CN1743144A - Internet-based robot long-distance control method - Google Patents

Internet-based robot long-distance control method Download PDF

Info

Publication number
CN1743144A
CN1743144A CN 200510015283 CN200510015283A CN1743144A CN 1743144 A CN1743144 A CN 1743144A CN 200510015283 CN200510015283 CN 200510015283 CN 200510015283 A CN200510015283 A CN 200510015283A CN 1743144 A CN1743144 A CN 1743144A
Authority
CN
China
Prior art keywords
control
robot
delay
remote
user
Prior art date
Application number
CN 200510015283
Other languages
Chinese (zh)
Inventor
孙启湲
Original Assignee
天津理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津理工大学 filed Critical 天津理工大学
Priority to CN 200510015283 priority Critical patent/CN1743144A/en
Publication of CN1743144A publication Critical patent/CN1743144A/en

Links

Abstract

A robot remote control method based on Internet is disclosed. The remote user computer is connected to the robot control website through Internet, connected to the moving robot system via LAN. When the robot control website accesses in the control requirement of the remote user computer, the system detects the delay of the user by a delay-detection module, sends the result to the control selection module, provides responding control module such as direct control, prediction control or monitoring control to the user according to the delay type. The user accesses in responding control module and controls the moving of the robot through the control interface displayed on the user terminal.

Description

基于互联网的机器人远程控制方法 Internet-based remote robot control method

【技术领域】本发明涉及机器人的控制方法,特别是一种基于互联网的机器人远程控制方法。 TECHNICAL FIELD The present invention relates to a method for controlling a robot, in particular a method for Internet-based remote control of the robot.

【背景技术】在基于互联网的远程控制系统中,机器人的远程控制系统最为复杂,涉及指令、数据、图像和环境信息的实时传输问题。 BACKGROUND In the Internet-based remote control system, the remote control system of the robot is the most complex, involving instructions, data, real-time image transmission problems and environmental information. 其中最主要的远程控制中的问题是时延对控制的影响。 The main problem which the remote control is the effect of the delay on the control. 现有的机器人远程控制方式一般有两种,即将传输时延按照固定时延或变化时延两种情况处理。 Conventional robot remote control, there are two general ways, i.e. a fixed transmission delay process delay or delay variation in both cases. 固定时延是假定传输时延为某一个固定值或时延存在一个变化的上界。 Fixed delay is assumed that there is a change in the transmission delay for a delay of a fixed value or upper bound. 以固定时延方式设计的控制系统在时延偏离固定值较大或在零和时延上界之间变动时,系统的稳定性和模型精度很难保证。 Fixed delay control system in a manner designed to deviate from the fixed delay value is large or when delay variation between zero and the upper bound, stability and accuracy of the system model is difficult to ensure. 变化时延则充分考虑了网络时延的变化性和不确定性特点,认为时延是时时变化的,但不考虑时延的大小。 Changes delay the full account of the variability and uncertainty characteristics of network delay, that the delay is constantly changing, but does not consider the size of the delay. 在此基础上建立起来的控制系统,系统的稳定性得到保证,却往往难以获得好的实时性。 Established on the basis of the control system, system stability is guaranteed, but it is often difficult to obtain good real-time.

同时,以互联网为通讯媒介的机器人远程控制系统,由于机器人构建在互联网的一个站点上,面向不同的网络用户。 At the same time, the Internet as a robot remote control system communications media, because the robot is built on a site on the Internet, for different network users. 网络用户接入互联网的方式不同(如普通拨号上网用户的网络连接速度为56Kbps,DDN用户的接入速度最高可达2Mbps,ADSL用户最高接入速度是下行8Mbps、上行640Kbps,而通过光纤接入互联网的用户接入速度可达100Mbps。),互联网的网络带宽和路由状况的不同,也造成不同的远程控制端与机器人端的通讯具有不同的传输时延而且时延的变化是不确定的。 Internet users access the network in different ways (e.g., network connection speed ordinary dial-up users to 56Kbps, DDN users access speeds of up to 2Mbps, ADSL users maximum access speed downlink 8Mbps, upstream 640Kbps, through fiber access Internet users access speeds of up to 100Mbps.), different network bandwidth and routing conditions of the Internet, but also result in communication with different remote control terminal end of the robot has a different transmission delay and delay variation is uncertain. 这种时延存在及其变化的不确定性都将使远程控制难于实现,并且会造成控制系统的不稳定性。 The existence and change this delay uncertainty will make the remote control is difficult to achieve and will cause instability in the control system. 因此时延问题是网络机器人远程控制需要解决的一个主要问题。 So delay problem is a major issue network remote control robot need to be addressed.

【发明内容】本发明的目的是为了克服现有技术的问题,而提供一种基于互联网的机器人远程控制方法,该方法以时延检测为基础综合应用直接控制、预测控制和监督控制方式,从而实现对机器人的远程控制的稳定和精确。 SUMMARY OF THE INVENTION An object of the present invention is to overcome the problems of the prior art, and to provide a remote control method for a robot-based Internet, the method based on detection of delay applied directly integrated control, predictive control and supervisory control mode, so that remote control of the robot stable and accurate.

