US20140139616A1 - Enhanced Diagnostics for a Telepresence Robot - Google Patents

Enhanced Diagnostics for a Telepresence Robot Download PDF

Info

Publication number
US20140139616A1
US20140139616A1 US14108036 US201314108036A US2014139616A1 US 20140139616 A1 US20140139616 A1 US 20140139616A1 US 14108036 US14108036 US 14108036 US 201314108036 A US201314108036 A US 201314108036A US 2014139616 A1 US2014139616 A1 US 2014139616A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
patient
non
storage medium
readable storage
transitory computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14108036
Inventor
Marco Pinter
Timothy C. Wright
H. Neal Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InTouch Technologies Inc
Original Assignee
InTouch Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/148Interfacing a video terminal to a particular transmission medium, e.g. ISDN
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0013Medical image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • A61B5/741Details of notification to user or communication with user or patient ; user input means using sound using synthesised speech
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/009Nursing, e.g. carrying sick persons, pushing wheelchairs, distributing drugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0038Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3418Telemedicine, e.g. remote diagnosis, remote control of instruments or remote monitoring of patient carried devices
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2201/00Application
    • G05D2201/02Control of position of land vehicles
    • G05D2201/0206Vehicle in a health care environment, e.g. for distribution of food or medicins in a hospital or for helping handicapped persons

