 2018-08-07 | Globus Medical, Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US10130436B2 (en) | 2014-03-17 | 2018-11-20 | Intuitive Surgical Operations, Inc. | Automated structure with pre-established arm positions in a teleoperated medical system |
KR102278806B1 (ko) * | 2014-03-17 | 2021-07-19 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 조직 접촉 검출과 자동-노출 및 조명 제어를 위한 시스템 및 방법 |
JP6725424B2 (ja) * | 2014-03-17 | 2020-07-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 遠隔操作医療システムのための誘導セットアップ |
US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
JP6612256B2 (ja) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | 不均一な締結具を備える締結具カートリッジ |
CN103926395A (zh) * | 2014-04-21 | 2014-07-16 | 王秀明 | 一种多功能临床检验分析仪 |
US10004562B2 (en) | 2014-04-24 | 2018-06-26 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
EP3443925B1 (en) * | 2014-05-14 | 2021-02-24 | Stryker European Holdings I, LLC | Processor arrangement for tracking the position of a work target |
CN106233358A (zh) | 2014-06-02 | 2016-12-14 | 林肯环球股份有限公司 | 用于人工焊工培训的系统和方法 |
CN103976793B (zh) * | 2014-06-09 | 2017-02-15 | 何玉成 | 用于ct引导下穿刺的激光定位装置 |
WO2015193479A1 (en) | 2014-06-19 | 2015-12-23 | KB Medical SA | Systems and methods for performing minimally invasive surgery |
US10665128B2 (en) | 2014-06-27 | 2020-05-26 | Illinois Tool Works Inc. | System and method of monitoring welding information |
US11014183B2 (en) | 2014-08-07 | 2021-05-25 | Illinois Tool Works Inc. | System and method of marking a welding workpiece |
EP3179954A4 (en) | 2014-08-12 | 2018-03-14 | Intuitive Surgical Operations Inc. | Detecting uncontrolled movement |
US10465188B2 (en) | 2014-08-22 | 2019-11-05 | Auckland Uniservices Limited | Channel modulators |
US10297119B1 (en) | 2014-09-02 | 2019-05-21 | Apple Inc. | Feedback device in an electronic device |
WO2017039709A1 (en) * | 2015-09-04 | 2017-03-09 | Edison Industrial Innovation, Llc | Closed-loop metalworking system |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
EP3191010A2 (en) * | 2014-09-08 | 2017-07-19 | Koninklijke Philips N.V. | Shape sensing for orthopedic navigation |
JP6416560B2 (ja) * | 2014-09-11 | 2018-10-31 | 株式会社デンソー | 位置決め制御装置 |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US9815206B2 (en) * | 2014-09-25 | 2017-11-14 | The Johns Hopkins University | Surgical system user interface using cooperatively-controlled robot |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
DE202014104654U1 (de) | 2014-09-29 | 2014-11-10 | Hiwin Technologies Corp. | Höhenverstellbare Verbindungsvorrichtung für ein chirurgisches Gerät |
US9939901B2 (en) | 2014-09-30 | 2018-04-10 | Apple Inc. | Haptic feedback assembly |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
JP6774404B2 (ja) | 2014-10-27 | 2020-10-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 統合手術台アイコンのためのシステム及び方法 |
EP3212150B1 (en) | 2014-10-27 | 2021-08-11 | Intuitive Surgical Operations, Inc. | System for registering to a surgical table |
KR102707904B1 (ko) | 2014-10-27 | 2024-09-23 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 기기 교란 보상을 위한 시스템 및 방법 |
CN107072729B (zh) | 2014-10-27 | 2020-03-20 | 直观外科手术操作公司 | 用于集成的手术台运动的系统和方法 |
WO2016069661A1 (en) | 2014-10-27 | 2016-05-06 | Intuitive Surgical Operations, Inc. | Medical device with active brake release control |
CN110478036B (zh) | 2014-10-27 | 2022-05-17 | 直观外科手术操作公司 | 用于集成手术台的系统和方法 |
KR102479287B1 (ko) * | 2014-10-27 | 2022-12-20 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 반응 운동 동안 제어점을 감시하기 위한 시스템 및 방법 |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
WO2016065458A1 (en) * | 2014-10-29 | 2016-05-06 | Intellijoint Surgical Inc. | Systems and devices including a surgical navigation camera with a kinematic mount and a surgical drape with a kinematic mount adapter |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
DE102014222293A1 (de) * | 2014-10-31 | 2016-05-19 | Siemens Aktiengesellschaft | Verfahren zur automatischen Überwachung des Eindringverhaltens eines von einem Roboterarm gehaltenen Trokars und Überwachungssystem |
US10402959B2 (en) | 2014-11-05 | 2019-09-03 | Illinois Tool Works Inc. | System and method of active torch marker control |
US10204406B2 (en) | 2014-11-05 | 2019-02-12 | Illinois Tool Works Inc. | System and method of controlling welding system camera exposure and marker illumination |
US10417934B2 (en) | 2014-11-05 | 2019-09-17 | Illinois Tool Works Inc. | System and method of reviewing weld data |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
EP3185811A4 (en) * | 2014-11-21 | 2018-05-23 | Think Surgical, Inc. | Visible light communication system for transmitting data between visual tracking systems and tracking markers |
DE102014224123B4 (de) * | 2014-11-26 | 2018-10-25 | Kuka Roboter Gmbh | Verfahren zum Betreiben eines robotischen Gerätes und robotisches Gerät |
EP3227806B1 (en) * | 2014-12-01 | 2024-05-29 | Blue Belt Technologies, Inc. | Image free implant revision surgery |
US9946350B2 (en) | 2014-12-01 | 2018-04-17 | Qatar University | Cutaneous haptic feedback system and methods of use |
WO2016087539A2 (en) * | 2014-12-02 | 2016-06-09 | KB Medical SA | Robot assisted volume removal during surgery |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9739674B2 (en) | 2015-01-09 | 2017-08-22 | Stryker Corporation | Isolated force/torque sensor assembly for force controlled robot |
CN106999022A (zh) * | 2015-01-22 | 2017-08-01 | 奥林巴斯株式会社 | 内窥镜系统 |
CN105982737B (zh) * | 2015-02-06 | 2018-07-06 | 上银科技股份有限公司 | 多方位脚踏控制装置 |
CN107209003B (zh) | 2015-02-13 | 2020-12-18 | 思想外科有限公司 | 用于机器人校准和监测的激光测量仪 |
WO2016131903A1 (en) * | 2015-02-18 | 2016-08-25 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
JP6748088B2 (ja) * | 2015-02-25 | 2020-08-26 | マコ サージカル コーポレーション | 外科手術中の追跡中断を低減するナビゲーションシステム及び方法 |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9798409B1 (en) | 2015-03-04 | 2017-10-24 | Apple Inc. | Multi-force input device |
EP3265010B1 (en) | 2015-03-05 | 2022-11-02 | Think Surgical, Inc. | Methods for locating and tracking a tool axis |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10751135B2 (en) | 2015-03-17 | 2020-08-25 | Intuitive Surgical Operations, Inc. | System and method for providing feedback during manual joint positioning |
GB2536650A (en) | 2015-03-24 | 2016-09-28 | Augmedics Ltd | Method and system for combining video-based and optic-based augmented reality in a near eye display |
CA2981043A1 (en) * | 2015-03-26 | 2016-09-29 | Biomet Manufacturing, Llc | Anatomic registration probes, systems, and methods |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
JP6393432B2 (ja) | 2015-04-21 | 2018-09-19 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 患者モニタリング装置のための調節可能アーム |
KR101705199B1 (ko) * | 2015-05-12 | 2017-02-09 | 주식회사 코어라인소프트 | 의료 영상을 이용한 전방십자인대 재건 수술의 시뮬레이션 시스템 및 방법 |
JP6968700B2 (ja) | 2015-05-13 | 2021-11-17 | シェイパー ツールズ, インク.Shaper Tools, Inc. | 案内工具用のシステム、方法、および装置 |
WO2016187290A1 (en) * | 2015-05-19 | 2016-11-24 | Mako Surgical Corp. | System and method for manipulating an anatomy |
WO2017011576A2 (en) * | 2015-07-13 | 2017-01-19 | Mako Surgical Corp. | Lower extremities leg length calculation method |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
CN109938839B (zh) * | 2015-08-31 | 2024-03-26 | 北京天智航医疗科技股份有限公司 | 一种用于导航手术的光学跟踪工具 |
EP3344179B1 (en) | 2015-08-31 | 2021-06-30 | KB Medical SA | Robotic surgical systems |
WO2017037113A1 (en) * | 2015-08-31 | 2017-03-09 | KB Medical SA | Robotic surgical systems for spinal rod bending |
WO2017039663A1 (en) * | 2015-09-03 | 2017-03-09 | Siemens Healthcare Gmbh | Multi-view, multi-source registration of moving anatomies and devices |
US10603119B2 (en) * | 2015-09-04 | 2020-03-31 | Mako Surgical Corp. | Steering mechanism for portable surgical robot |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10327769B2 (en) * | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