本发明为解决上述问题,公开了一种基于互联网的机器人远程控制方法。 The present invention is to solve the above problems, discloses a method for remote control of the robot based on the Internet. 包括远程用户计算机由互联网连接到机器人控制网站,再由局域网连接到移动机器人系统,其特征在于所说的机器人控制网站在接入远程用户计算机用户提出的控制请求时,系统通过时延检测模块对用户的时延进行检测,完成对用户端与机器人网络服务器间的传输时延进行检测并分类,然后将结果传递给控制方式选择模块,控制方式选择模块根据时延检测模块的检测结果按时延类型为用户调用相应的直接控制、预测控制或监督控制模块,用户进入相应的控制模块,并通过用户端显示的控制界面对机器人进行运动控制;所说的移动机器人采集的机器人位置信息和环境信息通过无线网络返回给控制网站。 When the user computer comprising a remote connection to the Internet by a robot control of the site, and then connected by a LAN to a mobile robot system, characterized in that said robot control access to the remote site requesting user computer users proposed system by detecting the delay module delay user detects completion of the transmission delay between the UE and the network server for the robot to detect and classify, then the result to the control mode selection module, the control mode selecting module the detection result of the delay by the delay detection module type the user calls the corresponding direct control, predictive control or supervise the control module, the user enters the corresponding control module, and the robot motion control via the control interface of the user terminal display; robot position information and said environment information collected by the mobile robot wireless network control is returned to the site.

所说的直接控制模块是在用户提出控制请求时网络的双向传输时延RTT小于50ms条件下,实现对机器人的直接控制。 It said direct control block is made when the user requests the control two-way transmission delay under 50ms RTT is smaller than the network conditions, direct control of the robot.

所说的预测控制模块是在用户提出控制请求时网络的双向传输时延RTT在50ms和200ms条件下,实现机器人的预测显示控制。 He said prediction is a prediction module control two-way transmission delay in the network RTT 50ms and 200ms conditions for the realization of the robot when the user requests the display control proposed control.

所说的监督控制模块是在用户提出控制请求时网络的双向传输时延RTT大于200ms条件下,通过远程操作人员发送目标任务和相关指令完成对远程机器人的控制。 Under the supervision of the control module of said control request is made when a user network in two-way transmission delay of 200ms RTT is larger than the condition, and the associated transmission target task instruction completion control of the robot by remote remote operator.

本发明机器人远程控制系统的设计中提出了以远程控制用户请求控制及控制中的时延为输入参数来选取控制方式的控制策略。 The design robot remote control system of the present invention proposes to control the remote control and a user request input delay control parameters to select the mode control strategy. 依据不同网络用户的时延状况的不同,以检测到的用户时延提供相应的控制方式,并以机器人的环境信息为参考建立控制模型,进行控制补偿,以补偿由于网络传输时延对控制实时性的影响。 Depending on the delay conditions of different users of the network, the user provides a delay corresponding to the detected control, and environmental information to control the robot to establish a reference model, the compensation control, to compensate for real-time control of the network transmission delay effects. 根据时延大小和稳定性情况,在机器人远程控制中采用了三种控制方式:直接控制方式、预测显示方式和监督控制方式。 The size and stability of the time delay, the remote control of the robot using the three control modes: direct control mode, the prediction mode and the display control supervision. 并且为建立更为精确的系统控制模型提供了条件。 And it provided the conditions for the establishment of a more precise system control model. 本发明是面向互联网用户的机器人远程控制方法,可以根据用户的不同自主地为用户提供一种与其时延状况相适应的控制方式。 The present invention is a method for remotely controlling a robot for Internet users, the control mode can autonomously provide the user a status of their delay adapted to different users. 因此能够在一定程度上解决针对一种时延状态设计的远程控制系统无法同时满足系统稳定性和实时性的问题。 It is possible to solve the remote control system is directed to a delay of state design to some extent, can not meet the real-time systems and stability issues. 使不同用户在控制机器人时都能够得到满意的效果。 So that different users in control of the robot are able to get satisfactory results.

【附图说明】图1控制系统组成结构示意图;图2机器人控制方法流程示意图。 BRIEF DESCRIPTION structural diagram of a control system of FIG composition; FIG. 2 a schematic flowchart of a method to control a robot.

【具体实施方式】本发明基于互联网的机器人远程控制方法主要由三部分组成:远程用户计算机、机器人控制网站和移动机器人系统。 DETAILED DESCRIPTION The present invention is a control method for a robot remote Internet-based mainly consists of three parts: a remote user computer, the robot control site and the mobile robot system. 网络控制部分采用浏览器/服务器网络结构设计。 Network control part browser / server network architecture design. 参见图1。 See Figure 1.