Abstract

A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Patent Application Ser. No. 61/729,964 filed Nov. 26, 2012 and entitled “Enhanced Diagnostics Using Multiple Sensors with Coordinated Sensor Spaces” and is a continuation-in-part of U.S. patent application Ser. No. 13/111,208, filed May 19, 2011 and entitled “Mobile Videoconferencing Robot System with Autonomy and Image Analysis” and a continuation-in-part of U.S. patent application Ser. No. 13/830,334 filed Mar. 14, 2013 and entitled “Enhanced Video Interaction for a User Interface of a Telepresence Network,” all of which are hereby incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • This disclosure relates to enhanced diagnostics for a telepresence device. More specifically, this disclosure relates to systems and methods for improving patient diagnosis by a telepresence device configured to autonomously check patients.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Non-limiting and non-exhaustive embodiments of the disclosure are described herein, including various embodiments of the disclosure illustrated in the figures listed below.
  • FIG. 1 is a schematic diagram of a telepresence network comprising a plurality of telepresence devices.
  • FIG. 2 is a schematic diagram of a computer configured to provide enhanced diagnostics by a telepresence device.
  • FIGS. 3A,B are exemplary screen displays that may be displayed to a user of a control device.
  • FIG. 4 is an exemplary screen display comprising a telepresence device location map.
  • FIG. 5 is an exemplary depiction of a healthcare facility map.
  • FIG. 6 is a perspective view of a telepresence device performing one or more diagnostic activities on a patient using an image sensor.
  • FIG. 7 is a perspective view of the telepresence device performing one or more diagnostic activities on a fluid bag using the image sensor.
  • FIG. 8 is a perspective view of a telepresence device performing one or more diagnostic activities on a patient using a thermal camera.
  • FIG. 9 is a perspective view of a telepresence device performing one or more diagnostic activities on a patient using a depth sensor.
  • FIG. 10 is a perspective view of a telepresence device evaluating whether a patient is currently in their bed.
  • FIG. 11 is a perspective view of a telepresence device performing an interactive test with a patient.
  • FIG. 12 is a perspective view of a telepresence device informing a care provider in-person of the existence of an alarm.
  • The described features, structures, and/or characteristics of the systems and methods described herein may be combined in any suitable manner in one or more alternative embodiments, and may differ from the illustrated embodiments.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In certain industries, a shortage of skilled employees may result in poor outcomes, particularly during night shifts when skilled employees are less likely to be working. For example, the difficulties with filling night shifts may be especially pervasive in hospitals, such as hospitals in underserved urban communities, in high-crime neighborhoods, and/or in rural areas where specialists are unavailable and local caregivers do not recognize the need for remote specialists. Less skilled employees may be used to fill the shortage, but they often require additional supervision and may perform more poorly than their high-skill counterparts, which may result in higher mortality rates in hospitals, for example. Hospitals may require that patients at risk for specific diseases be checked at predetermined intervals, but low-skilled employees may be less consistent in how they check patients and may neglect to check patients until the end of their shifts, which may be too late. Accordingly, there is a strong need to address the problems of availability, quality, and reliability of nighttime healthcare in disadvantaged communities.
  • A telepresence device may be part of a telepresence network that allows users remote from the telepresence device to interact with an environment where the telepresence device is located. When no remote users are interacting with the telepresence device, it may act autonomously. For example, the telepresence device may automatically perform rounds and check on patients with a predetermined frequency (e.g., at predetermined intervals). The telepresence device may be configured to capture video and/or environmental measurements, which may be relayed to one or more users and/or stored for later viewing. The telepresence device may also, or instead, detect the existence of problems based on the captured video and/or environmental measurements and may alert one or more users of the problem. A control device may allow the one or more users to interact with the telepresence device, such as by sending and/or receiving captured video and/or audio, sending commands to the telepresence device, and the like. The telepresence device may be more reliable in complying with strict patient monitoring schedules and may provide a consistent level of care with each visit.
  • Each telepresence network may include one or more facilities that each include at least one corresponding telepresence device local to the facility. Exemplary facilities may include manufacturing plants, research and development facilities, testing facilities, hospitals, rehabilitation facilities, long-term care facilities, and the like. Types of telepresence devices include, but are not limited to, remote telepresence devices, mobile telepresence units, and/or control stations. For example, a remote telepresence device may include a telepresence robot configured to move within a medical facility and provide a means for a remote practitioner to perform remote consultations.
  • Exemplary, non-limiting uses for telepresence devices may include healthcare and industrial applications. For example, healthcare facilities may include telemedicine technologies, such as telepresence devices in a telepresence network, that allow remote healthcare practitioners to provide services to patients and/or other healthcare practitioners in remote locations. A remote medical professional may be a neurologist practicing in a relatively large hospital who may, via a telepresence device, provide services and consultations to patients and/or other medical professionals in hospitals located in rural areas that otherwise may not have a neurologist on staff.
  • The control device may include a general purpose and/or special purpose computer systems and/or one or more computer networks. In an embodiment, the control device and the telepresence device may each include at least one camera, at least one display device, at least one speaker, and at least one microphone to allow for two-way video/audio communication. One or more input devices may allow the user of the control device to remotely control movement of the telepresence device. Additional discussion of remotely controlling movement of a telepresence device is contained in U.S. Pat. No. 6,845,297, titled “Method and System for Remote Control of Mobile Robot,” filed on Jan. 9, 2003, and European Patent No. 1279081, titled “Method and System for Remote Control of Mobile Robot,” filed on May 1, 2001, which applications are hereby incorporated by reference in their entireties.
  • The control device, the telepresence device, and/or the telepresence network may be configured to store session content data, such video and/or audio recordings, telemetry data (e.g., physiological data), notes, time stamps, and/or the like. In an embodiment, the telepresence network may include a server configured to store the session content data. Additional discussion of data storage for telepresence devices and automatic use of stored data is contained in U.S. patent application Ser. No. 12/362,454, titled “DOCUMENTATION THROUGH A REMOTE PRESENCE ROBOT,” filed on Jan. 29, 2009, which application is hereby incorporated by reference in its entirety.
  • Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” and “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. In particular, an “embodiment” may be a system, an article of manufacture (such as a computer-readable storage medium), a method, and/or a product of a process.
  • The phrases “connected to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, and electromagnetic interaction. Two components may be connected to each other even though they are not in direct contact with each other and even though there may be intermediary devices between the two components.
  • The embodiments of the disclosure may be understood by reference to the drawings, wherein like elements are designated by like numerals throughout. In the following description, numerous specific details are provided for a thorough understanding of the embodiments described herein. However, those of skill in the art will recognize that one or more of the specific details may be omitted, or other methods, components, or materials may be used. In some cases, operations and/or components are not shown or described in detail.
  • Furthermore, the described features, operations, or characteristics may be combined in any suitable manner in one or more embodiments. The order of the steps or actions of the methods described in connection with the embodiments disclosed may be varied. Thus, any order in the drawings or Detailed Description is for illustrative purposes only and is not meant to imply a required order, unless otherwise specified.
  • Embodiments may include various steps, which may be embodied in machine-executable instructions to be executed by a computer system. The computer system may comprise one or more general-purpose or special-purpose computers (or other electronic devices). Alternatively, the computer system may comprise hardware components that include specific logic for performing the steps or comprise a combination of hardware, software, and/or firmware. Without limitation, a computer system may comprise a workstation, desktop computer, laptop computer, disconnectable mobile computer, server, mainframe, cluster, so-called “network computer” or “thin client,” tablet, smartphone, multimedia device, electronic reader, personal digital assistant or other hand-held computing device, “smart” consumer electronics device or appliance, or a combination thereof. A server may include a physical server, a server cluster, a distributed server, a virtual server, a cloud server, a computer providing resources to one or more clients, a combination of one or more of the aforementioned, and/or the like. Some or all of the functions, steps, and/or operations discussed herein may be performed by one or more clients and/or one or more servers. Those of skill in the art will realize possible divisions of operations between the one or more servers and the one or more clients.
  • Each computer system includes at least a processor and a memory; computer systems may also include various input devices and/or output devices. The processor may include one or more general-purpose central processing units (CPUs), graphic processing units (GPUs), or Digital Signal Processors (DSPs), such as Intel®, AMD®, ARM®, Nvidia®, ATI®, TI®, or other “off-the-shelf” microprocessors. The processor may include a special-purpose processing device, such as an ASIC, PAL, PLA, PLD, Field Programmable Gate Array (FPGA), or other customized or programmable device. The memory may include static RAM, dynamic RAM, flash memory, ROM, CD-ROM, disk, tape, magnetic, optical, or other computer storage medium. The input device(s) may include a keyboard, mouse, touch screen, light or other pen, tablet, microphone, sensor, or other hardware with accompanying firmware and/or software. The output device(s) may include a monitor or other display, printer, speech or text synthesizer, switch, signal line, or other hardware with accompanying firmware and/or software.
  • The computers may be capable of using a floppy drive, tape drive, optical drive, magneto-optical drive, memory card reader, or other means to read a storage medium. A suitable storage medium includes a magnetic, optical, or other computer-readable storage device having a specific physical configuration. Suitable storage devices include floppy disks, hard disks, tape, CD-ROMs, DVDs, PROMs, random access memory, flash memory, and other computer system storage devices. The physical configuration represents data and instructions which cause the computer system to operate in a specific and predefined manner as described herein.
  • Embodiments may also be provided as a computer program product, including a non-transitory machine-readable storage medium having stored thereon instructions that may be used to program a computer system (or other electronic device) to perform processes described herein. The non-transitory machine-readable storage medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, tapes, solid-state memory devices, or other types of media/machine-readable media suitable for storing electronic instructions.
  • Suitable networks for configuration and/or use as described herein include one or more local area networks, wide area networks, metropolitan area networks, and/or “Internet” or IP networks, such as the World Wide Web, a private Internet, a secure Internet, a value-added network, a virtual private network, an extranet, an intranet, or even standalone machines which communicate with other machines by physical transport of media (a so-called “sneakernet”). In particular, a suitable network may be formed from parts or entireties of two or more other networks, including networks using disparate hardware and network communication technologies. One suitable network includes a server and several clients; other suitable networks may contain other combinations of servers, clients, and/or peer-to-peer nodes, and a given computer may function both as a client and as a server. Each network includes at least two computer systems, such as the server and/or clients.
  • The network may include communications or networking software, such as the software available from Novell, Microsoft, Artisoft, and other vendors, and may operate using TCP/IP, SPX, IPX, and other protocols over twisted pair, coaxial, or optical fiber cables, telephone lines, satellites, microwave relays, modulated AC power lines, physical media transfer, and/or other data transmission “wires” or wireless protocols known to those of skill in the art. The network may encompass smaller networks and/or be connectable to other networks through a gateway or similar mechanism.
  • Suitable software to assist in implementing the invention is readily provided by those of skill in the pertinent art(s) using the teachings presented here and programming languages and tools, such as Java, Pascal, C++, C, PHP, JavaScript, Python, C#, Perl, SQL, Ruby, Shell, Visual Basic, Assembly, Action Script, Objective C, Lisp, Scala, Tcl Haskell, Scheme, database languages, APIs, SDKs, assembly, firmware, microcode, and/or other languages and tools. Suitable signal formats may be embodied in analog or digital form, with or without error detection and/or correction bits, packet headers, network addresses in a specific format, and/or other supporting data readily provided by those of skill in the pertinent art(s).
  • Several aspects of the embodiments described will be illustrated as software modules or components. As used herein, a software module or component may include any type of computer instruction or computer-executable code located within a memory device. A software module may, for instance, comprise one or more physical or logical blocks of computer instructions, which may be organized as a routine, a program, a script, an object, a component, a data structure, etc., that perform one or more tasks or implements particular abstract data types.
  • In certain embodiments, a particular software module may comprise disparate instructions stored in different locations of a memory device, different memory devices, or different computers, which together implement the described functionality of the module. Indeed, a module may comprise a single instruction or many instructions, and may be distributed over several different code segments, among different programs, and across several memory devices. Some embodiments may be practiced in a distributed computing environment where tasks are performed by a remote processing device linked through a communications network. In a distributed computing environment, software modules may be located in local and/or remote memory storage devices. In addition, data being tied or rendered together in a database record may be resident in the same memory device, or across several memory devices, and may be linked together in fields of a record in a database across a network.
  • Much of the infrastructure that may be used according to the present invention is already available, such as general-purpose computers, computer programming tools and techniques, computer networks and networking technologies, and digital storage media.
  • FIG. 1 is a schematic diagram of a telepresence network 100 comprising a plurality of telepresence devices 130. A plurality of control devices 120, such as laptops, tablets, smart phones, and the like, may be configured to transmit video, audio, and/or commands to the telepresence devices 130 and receive video, audio, and/or measurement data from the telepresence devices 130. The control devices 120 may directly couple to the telepresence devices 130, and/or a server 110 may couple the control devices to the telepresence devices 130. In an embodiment, the server 110 may establish a connection between a control device 120 and a telepresence device 130, and the control device 120 and telepresence device 130 may communicate directly after the connection has been established. A connection between a control device 120 and a telepresence device 130 may be referred to as a session. The server 110 may comprise and/or be coupled to a hard drive 112. The hard drive 112 may be configured to store a history for one or more control devices 120 and/or telepresence devices 130. The history may include session data, commands, measurement data, recorded video and/or audio, annotations, bookmarks, and the like. The control devices 120 may be able retrieve the history from the hard drive 112 via the server 110. It should be understood that any processing required to be performed by the telepresence device 130, the control device 120, and/or the server 110 may be shared and/or distributed among the telepresence device 130, the control device 120, and/or the server 110 in any manner without departing from the scope of this disclosure. Accordingly, if the application states that the telepresence device 130 performs an action that requires execution by a processor, embodiments are contemplated where that action may be perform wholly or partially by the server 110 and/or the control device 120 even if not explicitly recited.
  • FIG. 2 is a schematic diagram of a computer 200 configured to provide enhanced diagnostics by a telepresence device. The computer 200 may include a processor 230 coupled to a volatile memory 240, a network interface 250, and a computer-readable storage medium 210 by a bus 220. In some embodiments, the computer-readable storage medium 210 may comprise the volatile memory 240. The computer-readable storage medium 210 may include a plurality of modules configured to perform specific functions. For example, an auto-round module 211 may be configured to cause the telepresence device to navigate to patients with a predetermined frequency to perform one or more tests; a video test module 212 may be configured to evaluate a characteristic of a patient based on video of the patient captured by an image sensor (e.g., using Eulerian video magnification); a thermographic test module 213 may be configured to evaluate a characteristic of the patient based on a thermographic image of the patient captured by a thermal camera; an actigraphy module 214 may be configured to determine a position of the patient and/or motion of the patient using data from a depth sensor and to determine a psychological state of the patient from the position and/or motion; a telemetry gathering module 215 may be configured to acquire telemetry data from a patient monitor, for example, using optical character recognition, by requesting the data from the patient monitor over a wireless network, by requesting the data from an electronic medical record system, and/or the like; an interactive test module 216 may be configured to perform a test requiring the patient to respond orally to one or more prompts and/or to perform one or more actions; a test evaluation module 217 may be configured to receive results from one or more tests and determine the existence of an adverse condition based on the results; an alert module 218 may be configured to notify one or more care providers of the adverse condition and to ensure a care provider responds to the alert; and a storage module 219 may be configured to store selected video, audio, and/or data. Alternatively, the computer 200 may contain more or fewer modules and/or a different computer may contain some of the modules.
  • FIGS. 3A,B are exemplary screen displays 300, 350 that may be displayed to a user of a control device. The user may be attempting to connect to a telepresence device. A plurality of options 310, 360 may be displayed to the user including available endpoints to which the user may connect. The user may select the telepresence directly and/or select a healthcare facility or patient of interest. An optimal telepresence device may be automatically connected to if a healthcare facility or patient of interest is selected. The user may also be able to select an alarms option 315, 365 that allows a user to view telepresence devices that have triggered an alarm or healthcare facilities with patients for whom an alarm has been triggered. The alarms and/or additional patient data may allow the user to connect to telepresence devices near and/or interacting with patients most urgently needing attention. Once the user has connected to the telepresence device, the user may interact with a patient using audio, video, and/or data capabilities of the telepresence device. The user may develop a treatment plan and issue corresponding orders to local care providers and/or modify existing orders.
  • FIG. 4 is an exemplary screen display 400 comprising a telepresence device location map 420. The locations of various telepresence devices 421, 422 may be illustrated as figures on the map 420. A Quick Nav bar 410 may allow the user to see telepresence devices available in a region of interest. The user may be able to connect to one of the telepresence devices 421, 422 by selecting the desired telepresence device from the map 420. A telepresence device 425 issuing an alarm may include a distinctive indication that an alarm is occurring. The distinctive indication may be configured to draw the attention of the user and may include a unique color, a flashing icon, text, a pop-up window, and/or the like. The user may select the alarming telepresence device 425 to connect to that telepresence device 425 and resolve the alarm.
  • FIG. 5 is an exemplary depiction 500 of a healthcare facility map 560. The healthcare facility map 560 and/or a digital representation of the map 560 may be used by a telepresence device 510 to autonomously navigate to a plurality of patients in turn to check the patients and evaluate whether each patient is experiencing a potentially harmful condition. The telepresence device 510 may perform one or more diagnostic activities to evaluate each patient. Diagnostic activities may include diagnostic tests, which may or may not require interaction by the patient, and may include gathering telemetry data from a source external to the telepresence device 510 (e.g., a patient monitor, an electronic medical records (EMR) system, etc.). The diagnostic activities may be specified in advance by a care provider and/or may be determined based on a previous diagnosis and/or previous results of diagnostic activities. The results of the one or more diagnostic activities may be processed by the telepresence device 510 and/or a computer system external to the telepresence device 510 (e.g., the server 110) to determine whether a potentially harmful condition exists with the patient.
  • In response to determining that a potentially harmful exists, the telepresence device 510 and/or the computer system may perform one or more actions responsive to the potentially harmful condition. The one or more actions may include archiving the results of the one or more diagnostic activities, alerting a local care provider, alerting a remote care provider, and/or the like. The action may be selected based on the severity of the potentially harmful condition, the probability the patient is experiencing the potentially harmful condition, and/or the like. Alternatively, or in addition, a user may have specified in advance what actions should be taken for particular results of the one or more diagnostic activities. If the action includes alerting a remote care provider, the telepresence device 510 may also prepare to receive a connection from the alerted remote care provider.
  • The telepresence device 510 may be able to receive medical data (e.g., a medical record of a patient) from a patient monitor, an EMR system, a telepresence network server (e.g., the server 110) and/or the like. The telepresence device 510 may also be able transmit medical data measured by the telepresence device 510, for example, to the EMR system for storage. The telepresence device 510 may transmit the medical data over a secure, wireless connection (e.g., a WiFi network) to the hospital's EMR and/or other databases, in some embodiments. Alternatively, or in addition, the telepresence device 510 may include local storage for persistent storage of the medical data measured by the telepresence device 510. The medical data may include instructions to the telepresence device 510 including diagnostic activities to perform, thresholds for evaluating the results of the diagnostic activities, a frequency of performing the diagnostic activities and/or checking the patient, actions to perform in response to the determinations of the evaluation of the results of the diagnostic activities, and/or the like. Alternatively, or in addition, the telepresence device 510 may determine diagnostic activities, evaluation thresholds, frequency of checking each patient, response actions, and/or the like by parsing the previous diagnoses and results of diagnostic activities indicated in the medical data.
  • The telepresence device 510 and/or the computer system may determine an order and/or a frequency for visiting the plurality of patients. For example, the telepresence device 510 may receive indications of a plurality of patients that it should routinely check and/or may include indications of patients that should be added or removed from the plurality of patients that the telepresence device 510 routinely checks. Any time there is a change in which patients are monitored by the telepresence device 510, the telepresence device 510 may redetermine the order and/or frequency for visiting the monitored patients. The frequency with which each patient needs to be checked may be specified by a care provider and/or included in medical data for each patient. Alternatively, or in addition, the telepresence device 510 and/or the computer system may determine a risk level for each patient and visit the higher risk patients more frequently than lower risk patients. The risk may be specified in the medical data, for example, as a numerical risk level, and/or the risk may be computed based on parsing of the medical data. The medical data may be parsed to detect risk factors (e.g., diagnoses requiring more frequency checking, physiological measurements correlated with higher risk, etc.).
  • In an embodiment, the telepresence device 510 may query the EMR system to ascertain whether a patient has been diagnosed (e.g., by a care provider, the telepresence device 510, and/or the like) with a urinary tract infection (UTI) or sepsis and may check the patient more frequently for sepsis if the patient has a UTI and/or an existing sepsis diagnosis due to the higher risk for sepsis. Because it can be important to achieve certain metrics (e.g., venous pressure, hemoglobin levels, etc.) in a short time frame when treating sepsis, the telepresence device 510 may also, or instead, monitor sepsis patients at a predetermined frequency (e.g., at predetermined intervals) to ensure that they are meeting the desired goals and/or that care providers know when a patient characteristic is outside a desired range. Alternatively, or in addition, a care provider may manually identify patients having a higher risk of sepsis (e.g., in an online database that can be queried by the telepresence device 510).
  • The exemplary depiction 500 of the healthcare facility map 560 includes a previously traveled route 540 and a route 530 currently being traveled by the telepresence device 510. In the illustrated embodiment, the telepresence device 510 does not simply visit the rooms in an order determined based on spatial proximity to each other. Rather, the telepresence device 510 may weight the relative spatial proximity in addition to weighting patient monitoring frequency, which may have been determined based on risk. The telepresence device 510 may attempt to take advantage of spatial proximity of patients while also ensuring that higher risk patients aren't neglected for lower risk patients that are more proximate. In some embodiments, movement of the telepresence device 510 may be controlled by a central server (e.g., the server 110), which may receive real-time telemetry data from a plurality of patients and dynamically adjust the order of patient monitoring, and/or the telepresence device 510 may configured to receive real-time telemetry data and dynamically adjust its route.
  • FIG. 6 is a perspective view of a telepresence device 610 performing one or more diagnostic activities on a patient 650 using an image sensor 611. The telepresence device 610 may include the image sensor 611 (e.g., a video camera) and a display device 615, which is showing an image captured by the image sensor 611 in the illustrated embodiment. In many embodiments, the image captured by the image sensor may not be displayed on the display device 615 but is included here for illustrative purposes. Instead, the image may be processed internally by the telepresence device 610, provided to a remote care provider, archived, etc. The telepresence device 610 may use the image sensor 611 to measure one or more patient characteristics, such as a physiological characteristic, of the patient 650. For example, the telepresence device 610 may use Eulerian video magnification to detect small changes in color and/or small movements in the captured video and amplify the detected changes and/or movements. The telepresence device 610 may then extract heart rate from detected changes in skin color (e.g., by determining the frequency of skin reddening corresponding to heart beats) and/or respiration rate from detected movements of the patient's chest (e.g., by determining the frequency of chest movements).
  • Alternatively, or in addition, the telepresence device 610 may determine a measurement of a physiological characteristic by receiving telemetry data from a patient monitor 630. In one embodiment, the telepresence device 610 may use optical character recognition to read telemetry data displayed by the patient monitor 630. In another embodiment, the telepresence device 610 may use a wireless network to request the telemetry data from the patient monitor 630 and/or to request the telemetry data from a computer system coupled to the patient monitor 630 (e.g., an EMR system).
  • The telepresence device 610 may also, or instead, detect the patient's pallor using the image sensor 611. Referring also to FIG. 7, the telepresence device 610 may be configured to determine the fluid level, the fluid color, and/or the like of a fluid bag 730 of a patient 750 using the image sensor 611. For example, the telepresence device 610 may detect when intravenously supplied saline, medication, and/or the like is running low, and/or the telepresence device 610 may detect the color and/or fluid level of a urine bag (e.g., to detect perfusion). If a potentially harmful condition is determined to exist from the one or more diagnostic activities, an alarm may be triggered. In an embodiment, the patient monitor 630 and/or fluid bag 730 may be identified using scale-invariant feature transform (SIFT), speeded up robust features (SURF), and/or oriented features from accelerated segment test and rotated binary robust independent elementary features (ORB). The boundaries of the patient's face may be determined using Haar feature detectors. A level of the fluid bag 730 may be determined by finding the most salient line using Hough line detection. Color thresholds may be determined by averaging the color within the boundary of the fluid bag 730 or facial area and calculating the RGB distance of that color to a desired norm. The system may perform white balancing with a known white feature in the room prior to performing a test requiring color measurement since white balance may materially impact color detection.
  • The measurements of the patient characteristics may complement the telemetry data received from the patient monitor 630, and/or the measurements may back up or replace the telemetry data. For example, pallor, fluid level, fluid color, temperature symmetry (as discussed below with regard to FIG. 8) and/or the like may be combined with telemetry data to evaluate whether a potentially harmful condition exists. Alternatively, or in addition, the telemetry data may correspond to the one or more patient characteristic measured by the telepresence device 610. The telepresence device 610 may measure the one or more patient characteristics to confirm accuracy of the telemetry data, and/or the telepresence device 610 may measure the one or more patient characteristics once it has attempted to acquire the telemetry data and has been unable to do so (e.g., the telepresence device 610 detects that the patient 650, 750 is not connected to a patient monitor, requests telemetry data and does not receive a response, determines the patient is in room with little or no telemetry or unlikely to have telemetry, such as a room in a Medical/Surgical ward, and/or the like).
  • If a potentially harmful condition is detected, an action responsive to the potentially harmful condition may be performed as previously discussed. The action may include providing medical data acquired by the image sensor 611 to a local and/or remote care provider. For example, images and/or video of fluid levels, fluid color, pallor, etc. may be made available to the care provider (e.g., by uploading over a wireless network to a central server), and/or an indication of why the fluid level, fluid color, pallor, etc. caused an alarm to be triggered may be provided. For some alarms, such as when a patient potentially has sepsis, a care provider may want to watch for visual cues of respiratory distress when making a diagnosis. Accordingly, the telepresence device 610 may record a video clip of the patient's respiration once the alarm has been triggered and while waiting for the care provider to respond. The video clip may be made immediately available to the care provider once the care provider has responded. For other potentially harmful conditions, video clips of other activities by the patient and/or other regions of the patient's body may be captured instead.
  • FIG. 8 is a perspective view of a telepresence device 810 performing one or more diagnostic activities on a patient 850 using a thermal camera 812. The telepresence device 810 may include a display device 815, which is showing a thermographic image captured by the thermal camera 812 in the illustrated embodiment. In many embodiments, the thermographic image may not be displayed on the display device 815 but is included here for illustrative purposes. Instead, the image may be processed internally by the telepresence device 810, provided to a remote care provider, archived, etc. The telepresence device 810 may estimate a temperature of the patient 850 from the thermographic image, for example, if the temperature cannot be determined from telemetry data. The telepresence device 810 may use Haar feature detectors to detect the boundaries of the face and compute an average temperature within those boundaries. The telepresence device 810 may determine an overall or core temperature and/or may determine whether the patient's limbs/extremities are warmer or colder than is desirable relative to the overall or core temperature. The telepresence device 810 may determine the location of limbs using a depth sensor (not shown) and associated skeletal mapping software. The temperature of the limb may then be determined by computing an average temperature of an area in close proximity to the center point of the detected limb. The patient may be prompted to remove part of a blanket to facilitate this measurement. Alternatively, or in addition, the telepresence device 810 may determine whether the temperature of the patient 850 is asymmetric (e.g., whether limbs on one side of the body are warmer or colder than the other side). The telepresence device 810 may also determine whether torso temperature is asymmetric. To do so, the telepresence device 810 may perform skeletal mapping to calculate a center line of the patient's body and may compare temperatures to the left and right of the center line (e.g., points 2, 4, 6, or 8 inches to each side of the center line).
  • Patient thermal data may be particularly helpful in detecting certain potentially harmful conditions, such as sepsis or infection, that can lead to mortality if not detected early enough. In general, patient thermal data may be used to detect high fever by observing overall temperature, to assess local hot spots suggestive of inflammation or infection, to detect asymmetric body temperature abnormalities, to detect symmetric body temperature abnormalities (e.g., warm shock vs. cold shock), and/or the like. For example, sepsis may be associated with a gradually rising temperature and/or high overall temperature, thermal asymmetry, a gradually rising heart rate, and respiratory distress. For patients at risk for sepsis and/or who begin to show signs, the telepresence device 810 may check the patient on a strict schedule. Because some indications of sepsis include gradual trends, the telepresence device 810 may store (e.g., locally, on an EMR system, etc.) one or more pieces of patient data (e.g., thermal data, telemetry data, etc.) for later review by the telepresence device 810 and/or a care provider. Similarly, patient data may be stored during management and/or treatment of sepsis to detect progress and/or to detect, manage, and/or treat one or more other predetermined conditions.
  • To detect sepsis, the telepresence device 810 may attempt to measure patient characteristics facially indicative of sepsis and evaluate measurements of patient characteristics relative to historical measurements to detect trends indicative of sepsis. In an embodiment, the telepresence device 810 may monitor for an overall temperature over 100 degrees Fahrenheit, a temperature rise of over 2% or 2 degrees Fahrenheit in two hours, a heart rate rise of over 20%, and/or the like. If an individual characteristic and/or plurality of characteristics are indicative of sepsis, the telepresence device 810 may take responsive action including triggering an alarm, paging a designated specialist, preparing for connection by an off-site specialist, physically locating a local care provider (as discussed below with regard to FIG. 12), and/or the like. The telepresence device 810 and/or a central server (not shown) may perform responsive actions according to a prioritize ordering. The telepresence device 810 may query a database to determine if a local qualified care provider is available, in which case the local qualified care provider may be paged. Otherwise, if a local qualified care provider is not available, a remote qualified care provider who is on-call may be paged, and the telepresence device 810 may prepare for a remote connection. Heart rate and respiration rate may be measured directly by the telepresence device 810 (e.g., using Eulerian video magnification) and/or may be determined by receiving telemetry data. In some embodiments, the telepresence device 810 may trigger a sepsis alarm only if there are a combination of multiple indications, such as one or more indications from a networked telemetry device along with one or more indications from the telepresence device's own imaging systems.
  • FIG. 9 is a perspective view of a telepresence device 910 performing one or more diagnostic activities on a patient 950 using a depth sensor 913. The telepresence device 910 may include one or more image sensors 911 (e.g., a video camera) used by the depth sensor 913 to determine depth. Alternatively, or in addition, the one or more image sensors 911 used by the telepresence device 910 may be distinct from image sensors used by the telepresence device 910 to perform visual assessments. The telepresence device 910 may also include a display device 915, which is showing a stick model of the patient 950 as determined by the depth sensor in the illustrated embodiment. In many embodiments, the internal depth model may not be displayed on the display device 915 but is included here for illustrative purposes. Instead, the model may be processed internally by the telepresence device 910, provided to a remote care provider, archived, etc. The position of the patient 950 and/or the patient's limbs and motion by the patient 950 may be determined using the depth sensor (e.g., via an off-the-shelf skeletal mapping software program configured to process the 3D point cloud data from the depth sensor). The depth sensor 913 may be used in combination with a thermal camera 912 to detect the existence of thermal asymmetries. For example, the depth sensor 913 may determine the location of one or more limbs, and the temperature of the limb may be determined from temperature data corresponding to the location of the limb.
  • The telepresence device 910 may be able to determine whether the patient is sleeping based on gross motor activity of one or more of the patient's body parts (e.g., the telepresence device 910 may perform actigraphy using the depth sensor 913). Monitoring multiple body parts may improve the accuracy of the determination of whether the patient is sleeping. In an embodiment, the system may detect motion of limbs using skeletal mapping with the depth sensor, may detect motion of the head using Haar feature detectors, and may identify a sleeping state versus wakefulness through preconfigured thresholds of movement of the limbs and face. The telepresence device 910 and/or local care providers may be able to shift interactive tests and/or diagnostics to times when the patient 950 is awake based on the assessment by the telepresence device 910 of whether the patient 950 is asleep. For example, a local care provider may subscribe to be notified by the telepresence device 910 when the patient 950 wakes up. Once the patient 950 is awake, any delayed tests may be performed. Because patients will need to be woken up less frequently, the stress, fatigue, and “ICU psychosis” that may result from frequent waking can be avoided. Sleep may be one of several psychological states detectable by the telepresence device 910. The telepresence device 910 may also or instead be configured to detect agitation and/or distress in the patient based on the position and/or motion of the patient's limbs (e.g., using a modification of the thresholds for detecting a sleeping state). An alarm may be triggered by the telepresence device 910 if agitation or distress is detected without any other indications of a potentially harmful condition and/or if agitation and/or distress are detected in combination with one or more patient characteristics indicative of a potentially harmful condition.
  • FIG. 10 is a perspective view of a telepresence device 1010 evaluating whether a patient 1050 is currently in their bed 1060 or, for example, has fallen out. The telepresence device 1010 may include one or more image sensors 1011 (e.g., a video camera), a thermal camera 1012, a depth sensor 1013, which may leverage the one or more image sensors 1011 to determine depth, and/or the like. The telepresence device 1010 may also include a display device 1015, which is indicating that the patient 1050 has been detected in the bed 1060 in the illustrated embodiment. In many embodiments, the determination of whether the patient 1050 is in the bed 1060 may not be displayed on the display device 1015 but is included here for illustrative purposes. Instead, sensor data may be processed internally by the telepresence device 1010, provided to a remote care provider, archived, etc. The telepresence device 1010 may use a combination of information from the one or more image sensors 1011, the thermal camera 1012, the depth sensor 1013, and/or the like to detect whether the patient 1050 is in their bed 1060. For example, the telepresence device 1010 may detect the edges of the bed 1060 using the depth sensor 1013 and/or the one or more image sensors 1011 and may determine the location of the patient 1050 using the thermal camera 1012 and/or the depth sensor 1013. If the patient location is inside the detected edges, the telepresence device 1010 may conclude the patient 1050 is in the bed 1060. If the patient location is not inside the detected edges and/or only partially inside the detected edges, the telepresence device 1010 may conclude the patient 1050 is out of the bed 1060 and/or has fallen. The telepresence device 1010 may take a responsive action, such as triggering an alarm if the patient 1050 is out of the bed 1060.
  • FIG. 11 is a perspective view of a telepresence device 1110 performing an interactive test with a patient 1150. The telepresence device 1110 may display instructions to the patient 1150 using a display device 1115 and/or may speak instructions using one or more speakers (not shown). The interactive test may require the patient 1150 to correctly perform an action. The telepresence device 1110 may determine the performance of the patient 1150 using one or more image sensors 1111, a depth sensor 1113 in combination with skeletal mapping software, which may leverage the one or more image sensors 1111, speech recognition, telemetry data, and/or the like. The telepresence device 1110 may evaluate the performance of the patient 1150 and determine whether a potentially harmful condition exists and/or a responsive action should be taken.
  • For example, the telepresence device 1110 may evaluate whether the patient 1150 has suffered a stroke using the National Institute of Health Stroke Scale (NIHSS). The telepresence device 1110 may explain the NIHSS using audio and/or graphics, video, text, etc. Instructions for each test in the NIHSS may be displayed on the display device 1115 and/or played using the one or more speakers. To determine responsiveness (NIHSS #1A), the telepresence device 1110 may provide an audio and/or video stimulus to the patient 1150 and use the depth sensor 1113 to detect the patient's response to the stimulus. The telepresence device 1110 may present a prompt, such as an audio questions or an image (e.g., pictures, text, etc.), to the patient 1150 and use speech recognition to evaluate responses to determine consciousness, detect aphasia, detect dysarthria, and/or the like (NIHSS #1B, 9, and 10). Allowances may be made for false positives and/or false negatives that may result from errors in speech recognition. Alternatively, or in addition, responses may be recorded for evaluation by a care provider. Facial recognition (e.g., using Haar-like feature analysis and/or the like via the image sensor 1111) may be used to detect facial symmetry and/or expression to determine the patient's ability to close her eyes and/or facial palsy (NIHSS #1C and 4). Eye tracking and/or movements detected by the depth sensor 1113 may be used to determine patient responsiveness to commands (e.g., video and/or audio commands), determine gaze palsy, determine hemianopia, and/or the like (NIHSS #1C, 2, and 3).
  • Arm drift, leg drift, and limb ataxia may be detected using the depth sensor 1113, and the display device 1115 may provide instructions and/or a countdown timer to the patient 1150 during the test (NIHSS #5, 6, and 7). For example, the telepresence device 1110 may play synthesized speech stating, “Could you please sit up and hold your arms directly in front of you while you see the timer on my screen? Thank you.” The telepresence device 1110 may then evaluate whether the patient is able to maintain their limbs in an elevated position for a predetermined amount of time. In some embodiments, the telepresence device 1110 may be equipped to provide a tactile stimulus necessary to detect sensory loss and/or extinction and may use speech recognition to determine whether the patient properly perceives the tactile stimulus (NIHSS #8, 11). The telepresence device 1110 may compute a score on the NIHSS to evaluate the patient's performance and determine whether the patient 1150 has suffered a stroke. Alternatively, or in addition, the telepresence device 1110 may be unable to perform one or more tests and may determine a score without the one or more unperformed tests and/or may request that care provider perform the one or more unperformed tests. The results of the tests, which may include video recording of the test, may be made instantly available to local and/or remote care providers. An alarm may be triggered if certain stroke scale factors or a combination of factors fall outside of certain thresholds. Recorded video, audio, and/or still images for some or all tests may be stored locally and/or on a remote storage device by the telepresence device 1110 for later review by a care provider and/or for quality assessment.
  • The telepresence device 1110 may directly ask the patient 1150 to assess her own condition. For example, the telepresence device 1110 may ask the patient “How are you breathing?”; “On a scale of 0 to 10, how much pain are you feeling right now?”; and/or the like. To help avoid falling incidents, which frequently occur when patients attempt to use the bathroom, the telepresence device 1110 may ask patients whether they need to use the bathroom. Prompting the patients may be necessary because of embarrassment and/or a lack of lucidity on the part of the patients. The telepresence device 1110 may use speech recognition to determine the response of the patient 1150. The responses may be archived in audio and/or text form, and/or the telepresence device 1110 may perform a responsive action if it determines one is necessary, for example, by sending an alert to the nursing station that the patient requires assistance in walking to the bathroom. Additionally, the telepresence device 1110 may be able to request that the patient 1150 remove blankets from a part of their body in order to analyze it thermally since blankets may decrease accuracy of thermal imaging.
  • Delirium may be associated with increased risk of mortality due to overdosing. Thus, the telepresence device 1110 may perform one or more interactive tests to detect delirium and/or the level of sedation (e.g., using the Richmond Agitation Sedation Scale). If the patient 1150 is in danger of overdosing, the telepresence device 1110 may take a responsive action, such as sending a recommendation to one or more care providers to stop or reduce medication to the patient 1150, noting that a change in medication may be needed in the patient's health record or another documentation system, triggering an alarm, and/or the like. The telepresence device 1110 may determine a frequency of sedation and/or delirium testing based on a risk for overdose and/or an amount of medication previously received and/or currently being received.
  • FIG. 12 is a perspective view of a telepresence device 1210 informing a care provider 1250 in-person of the existence of an alarm. Care providers may suffer alarm fatigue and may not respond to alarms, for example, under the belief the alarms are not true emergencies. When an alarm has been triggered for a patient, the telepresence device 1210 may locate a care provider 1250 by navigating to a nurses' station as identified on an internal map and identifying a care provider 1250 through Haar feature face detection at a predetermined depth behind the counter. The telepresence device 1210 may alert the identified care provider 1250 that the patient is experiencing an alarm. In some embodiments, the telepresence device 1210 may only travel to the care provider 1250 if the alarm indicates the patient is experiencing a high-priority condition and/or if a predetermined amount of time has transpired without the arrival of a care provider 1250.
  • The telepresence device 1210 may have triggered the alarm (e.g., after performing one or more diagnostic activities) and/or may determine that an alarm has already been triggered (e.g., by receiving an indication from a patient monitor, an EMR system, and/or the like). Similarly, the telepresence device 1210 may locate the care provider 1250 (e.g., using a vision system 1211), and/or the telepresence device 1210 may be informed of the nearest care provider 1250 by a hospital computer system, which may localize staff through RFID tags in the care providers' badges. The telepresence device 1210 may alert the care provider 1250 by displaying a message on a display device 1215, by playing an alert sound, by playing an audio message comprising synthesized and/or prerecorded speech, and/or the like. The telepresence device 1210 may be configured to increase volume and/or become increasingly annoying until the care provider responds.
  • A telepresence device may be configured to determine diagnostic activities, responsive actions, and/or frequency of monitoring based on a patient's medical condition, past diagnostic results, etc., for example, as indicated by patient data received by the telepresence device. Alternatively, or in addition, care providers may be able to create custom protocols for monitoring specific patients and/or specific medical conditions, such as a custom protocol for a patient who just underwent a revascularization procedure. Custom protocols may be saved as presets that can be reused. The care provider may be able to include in the custom protocol some or all of the diagnostic activities and/or responsive actions that the telepresence device and/or a ward's telemetry system is able to perform, such as those previously discussed. The care provider may select a predetermined and/or custom frequency of monitoring. The care provider may be able specify predetermined and/or custom thresholds for diagnostic activities. The custom protocol may include threshold for single measurements and/or trending thresholds as determined from a local storage device, an EMR system, and/or the like.
  • The responsive actions may include alerting a care provider. The protocol may specify which care providers are alerted and how they are alerted. The protocol may specify whether a nurse or doctor should be contacted, which specialty should be contacted, whether a local or remote care provider should be contacted, and/or the like. For example, a custom protocol may specify that a cardiologist should be contacted for a blood flow anomaly and a neurologist should be contacted for motor response deficiencies. The protocol may specify that a text message should be sent, a page should be sent, an alarm should be triggered, an in-person notification should be delivered, and/or the like. Other responsive actions, such as archiving patient data, preparing to receive a remote connection, etc., may be performed as well or instead. The archived patient data may be available for later review by the telepresence device, a local and/or remote care provider, and/or the like. Table 1 is an exemplary partial list of drop-down options available for custom protocols and includes diagnostic activities and responses that a telepresence device may perform in an embodiment:
  • Existing Telemetry (or thermal or Eulerian)
    V1 Heart rate
    V2 Breathing rate
    V3 Gross Temperature
    Patient Q&A (speech recognition)
    Q1 Magnitude of pain [specify region]: respond 1
    to 10
    Q2 Stroke scale #5, #6, and #7 (via 3D point
    cloud/skeletal mapping)
    Q3 Stroke scale #1b, #9, and #10 (via speech
    recognition)
    Q4 Stroke scale #2 and #3 (via gaze tracking)
    Thermal & Intelligent Imaging
    T1 Extremity temperature
    T2 Asymmetry of temperature
    T3 Fluid Color
    Actions: Notifications/Warnings/Archiving
    A1 Notify RN immediately
    A2 Notify remote intensivist on call
    A3 Notify RN when round complete
    A4 Archive image/data
    A5 Notify remote cardiologist
    A6 Notify remote neurologist
    Frequency of Monitoring
    F1 q-15-min × ___ hours
    F2 q-30-min × ___ hours
    . . .
    F8 q-8-hrs × ___ hours
  • Table 2 includes examples of custom protocols that may have been specified by a care provider (e.g., using a preset, for one-time use for a specific patient, etc.) and/or performed by a telepresence device:
  • Optional custom
    Patient # Freq. name or reminder Sensor 1 Test 1 Responses
    15432 F4 Monitor for chest Q1 [chest] >5 or increase A1 A2
    pain/increase
    18723 F7 Warmth of T1 [Arm-Left- 2 deg drop from baseline A3 A6
    extremity after Upper]
    revascularization
    17892 F4 Warmth of T1 [Leg-Right] >48 C. A2 A4
    extremity with IAPD
    present
    14998 F2 Breathing pattern V2 >40 A1 A2
    with COPD
    exacerbation
    17894 F4 Urine output T3 [Urine-Bag] color<>RGB_urine_norm A1 A2
    monitoring for
    perfusion
    18023 F7 Neuro-motor/ataxia Q2 score not_in A6 A1
    NIHSS_norm
    19001 F7 Neuro- Q3 score not_in A6 A1
    LOC/language NIHSS_norm
    18987 F6 Neuro-gaze/visual Q4 score not_in A6 A1
    NIHSS_norm
  • The telepresence device may continue to perform each custom protocol at the designated frequency until that custom protocol is removed, until it is detected that the patient has been discharged, and/or the like.
  • According to various embodiments, a telepresence and/or control device may be configured with all or some of the features and embodiments described herein. For example, a telepresence and/or control device may include any number of the features and embodiments described herein as selectively displayed and/or selectively functional options. An explicit enumeration of all possible permutations of the various embodiments is not included herein; however, it will be apparent to one of skill in the art that any of the variously described embodiments may be selectively utilized, if not at the same time, in a single telepresence and/or control device.
  • It will be understood by those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure. The scope of the present disclosure should, therefore, be determined only by the following claims.