CN105125289B (zh) * | 2015-09-25 | 2018-01-02 | 拜耳斯特医疗机器人技术(天津)有限公司 | 微创医疗机器人系统 |
CN105125290B (zh) * | 2015-09-25 | 2017-07-28 | 拜耳斯特医疗机器人技术(天津)有限公司 | 微创医疗机器人系统 |
CA2999952C (en) * | 2015-09-26 | 2023-08-15 | Synaptive Medical (Barbados) Inc. | Tracked suction tool |
CA3000688A1 (en) * | 2015-09-30 | 2017-04-06 | Barrett Technology, Llc | Multi-active-axis, non-exoskeletal rehabilitation device and a method of operating thereof |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US9851798B2 (en) | 2015-09-30 | 2017-12-26 | Apple Inc. | Electronic device including spaced apart hall effect sensor based haptic actuator driving and related methods |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10007344B2 (en) | 2015-09-30 | 2018-06-26 | Apple Inc. | Electronic device including closed-loop controller for haptic actuator and related methods |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US9771092B2 (en) * | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US11253322B2 (en) * | 2015-10-14 | 2022-02-22 | Ecential Robotics | Fluoro-navigation system for navigating a tool relative to a medical image |
AU2016359274A1 (en) | 2015-11-24 | 2018-04-12 | Think Surgical, Inc. | Active robotic pin placement in total knee arthroplasty |
US12082893B2 (en) | 2015-11-24 | 2024-09-10 | Think Surgical, Inc. | Robotic pin placement |
DE102015223921A1 (de) * | 2015-12-01 | 2017-06-01 | Siemens Healthcare Gmbh | Verfahren zum Betreiben eines medizinisch-robotischen Geräts sowie medizinisch-robotisches Gerät |
EP3414686A4 (en) * | 2015-12-07 | 2019-11-20 | M.S.T. Medical Surgery Technologies Ltd. | AUTOMATIC DETECTION OF MALFUNCTION IN SURGICAL TOOLS |
US10433921B2 (en) * | 2015-12-28 | 2019-10-08 | Mako Surgical Corp. | Apparatus and methods for robot assisted bone treatment |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
CN113925610B (zh) | 2015-12-31 | 2024-08-13 | 史赛克公司 | 用于在由虚拟对象限定的目标部位处对患者执行手术的系统和方法 |
EP4410230A3 (en) * | 2016-01-12 | 2024-09-04 | Intuitive Surgical Operations, Inc. | Staged force feedback transitioning between control states |
US10070971B2 (en) * | 2016-01-22 | 2018-09-11 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
WO2017147596A1 (en) | 2016-02-26 | 2017-08-31 | Think Surgical, Inc. | Method and system for guiding user positioning of a robot |
US11185373B2 (en) | 2016-03-02 | 2021-11-30 | Think Surgical, Inc. | Method for recovering a registration of a bone |
WO2017160177A1 (ru) * | 2016-03-15 | 2017-09-21 | Елена Николаевна ФАГЕ | Многоосевой электронно-механический хирургический манипулятор |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US9818272B2 (en) | 2016-04-04 | 2017-11-14 | Apple Inc. | Electronic device including sound level based driving of haptic actuator and related methods |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10357315B2 (en) * | 2016-05-27 | 2019-07-23 | Mako Surgical Corp. | Preoperative planning and associated intraoperative registration for a surgical system |
US10589626B2 (en) * | 2016-06-20 | 2020-03-17 | Caterpillar Inc. | Implement positioning guidance system |
ES2607227B2 (es) * | 2016-06-23 | 2017-11-23 | Universidad De Málaga | Método de manejo de un sistema robótico para cirugía mínimamente invasiva |
AU2017204355B2 (en) | 2016-07-08 | 2021-09-09 | Mako Surgical Corp. | Scaffold for alloprosthetic composite implant |
JP7123031B2 (ja) | 2016-07-15 | 2022-08-22 | マコ サージカル コーポレーション | ロボット支援再置換手技用のシステム |
WO2018009981A1 (en) | 2016-07-15 | 2018-01-18 | Fastbrick Ip Pty Ltd | Brick/block laying machine incorporated in a vehicle |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
WO2018035499A2 (en) | 2016-08-19 | 2018-02-22 | Shaper Tools, Inc. | Systems, methods and apparatus for sharing tool fabrication and design data |
EP3503814B1 (en) | 2016-08-23 | 2024-07-10 | Stryker European Operations Holdings LLC | Instrumentation for the implantation of spinal implants |
CA3034071A1 (en) | 2016-08-30 | 2018-03-08 | Mako Surgical Corp. | Systems and methods for intra-operative pelvic registration |
US11370113B2 (en) * | 2016-09-06 | 2022-06-28 | Verily Life Sciences Llc | Systems and methods for prevention of surgical mistakes |
EP3515349B1 (en) * | 2016-09-19 | 2024-09-04 | Intuitive Surgical Operations, Inc. | Positioning indicator system for a remotely controllable arm and related methods |
CN109788963A (zh) | 2016-09-26 | 2019-05-21 | 思想外科有限公司 | 用于手术销驱动器的销放置保持器 |
EP3375399B1 (en) | 2016-10-05 | 2022-05-25 | NuVasive, Inc. | Surgical navigation system |
WO2018069834A1 (en) * | 2016-10-10 | 2018-04-19 | Generic Robotics Limited | A simulator for manual tasks |
US10631935B2 (en) * | 2016-10-25 | 2020-04-28 | Biosense Webster (Israel) Ltd. | Head registration using a personalized gripper |
US11751948B2 (en) | 2016-10-25 | 2023-09-12 | Mobius Imaging, Llc | Methods and systems for robot-assisted surgery |
CA3042091A1 (en) | 2016-10-31 | 2018-05-03 | Synaptive Medical (Barbados) Inc. | 3d navigation system and methods |
EP3319066A1 (en) | 2016-11-04 | 2018-05-09 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking |
US20180130226A1 (en) | 2016-11-07 | 2018-05-10 | Lincoln Global, Inc. | System and method for calibrating a welding trainer |
US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display |
JP7481114B2 (ja) * | 2016-11-11 | 2024-05-10 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 走査ベースの位置付けを伴う遠隔操作手術システム |
CN109933097A (zh) * | 2016-11-21 | 2019-06-25 | 清华大学深圳研究生院 | 一种基于三维手势的空间机器人遥操作系统 |
DE102016223841A1 (de) * | 2016-11-30 | 2018-05-30 | Siemens Healthcare Gmbh | Berechnen eines Kalibrierungsparameters eines Roboterwerkzeugs |
EP3551098B1 (en) | 2016-12-08 | 2024-03-20 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target cutting plane |
AU2017372744B2 (en) | 2016-12-08 | 2020-03-26 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target plane |
WO2018104439A1 (en) | 2016-12-08 | 2018-06-14 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target plane |
EP3554414A1 (en) | 2016-12-16 | 2019-10-23 | MAKO Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
MX2019007311A (es) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Sistemas de engrapado quirurgico. |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
CN108255545B (zh) * | 2016-12-28 | 2022-09-02 | 阿里巴巴集团控股有限公司 | 组件间的功能调用方法、装置及组件化架构系统 |
US10772685B2 (en) | 2017-01-16 | 2020-09-15 | Think Surgical, Inc. | System and method for bone re-registration and marker installation |
JP7020473B2 (ja) * | 2017-02-28 | 2022-02-16 | ソニーグループ株式会社 | 制御システム及び制御方法、並びに手術アームシステム |
CN110430836A (zh) * | 2017-03-15 | 2019-11-08 | 安托踏实公司 | 用于在脊柱外科手术中相对于目标轴线引导外科手术工具的系统 |
CN107053179B (zh) * | 2017-04-21 | 2019-07-23 | 苏州康多机器人有限公司 | 一种基于模糊强化学习的机械臂柔顺力控制方法 |
WO2018200256A1 (en) | 2017-04-24 | 2018-11-01 | Think Surgical, Inc. | Magnetic coupling and method for calibrating a robotic system |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
JP7244985B2 (ja) * | 2017-05-19 | 2023-03-23 | 川崎重工業株式会社 | 操作装置及び操作システム |
US10874469B2 (en) * | 2017-05-22 | 2020-12-29 | Tsinghua University | Remotely operated orthopedic surgical robot system for fracture reduction with visual-servo control method |
WO2018219952A1 (en) * | 2017-05-29 | 2018-12-06 | Franka Emika Gmbh | Collision handling by a robot |
EP3409230B1 (de) * | 2017-05-31 | 2019-05-22 | Siemens Healthcare GmbH | Bewegen eines roboterarms |
US10997872B2 (en) | 2017-06-01 | 2021-05-04 | Lincoln Global, Inc. | Spring-loaded tip assembly to support simulated shielded metal arc welding |
CN107009363A (zh) * | 2017-06-09 | 2017-08-04 | 微创(上海)医疗机器人有限公司 | 医疗机器人及其控制方法 |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11229496B2 (en) * | 2017-06-22 | 2022-01-25 | Navlab Holdings Ii, Llc | Systems and methods of providing assistance to a surgeon for minimizing errors during a surgical procedure |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10483007B2 (en) | 2017-07-25 | 2019-11-19 | Intouch Technologies, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