用户计算机是任何一台连接到互联网上的计算机,连接方式可以是拨号、ADSL以及宽带等任一种方式。 A user computer is any computer connected to the Internet, it may be a dial-up connection, ADSL broadband and either way. 用户使用通用浏览器登录到机器入网站上就可以对机器人进行控制。 Users log on to the machine into the site can control the robot using a common browser. 对远程用户使用的计算机没有特殊的要求,不需要安装专门的客户端软件,也不需要用户具有专业的机器人知识。 No special requirements for computers used by remote users do not need to install special client software, users do not need to have specialized knowledge of robotics.

机器人控制网站主要由网络服务器(可根据系统需要处理的信息量的大小配置一台或多台服务器,本系统配置一台服务器即可满足要求)实现,其在逻辑上分为Web服务层、业务逻辑层和后端系统层,为用户提供网络服务以及实现机器人远程控制的网络智能代理系统。 Robot controlled mainly by the web server site (the amount of information can be configured according to the size of the system to be treated one or more servers, the present system is configured to meet the requirements of a server) to achieve, which is divided into layers in the Web service logic, service logic layer and the back-end system level, to provide users with network services and intelligent agent systems for network remote control robot. 智能代理系统实现对用户的管理和机器人控制的智能管理,如实现机器人控制方式、控制策略以及机器人通讯的网络管理等。 Intelligent agent system to achieve the management of users and robot control of intelligent management, such as for robot control, control strategy and network management robot communication. 数据库用于存储用户信息、环境信息和机器人的相关信息;数据库可以在网络服务器上,也可以在连接到网络上的独立的数据服务器上。 Related information database for storing user information, environment information, and a robot; a database server on a network can also be connected to a separate data server on a network. 网络服务器和移动机器人之间利用无线网卡通过局域网进行通讯。 Communication via the local area network using a wireless LAN network between server and mobile robots.

移动机器人和机器人服务器组成自主机器人系统。 Mobile robots and robot servers autonomous robotic systems. 移动机器人上装有摄像机,摄像机具有监控、跟踪和环境识别的功能,并负责提供机器人现场的环境信息。 Mobile robot equipped with a camera, the camera has a monitor, track and environment recognition function, and is responsible for providing environmental information robot site. 机器人上还装有超声波传感器组,通过对传感器信息的获取和处理来感知识别环境,确定机器人的运动状态。 The robot is also equipped with ultrasonic sensor set, by the sensor information acquisition process to perceive and recognize the environment, determining the motion state of the robot. 用户可以实时获得移动机器人的相关信息,并且据此进行进一步的控制。 Users can get real-time information about mobile robot, and accordingly further control. 机器人服务器负责处理传感器信息和执行对机器人的运动控制。 Robot server processes the sensor information and execution of motion control of the robot.

本发明机器人控制网站中机器人远程控制方法流程是以时延检测为基础综合应用直接控制、预测控制和监督控制方式。 The robot of the robot remote control site flow control method is based on detection of integrated application latency direct control, predictive control and supervision of control. 如图2所示:远程用户可以任何一种方式接入互联网的用户计算机。 As shown in FIG 2: the remote users can access the Internet computer user in any way. 当用户接入机器人控制网站提出控制请求时,系统通过时延检测模块对用户端与机器人网络服务器间的传输时延进行检测并分类,然后将结果传递给控制方式选择模块。 When a user access control request made robot control site, the system transmission delay between the UE and the network server the robot detected and classified by the delay detection module, and the result is transmitted to the control mode selection module. 控制方式选择模块根据时延检测模块的检测结果按时延类型为用户调用相应的控制模块,用户进入相应的控制模块,并在用户端显示该控制界面,用户可对机器人开始操作,进入运动控制。 The control mode selecting module by a user invokes the corresponding type of time delay control module in accordance with the detection result of the delay detection module, the user enters the corresponding control module, and display the control interface, the user can start operation of the robot, the user terminal enters the motion control. 运动控制则根据不同控制模块的指令对机器人运动发出相关控制指令和操作。 Motion control command is issued and associated robot according to an instruction of the operation of the different control modules. 在机器人运动的同时,机器人运动过程中的位置、姿态和速度等机器人信息,又通过机器人上安装的传感器进行检测,反馈给用户端。 While moving the robot, the robot position during the motion, posture, and speed information of the robot, and is detected by a sensor mounted on the robot, feedback to the user terminal.