Claims (37)

  1. 1. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of autonomously checking a patient, the method comprising:
    visiting the patient with a telepresence device;
    accessing a medical record of the patient;
    performing, using the telepresence device, one or more diagnostic activities to evaluate the patient, wherein the one or more diagnostic activities are selected based on the medical record;
    determining whether a potentially harmful condition exists with the patient based on results from the one or more diagnostic activities; and
    performing an action responsive to the potentially harmful condition if it is determined that the potentially harmful condition exists.
  2. 2. The non-transitory computer-readable storage medium of claim 1, wherein the one or more diagnostic activities include receiving telemetry data from a patient monitor.
  3. 3. The non-transitory computer-readable storage medium of claim 1, wherein the one or more diagnostic activities include measuring a physiological characteristic of the patient using an image sensor.
  4. 4. The non-transitory computer-readable storage medium of claim 3, wherein measuring the physiological characteristic comprises determining a temperature of the patient from a thermographic image.
  5. 5. The non-transitory computer-readable storage medium of claim 1, wherein visiting the patient comprises automatically visiting a plurality of patients in a predetermined order, wherein the predetermined order is determined based on a risk level of each patient, and wherein higher risk patients are visited more often than lower risk patients.
  6. 6. The non-transitory computer-readable storage medium of claim 1, wherein the one or more diagnostic activities are selected by a care provider.
  7. 7. The non-transitory computer-readable storage medium of claim 1, wherein performing the action responsive to the potentially harmful condition comprises performing an action selected from the group consisting of archiving the results from the one or more diagnostic activities, alerting a local care provider, and alerting a remote care provider.
  8. 8. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of diagnosing sepsis in a patient, the method comprising:
    visiting the patient with a telepresence device;
    performing, using the telepresence device, one or more diagnostic activities on the patient to detect sepsis;
    evaluating results from the one or more diagnostic activities; and
    alerting a care provider if the results indicate sepsis is present in the patient.
  9. 9. The non-transitory computer-readable storage medium of claim 8, wherein performing one or more diagnostic activities comprises detecting at least one of changes in temperature and changes in pulse across a plurality of visits.
  10. 10. The non-transitory computer-readable storage medium of claim 9, wherein evaluating the results comprises detecting at least one of an increase in temperature of more than two percent and an increase in pulse of more than 20%.
  11. 11. The non-transitory computer-readable storage medium of claim 8, wherein performing one or more diagnostic activities includes detecting temperature asymmetry from a thermographic image.
  12. 12. The non-transitory computer-readable storage medium of claim 8, wherein the method further comprises capturing video of respiration by the patient for viewing by the care provider.
  13. 13. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of diagnosing a stroke, the method comprising:
    visiting a patient using a telepresence device;
    performing, using the telepresence device, one or more diagnostic tests on the patient to detect a stroke;
    determining, based on the diagnostic tests, whether the patient has suffered a stroke; and
    alerting a care provider if the patient has suffered a stroke.
  14. 14. The non-transitory computer-readable storage medium of claim 13, wherein the one or more diagnostic tests include an interactive test requiring the patient to correctly perform an action.
  15. 15. The non-transitory computer-readable storage medium of claim 14, wherein the action is selected from the group consisting of maintaining a limb in an elevated position for a predetermined length of time and speaking in response to a prompt.
  16. 16. The non-transitory computer-readable storage medium of claim 13, wherein the one or more diagnostic tests include detecting at least one of face symmetry and facial expression using an image sensor.
  17. 17. The non-transitory computer-readable storage medium of claim 13, wherein determining whether the patient has suffered a stroke comprises determining the results of one or more tests on the National Institute of Health Stroke Scale.
  18. 18. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of non-tactilely measuring actigraphy, the method comprising:
    measuring a position of a limb of a patient using a depth sensor on a telepresence device;
    determining motion of the limb based on variations in position measurements over time; and
    determining a psychological state of the patient based on the motion of the limb.
  19. 19. The non-transitory computer-readable storage medium of claim 18, wherein determining the psychological state includes determining whether the patient is in a state selected from the group consisting of asleep, distressed, and agitated.
  20. 20. The non-transitory computer-readable storage medium of claim 18, wherein determining the psychological state includes determining whether the patient is asleep, and wherein the method further comprises delaying an interactive diagnostic until the patient is awake.
  21. 21. The non-transitory computer-readable storage medium of claim 18, wherein the method further comprises receiving a request from a care provider for notification when the patient is awake, and alerting the care provider if the psychological state of the patient includes being awake.
  22. 22. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of autonomously checking a plurality of patients with a telepresence device, the method comprising:
    receiving indications of the plurality of patients;
    receiving medical data for at least one of the plurality of patients; and
    determining a frequency of checking each of the plurality of patients with the telepresence device based on the received medical data.
  23. 23. The non-transitory computer-readable storage medium of claim 22, wherein the method further comprises detecting one or more risk factors in the received medical data, and wherein determining the frequency comprises determining the frequency based on the one or more risk factors.
  24. 24. The non-transitory computer-readable storage medium of claim 23, wherein detecting one or more risk factors comprises receiving an indication of a diagnosis requiring more frequent checking.
  25. 25. The non-transitory computer-readable storage medium of claim 22, wherein the medical data includes an indication of the frequency.
  26. 26. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of overcoming alarm fatigue in a care provider, the method comprising:
    detecting that a patient is experiencing an alarm condition;
    locating a care provider;
    navigating a telepresence device to the care provider; and
    alerting the care provider that the patient experiencing the alarm condition using the telepresence device.
  27. 27. The non-transitory computer-readable storage medium of claim 26, wherein detecting that the patient is experiencing the alarm condition comprises performing one or more diagnostic activities on the patient.
  28. 28. The non-transitory computer-readable storage medium of claim 26, wherein locating the care provider comprises locating the care provider using a vision system on the telepresence device.
  29. 29. The non-transitory computer-readable storage medium of claim 26, wherein alerting the care provider comprises performing at least one action selected from the group consisting of displaying a message on a display device, playing an alert sound, and playing an audio message comprising synthesized speech.
  30. 30. A non-transitory computer-readable storage medium including computer-readable instruction code for performing a method of autonomously checking a patient, the method comprising:
    visiting the patient with a telepresence device;
    if the patient is coupled to a patient monitor, attempting to acquire telemetry data from the patient monitor;
    measuring a patient characteristic using an image sensor on the telepresence device;
    determining whether a potentially harmful condition exists with the patient based on at least one of the telemetry data and the patient characteristic; and
    performing an action responsive to the potentially harmful condition if it is determined that the potentially harmful condition exists.
  31. 31. The non-transitory computer-readable storage medium of claim 30, wherein the telemetry data corresponds to the patient characteristic.
  32. 32. The non-transitory computer-readable storage medium of claim 31, wherein measuring the patient characteristic comprises measuring the patient characteristic if the telemetry data is not acquired from the patient monitor.
  33. 33. The non-transitory computer-readable storage medium of claim 30, wherein attempting to acquire the telemetry data comprises attempting to perform optical character recognition on a display of the patient monitor.
  34. 34. The non-transitory computer-readable storage medium of claim 30, wherein attempting to acquire the telemetry data comprises requesting the telemetry data via a wireless network.
  35. 35. The non-transitory computer-readable storage medium of claim 34, wherein requesting the telemetry data comprises requesting the telemetry data from a system selected from the group consisting of the patient monitor and an electronic medical record system.
  36. 36. The non-transitory computer-readable storage medium of claim 30, wherein the telemetry data corresponds to a physiological characteristic distinct from the patient characteristic.
  37. 37. The non-transitory computer-readable storage medium of claim 36, wherein the patient characteristic includes at least one characteristic selected from the group consisting of pallor, fluid level, fluid color, and thermal symmetry.
US14108036 2011-01-28 2013-12-16 Enhanced Diagnostics for a Telepresence Robot Abandoned US20140139616A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13360579 US8718837B2 (en) 2011-01-28 2012-01-27 Interfacing with a mobile telepresence robot
US13830334 US9098611B2 (en) 2012-11-26 2013-03-14 Enhanced video interaction for a user interface of a telepresence network
US14108036 US20140139616A1 (en) 2012-01-27 2013-12-16 Enhanced Diagnostics for a Telepresence Robot

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14108036 US20140139616A1 (en) 2012-01-27 2013-12-16 Enhanced Diagnostics for a Telepresence Robot
US14091292 US9974612B2 (en) 2011-05-19 2014-02-13 Enhanced diagnostics for a telepresence robot
US15985448 US20180263703A1 (en) 2011-05-19 2018-05-21 Enhanced diagnostics for a telepresence robot

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13111208 Continuation-In-Part US20110288417A1 (en) 2010-05-19 2011-05-19 Mobile videoconferencing robot system with autonomy and image analysis
US13360579 Continuation-In-Part US8718837B2 (en) 2011-01-28 2012-01-27 Interfacing with a mobile telepresence robot

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14091292 Continuation US9974612B2 (en) 2010-05-19 2014-02-13 Enhanced diagnostics for a telepresence robot

Publications (1)

Publication Number Publication Date
US20140139616A1 true true US20140139616A1 (en) 2014-05-22

Family

ID=50727544

Family Applications (3)

Application Number Title Priority Date Filing Date
US14108036 Abandoned US20140139616A1 (en) 2011-01-28 2013-12-16 Enhanced Diagnostics for a Telepresence Robot
US14091292 Active US9974612B2 (en) 2010-05-19 2014-02-13 Enhanced diagnostics for a telepresence robot
US15985448 Pending US20180263703A1 (en) 2010-05-19 2018-05-21 Enhanced diagnostics for a telepresence robot

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14091292 Active US9974612B2 (en) 2010-05-19 2014-02-13 Enhanced diagnostics for a telepresence robot
US15985448 Pending US20180263703A1 (en) 2010-05-19 2018-05-21 Enhanced diagnostics for a telepresence robot

Country Status (1)

Country Link
US (3) US20140139616A1 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168351A1 (en) * 2012-12-18 2014-06-19 Rithik Kundu Telepresence Device Communication and Control System
US20140267549A1 (en) * 2012-11-26 2014-09-18 Intouch Health Enhanced video interaction for a user interface of a telepresence network
US9089972B2 (en) 2010-03-04 2015-07-28 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
CN104889995A (en) * 2015-07-03 2015-09-09 陆春生 Household and medical service robot and working method thereof
US9138891B2 (en) 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
US9174342B2 (en) 2012-05-22 2015-11-03 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
US20150364126A1 (en) * 2014-06-16 2015-12-17 Schneider Electric Industries Sas On-site speaker device, on-site speech broadcasting system and method thereof
US9224181B2 (en) 2012-04-11 2015-12-29 Intouch Technologies, Inc. Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US9296107B2 (en) 2003-12-09 2016-03-29 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US20160171337A1 (en) * 2014-12-11 2016-06-16 Fujitsu Limited Bed area extraction method, bed area extraction apparatus, and recording medium
US9381654B2 (en) 2008-11-25 2016-07-05 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9429934B2 (en) 2008-09-18 2016-08-30 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US9469030B2 (en) 2011-01-28 2016-10-18 Intouch Technologies Interfacing with a mobile telepresence robot
NL2015251B1 (en) * 2015-07-31 2017-02-20 Az Benelux Holding Groep B V Care System.
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US9602765B2 (en) 2009-08-26 2017-03-21 Intouch Technologies, Inc. Portable remote presence robot
WO2017049628A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Devices, systems, and associated methods for evaluating potential stroke condition in subject
US9616576B2 (en) 2008-04-17 2017-04-11 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US20170109993A1 (en) * 2014-03-25 2017-04-20 Msa Europe Gmbh Monitoring Device and Monitoring System
US9694496B2 (en) 2015-02-26 2017-07-04 Toyota Jidosha Kabushiki Kaisha Providing personalized patient care based on electronic health record associated with a user
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US20170193322A1 (en) * 2016-01-04 2017-07-06 Validic, Inc. Optical reading of external segmented display
US9715337B2 (en) 2011-11-08 2017-07-25 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9766624B2 (en) 2004-07-13 2017-09-19 Intouch Technologies, Inc. Mobile robot with a head-based movement mapping scheme
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US9848780B1 (en) 2015-04-08 2017-12-26 Google Inc. Assessing cardiovascular function using an optical sensor
US9849593B2 (en) 2002-07-25 2017-12-26 Intouch Technologies, Inc. Medical tele-robotic system with a master remote station with an arbitrator
US20170372483A1 (en) * 2016-06-28 2017-12-28 Foresite Healthcare, Llc Systems and Methods for Use in Detecting Falls Utilizing Thermal Sensing
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9933908B2 (en) 2014-08-15 2018-04-03 Google Llc Interactive textiles
US9974612B2 (en) 2011-05-19 2018-05-22 Intouch Technologies, Inc. Enhanced diagnostics for a telepresence robot
US9983571B2 (en) 2009-04-17 2018-05-29 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US10064582B2 (en) 2015-01-19 2018-09-04 Google Llc Noninvasive determination of cardiac health and other functional states and trends for human physiological systems
US10073950B2 (en) 2008-10-21 2018-09-11 Intouch Technologies, Inc. Telepresence robot with a camera boom
US10077110B2 (en) * 2016-05-18 2018-09-18 International Business Machines Corporation Monitoring for movement disorders using unmanned aerial vehicles
US10080528B2 (en) 2015-05-19 2018-09-25 Google Llc Optical central venous pressure measurement
US10088908B1 (en) 2015-09-23 2018-10-02 Google Llc Gesture detection and interactions