WO2019023378A1 (en) * | 2017-07-27 | 2019-01-31 | Intuitive Surgical Operations, Inc. | LUMINOUS DISPLAYS IN A MEDICAL DEVICE |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
EP3441201B1 (en) * | 2017-08-08 | 2023-01-18 | Siemens Healthcare GmbH | Method for operating a robot and robotic system |
WO2019033165A1 (en) | 2017-08-17 | 2019-02-21 | Fastbrick Ip Pty Ltd | CONFIGURATION OF INTERACTION SYSTEM |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
CA2977489C (en) * | 2017-08-28 | 2019-11-26 | Synaptive Medical (Barbados) Inc. | Positioning arm for a surgical navigation system |
CN109528274A (zh) * | 2017-09-22 | 2019-03-29 | 清华大学深圳研究生院 | 一种配准方法和装置 |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
WO2019070734A1 (en) | 2017-10-02 | 2019-04-11 | Intuitive Surgical Operations, Inc. | TERMINAL EFFECTOR FORCE FEEDBACK TO A MASTER CONTROL DEVICE |
US10464209B2 (en) * | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US11559898B2 (en) | 2017-10-06 | 2023-01-24 | Moog Inc. | Teleoperation system, method, apparatus, and computer-readable medium |
US10736616B2 (en) | 2017-10-30 | 2020-08-11 | Ethicon Llc | Surgical instrument with remote release |
EP3476318B1 (en) * | 2017-10-30 | 2024-01-10 | Ethicon LLC | Surgical clip applier comprising an automatic clip feeding system |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US10932804B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Surgical instrument with sensor and/or control systems |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
JP7289834B2 (ja) * | 2017-10-30 | 2023-06-12 | エシコン エルエルシー | モジュール式外科用器具の制御システム構成 |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11129634B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instrument with rotary drive selectively actuating multiple end effector functions |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US11241285B2 (en) | 2017-11-07 | 2022-02-08 | Mako Surgical Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11432945B2 (en) | 2017-11-07 | 2022-09-06 | Howmedica Osteonics Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11173048B2 (en) | 2017-11-07 | 2021-11-16 | Howmedica Osteonics Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11540889B2 (en) * | 2017-11-10 | 2023-01-03 | Intuitive Surgical Operations, Inc. | Tension control in actuation of jointed instruments |
US10731687B2 (en) | 2017-11-22 | 2020-08-04 | Medos International Sarl | Instrument coupling interfaces and related methods |
CN107898499B (zh) * | 2017-12-06 | 2021-08-03 | 上海卓昕医疗科技有限公司 | 骨科三维区域定位系统及方法 |
WO2019113391A1 (en) | 2017-12-08 | 2019-06-13 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
CN112040901B (zh) | 2018-01-12 | 2024-07-23 | 格罗伯斯医疗有限公司 | 外科手术传感器锚系统 |
US11154369B2 (en) | 2018-01-24 | 2021-10-26 | Think Surgical, Inc. | Environmental mapping for robotic assisted surgery |
WO2019147964A1 (en) * | 2018-01-26 | 2019-08-01 | Mako Surgical Corp. | End effectors and methods for driving tools guided by surgical robotic systems |
US10881472B2 (en) | 2018-02-20 | 2021-01-05 | Verb Surgical Inc. | Correcting a robotic surgery user interface device tracking input |
WO2019168863A1 (en) | 2018-02-27 | 2019-09-06 | Mako Surgical Corp. | Registration tools, systems, and methods |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11191532B2 (en) | 2018-03-30 | 2021-12-07 | Stryker European Operations Holdings Llc | Lateral access retractor and core insertion |
US11819215B2 (en) * | 2018-04-04 | 2023-11-21 | Incumedx Inc. | Embolic device with improved neck coverage |
US10875662B2 (en) * | 2018-04-19 | 2020-12-29 | Aurora Flight Sciences Corporation | Method of robot manipulation in a vibration environment |
US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration |
US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training |
CN108338842B (zh) * | 2018-04-24 | 2023-10-20 | 吉林大学 | 一种便携式主动约束小关节手术机器人 |
US10617299B2 (en) | 2018-04-27 | 2020-04-14 | Intouch Technologies, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
WO2019211741A1 (en) | 2018-05-02 | 2019-11-07 | Augmedics Ltd. | Registration of a fiducial marker for an augmented reality system |
EP3569159A1 (en) * | 2018-05-14 | 2019-11-20 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target plane |
EP3793465A4 (en) * | 2018-05-18 | 2022-03-02 | Auris Health, Inc. | CONTROL DEVICES FOR ROBOTIC ACTIVATION REMOTE CONTROL SYSTEMS |
US20210204963A1 (en) * | 2018-05-18 | 2021-07-08 | Smith & Nephew, Inc. | System and method for tracking resection planes |
US11191594B2 (en) | 2018-05-25 | 2021-12-07 | Mako Surgical Corp. | Versatile tracking arrays for a navigation system and methods of recovering registration using the same |
CN110547875A (zh) * | 2018-06-01 | 2019-12-10 | 上海舍成医疗器械有限公司 | 调整物体姿态的方法及其装置和在自动化设备中的应用 |
US10828113B2 (en) * | 2018-06-04 | 2020-11-10 | Medtronic Navigation, Inc. | System and method for performing and evaluating a procedure |
JP7082090B2 (ja) * | 2018-06-27 | 2022-06-07 | グローバス メディカル インコーポレイティッド | 仮想インプラントを調整する方法および関連する手術用ナビゲーションシステム |
US10888385B2 (en) * | 2018-07-09 | 2021-01-12 | Point Robotics Medtech Inc. | Calibration device and calibration method for surgical instrument |
CN109009473B (zh) * | 2018-07-14 | 2021-04-06 | 杭州三坛医疗科技有限公司 | 脊椎创伤定位系统及其定位方法 |
US11419604B2 (en) | 2018-07-16 | 2022-08-23 | Cilag Gmbh International | Robotic systems with separate photoacoustic receivers |
US11291507B2 (en) | 2018-07-16 | 2022-04-05 | Mako Surgical Corp. | System and method for image based registration and calibration |
US11298186B2 (en) * | 2018-08-02 | 2022-04-12 | Point Robotics Medtech Inc. | Surgery assistive system and method for obtaining surface information thereof |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11612438B2 (en) * | 2018-09-05 | 2023-03-28 | Point Robotics Medtech Inc. | Navigation system and method for medical operation by a robotic system using a tool |
GB2577717B (en) * | 2018-10-03 | 2023-06-21 | Cmr Surgical Ltd | Monitoring performance during manipulation of user input control device of robotic system |
US11218409B2 (en) | 2018-10-16 | 2022-01-04 | Eluvio, Inc. | Decentralized content fabric |
CN112888396A (zh) * | 2018-10-30 | 2021-06-01 | 柯惠Lp公司 | 用于机器人手术系统的绑定性和非绑定性关节运动限制 |
WO2020093156A1 (en) * | 2018-11-07 | 2020-05-14 | Intellijoint Surgical Inc. | Methods and systems for surgical navigation and devices for surgery |
US11534257B2 (en) * | 2018-11-20 | 2022-12-27 | Howmedica Osteonics Corp. | Lattice impaction pad |
US11766296B2 (en) | 2018-11-26 | 2023-09-26 | Augmedics Ltd. | Tracking system for image-guided surgery |
US10939977B2 (en) | 2018-11-26 | 2021-03-09 | Augmedics Ltd. | Positioning marker |
WO2020123928A1 (en) | 2018-12-14 | 2020-06-18 | Mako Surgical Corp. | Systems and methods for preoperative planning and postoperative analysis of surgical procedures |
JP7400494B2 (ja) * | 2019-01-23 | 2023-12-19 | ソニーグループ株式会社 | 医療用アームシステム、制御装置、制御方法、及びプログラム |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
WO2020181076A1 (en) | 2019-03-05 | 2020-09-10 | Mako Surgical Corp. | Systems and methods for surgical registration |
EP3705074A1 (en) | 2019-03-08 | 2020-09-09 | MAKO Surgical Corp. | Systems and methods for controlling movement of a surgical tool along a predefined path |
KR102269772B1 (ko) * | 2019-03-13 | 2021-06-28 | 큐렉소 주식회사 | 수술용 로봇의 엔드이펙터 |
US11690680B2 (en) * | 2019-03-19 | 2023-07-04 | Mako Surgical Corp. | Trackable protective packaging for tools and methods for calibrating tool installation using the same |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11523868B2 (en) * | 2019-04-01 | 2022-12-13 | Think Surgical, Inc. | Bone registration methods for robotic surgical procedures |