上述与时延检测结果相对应的控制方式分为:直接控制、预测控制和监督控制三种。 The above delay control corresponding to the detection result is divided into: direct control, predictive control and supervisory control three. 其中:直接控制模块用于实现机器人的直接控制,具有直观性特点,在机器人控制过程中现场感强,并能充分发挥操作者的判断能力和决策能力。 Wherein: the control module is configured to direct the robot to achieve direct control, intuitive features, strong sense of the scene in the robot process control, can give full play and decision-making ability and judgment of the operator. 但这一控制方式对网络性能的要求比较高,要求网络传输时延小波动不大。 However, this method requires control of high performance network, the network transmission delay is not required small fluctuation. 在网络存在明显的通讯时延情况下,控制过程将会形成“运动-等待”控制结果,降低控制的效率,也会对控制过程的稳定性造成影响。 There is a clear case of delays in communication network, the control process will form a "movement - wait" control results, reducing the efficiency of control, it will affect the stability of the control process. 如果网络通讯状况好,也就是时延小且随机波动相对缓和,采用直接控制的方式将是最简单有效的方式。 If good network communication status, which is a small delay and random fluctuations relative ease, using the direct control of the way will be the most simple and effective way. 从前面对时延测试结果的分析中可以发现,对于局域网用户和教育网条件下的大多数用户,网络的传输时延小且在每一段时间内相对稳定,如果在用户提出控制请求时传输时延小于50ms(RTT),用户进入直接控制方式,直接向机器人发出控制指令,如前进、转弯和停止等。 Front face delay analysis of test results can be found for most LAN users and users in the education network conditions, network transmission delay small and relatively stable in each period of time, if the proposed transmission control when a user requests extension of less than 50ms (RTT), the user enters the direct control mode, a control command directly to the robot, such as forward, stop turning and the like. 用户端直接显示摄像机采集的现场图像信息(不需要补偿),用户借助现场的实时环境的图像信息操作机器人。 Client site directly displayed image information (no compensation) captured by the camera, the image information of the user by means of real-time operation of the robot environment at the scene. 而移动机器人的自主能力在这一控制方式下体现不出来。 The mobile robot autonomy is not manifest in this control mode.

预测控制模块实现机器人的预测显示控制。 Prediction control module for controlling the display of the robot. 操作者通过虚拟现实的模拟仿真界面来观察机器人的运动行为进行规划,来保证实际机器人动作的准确性。 The operator to observe the movement of the robot's behavior through virtual reality simulation interface to plan, to ensure the accuracy of the actual operation of the robot. 在实验中对相对稳定型时延(50ms和200ms)的情况采取预测显示控制方式,用户端不再返回摄像机采集的现场实时图像,而为用户提供经过对时延进行预测补偿的虚拟仿真环境信息,以检测到的时延为参数矫正模拟仿真显示的环境信息。 Take on the situation is relatively stable latency (50ms and 200ms) in the experiment forecast control, end users no longer returned to the scene image captured by the camera in real time, and to provide users through compensation for delay prediction of virtual simulation environment information to detect the delay parameter correction information display simulation environment. 在这一范围内随时延的增大,控制系统将自动降低移动机器人的运动速度。 Delay increases at any time within this range, the control system will automatically lower the speed of movement of the mobile robot. 预测控制方式的建模采用了虚拟现实技术,构建了环境模型和机器人控制模型,并利用传感器采集的机器人位置信息,重现机器人的运动状态,以产生临场感的效果。 Model predictive control method using a virtual reality technology, the environment model and the robot constructed control model, and the robot position information collected by the sensor, to reproduce the motion state of the robot to produce the effect of presence.

监督控制模块实现在大的网络传输时延(时延从几秒到几分钟)条件下的机器人控制。 Supervisory control module implemented in a large network delay (delay from seconds to minutes) under the conditions of the robot control. 时延的变化也大。 Change delay is also large. 在这样的网络状况下,直接控制方式的实时性要求无法保证。 In such a situation the network, real-time requirements of direct control can not be guaranteed. 若采用预测控制方式,无法建立精确的控制模型。 If predictive control, we can not establish the precise control model. 而监督控制不需要传输时延作为模型的参数,因此是一个很好的解决方案。 The supervisory control does not require transmission delay as the parameters of the model, and therefore is a good solution. 由于监督控制把操作人员置于控制系统闭环之外,远程操作人员只需要发送目标任务和相关指令,而具体任务由远程机器人控制回路自主完成。 As the supervisory control of the operator placed outside the closed-loop control system, remote operator only needs to send a mission objectives and related instructions and specific tasks by remote control robot circuit complete autonomy. 故要求机器人自身是具有一定自主能力的独立闭环控制系统,即将时延环节置于闭环控制之外,采用人工智能的算法使机器人具有自主避障、路径规划的能力。 And called for the robot itself is an independent closed-loop control system has a certain autonomy, and is about to delay procedure is placed outside the closed-loop control, using artificial intelligence algorithms for robots autonomous obstacle avoidance, path planning capability. 在控制中只需要给定机器人所要运动到的目标点位置,机器人就可以利用本身的智能运动到目标位置。 In just give control robot to be moved to a given target point, the robot can use its own intelligent movement to the target position. 时延环节不存在于这个闭环控制系统之内,从而减小时延对整个系统稳定性的影响。 Delay procedure is not present in the closed-loop control systems, thereby reducing the impact of the delay on the overall system stability.