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741227B1 (en) 2011-07-12 2017-08-22 Cerner Innovation, Inc. Method and process for determining whether an individual suffers a fall requiring assistance
US9489820B1 (en) 2011-07-12 2016-11-08 Cerner Innovation, Inc. Method for determining whether an individual leaves a prescribed virtual perimeter
CN105188521A (en) * 2013-03-14 2015-12-23 皇家飞利浦有限公司 Device and method for obtaining vital sign information of a subject
US10028658B2 (en) * 2013-12-30 2018-07-24 Welch Allyn, Inc. Imager for medical device
US10078956B1 (en) 2014-01-17 2018-09-18 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections
US9524443B1 (en) * 2015-02-16 2016-12-20 Cerner Innovation, Inc. System for determining whether an individual enters a prescribed virtual zone using 3D blob detection
US9892611B1 (en) 2015-06-01 2018-02-13 Cerner Innovation, Inc. Method for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection
US9892310B2 (en) * 2015-12-31 2018-02-13 Cerner Innovation, Inc. Methods and systems for detecting prohibited objects in a patient room
US20180189946A1 (en) * 2016-12-30 2018-07-05 Cerner Innovation, Inc. Seizure detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030135097A1 (en) * 2001-06-25 2003-07-17 Science Applications International Corporation Identification by analysis of physiometric variation
US20060071797A1 (en) * 1999-06-23 2006-04-06 Brian Rosenfeld Telecommunications network for remote patient monitoring
US20110288417A1 (en) * 2010-05-19 2011-11-24 Intouch Technologies, Inc. Mobile videoconferencing robot system with autonomy and image analysis