US11684374B2 (en) * | 2019-04-12 | 2023-06-27 | Mako Surgical Corp. | Robotic systems and methods for manipulating a cutting guide for a surgical instrument |
FR3095331A1 (fr) | 2019-04-26 | 2020-10-30 | Ganymed Robotics | Procédé de chirurgie orthopédique assistée par ordinateur |
CN109998682B (zh) * | 2019-04-28 | 2020-08-18 | 北京天智航医疗科技股份有限公司 | 探针装置、精度检测方法、精度检测系统及定位系统 |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11337767B2 (en) * | 2019-05-17 | 2022-05-24 | Verb Surgical Inc. | Interlock mechanisms to disengage and engage a teleoperation mode |
US11439411B2 (en) | 2019-05-24 | 2022-09-13 | Think Surgical, Inc. | System and method to improve surgical cutting in the presence of surgical debris |
US11638613B2 (en) * | 2019-05-29 | 2023-05-02 | Stephen B. Murphy | Systems and methods for augmented reality based surgical navigation |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
EP3989793A4 (en) | 2019-06-28 | 2023-07-19 | Auris Health, Inc. | CONSOLE OVERLAY ITS METHODS OF USE |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11980506B2 (en) | 2019-07-29 | 2024-05-14 | Augmedics Ltd. | Fiducial marker |
US11612440B2 (en) | 2019-09-05 | 2023-03-28 | Nuvasive, Inc. | Surgical instrument tracking devices and related methods |
US11559366B2 (en) * | 2019-09-30 | 2023-01-24 | Cilag Gmbh International | Communicating closure effort for robotic surgical tools background |
WO2021067113A1 (en) * | 2019-10-01 | 2021-04-08 | Mako Surgical Corp. | Systems and methods for providing haptic guidance |
WO2021067922A1 (en) * | 2019-10-03 | 2021-04-08 | Smith & Nephew, Inc. | Registration of intramedullary canal during revision total knee arthroplasty |
EP3815643A1 (en) | 2019-10-29 | 2021-05-05 | Think Surgical, Inc. | Two degree of freedom system |
CN110711031B (zh) * | 2019-10-31 | 2021-11-23 | 武汉联影智融医疗科技有限公司 | 手术导航系统、坐标系配准系统、方法、设备和介质 |
US11625834B2 (en) * | 2019-11-08 | 2023-04-11 | Sony Group Corporation | Surgical scene assessment based on computer vision |
CN110811834B (zh) * | 2019-11-22 | 2021-07-02 | 苏州微创畅行机器人有限公司 | 截骨导向工具的校验方法、校验系统及检测靶标 |
US11644053B2 (en) | 2019-11-26 | 2023-05-09 | Medos International Sarl | Instrument coupling interfaces and related methods |
US11564674B2 (en) | 2019-11-27 | 2023-01-31 | K2M, Inc. | Lateral access system and method of use |
JP6901160B2 (ja) * | 2019-12-05 | 2021-07-14 | 炳碩生醫股▲フン▼有限公司 | 手術支援システムおよびその表面情報を取得する方法 |
US20210177526A1 (en) * | 2019-12-16 | 2021-06-17 | Orthosoft Ulc | Method and system for spine tracking in computer-assisted surgery |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11382712B2 (en) | 2019-12-22 | 2022-07-12 | Augmedics Ltd. | Mirroring in image guided surgery |
US12053223B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Adaptive surgical system control according to surgical smoke particulate characteristics |
US11648060B2 (en) | 2019-12-30 | 2023-05-16 | Cilag Gmbh International | Surgical system for overlaying surgical instrument data onto a virtual three dimensional construct of an organ |
US11776144B2 (en) | 2019-12-30 | 2023-10-03 | Cilag Gmbh International | System and method for determining, adjusting, and managing resection margin about a subject tissue |
US11219501B2 (en) | 2019-12-30 | 2022-01-11 | Cilag Gmbh International | Visualization systems using structured light |
US11832996B2 (en) | 2019-12-30 | 2023-12-05 | Cilag Gmbh International | Analyzing surgical trends by a surgical system |
US11284963B2 (en) | 2019-12-30 | 2022-03-29 | Cilag Gmbh International | Method of using imaging devices in surgery |
US11896442B2 (en) | 2019-12-30 | 2024-02-13 | Cilag Gmbh International | Surgical systems for proposing and corroborating organ portion removals |
US12002571B2 (en) | 2019-12-30 | 2024-06-04 | Cilag Gmbh International | Dynamic surgical visualization systems |
US11744667B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Adaptive visualization by a surgical system |
US11759283B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto |
CN111110351B (zh) * | 2020-01-10 | 2021-04-30 | 北京天智航医疗科技股份有限公司 | 用于检测关节置换手术机器人系统精度的组件和方法 |
CN115279294A (zh) | 2020-01-13 | 2022-11-01 | 史赛克公司 | 在导航辅助手术期间监控偏移的系统 |
EP4090292B1 (en) | 2020-01-15 | 2023-12-20 | Smith & Nephew, Inc. | Trial-first measuring device for use during revision total knee arthroplasty |
CN111340876A (zh) * | 2020-02-21 | 2020-06-26 | 京东方科技集团股份有限公司 | 用于膝关节置换的处理方法、装置、存储介质和电子设备 |
CN111345971B (zh) * | 2020-03-14 | 2022-03-08 | 北京工业大学 | 一种基于导纳模型的踝康复机器人多模式柔顺训练方法 |
US20210298830A1 (en) * | 2020-03-25 | 2021-09-30 | Covidien Lp | Robotic surgical system and methods of use thereof |
WO2021191763A1 (en) * | 2020-03-25 | 2021-09-30 | DePuy Synthes Products, Inc. | Systems for using surgical robots with navigation arrays |
KR20220158737A (ko) | 2020-03-27 | 2022-12-01 | 마코 서지컬 코포레이션 | 가상 경계에 기초하여 툴의 로봇 움직임을 제어하기 위한 시스템 및 방법 |
EP4132406A4 (en) * | 2020-04-08 | 2024-04-24 | Think Surgical, Inc. | CALIBRATION OF A DIGITIZER |
CN111513849B (zh) * | 2020-04-30 | 2022-04-19 | 京东方科技集团股份有限公司 | 一种用于穿刺的手术系统、控制方法及控制装置 |
US20210369290A1 (en) * | 2020-05-26 | 2021-12-02 | Globus Medical, Inc. | Navigated drill guide |
EP4157117A1 (en) | 2020-05-29 | 2023-04-05 | Materialise NV | Implant for correcting a defect of a bone structure with navigation fiducials |
CN111557736B (zh) * | 2020-06-02 | 2021-03-12 | 杭州键嘉机器人有限公司 | 医疗机器人导航系统中截骨导板的标定方法 |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
US11389252B2 (en) | 2020-06-15 | 2022-07-19 | Augmedics Ltd. | Rotating marker for image guided surgery |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US20220051483A1 (en) * | 2020-08-17 | 2022-02-17 | Russell Todd Nevins | System and method for location determination using a mixed reality device and a 3d spatial mapping camera |
HUP2000276A1 (hu) * | 2020-08-19 | 2022-02-28 | Grayscalelab Kft | Orvosi eszköz orientációjának követésére szolgáló rendszer |
CN115996687B (zh) * | 2020-09-09 | 2024-09-06 | 瑞德医疗机器股份有限公司 | 运算装置 |
CN112057172B (zh) * | 2020-09-10 | 2022-02-11 | 苏州大学 | 一种微创手术机器人 |
CN113768626B (zh) * | 2020-09-25 | 2024-03-22 | 武汉联影智融医疗科技有限公司 | 手术机器人控制方法、计算机设备及手术机器人系统 |
JP7223734B2 (ja) * | 2020-10-23 | 2023-02-16 | 川崎重工業株式会社 | 手術支援システム、手術支援システムの制御装置および手術支援システムの制御方法 |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US20220133331A1 (en) | 2020-10-30 | 2022-05-05 | Mako Surgical Corp. | Robotic surgical system with cut selection logic |
CN112336461B (zh) * | 2020-11-05 | 2022-08-12 | 苏州微创畅行机器人有限公司 | 手术机器人、控制方法、系统及可读存储介质 |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
CN112223299B (zh) * | 2020-12-11 | 2021-03-12 | 南京佗道医疗科技有限公司 | 一种系统精度验证装置及方法 |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
CN113040915B (zh) * | 2021-03-12 | 2024-06-04 | 杭州柳叶刀机器人有限公司 | 机器人安全边界控制装置及方法、电子设备和存储介质 |
CN113017941B (zh) * | 2021-03-12 | 2024-07-05 | 杭州柳叶刀机器人有限公司 | 机械臂作用力交互控制方法及装置、电子设备和存储介质 |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11819302B2 (en) | 2021-03-31 | 2023-11-21 | Moon Surgical Sas | Co-manipulation surgical system having user guided stage control |
US11812938B2 (en) | 2021-03-31 | 2023-11-14 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
US11844583B2 (en) | 2021-03-31 | 2023-12-19 | Moon Surgical Sas | Co-manipulation surgical system having an instrument centering mode for automatic scope movements |
AU2022247392A1 (en) | 2021-03-31 | 2023-09-28 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
US11832909B2 (en) | 2021-03-31 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having actuatable setup joints |
US20220370146A1 (en) * | 2021-05-19 | 2022-11-24 | Globus Medical, Inc. | Intraoperative alignment assessment system and method |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
CN113331949B (zh) * | 2021-06-01 | 2022-10-21 | 武汉联影智融医疗科技有限公司 | 具有注册探针的手术机器人系统及其注册方法 |