本发明远程用户通过连接到互联网上的计算机,利用通用浏览器(如IE、Netscape等)登录到机器人控制网站,即可进入机器人控制网站的主界面。 The present invention is a remote user via a computer connected to the Internet, to log on to the website robot control, the robot controller to enter the site using a universal main interface browser (such as IE, Netscape, etc.). 当用户点击控制请求按钮时,系统调用时延检测模块对通讯时延进行检测,并将检测结果发送给控制方式选择模块。 When the user clicks the button control request, the system call delay detection module detects the communication delay, sends the detection result to the control mode selection module. 控制方式选择模块根据检测的通讯时延,为用户调用相应的控制方式模块。 Control mode selection module based on the detected communication delay, the user calls the corresponding control module. 若通讯时延小于50ms,系统调用直接控制模块,用户进入直接控制方式;如果用户提出控制请求时传输时延在50ms和200ms时,用户进入预测控制方式;当检测到的通讯时延大于200ms时,系统调用监督控制模块,用户将进入监督控制方式。 When the communication delay is less than 50ms, the system control module direct call, the user enters the direct control mode; 50ms and 200ms in transmission delay, the user enters a predictive control mode if the user control request made; communication when the detected time delay is greater than 200ms call supervision system control module, the user will enter the supervisory control mode. (与三种控制方式相对应的时延范围是根据多次测量和试验结果确定的)每种控制方式都有相应的图形化的控制界面,用户可以通过点击控制按钮,或指定机器人运动的目标点,对机器人进行操作。 Target (and three control modes corresponding to the delay range is a multiple of the measurement and test result of the determination) of each control system has a corresponding graphical control interface, the user can click on the control button, or the specified movement of the robot point, the robot operation. 当用户进行相应的控制操作时,对应的控制指令通过无线网络传送给机器人底层驱动模块,机器人会根据指令产生相应的运动,如前进、后退、左转、右转和停止等,与电机的驱动直接相关,本机器人采用差动驱动方式对机器人运动进行控制。 When the user performs the corresponding control operation, corresponding to the control command transmitted over the wireless network driver module, to the robot, the robot will generate a corresponding movement in accordance with the instruction, such as forward, backward, left, right and stop of the drive motor and directly related to the present embodiment of the robot uses differential drive robot motion control. 同时,机器人上的传感器采集的机器人位置信息和摄像机采集的机器人环境的视频信息通过无线网络返回给控制网站,并在用户端显示出来。 Meanwhile, the video information of the robot and the environment information captured by the camera robot position sensors on the robot through the wireless network acquisition is returned to the control site, and displayed in the client.

用户在控制过程中,时延检测器定时对用户的时延状态进行检测,如果发现时延状况有了显著变化,不再适于现有的控制方式,则将新的时延类型参数传给控制方式转换器。 User control process, the timing of the delay detector detects the state of the user's delay, if significant changes have found that delay condition, no longer suitable for the conventional control method, then a new type of parameter to Delay converter control. 控制方式转换器重新为用户调用与当前时延相适应的控制方式,使用户继续进行控制操作。 Converter control back to call the user control adapted to the current time delay, allows the user to continue the control operation. 在预测显示控制方式的控制过程中,时延检测器定时检测的时延信息和机器人的位置信息作为补偿器的校正参数,对预测模型进行校正,以保证模型的精度。 In the predictive display control process of the control mode, the location information and delay information of the robot delay detector detects a timing correction parameter as a compensator, prediction model correction to ensure the accuracy of the model. 几种控制方式的综合运用融合控制方式的自动转换,保证了不同的用户在不同的时延条件下顺利地完成机器人的远程操作。 The integrated use of several control methods of integration of automatic switching control mode to ensure that the user complete remote operation of different robot smoothly under different conditions delay.

Claims (8)