Family Cites Families (746)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821995A (en) 1971-10-15 1974-07-02 E Aghnides Vehicle with composite wheel
US4107689A (en) 1976-06-07 1978-08-15 Rca Corporation System for automatic vehicle location
US4213182A (en) 1978-12-06 1980-07-15 General Electric Company Programmable energy load controller system and methods
US4413693A (en) 1981-03-27 1983-11-08 Derby Sherwin L Mobile chair
US5148591A (en) 1981-05-11 1992-09-22 Sensor Adaptive Machines, Inc. Vision target based assembly
US6317953B1 (en) 1981-05-11 2001-11-20 Lmi-Diffracto Vision target based assembly
US4471354A (en) 1981-11-23 1984-09-11 Marathon Medical Equipment Corporation Apparatus and method for remotely measuring temperature
US4519466A (en) 1982-03-30 1985-05-28 Eiko Shiraishi Omnidirectional drive system
DE3372942D1 (en) 1982-09-25 1987-09-17 Fujitsu Ltd A multi-articulated robot
US4625274A (en) 1983-12-05 1986-11-25 Motorola, Inc. Microprocessor reset system
US4572594A (en) 1984-02-08 1986-02-25 Schwartz C Bruce Arthroscopy support stand
US4638445A (en) 1984-06-08 1987-01-20 Mattaboni Paul J Autonomous mobile robot
US4766581A (en) 1984-08-07 1988-08-23 Justin Korn Information retrieval system and method using independent user stations
US4553309A (en) 1984-09-26 1985-11-19 General Motors Corporation Robotic assembly of vehicle headliners
JPH0529924B2 (en) 1984-09-28 1993-05-06 Yutaka Kanayama
JPH0525620B2 (en) 1984-11-05 1993-04-13 Nissan Motor
US4679152A (en) 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
US4697278A (en) 1985-03-01 1987-09-29 Veeder Industries Inc. Electronic hub odometer
US4652204A (en) 1985-08-02 1987-03-24 Arnett Edward M Apparatus for handling hazardous materials
US4733737A (en) 1985-08-29 1988-03-29 Reza Falamak Drivable steerable platform for industrial, domestic, entertainment and like uses
US4709265A (en) 1985-10-15 1987-11-24 Advanced Resource Development Corporation Remote control mobile surveillance system
US4751658A (en) 1986-05-16 1988-06-14 Denning Mobile Robotics, Inc. Obstacle avoidance system
US4777416A (en) 1986-05-16 1988-10-11 Denning Mobile Robotics, Inc. Recharge docking system for mobile robot
US4797557A (en) 1986-05-23 1989-01-10 Aktiebolaget Electrolux Position sensing system for a moving object wherein a lens focuses light onto a radiation sensitive matrix
US4803625A (en) 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4878501A (en) 1986-09-24 1989-11-07 Shue Ming Jeng Electronic stethoscopic apparatus
JPS63289607A (en) 1987-05-21 1988-11-28 Toshiba Corp Inter-module communication control system for intelligent robot
US4847764C1 (en) 1987-05-21 2001-09-11 Meditrol Inc System for dispensing drugs in health care instituions
JPH0349499B2 (en) 1987-08-20 1991-07-29 Tsuruta Hiroko
US4942538A (en) 1988-01-05 1990-07-17 Spar Aerospace Limited Telerobotic tracker
US5193143A (en) 1988-01-12 1993-03-09 Honeywell Inc. Problem state monitoring
US4979949A (en) 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US5142484A (en) 1988-05-12 1992-08-25 Health Tech Services Corporation An interactive patient assistance device for storing and dispensing prescribed medication and physical device
US5008804B1 (en) 1988-06-23 1993-05-04 Total Spectrum Manufacturing I
US5040116A (en) 1988-09-06 1991-08-13 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US5157491A (en) 1988-10-17 1992-10-20 Kassatly L Samuel A Method and apparatus for video broadcasting and teleconferencing
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
USRE39080E1 (en) 1988-12-30 2006-04-25 Lucent Technologies Inc. Rate loop processor for perceptual encoder/decoder
US4953159A (en) 1989-01-03 1990-08-28 American Telephone And Telegraph Company Audiographics conferencing arrangement
US5341854A (en) 1989-09-28 1994-08-30 Alberta Research Council Robotic drug dispensing system
US5016173A (en) 1989-04-13 1991-05-14 Vanguard Imaging Ltd. Apparatus and method for monitoring visually accessible surfaces of the body
US5006988A (en) 1989-04-28 1991-04-09 University Of Michigan Obstacle-avoiding navigation system
US4977971A (en) 1989-05-17 1990-12-18 University Of Florida Hybrid robotic vehicle
US5224157A (en) 1989-05-22 1993-06-29 Minolta Camera Kabushiki Kaisha Management system for managing maintenance information of image forming apparatus
US5051906A (en) 1989-06-07 1991-09-24 Transitions Research Corporation Mobile robot navigation employing retroreflective ceiling features
JP3002206B2 (en) 1989-06-22 2000-01-24 神鋼電機株式会社 Cruise control method for a mobile robot
US5084828A (en) 1989-09-29 1992-01-28 Healthtech Services Corp. Interactive medication delivery system
JP2964518B2 (en) 1990-01-30 1999-10-18 日本電気株式会社 Voice control system
JP2679346B2 (en) 1990-03-28 1997-11-19 神鋼電機株式会社 Charge control method in a mobile robot system
US5130794A (en) 1990-03-29 1992-07-14 Ritchey Kurtis J Panoramic display system
JP2921936B2 (en) 1990-07-13 1999-07-19 株式会社東芝 Image monitoring apparatus
US6958706B2 (en) 1990-07-27 2005-10-25 Hill-Rom Services, Inc. Patient care and communication system
JP2541353B2 (en) 1990-09-18 1996-10-09 三菱自動車工業株式会社 Active suspension system for a vehicle
US5563998A (en) 1990-10-19 1996-10-08 Moore Business Forms, Inc. Forms automation system implementation
US5276445A (en) 1990-11-30 1994-01-04 Sony Corporation Polling control system for switching units in a plural stage switching matrix
US5310464A (en) 1991-01-04 1994-05-10 Redepenning Jody G Electrocrystallization of strongly adherent brushite coatings on prosthetic alloys
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
CA2085735A1 (en) 1991-04-22 1992-10-23 Ralph W. Fisher Head-mounted projection display system featuring beam splitter
US5341459A (en) 1991-05-09 1994-08-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Generalized compliant motion primitive
US5231693A (en) 1991-05-09 1993-07-27 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Telerobot control system
US7382399B1 (en) 1991-05-13 2008-06-03 Sony Coporation Omniview motionless camera orientation system
JP3173042B2 (en) 1991-05-21 2001-06-04 ソニー株式会社 Robot of the numerical control device
US5182641A (en) 1991-06-17 1993-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite video and graphics display for camera viewing systems in robotics and teleoperation
JPH0530502A (en) 1991-07-24 1993-02-05 Hitachi Ltd Integrated video telephone set
US5366896A (en) 1991-07-30 1994-11-22 University Of Virginia Alumni Patents Foundation Robotically operated laboratory system
US5441042A (en) 1991-08-05 1995-08-15 Putman; John M. Endoscope instrument holder
US5341242A (en) 1991-09-05 1994-08-23 Elbit Ltd. Helmet mounted display
WO1993006690A1 (en) 1991-09-17 1993-04-01 Radamec Epo Limited Setting-up system for remotely controlled cameras
US5186270A (en) 1991-10-24 1993-02-16 Massachusetts Institute Of Technology Omnidirectional vehicle
US5419008A (en) 1991-10-24 1995-05-30 West; Mark Ball joint
DE69312053T2 (en) 1992-01-21 1997-10-30 Stanford Res Inst Int Tele operator system and process with tele presence
US5544649A (en) 1992-03-25 1996-08-13 Cardiomedix, Inc. Ambulatory patient health monitoring techniques utilizing interactive visual communication
US5441047A (en) 1992-03-25 1995-08-15 David; Daniel Ambulatory patient health monitoring techniques utilizing interactive visual communication
US5262944A (en) 1992-05-15 1993-11-16 Hewlett-Packard Company Method for use of color and selective highlighting to indicate patient critical events in a centralized patient monitoring system
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5594859A (en) 1992-06-03 1997-01-14 Digital Equipment Corporation Graphical user interface for video teleconferencing
US5375195A (en) 1992-06-29 1994-12-20 Johnston; Victor S. Method and apparatus for generating composites of human faces
US5374879A (en) 1992-11-04 1994-12-20 Martin Marietta Energy Systems, Inc. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom
US5600573A (en) 1992-12-09 1997-02-04 Discovery Communications, Inc. Operations center with video storage for a television program packaging and delivery system
US5315287A (en) 1993-01-13 1994-05-24 David Sol Energy monitoring system for recreational vehicles and marine vessels
US5319611A (en) 1993-03-31 1994-06-07 National Research Council Of Canada Method of determining range data in a time-of-flight ranging system
DE69413585D1 (en) 1993-03-31 1998-11-05 Siemens Medical Systems Inc Apparatus and method for providing dual output signals in a telemetry transmitter
US5350033A (en) 1993-04-26 1994-09-27 Kraft Brett W Robotic inspection vehicle
EP0625856B1 (en) 1993-05-19 1998-03-04 Alcatel Alsthom Compagnie Generale D'electricite Video on demand network
US6219032B1 (en) 1995-12-01 2001-04-17 Immersion Corporation Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
EP0971537B1 (en) 1993-09-20 2006-06-28 Canon Kabushiki Kaisha Video system
US5689641A (en) 1993-10-01 1997-11-18 Vicor, Inc. Multimedia collaboration system arrangement for routing compressed AV signal through a participant site without decompressing the AV signal
US6594688B2 (en) 1993-10-01 2003-07-15 Collaboration Properties, Inc. Dedicated echo canceler for a workstation
WO1995011566A1 (en) 1993-10-20 1995-04-27 Videoconferencing Systems, Inc. Adaptive videoconferencing system
US5876325A (en) 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5623679A (en) 1993-11-19 1997-04-22 Waverley Holdings, Inc. System and method for creating and manipulating notes each containing multiple sub-notes, and linking the sub-notes to portions of data objects
US5510832A (en) 1993-12-01 1996-04-23 Medi-Vision Technologies, Inc. Synthesized stereoscopic imaging system and method
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
GB9325924D0 (en) 1993-12-18 1994-02-23 Ibm Audio conferencing system
JP3339953B2 (en) 1993-12-29 2002-10-28 オリンパス光学工業株式会社 Medical master-slave manipulator
US5511147A (en) 1994-01-12 1996-04-23 Uti Corporation Graphical interface for robot
US5436542A (en) 1994-01-28 1995-07-25 Surgix, Inc. Telescopic camera mount with remotely controlled positioning
JPH07213753A (en) 1994-02-02 1995-08-15 Hitachi Ltd Personal robot device
JPH07248823A (en) 1994-03-11 1995-09-26 Hitachi Ltd Personal robot device
DE4408329C2 (en) 1994-03-11 1996-04-18 Siemens Ag Method for setting up a cellularly structured environment map of a self-propelled mobile unit which orients itself with the aid of sensors based on wave reflection
JPH07257422A (en) 1994-03-19 1995-10-09 Hideaki Maehara Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same
US5659779A (en) 1994-04-25 1997-08-19 The United States Of America As Represented By The Secretary Of The Navy System for assigning computer resources to control multiple computer directed devices
US5631973A (en) 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5784546A (en) 1994-05-12 1998-07-21 Integrated Virtual Networks Integrated virtual networks
US5734805A (en) 1994-06-17 1998-03-31 International Business Machines Corporation Apparatus and method for controlling navigation in 3-D space
CA2148631C (en) 1994-06-20 2000-06-13 John J. Hildin Voice-following video system
JPH0811074A (en) 1994-06-29 1996-01-16 Fanuc Ltd Robot system
BE1008470A3 (en) 1994-07-04 1996-05-07 Colens Andre Device and automatic system and equipment dedusting sol y adapted.
US5462051A (en) 1994-08-31 1995-10-31 Colin Corporation Medical communication system
JP3302188B2 (en) 1994-09-13 2002-07-15 日本電信電話株式会社 Telexistence type TV telephone apparatus
US5675229A (en) 1994-09-21 1997-10-07 Abb Robotics Inc. Apparatus and method for adjusting robot positioning
US6463361B1 (en) 1994-09-22 2002-10-08 Computer Motion, Inc. Speech interface for an automated endoscopic system
US5764731A (en) 1994-10-13 1998-06-09 Yablon; Jay R. Enhanced system for transferring, storing and using signaling information in a switched telephone network
US5767897A (en) 1994-10-31 1998-06-16 Picturetel Corporation Video conferencing system
JPH08139900A (en) 1994-11-14 1996-05-31 Canon Inc Image communication equipment
JP2726630B2 (en) 1994-12-07 1998-03-11 インターナショナル・ビジネス・マシーンズ・コーポレイション Gateway device and the gateway METHOD
JPH08166822A (en) 1994-12-13 1996-06-25 Nippon Telegr & Teleph Corp <Ntt> User tracking type moving robot device and sensing method
US5486853A (en) 1994-12-13 1996-01-23 Picturetel Corporation Electrical cable interface for electronic camera
US5553609A (en) 1995-02-09 1996-09-10 Visiting Nurse Service, Inc. Intelligent remote visual monitoring system for home health care service
US5619341A (en) 1995-02-23 1997-04-08 Motorola, Inc. Method and apparatus for preventing overflow and underflow of an encoder buffer in a video compression system
US5973724A (en) 1995-02-24 1999-10-26 Apple Computer, Inc. Merging multiple teleconferences
US5854898A (en) 1995-02-24 1998-12-29 Apple Computer, Inc. System for automatically adding additional data stream to existing media connection between two end points upon exchange of notifying and confirmation messages therebetween
US5657246A (en) 1995-03-07 1997-08-12 Vtel Corporation Method and apparatus for a video conference user interface
JP2947113B2 (en) 1995-03-09 1999-09-13 日本電気株式会社 Image communication terminal for a user interface device
US5652849A (en) 1995-03-16 1997-07-29 Regents Of The University Of Michigan Apparatus and method for remote control using a visual information stream
US5673082A (en) 1995-04-10 1997-09-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Light-directed ranging system implementing single camera system for telerobotics applications
JP3241564B2 (en) 1995-05-10 2001-12-25 栄二 中野 Control apparatus and method for motion control of the normal wheeled omnidirectional mobile robot
JPH08320727A (en) 1995-05-24 1996-12-03 Shinko Electric Co Ltd Moving device
US5630566A (en) 1995-05-30 1997-05-20 Case; Laura Portable ergonomic work station
JPH08335112A (en) 1995-06-08 1996-12-17 Minolta Co Ltd Mobile working robot system
US5870538A (en) 1995-07-19 1999-02-09 Fujitsu Network Communications, Inc. Switch fabric controller comparator system and method
US5825982A (en) 1995-09-15 1998-10-20 Wright; James Head cursor control interface for an automated endoscope system for optimal positioning
US6710797B1 (en) 1995-09-20 2004-03-23 Videotronic Systems Adaptable teleconferencing eye contact terminal
US5961446A (en) 1995-10-06 1999-10-05 Tevital Incorporated Patient terminal for home health care system
US5797515A (en) 1995-10-18 1998-08-25 Adds, Inc. Method for controlling a drug dispensing system
WO1997018672A1 (en) 1995-11-13 1997-05-22 Sony Corporation Near video on-demand system and televising method of the same
US20010034475A1 (en) 1995-11-13 2001-10-25 Flach Terry E. Wireless lan system with cellular architecture
US5838575A (en) 1995-12-14 1998-11-17 Rx Excell Inc. System for dispensing drugs
US6133944A (en) 1995-12-18 2000-10-17 Telcordia Technologies, Inc. Head mounted displays linked to networked electronic panning cameras
US5793365A (en) 1996-01-02 1998-08-11 Sun Microsystems, Inc. System and method providing a computer user interface enabling access to distributed workgroup members
US5701904A (en) 1996-01-11 1997-12-30 Krug International Telemedicine instrumentation pack
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
CA2249260C (en) 1996-03-18 2002-12-10 General Instrument Corporation Dynamic bandwidth allocation for a communication network
US5682199A (en) 1996-03-28 1997-10-28 Jedmed Instrument Company Video endoscope with interchangeable endoscope heads
JP3601737B2 (en) 1996-03-30 2004-12-15 技術研究組合医療福祉機器研究所 Transport robot system
US5801755A (en) 1996-04-09 1998-09-01 Echerer; Scott J. Interactive communciation system for medical treatment of remotely located patients
US5867653A (en) 1996-04-18 1999-02-02 International Business Machines Corporation Method and apparatus for multi-cast based video conferencing
US6135228A (en) 1996-04-25 2000-10-24 Massachusetts Institute Of Technology Human transport system with dead reckoning facilitating docking
WO1997042761A1 (en) 1996-05-06 1997-11-13 The Camelot Corporation Videophone system
US6189034B1 (en) 1996-05-08 2001-02-13 Apple Computer, Inc. Method and apparatus for dynamic launching of a teleconferencing application upon receipt of a call
US6006191A (en) 1996-05-13 1999-12-21 Dirienzo; Andrew L. Remote access medical image exchange system and methods of operation therefor
US6496099B2 (en) 1996-06-24 2002-12-17 Computer Motion, Inc. General purpose distributed operating room control system
US5949758A (en) 1996-06-27 1999-09-07 International Business Machines Corporation Bandwidth reservation for multiple file transfer in a high speed communication network
JPH1079097A (en) 1996-09-04 1998-03-24 Toyota Motor Corp Mobile object communication method
US6195357B1 (en) 1996-09-24 2001-02-27 Intervoice Limited Partnership Interactive information transaction processing system with universal telephony gateway capabilities
US5754631A (en) 1996-09-30 1998-05-19 Intervoice Limited Partnership Voice response unit having robot conference capability on ports
US5974446A (en) 1996-10-24 1999-10-26 Academy Of Applied Science Internet based distance learning system for communicating between server and clients wherein clients communicate with each other or with teacher using different communication techniques via common user interface
US6646677B2 (en) 1996-10-25 2003-11-11 Canon Kabushiki Kaisha Image sensing control method and apparatus, image transmission control method, apparatus, and system, and storage means storing program that implements the method
US5917958A (en) 1996-10-31 1999-06-29 Sensormatic Electronics Corporation Distributed video data base with remote searching for image data features
US5867494A (en) 1996-11-18 1999-02-02 Mci Communication Corporation System, method and article of manufacture with integrated video conferencing billing in a communication system architecture
US8182469B2 (en) 1997-11-21 2012-05-22 Intuitive Surgical Operations, Inc. Surgical accessory clamp and method
US6113343A (en) 1996-12-16 2000-09-05 Goldenberg; Andrew Explosives disposal robot
US6148100A (en) 1996-12-20 2000-11-14 Bechtel Bwxt Idaho, Llc 3-dimensional telepresence system for a robotic environment
US5886735A (en) 1997-01-14 1999-03-23 Bullister; Edward T Video telephone headset
US5927423A (en) 1997-03-05 1999-07-27 Massachusetts Institute Of Technology Reconfigurable footprint mechanism for omnidirectional vehicles
US6501740B1 (en) 1997-03-07 2002-12-31 At&T Corp. System and method for teleconferencing on an internetwork comprising connection-oriented and connectionless networks
US5995884A (en) 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
US20040157612A1 (en) 1997-04-25 2004-08-12 Minerva Industries, Inc. Mobile communication and stethoscope system
WO1998042407A1 (en) 1997-03-27 1998-10-01 Medtronic, Inc. Concepts to implement medconnect
JPH10288689A (en) 1997-04-14 1998-10-27 Hitachi Ltd Remote monitoring system
DE69803451D1 (en) 1997-05-07 2002-02-28 Telbotics Inc Teleconferencing robot with rotating video screen
US6914622B1 (en) 1997-05-07 2005-07-05 Telbotics Inc. Teleconferencing robot with swiveling video monitor
GB2325376B (en) 1997-05-14 2001-09-19 Airspan Comm Corp Allocation of bandwidth to calls in a wireless telecommunications system
US5857534A (en) 1997-06-05 1999-01-12 Kansas State University Research Foundation Robotic inspection apparatus and method
US5995119A (en) 1997-06-06 1999-11-30 At&T Corp. Method for generating photo-realistic animated characters
CA2294761C (en) 1997-07-02 2004-11-30 Borringia Industrie Ag Drive wheel
US6330486B1 (en) 1997-07-16 2001-12-11 Silicon Graphics, Inc. Acoustic perspective in a virtual three-dimensional environment
US6445964B1 (en) 1997-08-04 2002-09-03 Harris Corporation Virtual reality simulation-based training of telekinegenesis system for training sequential kinematic behavior of automated kinematic machine
JPH11126017A (en) 1997-08-22 1999-05-11 Sony Corp Storage medium, robot, information processing device and electronic pet system
EP1040393A4 (en) 1997-09-04 2004-03-10 Dynalog Inc Method for calibration of a robot inspection system
US6400378B1 (en) 1997-09-26 2002-06-04 Sony Corporation Home movie maker
JPH11175118A (en) 1997-10-08 1999-07-02 Denso Corp Robot controller
US7956894B2 (en) 1997-10-14 2011-06-07 William Rex Akers Apparatus and method for computerized multi-media medical and pharmaceutical data organization and transmission
US6597392B1 (en) 1997-10-14 2003-07-22 Healthcare Vision, Inc. Apparatus and method for computerized multi-media data organization and transmission
US6209018B1 (en) 1997-11-13 2001-03-27 Sun Microsystems, Inc. Service framework for a distributed object network system
US6532404B2 (en) 1997-11-27 2003-03-11 Colens Andre Mobile robots and their control system
US6389329B1 (en) 1997-11-27 2002-05-14 Andre Colens Mobile robots and their control system
JP3919040B2 (en) 1997-11-30 2007-05-23 ソニー株式会社 Robot apparatus
US6036812A (en) 1997-12-05 2000-03-14 Automated Prescription Systems, Inc. Pill dispensing system
US6006946A (en) 1997-12-05 1999-12-28 Automated Prescriptions System, Inc. Pill dispensing system
WO1999030876A1 (en) 1997-12-16 1999-06-24 Board Of Trustees Operating Michigan State University Spherical mobile robot
US6047259A (en) 1997-12-30 2000-04-04 Medical Management International, Inc. Interactive method and system for managing physical exams, diagnosis and treatment protocols in a health care practice
US5983263A (en) 1998-01-02 1999-11-09 Intel Corporation Method and apparatus for transmitting images during a multimedia teleconference
US6563533B1 (en) 1998-01-06 2003-05-13 Sony Corporation Ergonomically designed apparatus for selectively actuating remote robotics cameras
US6380968B1 (en) 1998-01-06 2002-04-30 Intel Corporation Method and apparatus for controlling a remote video camera in a video conferencing system
DE19803494A1 (en) 1998-01-29 1999-08-05 Berchtold Gmbh & Co Geb A method for manipulating a surgical lamp
JPH11220706A (en) 1998-02-03 1999-08-10 Nikon Corp Video telephone system
JPH11249725A (en) 1998-02-26 1999-09-17 Fanuc Ltd Robot controller
US6346962B1 (en) 1998-02-27 2002-02-12 International Business Machines Corporation Control of video conferencing system with pointing device
US6373855B1 (en) 1998-03-05 2002-04-16 Intel Corporation System and method for using audio performance to control video bandwidth
US6643496B1 (en) 1998-03-31 2003-11-04 Canon Kabushiki Kaisha System, method, and apparatus for adjusting packet transmission rates based on dynamic evaluation of network characteristics
GB9807540D0 (en) 1998-04-09 1998-06-10 Orad Hi Tec Systems Ltd Tracking system for sports
US6650748B1 (en) 1998-04-13 2003-11-18 Avaya Technology Corp. Multiple call handling in a call center
US6233504B1 (en) 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
US6529765B1 (en) 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US20020151514A1 (en) 1998-05-11 2002-10-17 Paz Einat Genes associated with mechanical stress, expression products therefrom, and uses thereof
US6219587B1 (en) 1998-05-27 2001-04-17 Nextrx Corporation Automated pharmaceutical management and dispensing system
US6250928B1 (en) 1998-06-22 2001-06-26 Massachusetts Institute Of Technology Talking facial display method and apparatus
WO1999067067A1 (en) 1998-06-23 1999-12-29 Sony Corporation Robot and information processing system
JP3792901B2 (en) 1998-07-08 2006-07-05 キヤノン株式会社 The camera control system and control method thereof
US6452915B1 (en) 1998-07-10 2002-09-17 Malibu Networks, Inc. IP-flow classification in a wireless point to multi-point (PTMP) transmission system
US6266577B1 (en) 1998-07-13 2001-07-24 Gte Internetworking Incorporated System for dynamically reconfigure wireless robot network
JP3487186B2 (en) 1998-07-28 2004-01-13 日本ビクター株式会社 Network remote control system
JP4100773B2 (en) 1998-09-04 2008-06-11 富士通株式会社 Robot remote control method and system
JP2000153476A (en) 1998-09-14 2000-06-06 Honda Motor Co Ltd Leg type movable robot
US6594527B2 (en) 1998-09-18 2003-07-15 Nexmed Holdings, Inc. Electrical stimulation apparatus and method
US6175779B1 (en) 1998-09-29 2001-01-16 J. Todd Barrett Computerized unit dose medication dispensing cart
US6457043B1 (en) 1998-10-23 2002-09-24 Verizon Laboratories Inc. Speaker identifier for multi-party conference
WO2000025516A1 (en) 1998-10-24 2000-05-04 Vtel Corporation Graphical menu items for a user interface menu of a video teleconferencing system
US6602469B1 (en) 1998-11-09 2003-08-05 Lifestream Technologies, Inc. Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US8527094B2 (en) 1998-11-20 2013-09-03 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US6232735B1 (en) 1998-11-24 2001-05-15 Thames Co., Ltd. Robot remote control system and robot image remote control processing system
US6170929B1 (en) 1998-12-02 2001-01-09 Ronald H. Wilson Automated medication-dispensing cart
US6535182B2 (en) 1998-12-07 2003-03-18 Koninklijke Philips Electronics N.V. Head-mounted projection display system
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6799065B1 (en) 1998-12-08 2004-09-28 Intuitive Surgical, Inc. Image shifting apparatus and method for a telerobotic system
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
DE69942129D1 (en) 1998-12-08 2010-04-22 Intuitive Surgical Inc Tele Robot to move images
US6714839B2 (en) 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
JP3980205B2 (en) 1998-12-17 2007-09-26 コニカミノルタホールディングス株式会社 Working robot
JP2000196876A (en) 1998-12-28 2000-07-14 Canon Inc Image processing system, image forming controller, image forming device, control method for image processing system, control method for the image forming controller, and control method for the image forming device
US6259956B1 (en) 1999-01-14 2001-07-10 Rawl & Winstead, Inc. Method and apparatus for site management
US6463352B1 (en) 1999-01-21 2002-10-08 Amada Cutting Technologies, Inc. System for management of cutting machines
JP4366617B2 (en) 1999-01-25 2009-11-18 ソニー株式会社 Robotic device
US6338013B1 (en) 1999-03-19 2002-01-08 Bryan John Ruffner Multifunctional mobile appliance
WO2000060522A3 (en) 1999-04-01 2001-01-18 Acist Medical Sys Inc An integrated medical information management and medical device control system and method
US7007235B1 (en) 1999-04-02 2006-02-28 Massachusetts Institute Of Technology Collaborative agent interaction control and synchronization system
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6788651B1 (en) 1999-04-21 2004-09-07 Mindspeed Technologies, Inc. Methods and apparatus for data communications on packet networks
US6346950B1 (en) 1999-05-20 2002-02-12 Compaq Computer Corporation System and method for display images using anamorphic video
US6781606B2 (en) 1999-05-20 2004-08-24 Hewlett-Packard Development Company, L.P. System and method for displaying images using foveal video
US6292713B1 (en) 1999-05-20 2001-09-18 Compaq Computer Corporation Robotic telepresence system
US6523629B1 (en) 1999-06-07 2003-02-25 Sandia Corporation Tandem mobile robot system
US6804656B1 (en) * 1999-06-23 2004-10-12 Visicu, Inc. System and method for providing continuous, expert network critical care services from a remote location(s)
US6304050B1 (en) 1999-07-19 2001-10-16 Steven B. Skaar Means and method of robot control relative to an arbitrary surface using camera-space manipulation
US7606164B2 (en) 1999-12-14 2009-10-20 Texas Instruments Incorporated Process of increasing source rate on acceptable side of threshold
US6540039B1 (en) 1999-08-19 2003-04-01 Massachusetts Institute Of Technology Omnidirectional vehicle with offset wheel pairs
DE69927590D1 (en) 1999-08-31 2006-02-16 Swisscom Ag Bern The mobile robot and control method for a mobile robot
US6810411B1 (en) 1999-09-13 2004-10-26 Intel Corporation Method and system for selecting a host in a communications network
EP1090722B1 (en) 1999-09-16 2007-07-25 Fanuc Ltd Control system for synchronously cooperative operation of a plurality of robots
JP2001094989A (en) 1999-09-20 2001-04-06 Toshiba Corp Dynamic image transmitter and dynamic image communications equipment
US6480762B1 (en) 1999-09-27 2002-11-12 Olympus Optical Co., Ltd. Medical apparatus supporting system
US6449762B1 (en) 1999-10-07 2002-09-10 Synplicity, Inc. Maintaining correspondence between text and schematic representations of circuit elements in circuit synthesis
US6798753B1 (en) 1999-10-14 2004-09-28 International Business Machines Corporation Automatically establishing conferences from desktop applications over the Internet
US7467211B1 (en) 1999-10-18 2008-12-16 Cisco Technology Inc. Remote computer system management through an FTP internet connection
EP1819108B1 (en) 1999-10-22 2013-09-18 Nomadix, Inc. Systems and methods for dynamic bandwidth management on a per subscriber basis in a communication network
JP4207336B2 (en) 1999-10-29 2009-01-14 ソニー株式会社 The charging system for a mobile robot, a method of searching the charging station, the mobile robot, connectors, and electrical connection structure
DE50006979D1 (en) 1999-11-05 2004-08-05 Fronius Internat Gmbh Pettenba Define and / or determine their user rights by means of a transponder, a fingerprint recognition or the like
JP2001134309A (en) 1999-11-09 2001-05-18 Mitsubishi Electric Corp Robot operation terminal and remote control system for robot
JP2001142512A (en) 1999-11-16 2001-05-25 Mitsubishi Electric Corp Remote operation system for robot
CA2388870A1 (en) 1999-11-18 2001-05-25 Gary G. Heaton Home cleaning robot
JP2001147718A (en) 1999-11-19 2001-05-29 Sony Corp Information communication robot device, information communication method and information communication robot system
US6374155B1 (en) 1999-11-24 2002-04-16 Personal Robotics, Inc. Autonomous multi-platform robot system
US6443359B1 (en) 1999-12-03 2002-09-03 Diebold, Incorporated Automated transaction system and method
US7156809B2 (en) 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US20010051881A1 (en) 1999-12-22 2001-12-13 Aaron G. Filler System, method and article of manufacture for managing a medical services network
EP1239805B1 (en) 1999-12-23 2006-06-14 Hill-Rom Services, Inc. Surgical theater system
JP2001179663A (en) 1999-12-24 2001-07-03 Sony Corp Leg type mobile robot, its control method and charging station
JP2001188124A (en) 1999-12-27 2001-07-10 Ge Toshiba Silicones Co Ltd Saponified cellulose acetate composite polarizing base plate, its manufacturing method and liquid crystal display device
US7389252B2 (en) 2000-01-06 2008-06-17 Anne E. Robb Recursive method and system for accessing classification information
JP2001198868A (en) 2000-01-17 2001-07-24 Atr Media Integration & Communications Res Lab Robot for cyber two man comic dialogue and support device
JP3791663B2 (en) 2000-01-17 2006-06-28 富士電機ホールディングス株式会社 Omnidirectional vehicle and its control method
JP2001198865A (en) 2000-01-20 2001-07-24 Toshiba Corp Bipedal robot device and its operating method
JP2001222309A (en) 2000-02-10 2001-08-17 Yaskawa Electric Corp Robot controller
JP2001252884A (en) 2000-03-06 2001-09-18 Matsushita Electric Ind Co Ltd Robot, robot system, and method of controlling robot
US20010054071A1 (en) 2000-03-10 2001-12-20 Loeb Gerald E. Audio/video conference system for electronic caregiving
FR2806561B1 (en) 2000-03-16 2002-08-09 France Telecom tele-assistance system at home
US6369847B1 (en) 2000-03-17 2002-04-09 Emtel, Inc. Emergency facility video-conferencing system
US7206025B2 (en) 2000-03-24 2007-04-17 Lg Electronics Inc. Device and method for converting format in digital TV receiver
US20010048464A1 (en) 2000-04-07 2001-12-06 Barnett Howard S. Portable videoconferencing system
US6590604B1 (en) 2000-04-07 2003-07-08 Polycom, Inc. Personal videoconferencing system having distributed processing architecture
JP3511088B2 (en) 2000-04-10 2004-03-29 独立行政法人航空宇宙技術研究所 Pressure distribution sensor of the multi-joint nursing robot control
EP2363775A1 (en) 2000-05-01 2011-09-07 iRobot Corporation Method and system for remote control of mobile robot
US6845297B2 (en) 2000-05-01 2005-01-18 Irobot Corporation Method and system for remote control of mobile robot
US6292714B1 (en) 2000-05-12 2001-09-18 Fujitsu Limited Robot cooperation device, and robot cooperation program storage medium
US20020059587A1 (en) 2000-05-24 2002-05-16 Virtual Clinic, Inc. Method and apparatus for providing personalized services
US7215786B2 (en) 2000-06-09 2007-05-08 Japan Science And Technology Agency Robot acoustic device and robot acoustic system
JP2001353678A (en) 2000-06-12 2001-12-25 Sony Corp Authoring system and method and storage medium
JP3513084B2 (en) 2000-06-14 2004-03-31 株式会社東芝 The information processing system, information devices and information processing method
JP2002000574A (en) 2000-06-22 2002-01-08 Matsushita Electric Ind Co Ltd Robot for nursing care support and nursing care support system
US7782363B2 (en) 2000-06-27 2010-08-24 Front Row Technologies, Llc Providing multiple video perspectives of activities through a data network to a remote multimedia server for selective display by remote viewing audiences
US6629028B2 (en) 2000-06-29 2003-09-30 Riken Method and system of optical guidance of mobile body
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US8751248B2 (en) 2000-07-28 2014-06-10 Visual Telecommunications Network, Inc. Method, apparatus, and medium using a master control file for computer software interoperability between disparate operating systems
JP2004511839A (en) 2000-07-28 2004-04-15 アメリカン カルカー インコーポレイティド Technology for effectively organize and communicate information
US6738076B1 (en) 2000-07-31 2004-05-18 Hewlett-Packard Development Company, L.P. Method and system for maintaining persistance of graphical markups in a collaborative graphical viewing system
JP2002046088A (en) 2000-08-03 2002-02-12 Matsushita Electric Ind Co Ltd Robot device
US20020027597A1 (en) 2000-09-05 2002-03-07 John Sachau System for mobile videoconferencing
US20070273751A1 (en) 2000-09-05 2007-11-29 Sachau John A System and methods for mobile videoconferencing
EP1189169A1 (en) 2000-09-07 2002-03-20 SGS-THOMSON MICROELECTRONICS S.r.l. A VLSI architecture, particularly for motion estimation applications
WO2002023403A3 (en) 2000-09-11 2003-03-13 Pinotage Llc System and method for obtaining and utilizing maintenance information
KR100373323B1 (en) 2000-09-19 2003-02-25 한국전자통신연구원 Method of multipoint video conference in video conferencing system
US6741911B2 (en) 2000-09-20 2004-05-25 John Castle Simmons Natural robot control
JP2002101333A (en) 2000-09-26 2002-04-05 Casio Comput Co Ltd Remote controller and remote control service system, and recording medium for recording program for them
WO2002027438A3 (en) 2000-09-28 2002-06-27 Vigilos Inc Method and process for configuring a premises for monitoring
US20030060808A1 (en) 2000-10-04 2003-03-27 Wilk Peter J. Telemedical method and system
WO2002029700A3 (en) 2000-10-05 2003-08-14 Siemens Corp Res Inc Intra-operative image-guided neurosurgery with augmented reality visualization
US20050149364A1 (en) 2000-10-06 2005-07-07 Ombrellaro Mark P. Multifunction telemedicine software with integrated electronic medical record
US6674259B1 (en) 2000-10-06 2004-01-06 Innovation First, Inc. System and method for managing and controlling a robot competition
JP2002112970A (en) 2000-10-10 2002-04-16 Besutekku:Kk Device and method for observing surface of skin
JP2002113675A (en) 2000-10-11 2002-04-16 Sony Corp Robot control system and introducing method for robot controlling software
US7886054B1 (en) 2000-10-11 2011-02-08 Siddhartha Nag Graphical user interface (GUI) for administering a network implementing media aggregation
WO2002033641A3 (en) 2000-10-16 2003-11-20 Cardionow Inc Medical image capture system and method
WO2002033677A9 (en) 2000-10-19 2002-10-17 Bernhard Dohrmann Apparatus and method for delivery of instructional information
US6636780B1 (en) 2000-11-07 2003-10-21 Mdg Medical Inc. Medication dispensing system including medicine cabinet and tray therefor
JP4310916B2 (en) 2000-11-08 2009-08-12 コニカミノルタホールディングス株式会社 The video display device
US7219364B2 (en) 2000-11-22 2007-05-15 International Business Machines Corporation System and method for selectable semantic codec pairs for very low data-rate video transmission
WO2002045434A1 (en) 2000-12-01 2002-06-06 Vigilos, Inc. System and method for processing video data utilizing motion detection and subdivided video fields
US6543899B2 (en) 2000-12-05 2003-04-08 Eastman Kodak Company Auto-stereoscopic viewing system using mounted projection
EP1350157A4 (en) 2000-12-06 2005-08-10 Vigilos Inc System and method for implementing open-protocol remote device control
US6411209B1 (en) 2000-12-06 2002-06-25 Koninklijke Philips Electronics N.V. Method and apparatus to select the best video frame to transmit to a remote station for CCTV based residential security monitoring
US6791550B2 (en) 2000-12-12 2004-09-14 Enounce, Inc. Management of presentation time in a digital media presentation system with variable rate presentation capability
US20040260790A1 (en) 2000-12-21 2004-12-23 Ge Medical System Global Technology Company, Llc Method and apparatus for remote or collaborative control of an imaging system
US6442451B1 (en) 2000-12-28 2002-08-27 Robotic Workspace Technologies, Inc. Versatile robot control system
US20020085030A1 (en) 2000-12-29 2002-07-04 Jamal Ghani Graphical user interface for an interactive collaboration system
KR20020061961A (en) 2001-01-19 2002-07-25 사성동 Intelligent pet robot
JP2002342759A (en) 2001-01-30 2002-11-29 Nec Corp System and method for providing information and its program
US20020106998A1 (en) 2001-02-05 2002-08-08 Presley Herbert L. Wireless rich media conferencing
JP3736358B2 (en) 2001-02-08 2006-01-18 株式会社チューオー Wall material
US20020109775A1 (en) 2001-02-09 2002-08-15 Excellon Automation Co. Back-lighted fiducial recognition system and method of use
JP4182464B2 (en) 2001-02-09 2008-11-19 富士フイルム株式会社 Video conferencing system
US7184559B2 (en) 2001-02-23 2007-02-27 Hewlett-Packard Development Company, L.P. System and method for audio telepresence
US6895305B2 (en) 2001-02-27 2005-05-17 Anthrotronix, Inc. Robotic apparatus and wireless communication system
US20020128985A1 (en) 2001-03-09 2002-09-12 Brad Greenwald Vehicle value appraisal system
US20020133062A1 (en) 2001-03-15 2002-09-19 Arling Robert Stanley Embedded measurement values in medical reports
JP4739556B2 (en) 2001-03-27 2011-08-03 株式会社安川電機 Remote adjustment and abnormality determination apparatus for a control object
US6965394B2 (en) 2001-03-30 2005-11-15 Koninklijke Philips Electronics N.V. Remote camera control device
US20020143923A1 (en) 2001-04-03 2002-10-03 Vigilos, Inc. System and method for managing a device network
JP2002305743A (en) 2001-04-04 2002-10-18 Rita Security Engineering:Kk Remote moving picture transmission system compatible with adsl
US6920373B2 (en) 2001-04-13 2005-07-19 Board Of Trusstees Operating Michigan State University Synchronization and task control of real-time internet based super-media
RU2218859C2 (en) 2001-04-18 2003-12-20 Самсунг Гванджу Электроникс Ко., Лтд. Cleaning robot, system with cleaning robot, outer charging device and method for returning cleaning robot to outer charging device
KR100437372B1 (en) 2001-04-18 2004-06-25 삼성광주전자 주식회사 Robot cleaning System using by mobile communication network
US7111980B2 (en) 2001-04-19 2006-09-26 Honeywell International Inc. System and method using thermal image analysis and slope threshold classification for polygraph testing
JP2002321180A (en) 2001-04-24 2002-11-05 Matsushita Electric Ind Co Ltd Robot control system
EP1449190B1 (en) 2001-05-02 2013-07-10 Bitstream, Inc. Methods, systems, and programming for producing and displaying subpixel-optimized images and digital content including such images
US7202851B2 (en) 2001-05-04 2007-04-10 Immersion Medical Inc. Haptic interface for palpation simulation
US6723086B2 (en) 2001-05-07 2004-04-20 Logiq Wireless Solutions, Inc. Remote controlled transdermal medication delivery device
US7242306B2 (en) 2001-05-08 2007-07-10 Hill-Rom Services, Inc. Article locating and tracking apparatus and method
US7885822B2 (en) 2001-05-09 2011-02-08 William Rex Akers System and method for electronic medical file management
CA2448389A1 (en) 2001-05-25 2002-11-28 Mike Dooley Toy robot programming
JP2002354551A (en) 2001-05-25 2002-12-06 Mitsubishi Heavy Ind Ltd Robot service providing method and system thereof
JP2002352354A (en) 2001-05-30 2002-12-06 Denso Corp Remote care method
JP2002355779A (en) 2001-06-01 2002-12-10 Sharp Corp Robot type interface device and control method for the same
US6763282B2 (en) 2001-06-04 2004-07-13 Time Domain Corp. Method and system for controlling a robot
US20020186243A1 (en) 2001-06-06 2002-12-12 Robert Ellis Method and system for providing combined video and physiological data over a communication network for patient monitoring
US6507773B2 (en) 2001-06-14 2003-01-14 Sharper Image Corporation Multi-functional robot with remote and video system
US6995664B1 (en) 2001-06-20 2006-02-07 Jeffrey Darling Remote supervision system and method
US6604021B2 (en) 2001-06-21 2003-08-05 Advanced Telecommunications Research Institute International Communication robot
US7483867B2 (en) 2001-06-26 2009-01-27 Intuition Intelligence, Inc. Processing device with intuitive learning capability
GB2377117B (en) 2001-06-27 2004-08-18 Cambridge Broadband Ltd Method and apparatus for providing communications bandwidth
EP1405287A1 (en) 2001-07-11 2004-04-07 Simsurgery AS Systems and methods for interactive training of procedures
CN1554193A (en) 2001-07-25 2004-12-08 尼尔・J・史蒂文森 A camera control apparatus and method
US7831575B2 (en) 2001-08-02 2010-11-09 Bridge Works, Ltd Library virtualisation module
US6667592B2 (en) 2001-08-13 2003-12-23 Intellibot, L.L.C. Mapped robot system
US6580246B2 (en) 2001-08-13 2003-06-17 Steven Jacobs Robot touch shield
US20030199000A1 (en) 2001-08-20 2003-10-23 Valkirs Gunars E. Diagnostic markers of stroke and cerebral injury and methods of use thereof
JP4689107B2 (en) 2001-08-22 2011-05-25 本田技研工業株式会社 Autonomous action of the robot
US6952470B1 (en) 2001-08-23 2005-10-04 Bellsouth Intellectual Property Corp. Apparatus and method for managing a call center
CA2399838A1 (en) 2001-08-24 2003-02-24 March Networks Corporation Wireless vital sign monitoring apparatus
JP2003070804A (en) 2001-09-05 2003-03-11 Olympus Optical Co Ltd Remote medical support system
JP4378072B2 (en) 2001-09-07 2009-12-02 キヤノン株式会社 Electronic devices, imaging devices, portable communication devices, video display control method, and program
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
WO2003022142A3 (en) 2001-09-13 2003-10-16 Boeing Co Method for transmitting vital health statistics to a remote location form an aircraft
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
JP2003110652A (en) 2001-10-01 2003-04-11 Matsushita Graphic Communication Systems Inc Method of reinitializing adsl modem and the adsl modem
US6840904B2 (en) 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US7058689B2 (en) 2001-10-16 2006-06-06 Sprint Communications Company L.P. Sharing of still images within a video telephony call