US11896445B2 (en) | 2021-07-07 | 2024-02-13 | Augmedics Ltd. | Iliac pin and adapter |
CN115381557A (zh) * | 2021-07-09 | 2022-11-25 | 武汉联影智融医疗科技有限公司 | 末端工具位姿的实时修正方法、系统以及手术机器人 |
USD1044829S1 (en) | 2021-07-29 | 2024-10-01 | Mako Surgical Corp. | Display screen or portion thereof with graphical user interface |
EP4391952A1 (en) * | 2021-08-27 | 2024-07-03 | Covidien LP | System for audio playback control in a surgical robotic system |
US12048562B2 (en) | 2021-08-31 | 2024-07-30 | Biosense Webster (Israel) Ltd. | Reducing perceived latency of catheters |
CN113842217B (zh) * | 2021-09-03 | 2022-07-01 | 北京长木谷医疗科技有限公司 | 机器人运动区域的限定方法及系统 |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US11311346B1 (en) * | 2021-11-24 | 2022-04-26 | Bh2 Innovations Inc. | Systems and methods for automated control of medical instruments using artificial intelligence |
CN114310910B (zh) * | 2021-12-23 | 2023-09-05 | 真健康(北京)医疗科技有限公司 | 适用于穿刺手术机械臂的控制方法、控制设备和辅助系统 |
US20230270503A1 (en) * | 2022-02-03 | 2023-08-31 | Mazor Robotics Ltd. | Segemental tracking combining optical tracking and inertial measurements |
WO2023230349A1 (en) * | 2022-05-26 | 2023-11-30 | Stryker Corporation | Alert system behavior based on localization awareness |
WO2024057210A1 (en) | 2022-09-13 | 2024-03-21 | Augmedics Ltd. | Augmented reality eyewear for image-guided medical intervention |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US11839442B1 (en) | 2023-01-09 | 2023-12-12 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
WO2024173736A1 (en) | 2023-02-17 | 2024-08-22 | Think Surgical, Inc. | Determining a position for an implant relative to a bone based on bone remodeling data |
CN117745496B (zh) * | 2024-02-19 | 2024-05-31 | 成都运达科技股份有限公司 | 一种基于混合现实技术的智能考评方法、系统及存储介质 |
Family Cites Families (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US611577A (en) * | 1898-09-27 | griffin | ||
US750807A (en) * | 1904-02-02 | Telegraph apparatus | ||
US750815A (en) * | 1904-02-02 | Soap-tray | ||
US750840A (en) * | 1904-02-02 | Well-drill | ||
US760845A (en) * | 1903-09-24 | 1904-05-24 | John G Bodenstein | Field ice-planer. |
US4747393A (en) | 1983-01-05 | 1988-05-31 | Albert Medwid | Visceral retractor |
US5207114A (en) | 1988-04-21 | 1993-05-04 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US5046375A (en) | 1988-04-21 | 1991-09-10 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US4903536A (en) | 1988-04-21 | 1990-02-27 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US4979949A (en) | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US6923810B1 (en) * | 1988-06-13 | 2005-08-02 | Gary Karlin Michelson | Frusto-conical interbody spinal fusion implants |
ES2085885T3 (es) | 1989-11-08 | 1996-06-16 | George S Allen | Brazo mecanico para sistema interactivo de cirugia dirigido por imagenes. |
US5331975A (en) | 1990-03-02 | 1994-07-26 | Bonutti Peter M | Fluid operated retractors |
US5086401A (en) * | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US6006126A (en) | 1991-01-28 | 1999-12-21 | Cosman; Eric R. | System and method for stereotactic registration of image scan data |
US6405072B1 (en) | 1991-01-28 | 2002-06-11 | Sherwood Services Ag | Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
EP0776738B1 (en) | 1992-01-21 | 2002-04-03 | Sri International | An endoscopic surgical instrument |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
FR2691093B1 (fr) | 1992-05-12 | 1996-06-14 | Univ Joseph Fourier | Robot de guidage de gestes et procede de commande. |
US5517990A (en) | 1992-11-30 | 1996-05-21 | The Cleveland Clinic Foundation | Stereotaxy wand and tool guide |
US5629594A (en) | 1992-12-02 | 1997-05-13 | Cybernet Systems Corporation | Force feedback system |
US5769640A (en) * | 1992-12-02 | 1998-06-23 | Cybernet Systems Corporation | Method and system for simulating medical procedures including virtual reality and control method and system for use therein |
US5730130A (en) | 1993-02-12 | 1998-03-24 | Johnson & Johnson Professional, Inc. | Localization cap for fiducial markers |
CA2165980C (en) | 1993-06-21 | 2001-02-20 | Mark Nicholas Dance | Method and apparatus for locating functional structures of the lower leg during knee surgery |
AU7468494A (en) * | 1993-07-07 | 1995-02-06 | Cornelius Borst | Robotic system for close inspection and remote treatment of moving parts |
US5701140A (en) | 1993-07-16 | 1997-12-23 | Immersion Human Interface Corp. | Method and apparatus for providing a cursor control interface with force feedback |
US5388480A (en) | 1993-08-04 | 1995-02-14 | Barrett Technology, Inc. | Pretensioning mechanism for tension element drive systems |
US5343385A (en) | 1993-08-17 | 1994-08-30 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
US5625576A (en) | 1993-10-01 | 1997-04-29 | Massachusetts Institute Of Technology | Force reflecting haptic interface |
US5383901A (en) * | 1993-10-18 | 1995-01-24 | Ethicon, Inc. | Blunt point needles |
US5445144A (en) | 1993-12-16 | 1995-08-29 | Purdue Research Foundation | Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body |
GB9405299D0 (en) | 1994-03-17 | 1994-04-27 | Roke Manor Research | Improvements in or relating to video-based systems for computer assisted surgery and localisation |
US5888220A (en) | 1994-05-06 | 1999-03-30 | Advanced Bio Surfaces, Inc. | Articulating joint repair |
US5452941A (en) | 1994-07-19 | 1995-09-26 | Hoover University, Inc. | Flat seat belt retractor |
ATE252349T1 (de) * | 1994-09-15 | 2003-11-15 | Visualization Technology Inc | System zur positionserfassung mittels einer an einem patientenkopf angebrachten referenzeinheit zur anwendung im medizinischen gebiet |
WO1996008209A2 (en) | 1994-09-15 | 1996-03-21 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications using a reference unit secured to a patient's head |
US5695501A (en) | 1994-09-30 | 1997-12-09 | Ohio Medical Instrument Company, Inc. | Apparatus for neurosurgical stereotactic procedures |
EP0869745B8 (en) | 1994-10-07 | 2003-04-16 | St. Louis University | Surgical navigation systems including reference and localization frames |
JP3342969B2 (ja) | 1994-10-21 | 2002-11-11 | 東芝機械株式会社 | 力制御ロボット |
US5766016A (en) * | 1994-11-14 | 1998-06-16 | Georgia Tech Research Corporation | Surgical simulator and method for simulating surgical procedure |
US5630820A (en) | 1994-12-05 | 1997-05-20 | Sulzer Orthopedics Inc. | Surgical bicompartmental tensiometer for revision knee surgery |
US5540696A (en) | 1995-01-06 | 1996-07-30 | Zimmer, Inc. | Instrumentation for use in orthopaedic surgery |
US5971997A (en) | 1995-02-03 | 1999-10-26 | Radionics, Inc. | Intraoperative recalibration apparatus for stereotactic navigators |
JP3539645B2 (ja) | 1995-02-16 | 2004-07-07 | 株式会社日立製作所 | 遠隔手術支援装置 |
US5882206A (en) | 1995-03-29 | 1999-03-16 | Gillio; Robert G. | Virtual surgery system |
US5887121A (en) | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
US6256529B1 (en) | 1995-07-26 | 2001-07-03 | Burdette Medical Systems, Inc. | Virtual reality 3D visualization for surgical procedures |
US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5806518A (en) | 1995-09-11 | 1998-09-15 | Integrated Surgical Systems | Method and system for positioning surgical robot |
US6028593A (en) * | 1995-12-01 | 2000-02-22 | Immersion Corporation | Method and apparatus for providing simulated physical interactions within computer generated environments |
US6147674A (en) | 1995-12-01 | 2000-11-14 | Immersion Corporation | Method and apparatus for designing force sensations in force feedback computer applications |
US6219032B1 (en) | 1995-12-01 | 2001-04-17 | Immersion Corporation | Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface |
US6078308A (en) | 1995-12-13 | 2000-06-20 | Immersion Corporation | Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object |