1 一种基于互联网的机器人远程控制方法,包括远程用户计算机由互联网连接到机器人控制网站,再由局域网连接到移动机器人系统,其特征在于所说的机器人控制网站在接入远程计算机用户提出的控制请求时,系统通过时延检测模块对用户的时延进行检测,完成对用户端与机器人网络服务器间的传输时延进行检测并分类,然后将结果传递给控制方式选择模块,控制方式选择模块根据时延检测模块的检测结果按时延类型为用户调用相应的直接控制、预测控制或监督控制模块,用户进入相应的控制模块,并通过用户端显示的控制界面对机器人进行运动控制;所说的移动机器人采集的机器人位置信息和环境信息通过无线网络返回给控制网站,并传递给用户端。 An Internet based remote control method for a robot, comprising a remote user computer connected to the Internet by the robot control site, and then connected by a LAN to a mobile robot system, characterized in that said robot control access to the remote site computer users submitted when requested, the system delay by delay detection module detects a user, the completion of the transmission delay between the UE and the network server for the robot to detect and classify, then the result to the control mode selection module, according to the control mode selection module a detection result of the delay by the delay detection module calls the appropriate type for the user direct control, predictive control or supervise the control module, the user enters the corresponding control module, and the robot motion control via the control interface of the user terminal display; said mobile robot position information and environmental information collection robot is returned through the wireless network to a control site and delivered to the user terminal.
2 按照权利要求1所述的远程控制方法,其特征在于所说的直接控制模块是在用户提出控制请求时网络的双向传输时延RTT小于50ms条件下,实现对机器人的直接控制。 2 of the remote control method according to claim 1, wherein said direct control block is made when the user requests the control bidirectional transmission network delay RTT is less than 50ms under conditions, direct control of the robot.
3 按照权利要求1所述的远程控制方法,其特征在于所说的预测控制模块是在用户提出控制请求时网络的双向传输时延RTT在50ms和200ms条件下,实现机器人的预测显示控制。 The remote control method of claim 3 according to claim 1, wherein said control module is to provide predictive prediction way transmission delay in the network RTT 50ms and 200ms conditions, for robot control request when a user display control.
4 按照权利要求1所述的远程控制方法,其特征在于所说的监督控制模块是在用户提出控制请求时网络的双向传输时延RTT大于200ms条件下,通过远程操作人员发送目标任务和相关指令完成对远程机器人的控制。 The remote control method of claim 4 according to claim 1, wherein said supervisory control module is made in the user control request two-way transmission delay of the network is greater than 200ms RTT conditions, and the target task related instructions sent by a remote operator complete control of the remote robot.
5 按照权利要求1所述的远程控制方法,其特征在于所说的远程用户计算机是任何连接到互联网上的计算机,用户使用通用浏览器登录到机器人网站上对机器人进行控制。 5 the remote control method according to claim 1, wherein said remote user computer is any computer connected to the Internet, users log on to the robot control robot uses a common browser.
6 按照权利要求1或5所述的远程控制方法,其特征在于所说的远程用户计算机连接到互联网的方式,可以是拨号、ADSL以及宽带中的一种。 6 remote control method according to claim 1 or claim 5, wherein said remote mode user computer connected to the Internet, may be a dial-up, ADSL and in the broadband.
7 按照权利要求1所述的远程控制方法,其特征在于所说的移动机器人和机器人服务器组成的机器人系统是具有一定自主能力的独立闭环控制系统。 The remote control method of claim 7 according to claim 1, characterized in that the robot system of said mobile robot and the robot is independent of servers having a closed loop control system of a certain autonomy.
8 按照权利要求1或7所述的远程控制方法,其特征在于所说的移动机器人上装有具有监控、跟踪和环境识别功能的摄像机,以及装有获取和处理感知识别环境,确定机器人的运动状态超声波传感器组。 8 or the remote control method according to claim 17, characterized in that the monitor is equipped with the said mobile robot, and the environment recognition tracking camera, and motion-aware identification with acquiring and processing environment, the robot determines ultrasonic sensor set.
CN 200510015283 2005-09-29 2005-09-29 Internet-based robot long-distance control method CN1743144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510015283 CN1743144A (en) 2005-09-29 2005-09-29 Internet-based robot long-distance control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510015283 CN1743144A (en) 2005-09-29 2005-09-29 Internet-based robot long-distance control method

Publications (1)

Publication Number Publication Date
CN1743144A true CN1743144A (en) 2006-03-08

Family

ID=36138736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510015283 CN1743144A (en) 2005-09-29 2005-09-29 Internet-based robot long-distance control method

Country Status (1)