US7307653B2 (en) 2001-10-19 2007-12-11 Nokia Corporation Image stabilizer for a microcamera module of a handheld device, and method for stabilizing a microcamera module of a handheld device
WO2003036557A1 (en) 2001-10-22 2003-05-01 Intel Zao Method and apparatus for background segmentation based on motion localization
US20030080901A1 (en) 2001-10-25 2003-05-01 Koninklijke Philips Electronics N.V. RFID navigation system
JP2003136450A (en) 2001-10-26 2003-05-14 Communication Research Laboratory Remote control system of robot arm by providing audio information
JP2003205483A (en) 2001-11-07 2003-07-22 Sony Corp Robot system and control method for robot device
US20030152145A1 (en) 2001-11-15 2003-08-14 Kevin Kawakita Crash prevention recorder (CPR)/video-flight data recorder (V-FDR)/cockpit-cabin voice recorder for light aircraft with an add-on option for large commercial jets
US7317685B1 (en) 2001-11-26 2008-01-08 Polycom, Inc. System and method for dynamic bandwidth allocation for videoconferencing in lossy packet switched networks
US6785589B2 (en) 2001-11-30 2004-08-31 Mckesson Automation, Inc. Dispensing cabinet with unit dose dispensing drawer
US20050101841A9 (en) 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
US7539504B2 (en) 2001-12-05 2009-05-26 Espre Solutions, Inc. Wireless telepresence collaboration system
US6839612B2 (en) 2001-12-07 2005-01-04 Institute Surgical, Inc. Microwrist system for surgical procedures
JP3709393B2 (en) 2001-12-14 2005-10-26 富士ソフトエービーシ株式会社 Remote control system and remote control method
US7227864B2 (en) 2001-12-17 2007-06-05 Microsoft Corporation Methods and systems for establishing communications through firewalls and network address translators
US7305114B2 (en) 2001-12-26 2007-12-04 Cognex Technology And Investment Corporation Human/machine interface for a machine vision sensor and method for installing and operating the same
US7082497B2 (en) 2001-12-28 2006-07-25 Hewlett-Packard Development Company, L.P. System and method for managing a moveable media library with library partitions
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6852107B2 (en) 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US7647320B2 (en) 2002-01-18 2010-01-12 Peoplechart Corporation Patient directed system and method for managing medical information
US20040172301A1 (en) 2002-04-30 2004-09-02 Mihai Dan M. Remote multi-purpose user interface for a healthcare system
US7167448B2 (en) 2002-02-04 2007-01-23 Sun Microsystems, Inc. Prioritization of remote services messages within a low bandwidth environment
US6693585B1 (en) 2002-02-07 2004-02-17 Aradiant Corporation Self-contained selectively activated mobile object position reporting device with reduced power consumption and minimized wireless service fees.
US6784916B2 (en) 2002-02-11 2004-08-31 Telbotics Inc. Video conferencing apparatus
US20050078816A1 (en) 2002-02-13 2005-04-14 Dairoku Sekiguchi Robot-phone
JP2003241807A (en) 2002-02-19 2003-08-29 Yaskawa Electric Corp Robot control unit
JP4100934B2 (en) 2002-02-28 2008-06-11 シャープ株式会社 Compound camera system, the zoom camera control method and a zoom camera control program
US7747311B2 (en) 2002-03-06 2010-06-29 Mako Surgical Corp. System and method for interactive haptic positioning of a medical device
US7860680B2 (en) 2002-03-07 2010-12-28 Microstrain, Inc. Robotic system for powering and interrogating sensors
US6915871B2 (en) 2002-03-12 2005-07-12 Dan Gavish Method and apparatus for improving child safety and adult convenience while using a mobile ride-on toy
US6769771B2 (en) 2002-03-14 2004-08-03 Entertainment Design Workshop, Llc Method and apparatus for producing dynamic imagery in a visual medium
JP3945279B2 (en) 2002-03-15 2007-07-18 ソニー株式会社 Obstacle recognition device, obstacle recognition method, and an obstacle recognition program and a mobile robot system
US20050080322A1 (en) 2002-03-18 2005-04-14 Ronen Korman Monitoring method and monitoring system for assessing physiological parameters of a subject
KR100483790B1 (en) 2002-03-22 2005-04-20 한국과학기술연구원 Multi-degree of freedom telerobotic system for micro assembly
JP4032793B2 (en) 2002-03-27 2008-01-16 ソニー株式会社 Charging system and charging control method, the robot apparatus, and a charging control program, and a recording medium
US7117067B2 (en) 2002-04-16 2006-10-03 Irobot Corporation System and methods for adaptive control of robotic devices
US20030231244A1 (en) 2002-04-22 2003-12-18 Bonilla Victor G. Method and system for manipulating a field of view of a video image from a remote vehicle
US6898484B2 (en) 2002-05-01 2005-05-24 Dorothy Lemelson Robotic manufacturing and assembly with relative radio positioning using radio based location determination
CN100379391C (en) 2002-05-07 2008-04-09 国立大学法人京都大学 Medical cockpit system
US6836701B2 (en) 2002-05-10 2004-12-28 Royal Appliance Mfg. Co. Autonomous multi-platform robotic system
JP4081747B2 (en) 2002-05-17 2008-04-30 技研株式会社 A drive control method for a robot, the device
US6839731B2 (en) 2002-05-20 2005-01-04 Vigilos, Inc. System and method for providing data communication in a device network
US6807461B2 (en) 2002-05-22 2004-10-19 Kuka Roboter Gmbh Coordinated robot control from multiple remote instruction sources
US6743721B2 (en) 2002-06-10 2004-06-01 United Microelectronics Corp. Method and system for making cobalt silicide
KR100478452B1 (en) 2002-06-12 2005-03-23 삼성전자주식회사 Localization apparatus and method for mobile robot
US20030232649A1 (en) 2002-06-18 2003-12-18 Gizis Alexander C.M. Gaming system and method
JP3910112B2 (en) 2002-06-21 2007-04-25 シャープ株式会社 A mobile phone with a camera
US7181455B2 (en) 2002-06-27 2007-02-20 Sun Microsystems, Inc. Bandwidth management for remote services system
US6752539B2 (en) 2002-06-28 2004-06-22 International Buisness Machines Corporation Apparatus and system for providing optical bus interprocessor interconnection
KR100556612B1 (en) 2002-06-29 2006-03-06 삼성전자주식회사 Apparatus and method of localization using laser
DE10231391A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Tillage system
DE10231388A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Tillage system
FR2842320A1 (en) 2002-07-12 2004-01-16 Thomson Licensing Sa Device for processing multimedia data
US7084809B2 (en) 2002-07-15 2006-08-01 Qualcomm, Incorporated Apparatus and method of position determination using shared information
JP2004042230A (en) 2002-07-15 2004-02-12 Kawasaki Heavy Ind Ltd Remote control method and remote control system of robot controller
US20050065435A1 (en) 2003-07-22 2005-03-24 John Rauch User interface for remote control of medical devices
US6925357B2 (en) 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
US20040162637A1 (en) 2002-07-25 2004-08-19 Yulun Wang Medical tele-robotic system with a master remote station with an arbitrator
US20120072024A1 (en) 2002-07-25 2012-03-22 Yulun Wang Telerobotic system with dual application screen presentation
US7593030B2 (en) 2002-07-25 2009-09-22 Intouch Technologies, Inc. Tele-robotic videoconferencing in a corporate environment
DE10234233A1 (en) 2002-07-27 2004-02-05 Kuka Roboter Gmbh Method for exchanging data between controls of machines, particularly robots
EP1388813A2 (en) 2002-08-09 2004-02-11 Matsushita Electric Industrial Co., Ltd. Apparatus and method for image watermarking
US7523505B2 (en) 2002-08-16 2009-04-21 Hx Technologies, Inc. Methods and systems for managing distributed digital medical data
US20050288571A1 (en) 2002-08-20 2005-12-29 Welch Allyn, Inc. Mobile medical workstation
US6753899B2 (en) 2002-09-03 2004-06-22 Audisoft Method and apparatus for telepresence
US7024278B2 (en) 2002-09-13 2006-04-04 Irobot Corporation Navigational control system for a robotic device
US20040065073A1 (en) 2002-10-08 2004-04-08 Ingersoll-Rand Energy Systems Corporation Flexible recuperator mounting system
US7881658B2 (en) 2002-10-10 2011-02-01 Znl Enterprises, Llc Method and apparatus for entertainment and information services delivered via mobile telecommunication devices
US6804579B1 (en) 2002-10-16 2004-10-12 Abb, Inc. Robotic wash cell using recycled pure water
WO2004036371A3 (en) 2002-10-16 2004-07-01 Kerry Clendinning System and method for dynamic bandwidth provisioning
US8805619B2 (en) 2002-10-28 2014-08-12 The General Hospital Corporation Tissue disorder imaging analysis
US6879879B2 (en) 2002-10-31 2005-04-12 Hewlett-Packard Development Company, L.P. Telepresence system with automatic user-surrogate height matching
US6920376B2 (en) 2002-10-31 2005-07-19 Hewlett-Packard Development Company, L.P. Mutually-immersive mobile telepresence system with user rotation and surrogate translation
US20040093409A1 (en) 2002-11-07 2004-05-13 Vigilos, Inc. System and method for external event determination utilizing an integrated information system
US8073304B2 (en) 2002-11-16 2011-12-06 Gregory Karel Rohlicek Portable recorded television viewer
KR100542340B1 (en) 2002-11-18 2006-01-11 삼성전자주식회사 home network system and method for controlling home network system
US7123974B1 (en) 2002-11-19 2006-10-17 Rockwell Software Inc. System and methodology providing audit recording and tracking in real time industrial controller environment
JP2004181229A (en) 2002-11-20 2004-07-02 Olympus Corp System and method for supporting remote operation
KR20040046071A (en) 2002-11-26 2004-06-05 삼성전자주식회사 Method for displaying antenna-ba of terminal
JP3885019B2 (en) 2002-11-29 2007-02-21 株式会社東芝 Security system and a mobile robot
US20040172306A1 (en) 2002-12-02 2004-09-02 Recare, Inc. Medical data entry interface
US6889120B2 (en) 2002-12-14 2005-05-03 Hewlett-Packard Development Company, L.P. Mutually-immersive mobile telepresence with gaze and eye contact preservation
US20090030552A1 (en) 2002-12-17 2009-01-29 Japan Science And Technology Agency Robotics visual and auditory system
WO2004059900A3 (en) 2002-12-17 2004-09-30 Evolution Robotics Inc Systems and methods for visual simultaneous localization and mapping
US6938167B2 (en) 2002-12-18 2005-08-30 America Online, Inc. Using trusted communication channel to combat user name/password theft
US7584019B2 (en) 2003-12-15 2009-09-01 Dako Denmark A/S Systems and methods for the automated pre-treatment and processing of biological samples
US20040135879A1 (en) 2003-01-03 2004-07-15 Stacy Marco A. Portable wireless indoor/outdoor camera
US6745115B1 (en) 2003-01-07 2004-06-01 Garmin Ltd. System, method and apparatus for searching geographic area using prioritized spacial order
CN101390098A (en) 2003-01-15 2009-03-18 英塔茨科技公司 5 degress of freedom mobile robot
US7158859B2 (en) 2003-01-15 2007-01-02 Intouch Technologies, Inc. 5 degrees of freedom mobile robot
WO2004068433A1 (en) 2003-01-27 2004-08-12 Energy Laser S.R.L. Modular surveillance system for monitoring critical environments
US7404140B2 (en) 2003-01-31 2008-07-22 Siemens Medical Solutions Usa, Inc. System for managing form information for use by portable devices
US7158860B2 (en) 2003-02-24 2007-01-02 Intouch Technologies, Inc. Healthcare tele-robotic system which allows parallel remote station observation
US7171286B2 (en) 2003-02-24 2007-01-30 Intouch Technologies, Inc. Healthcare tele-robotic system with a robot that also functions as a remote station
US7388981B2 (en) 2003-02-27 2008-06-17 Hewlett-Packard Development Company, L.P. Telepresence system with automatic preservation of user head size
JP2004261941A (en) 2003-03-04 2004-09-24 Sharp Corp Communication robot and communication system
US7262573B2 (en) 2003-03-06 2007-08-28 Intouch Technologies, Inc. Medical tele-robotic system with a head worn device
US7593546B2 (en) 2003-03-11 2009-09-22 Hewlett-Packard Development Company, L.P. Telepresence system with simultaneous automatic preservation of user height, perspective, and vertical gaze
US20050065813A1 (en) 2003-03-11 2005-03-24 Mishelevich David J. Online medical evaluation system
JP3879848B2 (en) 2003-03-14 2007-02-14 松下電工株式会社 Autonomous mobile apparatus
JP4124682B2 (en) 2003-03-20 2008-07-23 日本放送協会 Camera operating device
EP1627524A4 (en) 2003-03-20 2009-05-27 Ge Security Inc Systems and methods for multi-resolution image processing
US20040205664A1 (en) 2003-03-25 2004-10-14 Prendergast Thomas V. Claim data and document processing system
JP2004298977A (en) 2003-03-28 2004-10-28 Sony Corp Action control device, action control method, action control program and mobile robot device
US6804580B1 (en) 2003-04-03 2004-10-12 Kuka Roboter Gmbh Method and control system for controlling a plurality of robots
US20040201602A1 (en) 2003-04-14 2004-10-14 Invensys Systems, Inc. Tablet computer system for industrial process design, supervisory control, and data management
CA2466371A1 (en) 2003-05-05 2004-11-05 Engineering Services Inc. Mobile robot hydrid communication link
US20040222638A1 (en) 2003-05-08 2004-11-11 Vladimir Bednyak Apparatus and method for providing electrical energy generated from motion to an electrically powered device
GB2391361B (en) 2003-05-23 2005-09-21 Bridgeworks Ltd Library element management
US20040240981A1 (en) 2003-05-29 2004-12-02 I-Scan Robotics Robot stacking system for flat glass
US6905941B2 (en) 2003-06-02 2005-06-14 International Business Machines Corporation Structure and method to fabricate ultra-thin Si channel devices
US20050003330A1 (en) 2003-07-02 2005-01-06 Mehdi Asgarinejad Interactive virtual classroom
US6888333B2 (en) 2003-07-02 2005-05-03 Intouch Health, Inc. Holonomic platform for a robot
JP2005028066A (en) 2003-07-08 2005-02-03 Kikuta Sogo Kikaku:Kk Remote cleaning management system
US7154526B2 (en) 2003-07-11 2006-12-26 Fuji Xerox Co., Ltd. Telepresence system and method for video teleconferencing
US7995090B2 (en) 2003-07-28 2011-08-09 Fuji Xerox Co., Ltd. Video enabled tele-presence control host
US20050027567A1 (en) 2003-07-29 2005-02-03 Taha Amer Jamil System and method for health care data collection and management
US7395126B2 (en) 2003-07-29 2008-07-01 Far Touch, Inc. Remote control of wireless electromechanical device using a web browser
US7133062B2 (en) 2003-07-31 2006-11-07 Polycom, Inc. Graphical user interface for video feed on videoconference terminal
DE20312211U1 (en) 2003-08-07 2003-10-30 Yueh Wen Hsiang Swiveling USB connector
US7413040B2 (en) 2003-08-12 2008-08-19 White Box Robotics, Inc. Robot with removable mounting elements
JP2005059170A (en) 2003-08-18 2005-03-10 Honda Motor Co Ltd Information collecting robot
US7432949B2 (en) 2003-08-20 2008-10-07 Christophe Remy Mobile videoimaging, videocommunication, video production (VCVP) system
US7982763B2 (en) 2003-08-20 2011-07-19 King Simon P Portable pan-tilt camera and lighting unit for videoimaging, videoconferencing, production and recording
WO2005033832A3 (en) 2003-08-28 2007-04-19 Univ Maryland Techniques for delivering coordination data for a shared facility
US20050049898A1 (en) 2003-09-01 2005-03-03 Maiko Hirakawa Telemedicine system using the internet
US7174238B1 (en) 2003-09-02 2007-02-06 Stephen Eliot Zweig Mobile robotic system with web server and digital radio links
US20050065438A1 (en) 2003-09-08 2005-03-24 Miller Landon C.G. System and method of capturing and managing information during a medical diagnostic imaging procedure
JP2005103680A (en) 2003-09-29 2005-04-21 Toshiba Corp Monitoring system and monitoring robot
US7492731B2 (en) 2003-10-02 2009-02-17 Radvision Ltd. Method for dynamically optimizing bandwidth allocation in variable bitrate (multi-rate) conferences
CA2545508C (en) 2003-10-07 2008-11-25 Librestream Technologies Inc. Camera for communication of streaming media to a remote client
JP2005111083A (en) 2003-10-09 2005-04-28 Olympus Corp Medical integrated system
US7307651B2 (en) 2003-10-16 2007-12-11 Mark A. Chew Two-way mobile video/audio/data interactive companion (MVIC) system
KR100820743B1 (en) 2003-10-21 2008-04-10 삼성전자주식회사 Charging Apparatus For Mobile Robot
JP4325853B2 (en) 2003-10-31 2009-09-02 富士通フロンテック株式会社 Communication adapter apparatus
US7096090B1 (en) 2003-11-03 2006-08-22 Stephen Eliot Zweig Mobile robotic router with web server and digital radio links
US20050125083A1 (en) 2003-11-10 2005-06-09 Kiko Frederick J. Automation apparatus and methods
US20060010028A1 (en) 2003-11-14 2006-01-12 Herb Sorensen Video shopper tracking system and method
US7115102B2 (en) 2003-11-17 2006-10-03 Abbruscato Charles R Electronic stethoscope system
US7161322B2 (en) 2003-11-18 2007-01-09 Intouch Technologies, Inc. Robot with a manipulator arm
US7092001B2 (en) 2003-11-26 2006-08-15 Sap Aktiengesellschaft Video conferencing system with physical cues
GB2408655B (en) 2003-11-27 2007-02-28 Motorola Inc Communication system, communication units and method of ambience listening thereto
US7624166B2 (en) 2003-12-02 2009-11-24 Fuji Xerox Co., Ltd. System and methods for remote control of multiple display and devices
US7292912B2 (en) 2003-12-05 2007-11-06 Lntouch Technologies, Inc. Door knocker control system for a remote controlled teleconferencing robot
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
CA2554135C (en) 2003-12-24 2013-09-24 Walker Digital, Llc Method and apparatus for automatically capturing and managing images
US8824730B2 (en) 2004-01-09 2014-09-02 Hewlett-Packard Development Company, L.P. System and method for control of video bandwidth based on pose of a person
US7613313B2 (en) 2004-01-09 2009-11-03 Hewlett-Packard Development Company, L.P. System and method for control of audio field based on position of user
US20050154265A1 (en) 2004-01-12 2005-07-14 Miro Xavier A. Intelligent nurse robot
CA2553627A1 (en) 2004-01-15 2005-07-28 Algotec Systems Ltd. Vessel centerline determination
US20050234592A1 (en) 2004-01-15 2005-10-20 Mega Robot, Inc. System and method for reconfiguring an autonomous robot
JPWO2005068270A1 (en) 2004-01-16 2007-08-23 佳章 瀧田 Robot arm type automatic car wash equipment
KR101086092B1 (en) 2004-01-21 2011-11-25 아이로보트 코퍼레이션 Method of docking an autonomous robot
DE602005017749D1 (en) 2004-02-03 2009-12-31 F Robotics Acquisitions Ltd Robot dock station and robots for use with it
US7079173B2 (en) 2004-02-04 2006-07-18 Hewlett-Packard Development Company, L.P. Displaying a wide field of view video image
US20050182322A1 (en) 2004-02-17 2005-08-18 Liebel-Flarsheim Company Injector auto purge
US20050204438A1 (en) 2004-02-26 2005-09-15 Yulun Wang Graphical interface for a remote presence system
US7756614B2 (en) 2004-02-27 2010-07-13 Hewlett-Packard Development Company, L.P. Mobile device control system
CN1259891C (en) 2004-03-17 2006-06-21 哈尔滨工业大学 Robot assisted bone setting operation medical system with lock marrow internal nail
JP2005270430A (en) 2004-03-25 2005-10-06 Funai Electric Co Ltd Station for mobile robot
WO2005093715A1 (en) 2004-03-29 2005-10-06 Philips Intellectual Property & Standards Gmbh A method for driving multiple applications by a common dialog management system
US20050264649A1 (en) 2004-03-29 2005-12-01 Calvin Chang Mobile video-interpreting mounting system
US20050225634A1 (en) 2004-04-05 2005-10-13 Sam Brunetti Closed circuit TV security system
US7339605B2 (en) 2004-04-16 2008-03-04 Polycom, Inc. Conference link between a speakerphone and a video conference unit
JP2005312096A (en) 2004-04-16 2005-11-04 Funai Electric Co Ltd Electric apparatus
US7352153B2 (en) 2004-04-20 2008-04-01 Jason Yan Mobile robotic system and battery charging method therefor
WO2005103848A1 (en) 2004-04-22 2005-11-03 Frontline Robotics Open control system architecture for mobile autonomous systems
US7769705B1 (en) 2004-05-21 2010-08-03 Ray Anthony Luechtefeld Method, artificially intelligent system and networked complex for facilitating group interactions
US7949616B2 (en) 2004-06-01 2011-05-24 George Samuel Levy Telepresence by human-assisted remote controlled devices and robots
US7011538B2 (en) 2004-06-02 2006-03-14 Elementech International Co., Ltd. Dual input charger with cable storing mechanism
CN100461212C (en) 2004-06-04 2009-02-11 松下电器产业株式会社 Display control device, display control method and portable apparatus
US20050283414A1 (en) 2004-06-17 2005-12-22 Fernandes Curtis T Remote system management
JP4479372B2 (en) 2004-06-25 2010-06-09 ソニー株式会社 Environmental map creation method, environmental map creation device, and a mobile robot
US7292257B2 (en) 2004-06-28 2007-11-06 Microsoft Corporation Interactive viewpoint video system and process
US20060007943A1 (en) 2004-07-07 2006-01-12 Fellman Ronald D Method and system for providing site independent real-time multimedia transport over packet-switched networks
US7539187B2 (en) 2004-07-07 2009-05-26 Qvidium Technologies, Inc. System and method for low-latency content-sensitive forward error correction
US8503340B1 (en) 2004-07-11 2013-08-06 Yongyong Xu WiFi phone system
US8077963B2 (en) 2004-07-13 2011-12-13 Yulun Wang Mobile robot with a head-based movement mapping scheme
US7551647B2 (en) 2004-07-19 2009-06-23 Qvidium Technologies, Inc. System and method for clock synchronization over packet-switched networks
CA2513202C (en) 2004-07-23 2015-03-31 Mehran Anvari Multi-purpose robotic operating system and method
US7319469B2 (en) 2004-07-26 2008-01-15 Sony Corporation Copy protection arrangement
JP4315872B2 (en) 2004-07-28 2009-08-19 本田技研工業株式会社 Control apparatus for a mobile robot
CN100394897C (en) 2004-08-03 2008-06-18 张毓笠;史文勇;周兆英;罗晓宁 Compound vibrated ultrasonic bone surgery apparatus
JP4912577B2 (en) 2004-09-01 2012-04-11 本田技研工業株式会社 2-legged walking robot of the charging system
US20060052676A1 (en) 2004-09-07 2006-03-09 Yulun Wang Tele-presence system that allows for remote monitoring/observation and review of a patient and their medical records
US7502498B2 (en) 2004-09-10 2009-03-10 Available For Licensing Patient monitoring apparatus
FI116749B (en) 2004-09-14 2006-02-15 Nokia Corp the device comprising a camera element
US20060064212A1 (en) 2004-09-22 2006-03-23 Cycle Time Corporation Reactive automated guided vehicle vision guidance system
US20060066609A1 (en) 2004-09-28 2006-03-30 Iodice Arthur P Methods and systems for viewing geometry of an object model generated by a CAD tool
US7720570B2 (en) 2004-10-01 2010-05-18 Redzone Robotics, Inc. Network architecture for remote robot with interchangeable tools
US8060376B2 (en) 2004-10-01 2011-11-15 Nomoreclipboard, Llc System and method for collection of community health and administrative data
JP2006109094A (en) 2004-10-05 2006-04-20 Nec Software Kyushu Ltd Remote controller, remote control system, and remote control method
US7441953B2 (en) 2004-10-07 2008-10-28 University Of Florida Research Foundation, Inc. Radiographic medical imaging system using robot mounted source and sensor for dynamic image capture and tomography
US20060087746A1 (en) 2004-10-22 2006-04-27 Kenneth Lipow Remote augmented motor-sensory interface for surgery
KR100645379B1 (en) 2004-10-29 2006-11-15 삼성광주전자 주식회사 A robot controlling system and a robot control method
KR100703692B1 (en) 2004-11-03 2007-04-05 삼성전자주식회사 System, apparatus and method for improving readability of a map representing objects in space
US20060098573A1 (en) 2004-11-08 2006-05-11 Beer John C System and method for the virtual aggregation of network links
US20060173712A1 (en) 2004-11-12 2006-08-03 Dirk Joubert Portable medical information system
US8738891B1 (en) 2004-11-15 2014-05-27 Nvidia Corporation Methods and systems for command acceleration in a video processor via translation of scalar instructions into vector instructions
US7522528B2 (en) 2004-11-18 2009-04-21 Qvidium Technologies, Inc. Low-latency automatic repeat request packet recovery mechanism for media streams
US20060122482A1 (en) 2004-11-22 2006-06-08 Foresight Imaging Inc. Medical image acquisition system for receiving and transmitting medical images instantaneously and method of using the same
US20060125356A1 (en) 2004-12-03 2006-06-15 Mckesson Automation Inc. Mobile point of care system and associated method and computer program product
US7400578B2 (en) 2004-12-16 2008-07-15 International Business Machines Corporation Method and system for throttling network transmissions using per-receiver bandwidth control at the application layer of the transmitting server
KR100499770B1 (en) 2004-12-30 2005-06-28 주식회사 아이오. 테크 Network based robot control system
KR100497310B1 (en) 2005-01-10 2005-06-16 주식회사 아이오. 테크 Selection and playback method of multimedia content having motion information in network based robot system
US7395508B2 (en) 2005-01-14 2008-07-01 International Business Machines Corporation Method and apparatus for providing an interactive presentation environment
US7222000B2 (en) 2005-01-18 2007-05-22 Intouch Technologies, Inc. Mobile videoconferencing platform with automatic shut-off features
US7589794B2 (en) 2005-01-24 2009-09-15 Sony Corporation System for delivering contents automatically
US20060173708A1 (en) 2005-01-28 2006-08-03 Circle Of Care, Inc. System and method for providing health care
US20060176832A1 (en) 2005-02-04 2006-08-10 Sean Miceli Adaptive bit-rate adjustment of multimedia communications channels using transport control protocol
KR100636270B1 (en) 2005-02-04 2006-10-19 삼성전자주식회사 Home network system and control method thereof
US7944469B2 (en) 2005-02-14 2011-05-17 Vigilos, Llc System and method for using self-learning rules to enable adaptive security monitoring
US20060189393A1 (en) 2005-02-22 2006-08-24 Albert Edery Real action network gaming system
US20060224781A1 (en) 2005-03-10 2006-10-05 Jen-Ming Tsao Method and apparatus for controlling a user interface of a consumer electronic device
US7644898B2 (en) 2005-03-28 2010-01-12 Compview Medical, Llc Medical boom with articulated arms and a base with preconfigured removable modular racks used for storing electronic and utility equipment
US20100171826A1 (en) 2006-04-12 2010-07-08 Store Eyes, Inc. Method for measuring retail display and compliance
JP4690453B2 (en) 2005-04-15 2011-06-01 ニュー ジャージー インスティチュート オブ テクノロジー Dynamic bandwidth allocation and service distinction for broadband passive optical network
US7436143B2 (en) 2005-04-25 2008-10-14 M-Bots, Inc. Miniature surveillance robot
US7680038B1 (en) 2005-04-25 2010-03-16 Electronic Arts, Inc. Dynamic bandwidth detection and response for online games
US7864209B2 (en) 2005-04-28 2011-01-04 Apple Inc. Audio processing in a multi-participant conference
WO2006119186A3 (en) 2005-05-02 2007-05-18 Univ Virginia Systems, devices, and methods for interpreting movement
US7912733B2 (en) 2005-05-04 2011-03-22 Board Of Regents, The University Of Texas System System, method and program product for delivering medical services from a remote location
US7240879B1 (en) 2005-05-06 2007-07-10 United States of America as represented by the Administration of the National Aeronautics and Space Administration Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics
US20060259193A1 (en) 2005-05-12 2006-11-16 Yulun Wang Telerobotic system with a dual application screen presentation
KR100594165B1 (en) 2005-05-24 2006-06-20 삼성전자주식회사 Robot controlling system based on network and method for controlling velocity of robot in the robot controlling system
US20060293788A1 (en) 2005-06-26 2006-12-28 Pavel Pogodin Robotic floor care appliance with improved remote management
JP2007007040A (en) 2005-06-29 2007-01-18 Hitachi Medical Corp Surgery support system
GB0513876D0 (en) 2005-07-06 2005-08-10 Armstrong Healthcare Ltd A robot and a method of registering a robot
US7379664B2 (en) 2005-07-26 2008-05-27 Tinkers & Chance Remote view and controller for a camera
US20100301679A1 (en) 2005-08-11 2010-12-02 Peter Grahame Murray sensor with selectable sensing orientation used for controlling an electrical device
KR100749579B1 (en) 2005-09-05 2007-08-16 삼성광주전자 주식회사 Moving Robot having a plurality of changeable work module and Control Method for the same
EP1763243A3 (en) 2005-09-09 2008-03-26 LG Electronics Inc. Image capturing and displaying method and system
US7643051B2 (en) 2005-09-09 2010-01-05 Roy Benjamin Sandberg Mobile video teleconferencing system and control method
JP2007081646A (en) 2005-09-13 2007-03-29 Toshiba Corp Transmitting/receiving device
CN1743144A (en) 2005-09-29 2006-03-08 天津理工大学 Internet-based robot long-distance control method
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
US7720572B2 (en) 2005-09-30 2010-05-18 Irobot Corporation Companion robot for personal interaction
US8098603B2 (en) 2005-09-30 2012-01-17 Intel Corporation Bandwidth adaptation in a wireless network
CA2655110C (en) 2005-10-07 2017-04-18 Nader M. Habashi On-line healthcare consultation services system and method of using same
GB0520576D0 (en) 2005-10-10 2005-11-16 Applied Generics Ltd Using traffic monitoring information to provide better driver route planning
US20070093279A1 (en) 2005-10-12 2007-04-26 Craig Janik Wireless headset system for the automobile
EP1949584A2 (en) 2005-10-28 2008-07-30 ViaSat, Inc. Adaptive coding and modulation for broadband data transmission
US7751780B2 (en) 2005-11-23 2010-07-06 Qualcomm Incorporated Method and apparatus for collecting information from a wireless device
US20070120965A1 (en) 2005-11-25 2007-05-31 Sandberg Roy B Mobile video teleconferencing authentication and management system and method
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot System
EP1796332B1 (en) 2005-12-08 2012-11-14 Electronics and Telecommunications Research Institute Token bucket dynamic bandwidth allocation
US20070135967A1 (en) 2005-12-08 2007-06-14 Jung Seung W Apparatus and method of controlling network-based robot
US8190238B2 (en) 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
US7480870B2 (en) 2005-12-23 2009-01-20 Apple Inc. Indication of progress towards satisfaction of a user input condition
US8577538B2 (en) 2006-07-14 2013-11-05 Irobot Corporation Method and system for controlling a remote vehicle
JP2007232208A (en) 2006-01-31 2007-09-13 Mitsuboshi Belting Ltd Toothed belt and tooth cloth used therefor
EP1819026A3 (en) 2006-02-14 2017-08-30 Honda Motor Co., Ltd. Charging system for legged mobile robot
US7769492B2 (en) 2006-02-22 2010-08-03 Intouch Technologies, Inc. Graphical interface for a remote presence system
JP4728860B2 (en) 2006-03-29 2011-07-20 株式会社東芝 Information retrieval system
US7861366B2 (en) 2006-04-04 2011-01-04 Samsung Electronics Co., Ltd. Robot cleaner system having robot cleaner and docking station
US20070255115A1 (en) 2006-04-27 2007-11-01 Anglin Richard L Jr Remote diagnostic & treatment system
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
US9724165B2 (en) 2006-05-19 2017-08-08 Mako Surgical Corp. System and method for verifying calibration of a surgical device
JP2007316966A (en) 2006-05-26 2007-12-06 Fujitsu Ltd Mobile robot, control method thereof and program
US8849679B2 (en) 2006-06-15 2014-09-30 Intouch Technologies, Inc. Remote controlled robot system that provides medical images
US20070291128A1 (en) 2006-06-15 2007-12-20 Yulun Wang Mobile teleconferencing system that projects an image provided by a mobile robot
US7920962B2 (en) 2006-06-19 2011-04-05 Kiva Systems, Inc. System and method for coordinating movement of mobile drive units
US8649899B2 (en) 2006-06-19 2014-02-11 Amazon Technologies, Inc. System and method for maneuvering a mobile drive unit
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US7587260B2 (en) 2006-07-05 2009-09-08 Battelle Energy Alliance, Llc Autonomous navigation system and method
US8073564B2 (en) 2006-07-05 2011-12-06 Battelle Energy Alliance, Llc Multi-robot control interface
US20080033641A1 (en) 2006-07-25 2008-02-07 Medalia Michael J Method of generating a three-dimensional interactive tour of a geographic location
US7599290B2 (en) 2006-08-11 2009-10-06 Latitude Broadband, Inc. Methods and systems for providing quality of service in packet-based core transport networks
US20080056933A1 (en) 2006-08-29 2008-03-06 Moore Barrett H Self-Propelled Sterilization Robot and Method
US8564544B2 (en) 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons
US7693757B2 (en) 2006-09-21 2010-04-06 International Business Machines Corporation System and method for performing inventory using a mobile inventory robot
US8180486B2 (en) 2006-10-02 2012-05-15 Honda Motor Co., Ltd. Mobile robot and controller for same
US7761185B2 (en) 2006-10-03 2010-07-20 Intouch Technologies, Inc. Remote presence display through remotely controlled robot
US20070170886A1 (en) 2006-10-03 2007-07-26 Plishner Paul J Vehicle equipped for providing solar electric power for off-vehicle use and systems in support thereof
US8843244B2 (en) 2006-10-06 2014-09-23 Irobot Corporation Autonomous behaviors for a remove vehicle
US7654348B2 (en) 2006-10-06 2010-02-02 Irobot Corporation Maneuvering robotic vehicles having a positionable sensor head
US20080126132A1 (en) 2006-11-28 2008-05-29 General Electric Company Smart bed system
US8095238B2 (en) 2006-11-29 2012-01-10 Irobot Corporation Robot development platform
US7630314B2 (en) 2006-12-05 2009-12-08 Latitue Broadband, Inc. Methods and systems for dynamic bandwidth management for quality of service in IP Core and access networks
US20080161969A1 (en) 2006-12-28 2008-07-03 Industrial Technology Research Institute Method for routing a robotic apparatus to a service station and robotic apparatus service system using thereof
US20080232763A1 (en) 2007-03-15 2008-09-25 Colin Brady System and method for adjustment of video playback resolution
US8265793B2 (en) 2007-03-20 2012-09-11 Irobot Corporation Mobile robot for telecommunication
US7557758B2 (en) 2007-03-26 2009-07-07 Broadcom Corporation Very high frequency dielectric substrate wave guide
US8612051B2 (en) 2007-04-20 2013-12-17 Innovation First, Inc. Securing communications with robots
US8305914B2 (en) 2007-04-30 2012-11-06 Hewlett-Packard Development Company, L.P. Method for signal adjustment through latency control
KR101314438B1 (en) 2007-05-09 2013-10-07 아이로보트 코퍼레이션 Compact autonomous coverage robot
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
US8175677B2 (en) 2007-06-07 2012-05-08 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US8199641B1 (en) 2007-07-25 2012-06-12 Xangati, Inc. Parallel distributed network monitoring
KR20090012542A (en) 2007-07-30 2009-02-04 주식회사 마이크로로봇 System for home monitoring using robot
US8400491B1 (en) 2007-08-01 2013-03-19 Sprint Communications Company L.P. Use-based adaptive video client for a bandwidth-constrained network
US7631833B1 (en) 2007-08-03 2009-12-15 The United States Of America As Represented By The Secretary Of The Navy Smart counter asymmetric threat micromunition with autonomous target selection and homing
US8639797B1 (en) 2007-08-03 2014-01-28 Xangati, Inc. Network monitoring of behavior probability density
US20090044334A1 (en) 2007-08-13 2009-02-19 Valence Broadband, Inc. Automatically adjusting patient platform support height in response to patient related events
US7987069B2 (en) 2007-11-12 2011-07-26 Bee Cave, Llc Monitoring patient support exiting and initiating response
US8116910B2 (en) 2007-08-23 2012-02-14 Intouch Technologies, Inc. Telepresence robot with a printer
KR101330734B1 (en) 2007-08-24 2013-11-20 삼성전자주식회사 Robot cleaner system having robot cleaner and docking station
US20090070135A1 (en) 2007-09-10 2009-03-12 General Electric Company System and method for improving claims processing in the healthcare industry
US9060094B2 (en) 2007-09-30 2015-06-16 Optical Fusion, Inc. Individual adjustment of audio and video properties in network conferencing
US20090248200A1 (en) 2007-10-22 2009-10-01 North End Technologies Method & apparatus for remotely operating a robotic device linked to a communications network
US8045458B2 (en) 2007-11-08 2011-10-25 Mcafee, Inc. Prioritizing network traffic
JP2009125133A (en) 2007-11-20 2009-06-11 Asano Dental Inc Dental treatment support system and x-ray sensor for the same
US8171123B2 (en) 2007-12-04 2012-05-01 Sony Computer Entertainment Inc. Network bandwidth detection and distribution
US20090146882A1 (en) 2007-12-07 2009-06-11 Nokia Corporation Method and system of generic position signalling for cellular networks
US20090164657A1 (en) 2007-12-20 2009-06-25 Microsoft Corporation Application aware rate control
US20090171170A1 (en) 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Medical Monitoring With Portable Electronic Device System And Method
US20090102919A1 (en) 2007-12-31 2009-04-23 Zamierowski David S Audio-video system and method for telecommunications
US20090177641A1 (en) 2008-01-03 2009-07-09 General Electric Company Patient monitoring network and method of using the patient monitoring network
US20100088232A1 (en) 2008-03-21 2010-04-08 Brian Gale Verification monitor for critical test result delivery systems
US8374171B2 (en) 2008-03-06 2013-02-12 Pantech Co., Ltd. Method for reducing the risk of call connection failure and system to perform the method
US8244469B2 (en) 2008-03-16 2012-08-14 Irobot Corporation Collaborative engagement for target identification and tracking
US20090240371A1 (en) 2008-03-20 2009-09-24 Yulun Wang Remote presence system mounted to operating room hardware
CA2659698A1 (en) 2008-03-21 2009-09-21 Dressbot Inc. System and method for collaborative shopping, business and entertainment
US8179418B2 (en) 2008-04-14 2012-05-15 Intouch Technologies, Inc. Robotic based health care system
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
WO2010014864A1 (en) 2008-07-31 2010-02-04 Consortium Of Rheumatology Researchers Of North America, Inc. System and method for collecting and managing patient data
CN101640295A (en) 2008-07-31 2010-02-03 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Charging means
US8476555B2 (en) 2008-08-29 2013-07-02 Illinois Tool Works Inc. Portable welding wire feed system and method
JP5040865B2 (en) 2008-09-08 2012-10-03 日本電気株式会社 Robot control system, the remote management apparatus, the remote management method and program
JP5111445B2 (en) 2008-09-10 2013-01-09 三菱電機株式会社 Air conditioner
US8144182B2 (en) 2008-09-16 2012-03-27 Biscotti Inc. Real time video communications system
US8340819B2 (en) 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US8180712B2 (en) 2008-09-30 2012-05-15 The Nielsen Company (Us), Llc Methods and apparatus for determining whether a media presentation device is in an on state or an off state
US8000235B2 (en) 2008-10-05 2011-08-16 Contextream Ltd. Bandwidth allocation method and apparatus
US20100145479A1 (en) 2008-10-09 2010-06-10 G2 Software Systems, Inc. Wireless Portable Sensor Monitoring System
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
EP2359598A1 (en) 2008-11-21 2011-08-24 Stryker Corporation Wireless operating room communication system including video output device and video display
US8305423B2 (en) 2008-11-24 2012-11-06 Innovatec, S.L. Communication system for remote patient visits and clinical status monitoring
US8463435B2 (en) 2008-11-25 2013-06-11 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US7995493B2 (en) 2008-12-23 2011-08-09 Airvana, Corp. Estimating bandwidth in communication networks
US8462681B2 (en) 2009-01-15 2013-06-11 The Trustees Of Stevens Institute Of Technology Method and apparatus for adaptive transmission of sensor data with latency controls
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8423284B2 (en) 2009-04-15 2013-04-16 Abalta Technologies, Inc. Monitoring, recording and testing of navigation systems
US8897920B2 (en) 2009-04-17 2014-11-25 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
US8340654B2 (en) 2009-05-26 2012-12-25 Lextech Labs Llc Apparatus and method for video display and control for portable device
JP5430246B2 (en) 2009-06-23 2014-02-26 任天堂株式会社 Game apparatus and a game program
US8626499B2 (en) 2009-07-21 2014-01-07 Vivu, Inc. Multimedia signal latency management by skipping
WO2011028589A3 (en) 2009-08-26 2011-04-28 Intouch Technologies, Inc. Portable telepresence apparatus
US8384755B2 (en) 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot
US20110213210A1 (en) 2009-08-26 2011-09-01 Intouch Technologies, Inc. Portable telepresence apparatus
US8312079B2 (en) 2009-09-22 2012-11-13 Thwapr, Inc. Adaptive rendering for mobile media sharing
US8244402B2 (en) 2009-09-22 2012-08-14 GM Global Technology Operations LLC Visual perception system and method for a humanoid robot
US20110153198A1 (en) 2009-12-21 2011-06-23 Navisus LLC Method for the display of navigation instructions using an augmented-reality concept
US8212533B2 (en) 2009-12-23 2012-07-03 Toyota Motor Engineering & Manufacturing North America, Inc. Robot battery charging apparatuses and methods
US20110190930A1 (en) 2010-02-04 2011-08-04 Intouch Technologies, Inc. Robot user interface for telepresence robot system
US20110187875A1 (en) 2010-02-04 2011-08-04 Intouch Technologies, Inc. Robot face used in a sterile environment
US9823342B2 (en) 2010-02-09 2017-11-21 Aeroscout, Ltd. System and method for mobile monitoring of non-associated tags
US8670017B2 (en) 2010-03-04 2014-03-11 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US8837900B2 (en) 2010-05-11 2014-09-16 Cisco Technology, Inc. Unintended video recording detection in a video recording device
US20110288682A1 (en) 2010-05-24 2011-11-24 Marco Pinter Telepresence Robot System that can be Accessed by a Cellular Phone
US20110292193A1 (en) 2010-05-26 2011-12-01 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair
US9626826B2 (en) 2010-06-10 2017-04-18 Nguyen Gaming Llc Location-based real-time casino data
US8429674B2 (en) 2010-07-20 2013-04-23 Apple Inc. Maintaining data states upon forced exit
US8522167B2 (en) 2010-08-09 2013-08-27 Microsoft Corporation Relationship visualization and graphical interaction model in it client management
US8832293B2 (en) 2010-09-03 2014-09-09 Hulu, LLC Bandwidth allocation with modified seek function
US8781629B2 (en) 2010-09-22 2014-07-15 Toyota Motor Engineering & Manufacturing North America, Inc. Human-robot interface apparatuses and methods of controlling robots
US8984708B2 (en) 2011-01-07 2015-03-24 Irobot Corporation Evacuation station system
US20120191464A1 (en) 2011-01-21 2012-07-26 Intouch Technologies, Inc. Telerobotic System with a Dual Application Screen Presentation
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
CN104898652B (en) 2011-01-28 2018-03-13 英塔茨科技公司 Remote robot with a movable communicate with each other
US8532860B2 (en) 2011-02-25 2013-09-10 Intellibot Robotics Llc Methods and systems for automatically yielding to high-priority traffic
US8836751B2 (en) 2011-11-08 2014-09-16 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9258459B2 (en) 2012-01-24 2016-02-09 Radical Switchcam Llc System and method for compiling and playing a multi-channel video
US8902278B2 (en) 2012-04-11 2014-12-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US20140047022A1 (en) 2012-08-13 2014-02-13 Google Inc. Managing a sharing of media content among cient computers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071797A1 (en) * 1999-06-23 2006-04-06 Brian Rosenfeld Telecommunications network for remote patient monitoring
US20030135097A1 (en) * 2001-06-25 2003-07-17 Science Applications International Corporation Identification by analysis of physiometric variation
US20110288417A1 (en) * 2010-05-19 2011-11-24 Intouch Technologies, Inc. Mobile videoconferencing robot system with autonomy and image analysis