US6300936B1 (en) | 1997-11-14 | 2001-10-09 | Immersion Corporation | Force feedback system including multi-tasking graphical host environment and interface device |
US6750877B2 (en) | 1995-12-13 | 2004-06-15 | Immersion Corporation | Controlling haptic feedback for enhancing navigation in a graphical environment |
US5682886A (en) | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
US6111577A (en) | 1996-04-04 | 2000-08-29 | Massachusetts Institute Of Technology | Method and apparatus for determining forces to be applied to a user through a haptic interface |
US5928137A (en) | 1996-05-03 | 1999-07-27 | Green; Philip S. | System and method for endoscopic imaging and endosurgery |
US5799055A (en) | 1996-05-15 | 1998-08-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
JP2938805B2 (ja) | 1996-06-10 | 1999-08-25 | 株式会社エイ・ティ・アール通信システム研究所 | 仮想物体操作方法および仮想物体表示装置 |
US6084587A (en) | 1996-08-02 | 2000-07-04 | Sensable Technologies, Inc. | Method and apparatus for generating and interfacing with a haptic virtual reality environment |
US5694013A (en) | 1996-09-06 | 1997-12-02 | Ford Global Technologies, Inc. | Force feedback haptic interface for a three-dimensional CAD surface |
US5727554A (en) | 1996-09-19 | 1998-03-17 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus responsive to movement of a patient during treatment/diagnosis |
US5984930A (en) | 1996-09-30 | 1999-11-16 | George S. Allen | Biopsy guide |
US5980535A (en) | 1996-09-30 | 1999-11-09 | Picker International, Inc. | Apparatus for anatomical tracking |
DE19653966C2 (de) * | 1996-12-21 | 1999-06-10 | Juergen Dr Ing Wahrburg | Vorrichtung zum Positionieren und Führen eines chirurgischen Werkzeuges bei orthopädischen Eingriffen |
US7618451B2 (en) * | 2001-05-25 | 2009-11-17 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty |
US6109270A (en) | 1997-02-04 | 2000-08-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multimodality instrument for tissue characterization |
US6205411B1 (en) | 1997-02-21 | 2001-03-20 | Carnegie Mellon University | Computer-assisted surgery planner and intra-operative guidance system |
US5880976A (en) | 1997-02-21 | 1999-03-09 | Carnegie Mellon University | Apparatus and method for facilitating the implantation of artificial components in joints |
US6006127A (en) | 1997-02-28 | 1999-12-21 | U.S. Philips Corporation | Image-guided surgery system |
DE29704393U1 (de) | 1997-03-11 | 1997-07-17 | Aesculap Ag, 78532 Tuttlingen | Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen |
US6322467B1 (en) | 1997-06-30 | 2001-11-27 | Jervis B. Webb Company | Movable backup bar assembly |
US6252579B1 (en) | 1997-08-23 | 2001-06-26 | Immersion Corporation | Interface device and method for providing enhanced cursor control with force feedback |
US6292174B1 (en) | 1997-08-23 | 2001-09-18 | Immersion Corporation | Enhanced cursor control using limited-workspace force feedback devices |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US5987960A (en) | 1997-09-26 | 1999-11-23 | Picker International, Inc. | Tool calibrator |
US5978696A (en) | 1997-10-06 | 1999-11-02 | General Electric Company | Real-time image-guided placement of anchor devices |
WO1999023956A1 (en) | 1997-11-05 | 1999-05-20 | Synthes Ag, Chur | Virtual representation of a bone or a bone joint |
US6228089B1 (en) | 1997-12-19 | 2001-05-08 | Depuy International Limited | Device for positioning and guiding a surgical instrument during orthopaedic interventions |
US6191170B1 (en) | 1998-01-13 | 2001-02-20 | Tularik Inc. | Benzenesulfonamides and benzamides as therapeutic agents |
US6191796B1 (en) | 1998-01-21 | 2001-02-20 | Sensable Technologies, Inc. | Method and apparatus for generating and interfacing with rigid and deformable surfaces in a haptic virtual reality environment |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US6692485B1 (en) | 1998-02-24 | 2004-02-17 | Endovia Medical, Inc. | Articulated apparatus for telemanipulator system |
AU3197699A (en) * | 1998-03-30 | 1999-10-18 | Biosense, Inc. | Three-axis coil sensor |
US6233504B1 (en) | 1998-04-16 | 2001-05-15 | California Institute Of Technology | Tool actuation and force feedback on robot-assisted microsurgery system |
US6546277B1 (en) | 1998-04-21 | 2003-04-08 | Neutar L.L.C. | Instrument guidance system for spinal and other surgery |
US6337994B1 (en) | 1998-04-30 | 2002-01-08 | Johns Hopkins University | Surgical needle probe for electrical impedance measurements |
WO1999060939A1 (en) | 1998-05-28 | 1999-12-02 | Orthosoft, Inc. | Interactive computer-assisted surgical system and method thereof |
US6417638B1 (en) | 1998-07-17 | 2002-07-09 | Sensable Technologies, Inc. | Force reflecting haptic interface |
US6552722B1 (en) | 1998-07-17 | 2003-04-22 | Sensable Technologies, Inc. | Systems and methods for sculpting virtual objects in a haptic virtual reality environment |
US6985133B1 (en) | 1998-07-17 | 2006-01-10 | Sensable Technologies, Inc. | Force reflecting haptic interface |
US6421048B1 (en) | 1998-07-17 | 2002-07-16 | Sensable Technologies, Inc. | Systems and methods for interacting with virtual objects in a haptic virtual reality environment |
US6113395A (en) * | 1998-08-18 | 2000-09-05 | Hon; David C. | Selectable instruments with homing devices for haptic virtual reality medical simulation |
ATE439806T1 (de) | 1998-09-14 | 2009-09-15 | Univ Leland Stanford Junior | Zustandsbestimmung eines gelenks und schadenvorsorge |
US6033415A (en) | 1998-09-14 | 2000-03-07 | Integrated Surgical Systems | System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system |
US6188728B1 (en) | 1998-09-29 | 2001-02-13 | Sarnoff Corporation | Block motion video coding and decoding |
US6704694B1 (en) | 1998-10-16 | 2004-03-09 | Massachusetts Institute Of Technology | Ray based interaction system |
JP4101951B2 (ja) | 1998-11-10 | 2008-06-18 | オリンパス株式会社 | 手術用顕微鏡 |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6325808B1 (en) * | 1998-12-08 | 2001-12-04 | Advanced Realtime Control Systems, Inc. | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
US6430434B1 (en) | 1998-12-14 | 2002-08-06 | Integrated Surgical Systems, Inc. | Method for determining the location and orientation of a bone for computer-assisted orthopedic procedures using intraoperatively attached markers |
US6322567B1 (en) | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6285902B1 (en) | 1999-02-10 | 2001-09-04 | Surgical Insights, Inc. | Computer assisted targeting device for use in orthopaedic surgery |
US6778850B1 (en) | 1999-03-16 | 2004-08-17 | Accuray, Inc. | Frameless radiosurgery treatment system and method |
US6466815B1 (en) | 1999-03-30 | 2002-10-15 | Olympus Optical Co., Ltd. | Navigation apparatus and surgical operation image acquisition/display apparatus using the same |
JP2000279425A (ja) | 1999-03-30 | 2000-10-10 | Olympus Optical Co Ltd | ナビゲーション装置 |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6478793B1 (en) | 1999-06-11 | 2002-11-12 | Sherwood Services Ag | Ablation treatment of bone metastases |
US6443894B1 (en) | 1999-09-29 | 2002-09-03 | Acuson Corporation | Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging |
US6674916B1 (en) | 1999-10-18 | 2004-01-06 | Z-Kat, Inc. | Interpolation in transform space for multiple rigid object registration |
US6377011B1 (en) | 2000-01-26 | 2002-04-23 | Massachusetts Institute Of Technology | Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus |
US20010034530A1 (en) | 2000-01-27 | 2001-10-25 | Malackowski Donald W. | Surgery system |
WO2001062173A2 (en) | 2000-02-25 | 2001-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body |
WO2001065121A2 (en) | 2000-03-01 | 2001-09-07 | Massachusetts Institute Of Technology | Force-controlled hydro-elastic actuator |
US7084869B2 (en) | 2000-03-31 | 2006-08-01 | Massachusetts Institute Of Technology | Methods and apparatus for detecting and correcting penetration between objects |