Country Link
CN (1) CN1743144A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507784C (en) 2006-06-06 2009-07-01 中国地质科学院地质研究所 Remotely control systems and method
CN101879720A (en) * 2010-07-09 2010-11-10 上海交通大学 Control system of reconfigurable modular robot
CN102124491A (en) * 2008-08-20 2011-07-13 欧洲航空防务和航天公司 Method and device for remotely controlling a camera on board a mobile station
CN101452289B (en) 2007-12-06 2011-09-28 Abb研究有限公司 A robot service system and a method for providing remote service for a robot
CN102395931A (en) * 2009-04-17 2012-03-28 英塔茨科技公司 Tele-presence robot system with software modularity, projector and laser pointer
CN102736622A (en) * 2011-03-31 2012-10-17 泰怡凯电器(苏州)有限公司 Multifunctional robot system and control method for robot body to search module part
CN102830677A (en) * 2012-09-03 2012-12-19 中国第一汽车股份有限公司 Remote control method of industrial robot
CN103534068A (en) * 2010-12-16 2014-01-22 三星重工业株式会社 Wind turbine assembly and management robot and wind turbine system including same
CN103916875A (en) * 2014-04-24 2014-07-09 山东大学 Management and planning system of multi-class control terminals based on WIFI wireless network
CN104015190A (en) * 2014-05-13 2014-09-03 中国科学院力学研究所 Robot remote control method and system under indeterminate bidirectional time delay condition
CN104050241A (en) * 2013-10-23 2014-09-17 东软集团股份有限公司 Remote-operating accepting system, remote operating system and program
US8965579B2 (en) 2011-01-28 2015-02-24 Intouch Technologies Interfacing with a mobile telepresence robot
US8983174B2 (en) 2004-07-13 2015-03-17 Intouch Technologies, Inc. Mobile robot with a head-based movement mapping scheme
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9089972B2 (en) 2010-03-04 2015-07-28 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
US9138891B2 (en) 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
US9174342B2 (en) 2012-05-22 2015-11-03 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
US9224181B2 (en) 2012-04-11 2015-12-29 Intouch Technologies, Inc. Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US9296107B2 (en) 2003-12-09 2016-03-29 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
CN101997710B (en) * 2009-08-20 2016-04-06 宏正自动科技股份有限公司 Remote management system and method
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US9381654B2 (en) 2008-11-25 2016-07-05 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
CN105844881A (en) * 2016-04-21 2016-08-10 奇弩(北京)科技有限公司 Method for establishing connection between robot and remote controller
US9429934B2 (en) 2008-09-18 2016-08-30 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
CN105931440A (en) * 2016-04-21 2016-09-07 奇弩(北京)科技有限公司 Method for establishing connection between robot and remote controller
US9602765B2 (en) 2009-08-26 2017-03-21 Intouch Technologies, Inc. Portable remote presence robot
US9616576B2 (en) 2008-04-17 2017-04-11 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
CN105934723B (en) * 2014-02-07 2017-07-07 Abb瑞士股份有限公司 Access to the web browser robotic device unit
US9715337B2 (en) 2011-11-08 2017-07-25 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US9849593B2 (en) 2002-07-25 2017-12-26 Intouch Technologies, Inc. Medical tele-robotic system with a master remote station with an arbitrator
US9974612B2 (en) 2011-05-19 2018-05-22 Intouch Technologies, Inc. Enhanced diagnostics for a telepresence robot
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10315312B2 (en) 2002-07-25 2019-06-11 Intouch Technologies, Inc. Medical tele-robotic system with a master remote station with an arbitrator
US9849593B2 (en) 2002-07-25 2017-12-26 Intouch Technologies, Inc. Medical tele-robotic system with a master remote station with an arbitrator
US9956690B2 (en) 2003-12-09 2018-05-01 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US9375843B2 (en) 2003-12-09 2016-06-28 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US9296107B2 (en) 2003-12-09 2016-03-29 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US10241507B2 (en) 2004-07-13 2019-03-26 Intouch Technologies, Inc. Mobile robot with a head-based movement mapping scheme
US9766624B2 (en) 2004-07-13 2017-09-19 Intouch Technologies, Inc. Mobile robot with a head-based movement mapping scheme
US8983174B2 (en) 2004-07-13 2015-03-17 Intouch Technologies, Inc. Mobile robot with a head-based movement mapping scheme
US10259119B2 (en) 2005-09-30 2019-04-16 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
CN100507784C (en) 2006-06-06 2009-07-01 中国地质科学院地质研究所 Remotely control systems and method
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
CN101452289B (en) 2007-12-06 2011-09-28 Abb研究有限公司 A robot service system and a method for providing remote service for a robot
US9616576B2 (en) 2008-04-17 2017-04-11 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
CN102124491B (en) 2008-08-20 2013-09-04 欧洲航空防务和航天公司 Method and device for remotely controlling a camera on board a mobile station
CN102124491A (en) * 2008-08-20 2011-07-13 欧洲航空防务和航天公司 Method and device for remotely controlling a camera on board a mobile station
US9429934B2 (en) 2008-09-18 2016-08-30 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US10059000B2 (en) 2008-11-25 2018-08-28 Intouch Technologies, Inc. Server connectivity control for a tele-presence robot
US9138891B2 (en) 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9381654B2 (en) 2008-11-25 2016-07-05 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9983571B2 (en) 2009-04-17 2018-05-29 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
CN102395931B (en) * 2009-04-17 2017-03-08 英塔茨科技公司 Tele having a software module, a projector and a laser pointer in the robot system
CN102395931A (en) * 2009-04-17 2012-03-28 英塔茨科技公司 Tele-presence robot system with software modularity, projector and laser pointer
CN101997710B (en) * 2009-08-20 2016-04-06 宏正自动科技股份有限公司 Remote management system and method
US9602765B2 (en) 2009-08-26 2017-03-21 Intouch Technologies, Inc. Portable remote presence robot
US9089972B2 (en) 2010-03-04 2015-07-28 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
CN101879720A (en) * 2010-07-09 2010-11-10 上海交通大学 Control system of reconfigurable modular robot
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US10218748B2 (en) 2010-12-03 2019-02-26 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
CN103534068B (en) * 2010-12-16 2015-09-30 三星重工业株式会社 The wind turbine assembly and management robot and which comprises a wind turbine system
CN103534068A (en) * 2010-12-16 2014-01-22 三星重工业株式会社 Wind turbine assembly and management robot and wind turbine system including same
US8965579B2 (en) 2011-01-28 2015-02-24 Intouch Technologies Interfacing with a mobile telepresence robot
US9785149B2 (en) 2011-01-28 2017-10-10 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
US9469030B2 (en) 2011-01-28 2016-10-18 Intouch Technologies Interfacing with a mobile telepresence robot
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
CN102736622B (en) * 2011-03-31 2015-08-19 科沃斯机器人有限公司 VarioRobot seek control system and method of the robot body module unit
CN102736622A (en) * 2011-03-31 2012-10-17 泰怡凯电器(苏州)有限公司 Multifunctional robot system and control method for robot body to search module part
US9974612B2 (en) 2011-05-19 2018-05-22 Intouch Technologies, Inc. Enhanced diagnostics for a telepresence robot
US10331323B2 (en) 2011-11-08 2019-06-25 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9715337B2 (en) 2011-11-08 2017-07-25 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9224181B2 (en) 2012-04-11 2015-12-29 Intouch Technologies, Inc. Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US10328576B2 (en) 2012-05-22 2019-06-25 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US9174342B2 (en) 2012-05-22 2015-11-03 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US9776327B2 (en) 2012-05-22 2017-10-03 Intouch Technologies, Inc. Social behavior rules for a medical telepresence robot
US10061896B2 (en) 2012-05-22 2018-08-28 Intouch Technologies, Inc. Graphical user interfaces including touchpad driving interfaces for telemedicine devices
CN102830677A (en) * 2012-09-03 2012-12-19 中国第一汽车股份有限公司 Remote control method of industrial robot
US10334205B2 (en) 2012-11-26 2019-06-25 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
CN104050241B (en) * 2013-10-23 2017-04-12 东软集团股份有限公司 Remote operation accepting systems, remote operating system and remote operation method
CN104050241A (en) * 2013-10-23 2014-09-17 东软集团股份有限公司 Remote-operating accepting system, remote operating system and program
CN105934723B (en) * 2014-02-07 2017-07-07 Abb瑞士股份有限公司 Access to the web browser robotic device unit
CN103916875A (en) * 2014-04-24 2014-07-09 山东大学 Management and planning system of multi-class control terminals based on WIFI wireless network
CN103916875B (en) * 2014-04-24 2018-04-06 山东大学 Management and planning system wifi wireless network-based multi-class control terminal
CN104015190B (en) * 2014-05-13 2016-04-13 中国科学院力学研究所 An uncertain robot remote control method and system of two-way delay under conditions
CN104015190A (en) * 2014-05-13 2014-09-03 中国科学院力学研究所 Robot remote control method and system under indeterminate bidirectional time delay condition
CN105844881A (en) * 2016-04-21 2016-08-10 奇弩(北京)科技有限公司 Method for establishing connection between robot and remote controller
CN105931440A (en) * 2016-04-21 2016-09-07 奇弩(北京)科技有限公司 Method for establishing connection between robot and remote controller

Similar Documents

Publication Publication Date Title
Luo et al. Development of a multi-behavior based mobile robot for remote supervisory control through the Internet
US7599896B2 (en) Apparatus for multiprocessor-based control of a multiagent robot
KR100594165B1 (en) Robot controlling system based on network and method for controlling velocity of robot in the robot controlling system
Passenberg et al. A survey of environment-, operator-, and task-adapted controllers for teleoperation systems
US9902069B2 (en) Mobile robot system
Lee et al. Distributed measurement and control based on the IEEE 1451 smart transducer interface standards
US8370421B2 (en) Method for coordinating a plurality of sensors
Hu et al. Internet-based robotic systems for teleoperation
Oboe Web-interfaced, force-reflecting teleoperation systems
Pan et al. A new predictive approach for bilateral teleoperation with applications to drive-by-wire systems
Elhajj et al. Real-time control of internet based teleoperation with force reflection
CN101612733A (en) Distributed multi-sensor mobile robot system
CN205281258U (en) Double -deck control system of AGV based on ARM
KR101568347B1 (en) Computing device with robotic functions and operating method for the same
Wirz et al. Bidirectional transport protocol for teleoperated robots
Yoshimi et al. Development of a concept model of a robotic information home appliance, ApriAlpha
Brady et al. Internet-based teleoperation
Goldberg et al. Collaborative online teleoperation with spatial dynamic voting and a human" Tele-Actor"
US9079313B2 (en) Natural human to robot remote control
CN103605342B (en) Distributed control system and method for remote Internet-based
Buzan et al. A model-based predictive operator aid for telemanipulators with time delay
CN101976079B (en) Intelligent navigation control system and method
CN102662377B (en) Formation system and formation method of multi-mobile robot based on wireless sensor network
US20140012415A1 (en) Natural machine interface system
Freire et al. A new mobile robot control approach via fusion of control signals

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)