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849593B2 (en) 2002-07-25 2017-12-26 Intouch Technologies, Inc. Medical tele-robotic system with a master remote station with an arbitrator
US9296107B2 (en) 2003-12-09 2016-03-29 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US9956690B2 (en) 2003-12-09 2018-05-01 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US9375843B2 (en) 2003-12-09 2016-06-28 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US9766624B2 (en) 2004-07-13 2017-09-19 Intouch Technologies, Inc. Mobile robot with a head-based movement mapping scheme
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
US9616576B2 (en) 2008-04-17 2017-04-11 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US9429934B2 (en) 2008-09-18 2016-08-30 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US10073950B2 (en) 2008-10-21 2018-09-11 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9138891B2 (en) 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9381654B2 (en) 2008-11-25 2016-07-05 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US10059000B2 (en) 2008-11-25 2018-08-28 Intouch Technologies, Inc. Server connectivity control for a tele-presence robot
US9983571B2 (en) 2009-04-17 2018-05-29 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
US9602765B2 (en) 2009-08-26 2017-03-21 Intouch Technologies, Inc. Portable remote presence robot
US9089972B2 (en) 2010-03-04 2015-07-28 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
US9785149B2 (en) 2011-01-28 2017-10-10 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
US9469030B2 (en) 2011-01-28 2016-10-18 Intouch Technologies Interfacing with a mobile telepresence robot
US9974612B2 (en) 2011-05-19 2018-05-22 Intouch Technologies, Inc. Enhanced diagnostics for a telepresence robot
US9715337B2 (en) 2011-11-08 2017-07-25 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9224181B2 (en) 2012-04-11 2015-12-29 Intouch Technologies, Inc. Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US9776327B2 (en) 2012-05-22 2017-10-03 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US10061896B2 (en) 2012-05-22 2018-08-28 Intouch Technologies, Inc. Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US9174342B2 (en) 2012-05-22 2015-11-03 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US9098611B2 (en) * 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
US20140267549A1 (en) * 2012-11-26 2014-09-18 Intouch Health Enhanced video interaction for a user interface of a telepresence network
US20140168351A1 (en) * 2012-12-18 2014-06-19 Rithik Kundu Telepresence Device Communication and Control System
US9131107B2 (en) * 2012-12-18 2015-09-08 Rithik Kundu Telepresence device communication and control system
US20170109993A1 (en) * 2014-03-25 2017-04-20 Msa Europe Gmbh Monitoring Device and Monitoring System
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9971415B2 (en) 2014-06-03 2018-05-15 Google Llc Radar-based gesture-recognition through a wearable device
US20150364126A1 (en) * 2014-06-16 2015-12-17 Schneider Electric Industries Sas On-site speaker device, on-site speech broadcasting system and method thereof
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9933908B2 (en) 2014-08-15 2018-04-03 Google Llc Interactive textiles
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US20160171337A1 (en) * 2014-12-11 2016-06-16 Fujitsu Limited Bed area extraction method, bed area extraction apparatus, and recording medium
US9846817B2 (en) * 2014-12-11 2017-12-19 Fujitsu Limited Bed area extraction method, bed area extraction apparatus, and recording medium
US10064582B2 (en) 2015-01-19 2018-09-04 Google Llc Noninvasive determination of cardiac health and other functional states and trends for human physiological systems
US9694496B2 (en) 2015-02-26 2017-07-04 Toyota Jidosha Kabushiki Kaisha Providing personalized patient care based on electronic health record associated with a user
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US9848780B1 (en) 2015-04-08 2017-12-26 Google Inc. Assessing cardiovascular function using an optical sensor
US10080528B2 (en) 2015-05-19 2018-09-25 Google Llc Optical central venous pressure measurement
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
CN104889995A (en) * 2015-07-03 2015-09-09 陆春生 Household and medical service robot and working method thereof
NL2015251B1 (en) * 2015-07-31 2017-02-20 Az Benelux Holding Groep B V Care System.
US10088908B1 (en) 2015-09-23 2018-10-02 Google Llc Gesture detection and interactions
WO2017049628A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Devices, systems, and associated methods for evaluating potential stroke condition in subject
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
US20170193322A1 (en) * 2016-01-04 2017-07-06 Validic, Inc. Optical reading of external segmented display
US10083365B2 (en) * 2016-01-04 2018-09-25 Validic Optical reading of external segmented display
US10077110B2 (en) * 2016-05-18 2018-09-18 International Business Machines Corporation Monitoring for movement disorders using unmanned aerial vehicles
US20170372483A1 (en) * 2016-06-28 2017-12-28 Foresite Healthcare, Llc Systems and Methods for Use in Detecting Falls Utilizing Thermal Sensing

Also Published As

Publication number Publication date Type
US9974612B2 (en) 2018-05-22 grant
US20180263703A1 (en) 2018-09-20 application
US20140155755A1 (en) 2014-06-05 application

Similar Documents

Publication Publication Date Title
Chan et al. A review of smart homes—Present state and future challenges
Baig et al. Smart health monitoring systems: an overview of design and modeling
US20080004904A1 (en) Systems and methods for providing interoperability among healthcare devices
US20050154265A1 (en) Intelligent nurse robot
US8684900B2 (en) Health monitoring appliance
US8968195B2 (en) Health monitoring appliance
US7558622B2 (en) Mesh network stroke monitoring appliance
US8323188B2 (en) Health monitoring appliance
US8094009B2 (en) Health-related signaling via wearable items
Jurik et al. Remote medical monitoring
US20150106121A1 (en) Alarm notification system
US20080172253A1 (en) System and method for administering medication
US7297110B2 (en) Systems and methods for remote monitoring of fear and distress responses
US20080200774A1 (en) Wearable Mini-size Intelligent Healthcare System
US20100052892A1 (en) Health-related signaling via wearable items
US20120220835A1 (en) Wireless physiological sensor system and method
US7502498B2 (en) Patient monitoring apparatus
US20080183049A1 (en) Remote management of captured image sequence
US20130245389A1 (en) Learning Patient Monitoring and Intervention System
US20140266787A1 (en) Mobile wireless appliance
US20080319282A1 (en) Patient monitoring apparatus
US20120179479A1 (en) Method and System for Remote Tele-Health Services
Lv et al. iCare: a mobile health monitoring system for the elderly
CN105118010A (en) Chronic disease management method with functions of real-time data processing and real-time information sharing and life style intervention information
US20130150686A1 (en) Human Care Sentry System

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:INTOUCH HEALTH, INC.;REEL/FRAME:036898/0729

Effective date: 20151009