US6535756B1 (en) | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
US6701174B1 (en) | 2000-04-07 | 2004-03-02 | Carnegie Mellon University | Computer-aided bone distraction |
US6711432B1 (en) | 2000-10-23 | 2004-03-23 | Carnegie Mellon University | Computer-aided orthopedic surgery |
GB0015683D0 (en) * | 2000-06-28 | 2000-08-16 | Depuy Int Ltd | Apparatus for positioning a surgical instrument |
DE10033723C1 (de) | 2000-07-12 | 2002-02-21 | Siemens Ag | Visualisierung von Positionen und Orientierung von intrakorporal geführten Instrumenten während eines chirurgischen Eingriffs |
US6484118B1 (en) | 2000-07-20 | 2002-11-19 | Biosense, Inc. | Electromagnetic position single axis system |
US7809421B1 (en) | 2000-07-20 | 2010-10-05 | Biosense, Inc. | Medical system calibration with static metal compensation |
AU2001292634A1 (en) * | 2000-09-13 | 2002-03-26 | University Of Washington | Time domain passivity control of haptic interfaces |
AU2001292836A1 (en) | 2000-09-23 | 2002-04-02 | The Board Of Trustees Of The Leland Stanford Junior University | Endoscopic targeting method and system |
EP1190676B1 (de) | 2000-09-26 | 2003-08-13 | BrainLAB AG | Vorrichtung zum Bestimmen der Position eines Schneidblocks |
US20020082498A1 (en) | 2000-10-05 | 2002-06-27 | Siemens Corporate Research, Inc. | Intra-operative image-guided neurosurgery with augmented reality visualization |
US20020107521A1 (en) | 2000-12-07 | 2002-08-08 | Petersen Thomas D. | Bur abrading tool and method of use |
EP1351619A4 (en) | 2001-01-16 | 2011-01-05 | Microdexterity Systems Inc | SURGICAL MANIPULATOR |
GB0101990D0 (en) | 2001-01-25 | 2001-03-14 | Finsbury Dev Ltd | Surgical system |
EP1355765B1 (en) | 2001-01-29 | 2008-05-07 | The Acrobot Company Limited | Active-constraint robots |
GB0102245D0 (en) | 2001-01-29 | 2001-03-14 | Acrobot Company The Ltd | Systems/Methods |
US20040102866A1 (en) * | 2001-01-29 | 2004-05-27 | Harris Simon James | Modelling for surgery |
EP1364183B1 (en) | 2001-01-30 | 2013-11-06 | Mako Surgical Corp. | Tool calibrator and tracker system |
US20020108054A1 (en) | 2001-02-02 | 2002-08-08 | Moore Christopher S. | Solid-state memory device storing program code and methods for use therewith |
ATE473688T1 (de) | 2001-03-26 | 2010-07-15 | All Of Innovation Ges Mit Besc | Verfahren und gerätesystem zum materialabtrag oder zur materialbearbeitung |
WO2003007101A2 (en) | 2001-07-09 | 2003-01-23 | Potgieter Anna Elizabeth Gezin | Complex adaptive systems |
JP3614383B2 (ja) * | 2001-07-30 | 2005-01-26 | 川崎重工業株式会社 | ロボット |
EP2308395A1 (en) | 2001-08-08 | 2011-04-13 | Stryker Corporation | Surgical tool system including a navigation unit that receives information about the implant the system is to implant and that responds to the received information |
JP3579379B2 (ja) | 2001-08-10 | 2004-10-20 | 株式会社東芝 | 医療用マニピュレータシステム |
DE10145587B4 (de) | 2001-09-15 | 2007-04-12 | Aesculap Ag & Co. Kg | Verfahren und Vorrichtung zur Prüfung eines Markierungselementes auf Verrückung |
ATE269672T1 (de) | 2001-11-09 | 2004-07-15 | Brainlab Ag | Schwenkbarer arm mit passiven aktuatoren |
WO2003041611A2 (en) | 2001-11-14 | 2003-05-22 | White Michael R | Apparatus and methods for making intraoperative orthopedic measurements |
GB0127659D0 (en) | 2001-11-19 | 2002-01-09 | Acrobot Company The Ltd | Apparatus and method for registering the position of a surgical robot |
GB0127658D0 (en) | 2001-11-19 | 2002-01-09 | Acrobot Company The Ltd | Apparatus for surgical instrument location |
US6785572B2 (en) | 2001-11-21 | 2004-08-31 | Koninklijke Philips Electronics, N.V. | Tactile feedback and display in a CT image guided robotic system for interventional procedures |
US7634306B2 (en) * | 2002-02-13 | 2009-12-15 | Kinamed, Inc. | Non-image, computer assisted navigation system for joint replacement surgery with modular implant system |
US6711431B2 (en) | 2002-02-13 | 2004-03-23 | Kinamed, Inc. | Non-imaging, computer assisted navigation system for hip replacement surgery |
AU2003218010A1 (en) * | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US8010180B2 (en) * | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US6671651B2 (en) | 2002-04-26 | 2003-12-30 | Sensable Technologies, Inc. | 3-D selection and manipulation with a multiple dimension haptic interface |
US6757582B2 (en) | 2002-05-03 | 2004-06-29 | Carnegie Mellon University | Methods and systems to control a shaping tool |
AU2003232063A1 (en) * | 2002-05-06 | 2003-11-11 | Institute For Infocomm Research | Simulation system for medical procedures |
WO2003105659A2 (en) * | 2002-06-17 | 2003-12-24 | Mazor Surgical Technologies Ltd. | Robot for use with orthopaedic inserts |
AU2003245758A1 (en) | 2002-06-21 | 2004-01-06 | Cedara Software Corp. | Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement |
US20040012806A1 (en) | 2002-07-22 | 2004-01-22 | Toshiba Tec Kabushiki Kaisha | System and method for properly printing image data at a hardcopy device |
US6929619B2 (en) | 2002-08-02 | 2005-08-16 | Liebel-Flarshiem Company | Injector |
WO2004023103A2 (en) | 2002-09-09 | 2004-03-18 | Z-Kat, Inc. | Image guided interventional method and apparatus |
US20040172044A1 (en) | 2002-12-20 | 2004-09-02 | Grimm James E. | Surgical instrument and method of positioning same |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
US7542791B2 (en) * | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure |
EP1667573A4 (en) | 2003-02-04 | 2008-02-20 | Z Kat Inc | METHOD AND APPARATUS FOR COMPUTER-ASSISTED TOTAL HIP REPLACEMENT OPERATION |
WO2004070581A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | System and method for providing computer assistance with spinal fixation procedures |
EP1605810A2 (en) | 2003-02-04 | 2005-12-21 | Z-Kat, Inc. | Computer-assisted knee replacement apparatus and method |
EP1627272B2 (en) | 2003-02-04 | 2017-03-08 | Mako Surgical Corp. | Interactive computer-assisted surgery system and method |
US6988009B2 (en) | 2003-02-04 | 2006-01-17 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
US6845691B2 (en) | 2003-02-04 | 2005-01-25 | Chih-Ching Hsien | Ratchet tool with magnetic engaging member |
WO2004069040A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | Method and apparatus for computer assistance with intramedullary nail procedure |
ATE534965T1 (de) | 2003-02-04 | 2011-12-15 | Z Kat Inc | Computerunterstützte knieersatzvorrichtung |
WO2004070573A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | Computer-assisted external fixation apparatus and method |
US20060293598A1 (en) | 2003-02-28 | 2006-12-28 | Koninklijke Philips Electronics, N.V. | Motion-tracking improvements for hifu ultrasound therapy |
US7331436B1 (en) | 2003-03-26 | 2008-02-19 | Irobot Corporation | Communications spooler for a mobile robot |
US7742804B2 (en) | 2003-03-27 | 2010-06-22 | Ivan Faul | Means of tracking movement of bodies during medical treatment |
US8064684B2 (en) * | 2003-04-16 | 2011-11-22 | Massachusetts Institute Of Technology | Methods and apparatus for visualizing volumetric data using deformable physical object |
WO2005000139A1 (en) | 2003-04-28 | 2005-01-06 | Bracco Imaging Spa | Surgical navigation imaging system |
JP2004329726A (ja) | 2003-05-12 | 2004-11-25 | Hitachi Ltd | 手術装置 |
US20050032873A1 (en) | 2003-07-30 | 2005-02-10 | Wyeth | 3-Amino chroman and 2-amino tetralin derivatives |
WO2005013841A1 (en) | 2003-08-07 | 2005-02-17 | Xoran Technologies, Inc. | Intra-operative ct scanner |
WO2005028166A1 (ja) | 2003-09-22 | 2005-03-31 | Matsushita Electric Industrial Co., Ltd. | 弾性体アクチュエータの制御装置及び制御方法 |
US7840253B2 (en) * | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US7411576B2 (en) | 2003-10-30 | 2008-08-12 | Sensable Technologies, Inc. | Force reflecting haptic interface |
US7815644B2 (en) * | 2003-12-19 | 2010-10-19 | Masini Michael A | Instrumentation and methods for refining image-guided and navigation-based surgical procedures |
US20050193451A1 (en) | 2003-12-30 | 2005-09-01 | Liposonix, Inc. | Articulating arm for medical procedures |
ATE547998T1 (de) | 2004-01-12 | 2012-03-15 | Depuy Products Inc | Systeme für den kompartimentenersatz in einem knie |
AU2005209197A1 (en) * | 2004-01-16 | 2005-08-11 | Smith & Nephew, Inc. | Computer-assisted ligament balancing in total knee arthroplasty |
US7774044B2 (en) | 2004-02-17 | 2010-08-10 | Siemens Medical Solutions Usa, Inc. | System and method for augmented reality navigation in a medical intervention procedure |
US20050215888A1 (en) | 2004-03-05 | 2005-09-29 | Grimm James E | Universal support arm and tracking array |
US7850642B2 (en) * | 2004-03-05 | 2010-12-14 | Hansen Medical, Inc. | Methods using a robotic catheter system |
US20050203539A1 (en) * | 2004-03-08 | 2005-09-15 | Grimm James E. | Navigated stemmed orthopaedic implant inserter |
CA2556082A1 (en) | 2004-03-12 | 2005-09-29 | Bracco Imaging S.P.A. | Accuracy evaluation of video-based augmented reality enhanced surgical navigation systems |
US7077020B2 (en) | 2004-04-01 | 2006-07-18 | Crts, Inc. | Internal field joint inspection robot |
WO2005120380A1 (en) | 2004-06-07 | 2005-12-22 | Image-Guided Neurologics, Inc. | Fiducial marker and protective cap |
FR2871363B1 (fr) | 2004-06-15 | 2006-09-01 | Medtech Sa | Dispositif robotise de guidage pour outil chirurgical |
WO2006004894A2 (en) | 2004-06-29 | 2006-01-12 | Sensable Technologies, Inc. | Apparatus and methods for haptic rendering using data in a graphics pipeline |
US8437449B2 (en) * | 2004-07-23 | 2013-05-07 | Varian Medical Systems, Inc. | Dynamic/adaptive treatment planning for radiation therapy |
EP1675281B1 (en) * | 2004-12-22 | 2007-08-15 | Alcatel Lucent | DPSK demodulator and demodulating method |
CN101160104B (zh) * | 2005-02-22 | 2012-07-04 | 马科外科公司 | 触觉引导系统及方法 |
US9421019B2 (en) * | 2005-04-07 | 2016-08-23 | Omnilife Science, Inc. | Robotic guide assembly for use in computer-aided surgery |
CA2604619C (en) | 2005-05-20 | 2009-10-27 | Orthosoft Inc. | Method and apparatus for calibrating circular objects using a computer tracking system |
US7717932B2 (en) | 2005-10-27 | 2010-05-18 | Medtronic Xomed, Inc. | Instrument and system for surgical cutting and evoked potential monitoring |
AU2007227678A1 (en) | 2006-03-13 | 2007-09-27 | Mako Surgical Corp. | Prosthetic device and system and method for implanting prosthetic device |
CA2651784C (en) * | 2006-05-19 | 2015-01-27 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
US7981144B2 (en) | 2006-09-21 | 2011-07-19 | Integrity Intellect, Inc. | Implant equipped for nerve location and method of use |
US8347755B2 (en) | 2008-12-23 | 2013-01-08 | Mako Surgical Corp. | Transmission with adjustment member for varying tension force |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8753333B2 (en) | 2010-03-10 | 2014-06-17 | Covidien Lp | System for determining proximity relative to a nerve |
US10631912B2 (en) | 2010-04-30 | 2020-04-28 | Medtronic Xomed, Inc. | Interface module for use with nerve monitoring and electrosurgery |
KR101902033B1 (ko) | 2010-12-29 | 2018-09-27 | 마코 서지컬 코포레이션 | 상당히 안정된 햅틱스를 제공하기 위한 시스템 및 방법 |
US20130096573A1 (en) | 2011-10-18 | 2013-04-18 | Hyosig Kang | System and method for surgical tool tracking |
US9060794B2 (en) | 2011-10-18 | 2015-06-23 | Mako Surgical Corp. | System and method for robotic surgery |
FR2983059B1 (fr) | 2011-11-30 | 2014-11-28 | Medtech | Procede assiste par robotique de positionnement d'instrument chirurgical par rapport au corps d'un patient et dispositif de mise en oeuvre. |
WO2015104804A1 (ja) | 2014-01-08 | 2015-07-16 | インフォメティス株式会社 | 信号処理システム、信号処理方法、及び信号処理プログラム |
JP2016075522A (ja) | 2014-10-03 | 2016-05-12 | セイコーエプソン株式会社 | 目的成分検量装置及び電子機器 |
CN104484888A (zh) | 2014-11-28 | 2015-04-01 | 英业达科技有限公司 | 运动轨迹感测系统及其运动模型建立方法 |
US20160155097A1 (en) | 2014-12-02 | 2016-06-02 | Ebay Inc. | Reports of repairable objects and events |
SE542045C2 (en) | 2016-05-15 | 2020-02-18 | Ortoma Ab | Calibration object, system, and method calibrating location of instrument in a navigation system |
EP3554774A1 (en) * | 2016-12-16 | 2019-10-23 | Mako Surgical Corp. | Techniques for detecting errors or loss of accuracy in a surgical robotic system |
-
2007
- 2007-05-18 CA CA2651784A patent/CA2651784C/en active Active
- 2007-05-18 EP EP07777157.4A patent/EP2023844B1/en active Active
- 2007-05-18 WO PCT/US2007/011940 patent/WO2007136769A2/en active Application Filing
- 2007-05-18 EP EP07777156.6A patent/EP2023843B1/en active Active
- 2007-05-18 WO PCT/US2007/011942 patent/WO2007136771A2/en active Application Filing
- 2007-05-18 CA CA2651782A patent/CA2651782C/en active Active
- 2007-05-18 EP EP07756266A patent/EP2023842A2/en not_active Ceased
- 2007-05-18 JP JP2009511093A patent/JP2009537230A/ja active Pending
- 2007-05-18 US US11/750,845 patent/US8287522B2/en active Active
- 2007-05-18 US US11/750,807 patent/US9724165B2/en active Active
- 2007-05-18 CN CN200780018181.9A patent/CN101448467B/zh active Active
- 2007-05-18 AU AU2007254158A patent/AU2007254158A1/en not_active Abandoned
- 2007-05-18 US US11/750,815 patent/US9492237B2/en active Active
- 2007-05-18 CN CN2007800255583A patent/CN101484086B/zh active Active
- 2007-05-18 CA CA2654261A patent/CA2654261C/en active Active
- 2007-05-18 US US11/750,840 patent/US10028789B2/en active Active
- 2007-05-18 JP JP2009511092A patent/JP2009537229A/ja not_active Withdrawn
- 2007-05-18 AU AU2007254159A patent/AU2007254159B2/en active Active
- 2007-05-18 CN CN2007800182633A patent/CN101448468B/zh active Active
- 2007-05-18 WO PCT/US2007/011941 patent/WO2007136770A2/en active Application Filing
- 2007-05-18 AU AU2007254160A patent/AU2007254160B2/en active Active
- 2007-05-18 JP JP2009511094A patent/JP2009537231A/ja not_active Withdrawn
- 2007-05-18 WO PCT/US2007/011939 patent/WO2007136768A2/en active Application Filing
-
2016
- 2016-10-07 US US15/288,769 patent/US10350012B2/en active Active
-
2017
- 2017-08-07 US US15/670,906 patent/US10952796B2/en active Active
-
2018
- 2018-07-23 US US16/042,393 patent/US11291506B2/en active Active
-
2019
- 2019-07-12 US US16/509,651 patent/US11123143B2/en active Active
-
2021
- 2021-01-15 US US17/150,370 patent/US12004817B2/en active Active
- 2021-06-18 US US17/351,731 patent/US11937884B2/en active Active
- 2021-08-06 US US17/395,668 patent/US11712308B2/en active Active
- 2021-10-19 US US17/504,722 patent/US11844577B2/en active Active
-
2022
- 2022-02-14 US US17/670,927 patent/US11950856B2/en active Active
-
2023
- 2023-01-25 US US18/101,235 patent/US11771504B2/en active Active
- 2023-02-06 US US18/106,150 patent/US20230172671A1/en active Pending
- 2023-02-06 US US18/106,137 patent/US20230181264A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101448468B (zh) | 用于验证外科手术装置的校准的系统和方法 | |
AU2022200119B2 (en) | Method for confirming registration of tracked bones | |
JP2022524752A (ja) | 手術位置合わせ用のシステム及び方法 | |
US20220071713A1 (en) | Method of verifying tracking array positional accuracy | |
US20230000558A1 (en) | System and method for aligning a tool with an axis to perform a medical procedure | |
CN113873962A (zh) | 计算机控制的手术旋转工具 | |
US20230380905A1 (en) | Method and system for validating bone alterations in computer-assisted surgery | |
CN110545759B (zh) | 用于确定关节置换手术植入物的位置和定向的系统及方法 | |
US20230137702A1 (en) | Digitizer calibration check | |
WO2020210782A1 (en) | System and method to check cut plane accuracy after bone removal | |
US20220202495A1 (en) | Precise tunnel location placement and guidance for a robotic drill | |
US11291512B2 (en) | Robot specific implant designs with contingent manual instrumentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |