CN101366126B - 用于发光器件的发光陶瓷层 - Google Patents

用于发光器件的发光陶瓷层 Download PDF

Info

Publication number
CN101366126B
CN101366126B CN200680044724XA CN200680044724A CN101366126B CN 101366126 B CN101366126 B CN 101366126B CN 200680044724X A CN200680044724X A CN 200680044724XA CN 200680044724 A CN200680044724 A CN 200680044724A CN 101366126 B CN101366126 B CN 101366126B
Authority
CN
China
Prior art keywords
layer
converting member
wavelength converting
semiconductor structure
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680044724XA
Other languages
English (en)
Other versions
CN101366126A (zh
Inventor
M·R·克拉梅斯
P·J·施米特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Lumileds LLC
Original Assignee
Koninklijke Philips Electronics NV
Philips Lumileds Lighing Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV, Philips Lumileds Lighing Co LLC filed Critical Koninklijke Philips Electronics NV
Publication of CN101366126A publication Critical patent/CN101366126A/zh
Application granted granted Critical
Publication of CN101366126B publication Critical patent/CN101366126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

一种包含定位于n类型区域和p类型区域的发光层的半导体结构被粘附到包含对器件提供机械支持的基质和含有发光材料的陶瓷层的复合衬底。在一些实施例中,该复合衬底包括一个晶体种子层,半导体结构在该层上生长。陶瓷层位于种子层和基质之间。在一些实施例中,在传统成长衬底上生长结构之后,复合衬底粘附到该半导体结构。在一些实施例中,复合衬底与半导体结构被间隔开,并且不提供对该结构的机械支撑。该陶瓷层的厚度低于500微米。

Description

用于发光器件的发光陶瓷层
技术领域
本发明涉及波长转换构件,其适合用于例如发光二极管的半导体发光器件。
背景技术
包括发光二极管(LED)、谐振腔发光二极管(RCLED)、垂直腔激光二极管(VCSEL)和边发射激光器在内的半导体发光器件属于目前可用的最有效的发光来源。当前,在制造能够在整个可见光谱上工作的高亮度发光器件中的感兴趣材料系统包括III-V族半导体,特别是镓、铝、铟和氮的二元,三元,和四元合金,也被称为III族氮化物。典型地,III族氮化物发光器件由通过金属有机化学气相沉积(MOCVD)、分子束外延(MBE)或者其他外延技术而在蓝宝石、碳化硅、III族氮化物或其他适合的衬底上外延生长的不同成分和掺杂浓度的半导体层的叠层来构成。该叠层通常包括在衬底之上形成掺杂了比如硅的一个或多个n型层、在所述一个或多个n型层上形成的在活动区域中的一个或多个发光层、以及一个或多个在动态区域上形成掺杂了比如镁的p型层。电接触点在n型和p型区域上形成。
由于III族氮化物器件发出的光通常在可见光谱的末端具有较短波长,因此III族氮化物器件发出的光可以很容易地被转换以产生具有较长波长的光。采用已知的发光/荧光工艺将具有第一峰值波长的光(一次光)转换为具有较长峰值波长的光(二次光),这在本领域中是公知的。荧光工艺包括通过波长转换材料比如磷光体来吸收一次光,激发磷光体材料的发光中心,从而发出二次光。该二次光峰值波长依赖于磷光体材料。可以选择磷光体材料的类型以产出具有特定峰值波长的二次光
参考图1,示出了一种在美国专利6351069中描述的现有技术的磷光体转换LED 10。LED 10包含III族氮化物管芯12,该管芯被激发时产生蓝色一次光。III族氮化物管芯12位于反射杯引线框架14上,并且被电耦合至引线16和18.引线16和18将功率传导给III族氮化物管芯12。III族氮化物管芯12被包含波长转换材料22的层20覆盖,其中该层20通常是透明树脂。用于构成层20的波长转换材料的类型可以根据荧光材料22产生的二次光的期望光谱分布来进行变化。III族氮化物管芯12和荧光层20被透镜24封装。该透镜24典型地由透明的环氧树脂或有机硅构成。
在操作中,电能被提供给III族氮化物管芯12以激发该管芯。管芯12被激发时会发射出远离该管芯顶层表面的一次光。发射出的一次光的一部分被层20中的波长转换材料22所吸收。然后,该波长转换材料22响应所吸收的一次光发射出二次光,即,具有更长的峰值波长的转换光。发射出的一次光中剩余的未被吸收的部分与二次光一起穿过波长转换层。透镜24指引未被吸收的一次光和二次光在箭头26指示的总方向上作为输出光。因此,输出光是一种复合光,其由管芯12发射的一次光和波长转换层20发射的二次光组成。波长转换材料也可以被配置成使得极少的或者没有一次光溢出该器件,如在发射UV一次光的管芯与一个或多个发射可见二次光的波长转换材料相组合的情况下。
由于III族氮化物LED在较高的功率和较高的温度下工作,所以应用于层20的有机密封剂的透明度趋于降低,这不利地减少了器件的光提取效率并且潜在地改变了从器件发射出的光的表现。
已经提出了波长转换材料的几个可替换的配置,例如美国专利6630691所述的在单晶体发光衬底上生长LED器件,美国专利6696703所述的薄膜磷光体层,以及美国专利6576488所述的通过电泳沉积法沉积的共形层或者美国专利6650044所述的模板印刷(stenciling)。这些可替换配置的每一个都还有不足之处。包含粘合材料的磷光体层,比如通过电泳沉积法或模板印刷沉积的磷光体,可能遭遇如图1所描述的粘合材料透明度的相同劣化。薄膜或者共形层很难处理,因为磷光体层是易碎的。现有一些解决方法的一个主要缺陷是磷光体/密封剂系统的光学不均匀性,这将导致散射,潜在地造成转换效率的损失。
发明内容
根据本发明的实施例,一种包括沉积在n型区域和类型区域之间的发光层的半导体结构光学耦合于包含基质和含有发光材料的陶瓷层的复合衬底。在一些实施例中,复合衬底包含晶体种子层,半导体结构在该层上生长。陶瓷层定位于种子层和基质之间。在一些实施例中,在常规生长衬底上生长半导体结构之后,复合衬底粘附于半导体结构。在一些实施例中,复合衬底与半导体结构间隔开来。陶瓷层可以具有低于500微米的厚度。发光层被配置来在正向偏置时发射具有第一峰值波长的光,并且发光材料可以吸收发光层发出的光并发射出具有第二峰值波长的光。
包含发光材料的陶瓷层可以是半透明或透明的,这样可以减少与不透明波长转换层例如共形层相关联的散射损失。与现有技术的波长转换层相比,发光陶瓷层还有更强的鲁棒性并更容易处理。
附图说明
图1显示了现有技术的磷光体转换的半导体发光器件。
图2是半导体发光器件的横断面视图,该器件在包含发光陶瓷的复合衬底上生长。
图3是根据本发明实施例的在包含发光陶瓷的复合衬底上生长的半导体发光器件的横断面视图。
图4显示了形成图3所示器件的方法。
图5显示了基质,发光陶瓷,和粘合层。
图6显示了被粘合到种子层材料的厚晶片的图5的结构。
图7显示了在去除了一部分种子层材料的厚晶片以剩下期望厚度的种子层之后的复合衬底。
图8显示了根据本发明实施例的半导体发光器件。
图9显示了形成图11所示器件的方法。
图10是根据本发明实施例的在生长衬底上生长并粘合到包含发光陶瓷的复合衬底的半导体器件层的横断面视图。
图11显示了根据本发明实施例的半导体发光器件。
图12是封装好的发光器件的分解视图。
附图详述
在此引入作为参考的,提交于2004年6月3日,标题为“Luminescent Ceramic for a Light Emitting Device”的美国专利申请No.10/861,172,描述了波长转换材料,比如形成陶瓷片的磷光体,在此处陶瓷片被称为“发光陶瓷”,“陶瓷层”或者“陶瓷磷光体”。这种陶瓷片是独立于半导体器件形成的自支撑层,随后附着于该半导体器件成品或者用作该半导体器件的生长衬底。该陶瓷层可以是半透明的或者透明的,这可以减少与诸如共形(conformal)层的不透明波长转换层相关联的散射损失。与薄膜或共形磷光体层相比,发光陶瓷层具有更强的鲁棒性。此外,由于发光陶瓷层是固体,这可以使得它更容易与其它也是固体的光学元件,比如透镜和二次光学器件,进行光学接触。
形成发光陶瓷层的磷光体的例子包括石榴石磷光体,其通式为(Lu1-x-y-a-bYxGdy)3(Al1-z-cGazSic)5O12-cNc:CeaPrb其中0<x<1,0<y<1,0<z≤0.1,0<a≤0.2,0<b≤0.1,和0<c<1例如在黄-绿范围内发光的Lu3Al5O12:Ce3+,Y3Al5O12:Ce3+和Y3Al4.8Si0.2O11.8N0.2:Ce3+;和(Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz 2+其中0≤a<5,0<x≤1,0≤y≤1,和0<z≤1例如在红色范围内发光的Sr2Si5N8:Eu2+。合适的Y3Al5O12:Ce3+陶瓷片可以从Baikowski International Corporation of Charlotte,N.C.购买。其他绿色,黄色,红色发光磷光体也适用,包括(Sr1-a-bCabBac)SixNyOz:Eua 2+(a=0.002-0.2,b=0.0-0.25,c=0.0-0.25,x=1.5-2.5,y=1.5-2.5,z=1.5-2.5)包括,例如,SrSi2N2O2:Eu2+;(Sr1-u-v-xMguCavBax)(Ga2-y-zAlyInzS4):Eu2+包括例如,SrGa2S4:Eu2+;(Sr1-x-yBaxCay)2SiO4:Eu2+包括,例如SrBaSiO4:Eu2+;Ca1-xSrx)S:Eu2+其中0≤x≤1包括,例如,CaS:Eu2+和SrS:Eu2+;(Ca1-x-y-zSrxBayMgz)1-n(Al1-a+bBa)Si1-bN3-bOb:REn,其中0≤x≤1,0≤y≤1,0≤z≤1,0≤a≤1,0≤b≤1以及0.002≤n≤0.2并且RE从铕(II)和铈(III)中选择包括例如CaAlSiN3:Eu2+和CaAl1.04Si0.96N3:Ce3+;和Mx V+Si12-(m+n)Alm+nOnN16-n,其中x=m/v且M是金属,优选地从下面选择Li,Mg,Ca,Y,Sc,Ce,Pr,Nf,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu或其混合物包括,例如Ca0.75Si8.625Al3.375O1.375N0.625:Eu0.25
可以高温加热磷光体粉末直到磷光体颗粒表面开始软化并且形成了液体表层,由此形成了陶瓷磷光体。这些部分熔化的颗粒表面促进了颗粒间质量传输,导致形成了颗粒连接的“颈部”。形成该颈部的质量的重分配导致了在烧结中颗粒的收缩,并且产生了颗粒的硬质结块。单轴或均衡冲压步骤,以及预制“坯体”的真空烧结或烧结预增密陶瓷,对于形成具有低残余内部孔隙度的多晶陶瓷层是必需的。该陶瓷磷光体的半透明度,即它产生的散射量,可以从高混浊度到高透明度进行控制,这是通过调节加热和冲压条件、制造方法、所使用的磷光体前体以及合适的磷光体材料的晶格来实现的。除了磷光体,例如氧化铝的其他陶瓷形成材料可以被包括以例如方便陶瓷的形成或调节陶瓷的折射率。包括超过一种晶体成分或晶体与非晶体的组合或玻璃成分的多晶复合材料,也能通过例如共烧两种独立的磷光体粉末,比如氧代次氮基硅酸盐磷光体和次氮基硅酸盐磷光体,来形成。
不同于在光学上表现为没有光学间断的单个大磷光体颗粒的薄膜,发光陶瓷表现为紧密包裹的独立的磷光体颗粒,这样在不同的磷光体颗粒之间有了微小的光学间断。因此,发光陶瓷几乎是光学均匀的,并且具有与形成发光陶瓷的磷光体材料相同的折射率。不同于共形磷光体层或沉积于透明材料如树脂上的磷光体层,发光陶瓷除了磷光体本身之外通常不需要粘合材料(比如有机树脂或环氧树脂),这样在各个磷光体颗粒之间有很少的空间或者不同折射率的材料。结果是,发光陶瓷是透明或半透明的,这不同于共形的磷光体层。
美国专利申请序列号No.11/080,801,标题“Wavelength-ConvertedSemiconductor Light Emitting Device”,提交于2005年3月14日,这里引入作为参考,该专利申请描述了在复合衬底上用发光陶瓷作为基质衬底,在该衬底上可以生长III族氮化物器件层。
图2显示了这个器件。发光陶瓷52通过结合剂56与成核结构58结合,该结合剂位于成核结构58和发光陶瓷52的交界面上,也可以直接通过晶片粘合或通过中间粘合层(未示出)来结合。如果应用粘合层,优选地该粘合层有一个折射率,则该折射率在应用粘合层的III族氮化物层的折射率和发光陶瓷的折射率之间,尽管可以利用具有更低折射率的粘合层。接着在成核结构上生长包括一个位于n型区域10和p型区域12之间的发光区域14的外延层。发光区域14和p型区域12的一部分被刻蚀,以暴露n型区域10的一部分,在其上形成n触点。反射p触点20形成于p型区域12的剩余部分上,这样所有的发射光都朝向陶瓷磷光体。一个可选的反射器(未示出)例如分布布拉格反射器被提供在正对着III族氮化物器件层的陶瓷磷光体的表面,以控制从活动区域逃离未转换的陶瓷磷光体的发射量。作为反射器的替换,正对着器件层的陶瓷磷光体52的表面可以被粗糙化,纹理化,或者变形以提高出光。
图2中的发光陶瓷52必须相对厚,比如厚度高于500微米,从而为器件层10,12,和14的生长以及随后的晶片制备过程提供必需的机械强度。形成这样一种厚陶瓷磷光体需要高温,高压处理以形成陶瓷,接着磨削和抛光,所有这些步骤都可能是昂贵的工艺。
根据本发明的实施例,半导体发光器件的III族氮化物器件层被连接到包含发光陶瓷和基质的复合衬底上。发光陶瓷层可以是薄的,比如厚度200微米或更少。在本发明的一些实施例中,复合衬底是生长衬底,器件层在其上面生长。在本发明的一些实施例中,在器件层在常规生长衬底上生长之后复合衬底被附着于器件层。
图3显示了本发明的第一个实施例,其中复合衬底被用作生长衬底用来生长III族氮化物器件层。在图3的器件中,在复合生长衬底35中发光陶瓷层32附着于基质30上。发光陶瓷层32的厚度是1-500微米,5-250微米,或5-50微米。利用包含发光陶瓷和基质的复合衬底具有以下优点,即期望的基质属性可以与期望的发光属性分开。比如,基质30可以是蓝宝石,以及发光陶瓷层32可以被高度掺杂并且相应地很薄,只有几微米的数量级。增加的掺杂度导致了发光陶瓷层的折射率的大的虚部,这样可以通过损坏整个内部反射来增加从器件提取到发光陶瓷的光量。发光陶瓷层32可以是薄层和高度掺杂,因为器件的机械支撑由基质30来提供。没有基质30,发光陶瓷层32必须足够厚以提供这个机械支撑,并且因此不能被高度掺杂。
基质30可以是能够耐受在衬底35上生长器件层以及在生长后处理该器件所要求的条件的任何材料。为最小化复合衬底35的平面度偏差,在一些实施例中基质30的厚度至少是发光陶瓷层厚度32的10倍。基质30为发光陶瓷32和生长在衬底35上的半导体器件层提供机械支撑。在基质30保留部分器件的实施例中,如果光通过该基质被提取,基质30至少要部分透明。能够耐受器件外延层加工条件的任何材料都适合本发明的实施例,包括半导体,陶瓷,和金属。适合的材料包括单晶体和多晶体Al2O3,AlN,Si,SiC,AlON,SiAlON,MgAl2O4,单晶体和陶瓷Y3Al5O12,和诸如Mo的金属。
种子层36是这样一层:器件层10,12,和14在该层上生长,于是它必须是这样一种材料:即半导体材料(在一些实施例中为III族氮化物材料)可以在该种材料上成核。种子层通常是大约50埃-1微米厚。在一些实施例中种子层36与器件层材料CTE匹配,并且一般是与器件层有着相当紧密的晶格匹配的单晶体材料。通常器件生长于上的种子层36的上表面的晶向是纤锌矿【0001】c平面。在种子层36保留器件成品的一部分的实施例中,如果光从器件通过该层被提取,种子层36可以是透明的或薄的。适合的材料包括GaN,4HSiC,6HSiC,ScMgAlO4,ZnO,Al2O3,AlGaN和InGaN。
一个或多个可选的粘合层34可被用于将发光陶瓷层32粘合于种子层36。粘合层34厚度是大约100埃-1微米。合适的粘合层的例子包括诸如SiO2的SiOx,诸如Si3N4的SiNx,HfO2,及其混合物,诸如Mo,Ti的金属,TiN,其他合金,和其他半导体或绝缘体。由于粘合层34将发光陶瓷层32连接到种子层36,所以选择形成粘合层34的材料从而在发光陶瓷32和种子36之间提供良好的粘合性。在粘合层34保留器件成品的一部分的实施例中,粘合层34优选为透明的或非常薄。在一些实施例中,粘合层34可以省略,并且种子层36可以直接粘在发光陶瓷32上。
包含n型区域10,p型区域12和发光区域14的器件层是传统的III族氮化物器件层,该层通过现有的生长技术生长。n型区域10,p型区域12和发光区域14的每一个都可以包含具有不同成分和掺杂浓度的多个层。例如,n型区域10和/或p型区域12可以包括可以是掺杂的或非有意掺杂的预处理层(比如缓冲层或成核层),设计用于方便在衬底去除后稍后释放生长衬底或减薄半导体结构的释放层,以及为发光区域有效发光所需的特定光学或电学属性而设计的器件层。发光区域14可以包括一个或多个厚的或薄的发光层。合适的发光区域的示例包括一个包含单个厚发光层的发光区域,和一个包含多个被阻挡层分离的薄量子阱的多量子阱发光区域。与种子层36相邻的半导体层的成分的选择可以依据它的晶格常数或其他属性,和/或根据它在种子层36的材料上的成核能力。
图3中显示的器件可以通过图4描述的方法形成。在阶段41中,准备至少一个前驱磷光体粉末。前驱磷光体粉末是能够形成磷光体的一种材料,该磷光体能吸收由待生长的半导体发光器件的发光层发射的某一波长的光,并且发射出不同波长的光。在一些实施例中,前驱磷光体粉末包括非反应前驱粉末,其在例如在下面描述的共烧步骤45的随后步骤中反应形成磷光体。
在阶段42中,陶瓷浆料由每一个前驱磷光体粉末制备。在阶段43中每一个陶瓷浆料接着通过在例如金属溶体的结构上浇铸薄层浆料被加工成陶瓷带,该层是前驱磷光体粉末和/或非发光材料和各种添加剂的水分散体或有机分散体。浆料层接着利用例如红外加热和空气对流来干化。
在可选阶段44中,多个陶瓷带可以被一起层压来形成叠层,比如通过在与层压带的平面垂直方向上热压来完成。根据初始材料、合成和处理,该叠层中不同的陶瓷带有不同的光学和/或机械特性,包括发射光谱,散射参数,和透射率。例如,不同的陶瓷片可以包含发出不同颜色光的发光材料或发出多种颜色光的多重发光材料,并且一些陶瓷片可能不包括发光材料。
单个带或层压的叠层可以带有缺口和被穿孔以接纳其他的结构或功能元素,或形成一种可组合的结构,接着被折断为多个独立器件。
阶段41-44得出了一种以单个带或层压叠层形式的带铸法陶瓷坯体。一个特殊的例子是YAG:Ce陶瓷坯体可以如下形成:通过在乙醇中混合Al2O3,Y2O3和CeO2粉末和高纯度氧化铝球4小时,制备一种掺杂有2%的平均颗粒直径至少为0.2微米的Ce的YAG粉末。研磨过的浆料接着被干燥并在减少的大气中在1300摄氏度下烧。得到的粉末接着再次在包含0.5的重量百分比的正硅酸乙酯的乙醇中利用高纯度氧化铝球碾磨6小时,在干燥之后,陶瓷粉末再被分散到软化水中。浆料中固体物质被调节到66的重量百分比。浆料筛选之后,加入粘合剂溶液,合适的增塑剂,润湿剂和消泡剂以形成泥釉,即粉末和具有加入的粘合系统的溶液的陶瓷浆料,如下面表1中所列。作为粘合剂,使用了聚乙烯醇,其平均分子重量是175kg/mol,相应于加权平均聚合度4300和水解率98.4%。可替换地,有机粘合剂系统能用于泥釉的制备,比如带有乙醇/甲苯的溶剂混合物的粘合剂系统,聚乙烯醇缩丁醛作为粘合剂,鲱鱼油作为反絮凝剂,聚乙二醇和邻苯二甲酸二辛酯作为增塑剂。
表1:用于生产YAG:Ce陶瓷带的泥釉配方
  材料  质量[g]
  YAG:Ce(2%)粉末  1000
  聚乙烯醇(Mowiol 56/98,Hoechst)  433
  软化水  340
  三甘醇(Merk)  26.7
  三丙二醇n-butylether(Dow)+8wt%ServoxylVPNZ9/100(Servo B.V)  3.33
  Serul(25%)(Servo B.V)  3.33
  Trion CF32(Rohm&Haas)  0.42
泥釉接着在真空中被去气以防止被密封的气泡在陶瓷带中引起孔洞。通过批次刮片机在玻璃板上铸造具有未加工厚度达45微米的未加工带。随后湿的泥釉层在60摄氏度的熔炉里被烘干30分钟。
回到图4,在阶段45中,陶瓷坯体被置于毗邻基质,接着被共烧,例如通过真空烧结,无压烧结,或单轴热压的方法,以将陶瓷层附着于基质。例如,一个YAG:Ce陶瓷坯体可用蓝宝石基质材料来堆叠,该陶瓷粘合剂在空气中的被烧毁的温度是500-600摄氏度,接着该叠层被改化为压模。接着该叠层在真空中1500-1800摄氏度下热压2-12小时。热压之后共烧叠层在1350摄氏度空气中后退火2-12小时。
由于基质和陶瓷坯体在一起共烧,在共烧之前不需要昂贵的抛光介面,因为在共烧期间陶瓷坯体的晶粒生长和多晶体重排在发光陶瓷和基质之间导致一个大的接触区域。在烧结期间的接触区域和在发光陶瓷和基质之间最终粘结强度能在共烧期间通过应用单轴压力垂直作用于接触表面被加强。
在阶段46中,共烧之后,粘合的发光陶瓷和基质能可选地进一步处理以提高该结构的机械和光学属性,例如通过退火或表面抛光。
在阶段47中,种子层附着于粘合的发光陶瓷和基质。图3中的种子层36可以如图5-7所示被粘附。图5-7显示了在种子层的块体材料可容易地利用时来粘附种子层;例如,带有SiC,Al2O3,ZnO种子层的衬底,和可能的一些III族氮化物层例如AIN。如图5显示,通过适用于粘合层和发光陶瓷的传统技术,粘合层34形成于粘合的发光陶瓷/基质结构37上。例如,SiO2粘合层34通过例如化学气相沉积的沉积技术沉积于发光陶瓷32上。在一些实施例中,粘合层34可以通过一种技术如机械抛光来处理使得粘合层34平整。
种子层材料36A的厚晶片接着被粘合到粘合层34的暴露表面,如图6所示。为了形成与粘合层34的强粘合,种子层材料晶片36A也必须平整。在高温和垂直作用于结构37和晶片36A的介面的压力下,结构37和晶片36A被粘合在一起。
超越种子层的期望厚度的种子层材料36A的部分接着通过适合于种子层36的成分的技术60被去除,如图7所示。例如,Al2O3种子层材料可以通过研磨去除,以及SiC种子层材料可以通过蚀刻去除。最后形成的结构是在上面参考图3描述的复合衬底35。
在包含不如块体材料那样容易使用的材料种子层的器件中,种子层必须单独制备,例如,在III族氮化物种子层比如GaN,AlGaN,InGaN,InN,和AlN,通过外延技术例如MOCVD或MBE在一个适合的生长衬底比如蓝宝石上生长的情况下。在生长衬底上生长具有合适厚度的种子层材料之后,种子层可以被粘附于发光陶瓷和生长衬底,该衬底被一种适合于生长衬底的技术去除,比如,例如去除Al2O3生长衬底的激光剥离技术或去除SiC生长衬底的蚀刻技术。
回到图4,在阶段48中包含图3所示的n类型区域10,发光区域14,和p类型区域12的半导体器件层在复合衬底成品上生长。
在阶段49中,半导体结构被处理成成品器件,比如通过加入电接触点,把器件晶片切为单独的小块,并且封装这些小块。在一些实施例中,基质30可以在切块之前被减薄,例如达到厚度低于200微米。图8显示了一个处理后的倒装芯片器件。p型区域12和发光区域14的一部分被去除了,这样夹着发光层的n型区域和p型区域的部分暴露在器件的相同侧。电接触点82和84形成于这些暴露的部分。如果电接触点82和84是反射的,该结构被下侧接触地装配在支座86,这样光可以如图8所示通过种子层衬底35被提取。如果电接触点82和/或84是透明的,该器件可以上侧接触地装配,这样光通过该触点(图8中没有示出)提取。
图11显示了本发明的一个可替换实施例,在其中复合衬底不包括种子层并且在传统生长衬底上生长之后被粘附到器件层。图9显示了形成图11的器件的一种方法。如图4所描述,在阶段41-46中发光陶瓷32被制备并粘附到基质30。在阶段90中,包含n型区域10,活动区域14,和p型区域12的各器件层在诸如Al2O3,,SiC或GaN的合适生长衬底95上分开地生长,产生如图10显示的结构94。
在图9的阶段91中,包含基质30和发光陶瓷32的复合衬底37被粘附于结构94的顶表面,即图10中的p型区域的表面。一种可选的粘合层96可以在发光陶瓷32和p型区域12之间被形成。
在图9的阶段92中,生长衬底95可以通过一种适合于该生长衬底的技术被去除。在生长衬底去除期间,复合衬底37为机器层10,12和14提供机械支撑。生长衬底95被去除之后,n型区域10的表面被暴露。该结构接着在阶段93中被加工成成品器件。n型区域10和活动区域14的一部分可以被去除以暴露p型区域的一个或多个部分。电接触点82和84形成于p型区域12的暴露部分和n区域10的保留部分。在一些实施例中,由于电流通过n型III族氮化物层比通过p型III族氮化物层更容易传播,生长了结构94,这样p型区域12首先在生长衬底95上生长,接着是发光区域14和n型区域10。在这种器件中,在图11示出的取向中,p型区域12将位于n型区域10之下,这样触点82连接到n型区域10,并且触点84连接到p型区域12。在触点形成并且器件晶片被切成单独的小块之后,如图11所示一个或多个小块可被连接到支座86。
图12是一个封装的发光器件的分解图,更详细的描述在美国专利6274924中。散热段塞100被置于插入型模制的引线框架中。该插入型模制的引线框架例如是一种填充塑料材料105,其铸造于提供导电通道的金属框架106周围。段塞100可以包括一个可选的反射杯102。发光器件管芯104(它可以是上述实施例中描述的任何器件)通过上述支座103被直接或间接装配于段塞100.一个盖子108可以被加入,它可以是光学透镜。
在一些实施例中,复合衬底与半导体器件层被间隔开并且不对器件层提供机械支撑。例如,在一个例如投影仪的应用中,包含发光陶瓷和基质的复合衬底可被用于转换半导体器件层的发光区域发出的光以生成白色光。比如双色光滤镜或光导的光学器件可被置于复合衬底与半导体器件层之间。可以选择基质折射率以提高转换光的提取或例如如果光在空气中被提取时通过匹配发光陶瓷和环境的折射率来吸收泵浦光。
已经详细地描述了本发明,本领域的技术人员将意识到,根据当前的公开,可以作出不脱离本发明中所描述的精神的改进。例如,虽然以上实施例描述III族氮化物器件,在一些实施例中器件层可以由其他材料系统(例如其他III-V材料系统,比如III-AsP材料)形成。因此,本发明并不企图将本发明的范围局限于所显示和描述的具体实施例。

Claims (19)

1.一种波长转换部件,包括:
复合衬底,包括:
基质;和
连接到该基质的陶瓷层,该陶瓷层包括发光材料并具有低于500微米的厚度;
附加到复合衬底的结晶半导体结构,该结晶半导体结构包括设置在n型区域和p型区域之间的发光层。
2.如权利要求1所述的波长转换部件,其中该陶瓷层具有低于250微米的厚度。
3.如权利要求1所述的波长转换部件,其中该陶瓷层具有一个低于50微米的厚度。
4.如权利要求1所述的波长转换部件,其中该基质是下述之一:单晶体Al2O3、多晶体Al2O3、AlN、Si、SiC、AlON、SiAlON、MgAl2O4、单晶体Y3Al5O12、陶瓷Y3Al5O12和金属。
5.如权利要求1所述的波长转换部件,其中该基质是Mo。
6.如权利要求1所述的波长转换部件,其中该发光材料是(Lu1-x-y-a-bYxGdy)3(Al1-z-cGazSic)5O12-cNc:CeaPrb其中0<x<1,0<y<1,0<z≤0.1,0<a≤0.2,0<b≤0.1,和0<c<1。
7.如权利要求1所述的波长转换部件,其中该发光材料是下列之一:
(Sr1-u-v-xMguCavBax)(Ga2-y-zAlyInzS4):Eu2+
(Sr1-x-yBaxCay)2SiO4:Eu2+
8.如权利要求1所述的波长转换部件,其中该发光材料是下列之一:
Lu3Al5O12:Ce3+;Y3Al5O12:Ce3+;Y3Al4.8Si0.2O11.8N0.2:Ce3+
Sr2Si5N8:Eu2+;SrSi2N2O2:Eu2+;SrGa2S4:Eu2+;SrBaSiO4:Eu2+
CaS:Eu2+;SrS:Eu2+;CaAlSiN3:Eu2+;CaAl1.04Si0.96N3:Ce3+;以及
Ca0.75Si8.625Al3.375O1.375N0.625:Eu0.25
9.如权利要求1所述的波长转换部件,其中该发光材料是下列之一:
(Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz 2+其中0≤a<5,0<x≤1,0≤y≤1,和0<z≤1;
Sr1-a-bCabBac)SixNyOz:Eua 2+其中
a=0.002-0.2,b=0.0-0.25,c=0.0-0.25,x=1.5-2.5,y=1.5-2.5,z=1.5-2.5;
(Ca1-xSrx)S:Eu2+其中0≤x≤1;
(Ca1-x-y-zSrxBayMgz)1-n(Al1-a+bBa)Si1-bN3-bOb:REn,其中0≤x≤1,0≤y≤1,0≤z≤1,0≤a≤1,0<b≤1和0.002≤n≤0.2和RE=Eu2+或Ce3+;以及
Mx v+Si12-(m+n)Alm+nOnN16-n,其中x=m/v且M=Li、Mg、Ca、Y、Sc、Ce、Pr、Nf、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu或其混合物。
10.如权利要求1至9中任意一项所述的波长转换部件,其中该发光层被设置为当被正向偏置时发出第一峰值波长的光;其中:
该复合衬底被设置于该发光层发出的光路中;以及
该发光材料能够吸收第一峰值波长的光,并且能够发射第二峰值波长的光。
11.如权利要求10所述的波长转换部件,其中该结晶半导体结构在该复合衬底上生长。
12.如权利要求10所述的波长转换部件,其中该复合衬底进一步包括种子层,其中:
该陶瓷层被设置在基质和种子层之间;以及
该结晶半导体结构直接生长在种子层上。
13.如权利要求12所述的波长转换部件,其中该种子层是下述之一:GaN、4HSiC、6H SiC、ScMgAlO4、ZnO、Al2O3、AlGaN和InGaN。
14.如权利要求12所述的波长转换部件,进一步包括设置于种子层与陶瓷层之间的粘合层,其中该粘合层将种子层粘附于陶瓷层。
15.如权利要求10所述的波长转换部件,其中该结晶半导体结构生长于生长衬底上,并且该结晶半导体结构通过在陶瓷层和半导体结构之间的界面的粘合剂被粘附于复合衬底。
16.如权利要求15所述的波长转换部件,其中进一步包括设置于陶瓷层与半导体结构之间的粘合层。
17.如权利要求10所述的波长转换部件,进一步包括:
电连接到p型区域的第一触点;以及
电连接到n型区域的第二触点;
其中该第一和第二触点都形成在半导体结构的同一侧。
18.如权利要求10所述的波长转换部件,进一步包括覆盖发光层的盖子。
19.一种用于形成波长转换器件的方法,包括:
提供复合衬底,该复合衬底包括:
基质;以及
连接于基质的陶瓷层,该陶瓷层包括发光材料并具有低于500微米的厚度;和
将结晶半导体结构粘附于该复合衬底,该结晶半导体结构包括设置于n型区域和p型区域之间的发光层。
CN200680044724XA 2005-11-29 2006-11-23 用于发光器件的发光陶瓷层 Active CN101366126B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/290,299 US7514721B2 (en) 2005-11-29 2005-11-29 Luminescent ceramic element for a light emitting device
US11/290,299 2005-11-29
PCT/IB2006/054406 WO2007063460A1 (en) 2005-11-29 2006-11-23 Luminescent ceramic layer for a light emitting device

Publications (2)

Publication Number Publication Date
CN101366126A CN101366126A (zh) 2009-02-11
CN101366126B true CN101366126B (zh) 2013-03-06

Family

ID=37945453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680044724XA Active CN101366126B (zh) 2005-11-29 2006-11-23 用于发光器件的发光陶瓷层

Country Status (6)

Country Link
US (2) US7514721B2 (zh)
EP (1) EP1958269B1 (zh)
JP (1) JP5032839B2 (zh)
CN (1) CN101366126B (zh)
TW (1) TWI418051B (zh)
WO (1) WO2007063460A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841802B2 (en) * 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
CA2517009A1 (en) 2003-02-26 2004-09-10 Cree, Inc. White light source using emitting diode and phosphor and method of fabrication
EP2270887B1 (en) 2003-04-30 2020-01-22 Cree, Inc. High powered light emitter packages with compact optics
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
CN101103088A (zh) * 2005-01-10 2008-01-09 皇家飞利浦电子股份有限公司 包含陶瓷发光转换器的照明系统
DE602006009768D1 (de) * 2005-02-21 2009-11-26 Koninkl Philips Electronics Nv Beleuchtungssystem mit strahlenquelle und lumineszierendem material
WO2006095285A1 (en) * 2005-03-09 2006-09-14 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
KR101036530B1 (ko) * 2005-08-10 2011-05-24 우베 고산 가부시키가이샤 발광 다이오드용 기판 및 발광 다이오드
WO2007073496A2 (en) 2005-12-22 2007-06-28 Cree Led Lighting Solutions, Inc. Lighting device
US20070201056A1 (en) * 2006-02-24 2007-08-30 Eastman Kodak Company Light-scattering color-conversion material layer
JP2009534866A (ja) 2006-04-24 2009-09-24 クリー, インコーポレイティッド 横向き平面実装白色led
CN101431934B (zh) * 2006-04-26 2011-01-05 皇家飞利浦电子股份有限公司 具有改进的转换元件的光传输装置
US7846391B2 (en) 2006-05-22 2010-12-07 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
CN101467270B (zh) * 2006-06-14 2013-03-27 皇家飞利浦电子股份有限公司 发光装置
EP2087530A1 (en) * 2006-11-10 2009-08-12 Philips Intellectual Property & Standards GmbH Illumination system comprising monolithic ceramic luminescence converter
US7902564B2 (en) * 2006-12-22 2011-03-08 Koninklijke Philips Electronics N.V. Multi-grain luminescent ceramics for light emitting devices
US7709811B2 (en) * 2007-07-03 2010-05-04 Conner Arlie R Light emitting diode illumination system
TWI404228B (zh) * 2007-07-12 2013-08-01 Epistar Corp 半導體發光裝置與其製造方法
US8098375B2 (en) 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
KR101483657B1 (ko) * 2007-10-15 2015-01-16 코닌클리케 필립스 엔.브이. 다상 sialon 기반 세라믹 재료를 포함하는 발광 장치
US20100277673A1 (en) * 2008-01-03 2010-11-04 Koninklijke Philips Electronics N.V. Display device and illumination device
WO2009093163A2 (en) * 2008-01-22 2009-07-30 Koninklijke Philips Electronics N.V. Illumination device with led and a transmissive support comprising a luminescent material
WO2009105581A1 (en) * 2008-02-21 2009-08-27 Nitto Denko Corporation Light emitting device with translucent ceramic plate
WO2009119034A1 (en) 2008-03-26 2009-10-01 Panasonic Corporation Semiconductor light-emitting apparatus
US8288943B2 (en) * 2008-04-08 2012-10-16 Koninklijke Philips Electronics N.V. Illumination device with LED and a transmissive support comprising a luminescent material
US7859000B2 (en) * 2008-04-10 2010-12-28 Cree, Inc. LEDs using single crystalline phosphor and methods of fabricating same
EP2297278A1 (en) * 2008-06-02 2011-03-23 Panasonic Corporation Semiconductor light emitting apparatus and light source apparatus using the same
JP5542134B2 (ja) 2008-07-22 2014-07-09 コーニンクレッカ フィリップス エヌ ヴェ 発光装置に関する光学要素及び光学要素の製造の方法
US10147843B2 (en) * 2008-07-24 2018-12-04 Lumileds Llc Semiconductor light emitting device including a window layer and a light-directing structure
JP5373914B2 (ja) * 2008-09-23 2013-12-18 コーニンクレッカ フィリップス エヌ ヴェ 電気的可変散乱素子を具備する照明装置
CN102159881B (zh) * 2008-09-23 2014-08-13 皇家飞利浦电子股份有限公司 具有热致可变反射元件的发光器件
US9117944B2 (en) * 2008-09-24 2015-08-25 Koninklijke Philips N.V. Semiconductor light emitting devices grown on composite substrates
US8287346B2 (en) * 2008-11-03 2012-10-16 Cfph, Llc Late game series information change
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
JPWO2010100942A1 (ja) * 2009-03-05 2012-09-06 株式会社小糸製作所 発光モジュール、発光モジュールの製造方法、および灯具ユニット
US20140175377A1 (en) * 2009-04-07 2014-06-26 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
DE102009019161A1 (de) * 2009-04-28 2010-11-04 Osram Opto Semiconductors Gmbh Leuchtdiode und Verfahren zur Herstellung einer Leuchtdiode
WO2010136920A1 (en) 2009-05-28 2010-12-02 Koninklijke Philips Electronics N.V. Illumination device with an envelope enclosing a light source
WO2010141235A1 (en) * 2009-06-01 2010-12-09 Nitto Denko Corporation Light-emitting divice comprising a dome-shaped ceramic phosphor
WO2010141291A1 (en) * 2009-06-01 2010-12-09 Nitto Denko Corporation Luminescent ceramic and light-emitting device using the same
DE102009027977A1 (de) * 2009-07-23 2011-01-27 Osram Opto Semiconductors Gmbh Leuchtdiode und Verfahren zur Herstellung einer Leuchtdiode
US8580593B2 (en) * 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
KR20120094477A (ko) 2009-09-25 2012-08-24 크리, 인코포레이티드 낮은 눈부심 및 높은 광도 균일성을 갖는 조명 장치
JP2011077351A (ja) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd 発光素子
US8408693B2 (en) * 2009-11-13 2013-04-02 Palo Alto Research Center Incorporated Method for transferring textured surface to curable gel ink
US8187901B2 (en) 2009-12-07 2012-05-29 Micron Technology, Inc. Epitaxial formation support structures and associated methods
JP5050045B2 (ja) * 2009-12-22 2012-10-17 株式会社東芝 発光装置
JP5047264B2 (ja) * 2009-12-22 2012-10-10 株式会社東芝 発光装置
CN102782089B (zh) * 2010-02-04 2015-07-22 日东电工株式会社 发光陶瓷层压制件及其制造方法
US20110195583A1 (en) * 2010-02-11 2011-08-11 Koninklijke Philips Electronics N.V. Wavelength converting layer for a light emitting device
JP5749327B2 (ja) * 2010-03-19 2015-07-15 日東電工株式会社 発光装置用ガーネット系蛍光体セラミックシート
US8324798B2 (en) * 2010-03-19 2012-12-04 Nitto Denko Corporation Light emitting device using orange-red phosphor with co-dopants
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8154052B2 (en) * 2010-05-06 2012-04-10 Koninklijke Philips Electronics N.V. Light emitting device grown on wavelength converting substrate
JP5712768B2 (ja) 2010-05-10 2015-05-07 信越化学工業株式会社 波長変換部材、発光装置、及び波長変換部材の製造方法
JP2011238778A (ja) * 2010-05-11 2011-11-24 Konica Minolta Opto Inc 波長変換素子の製造方法、波長変換素子および発光装置
JP5566785B2 (ja) * 2010-06-22 2014-08-06 日東電工株式会社 複合シート
JP5701523B2 (ja) * 2010-06-22 2015-04-15 日東電工株式会社 半導体発光装置
EP2407825A1 (en) 2010-07-08 2012-01-18 Koninklijke Philips Electronics N.V. Projection system comprising a solid state light source and a luminescent material.
EP2407826A1 (en) 2010-07-08 2012-01-18 Koninklijke Philips Electronics N.V. Projection system comprising a solid state light source and a luminescent material.
US8207663B2 (en) 2010-07-09 2012-06-26 Nitto Denko Corporation Phosphor composition and light emitting device using the same
TWI486254B (zh) 2010-09-20 2015-06-01 Nitto Denko Corp 發光陶瓷層板及其製造方法
US8829777B2 (en) 2010-09-27 2014-09-09 Osram Sylvania Inc. Ceramic wavelength converter and LED light source containing same
WO2012042452A2 (en) 2010-09-29 2012-04-05 Koninklijke Philips Electronics N.V. Wavelength converted light emitting device
US8846172B2 (en) 2010-10-18 2014-09-30 Nitto Denko Corporation Light emissive ceramic laminate and method of making same
EP2447746A1 (en) 2010-10-28 2012-05-02 Koninklijke Philips Electronics N.V. Lighting device with waveguide plate
EP2636075A1 (en) * 2010-11-02 2013-09-11 Koninklijke Philips Electronics N.V. Iii-nitride layer grown on a substrate
US8651681B2 (en) * 2010-11-10 2014-02-18 Osram Sylvania Inc. Luminescent ceramic converter and LED containing same
CN103347982B (zh) 2010-12-01 2016-05-25 日东电工株式会社 具有掺杂浓度梯度的发射性陶瓷材料及其制造方法和使用方法
DE102011012298A1 (de) 2010-12-28 2012-06-28 Osram Opto Semiconductors Gmbh Verbundsubstrat, Halbleiterchip mit Verbundsubstrat und Verfahren zur Herstellung von Verbundsubstraten und Halbleiterchips
US8389957B2 (en) 2011-01-14 2013-03-05 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US8466436B2 (en) 2011-01-14 2013-06-18 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
EP2665796A1 (en) * 2011-01-21 2013-11-27 Osram Sylvania Inc. Luminescent converter and led light source containing same
DE102011010118A1 (de) * 2011-02-02 2012-08-02 Osram Opto Semiconductors Gmbh Keramisches Konversionselement, Halbleiterchip mit einem keramischen Konversionselement und Verfahren zur Herstellung eines keramischen Konversionselements
KR101952138B1 (ko) 2011-02-24 2019-02-26 닛토 덴코 가부시키가이샤 형광체 성분을 갖는 발광 복합물
DE102011014845B4 (de) * 2011-03-23 2023-05-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Licht emittierendes Halbleiterbauteil und Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauteils
US8884330B2 (en) * 2011-04-13 2014-11-11 Osram Sylvania Inc. LED wavelength-converting structure including a thin film structure
US8492182B2 (en) * 2011-04-29 2013-07-23 Osram Opto Semiconductors Gmbh Method for the producing of a light-emitting semiconductor chip, method for the production of a conversion die and light-emitting semiconductor chip
EP2744870B1 (en) 2011-08-16 2017-11-22 Nitto Denko Corporation Phosphor compositions and methods of making the same
US9331252B2 (en) 2011-08-23 2016-05-03 Micron Technology, Inc. Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods
CN108269756A (zh) * 2011-08-30 2018-07-10 皇家飞利浦有限公司 将衬底接合到半导体发光器件的方法
DE102011113498A1 (de) * 2011-09-15 2013-03-21 Osram Opto Semiconductors Gmbh Leuchtstoffmischung, optoelektronisches Bauelement mit einer Leuchtstoffmischung und Straßenlaterne mit einer Leuchtstoffmischung
DE102012005654B4 (de) 2011-10-25 2021-03-04 Schott Ag Optischer Konverter für hohe Leuchtdichten
US9642515B2 (en) 2012-01-20 2017-05-09 Lumencor, Inc. Solid state continuous white light source
EP2823017B1 (en) 2012-03-06 2017-04-19 Nitto Denko Corporation Ceramic body for light emitting devices
JP5842701B2 (ja) 2012-03-27 2016-01-13 信越化学工業株式会社 希土類元素が拡散された酸化物セラミック蛍光材料
US9205571B2 (en) * 2012-04-18 2015-12-08 Nitto Denko Corporation Method and apparatus for sintering flat ceramics
US9206086B2 (en) * 2012-04-18 2015-12-08 Nitto Denko Corporation Method and apparatus for sintering flat ceramics
US9217561B2 (en) 2012-06-15 2015-12-22 Lumencor, Inc. Solid state light source for photocuring
KR102075982B1 (ko) 2013-03-15 2020-02-12 삼성전자주식회사 반도체 발광소자 패키지
CN104241262B (zh) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 发光装置以及显示装置
US9499740B2 (en) 2013-11-22 2016-11-22 Nitto Denko Corporation Light extraction element
US10488566B2 (en) 2014-01-27 2019-11-26 Osram Sylvania Inc. Ceramic wavelength converter having a high reflectivity reflector
DE112015000511B4 (de) 2014-01-27 2023-01-05 Osram Sylvania Inc. Keramischer Wellenlängenumwandler mit einem hochreflektierenden Reflektor
JP6715773B2 (ja) * 2014-02-27 2020-07-01 ルミレッズ ホールディング ベーフェー 波長変換発光デバイスを形成する方法
CN104953014B (zh) * 2014-03-28 2019-01-29 深圳光峰科技股份有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN111816750A (zh) * 2014-06-19 2020-10-23 亮锐控股有限公司 具有小源尺寸的波长转换发光设备
US20160023242A1 (en) * 2014-07-28 2016-01-28 Osram Sylvania Inc. Method of making wavelength converters for solid state lighting applications
DE102015102842A1 (de) 2015-02-27 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Leuchtstoffkompositkeramik sowie Verfahren zu deren Herstellung
DE102015104237B4 (de) 2015-03-20 2022-10-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement
EP3303517B1 (en) 2015-06-08 2019-04-03 OSRAM Opto Semiconductors GmbH Composite oxynitride ceramic converter and light source having same
EP3365925B1 (en) * 2015-10-19 2021-04-14 Lumileds LLC Wavelength converted light emitting device with textured substrate
US10155667B2 (en) 2016-01-26 2018-12-18 Corning Incorporated System, process and related sintered article
WO2017214464A1 (en) * 2016-06-09 2017-12-14 Osram Sylvania Inc. Target assembly with glass-bonded wavelength converter
CN108105604B (zh) * 2016-11-25 2020-05-29 深圳光峰科技股份有限公司 发光陶瓷结构及其制备方法、相关发光装置和投影装置
JP7075840B2 (ja) 2018-07-09 2022-05-26 パナソニックホールディングス株式会社 Iii族窒化物半導体発光ダイオード、およびその製造方法
US10903398B2 (en) 2019-02-06 2021-01-26 Osram Opto Semiconductors Gmbh Dielectric film coating for full conversion ceramic platelets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2314546Y (zh) * 1997-10-08 1999-04-14 张志林 平板型电致发光元件
US6630691B1 (en) * 1999-09-27 2003-10-07 Lumileds Lighting U.S., Llc Light emitting diode device comprising a luminescent substrate that performs phosphor conversion

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123074A (en) * 1988-02-26 1992-06-16 Fujitsu Limited Substrate for mounting optical components and electric circuit components thereon and method for making same
US4940854A (en) * 1988-07-13 1990-07-10 Minnesota Mining And Manufacturing Company Organic thin film controlled molecular epitaxy
JPH03216997A (ja) * 1990-01-20 1991-09-24 Gunze Ltd エレクトロルミネッセンス素子
CN1032993C (zh) * 1990-07-15 1996-10-09 中国科学院长春物理研究所 发光二极管集成矩阵组件及制法
JPH1041546A (ja) * 1996-07-22 1998-02-13 Nippon Sanso Kk 発光素子
JPH10229218A (ja) * 1997-02-17 1998-08-25 Nichia Chem Ind Ltd 窒化物半導体基板の製造方法および窒化物半導体基板
US6351069B1 (en) * 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6696703B2 (en) * 1999-09-27 2004-02-24 Lumileds Lighting U.S., Llc Thin film phosphor-converted light emitting diode device
US6650044B1 (en) * 2000-10-13 2003-11-18 Lumileds Lighting U.S., Llc Stenciling phosphor layers on light emitting diodes
US6703780B2 (en) * 2001-01-16 2004-03-09 General Electric Company Organic electroluminescent device with a ceramic output coupler and method of making the same
US6642652B2 (en) * 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
US6576488B2 (en) * 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
JP3948650B2 (ja) * 2001-10-09 2007-07-25 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド 発光ダイオード及びその製造方法
US6825054B2 (en) * 2001-11-21 2004-11-30 Paul Valentine Light emitting ceramic device and method for fabricating the same
JP3972670B2 (ja) * 2002-02-06 2007-09-05 豊田合成株式会社 発光装置
JP4122791B2 (ja) * 2002-02-14 2008-07-23 松下電工株式会社 発光装置
US7554258B2 (en) * 2002-10-22 2009-06-30 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
US8900480B2 (en) * 2003-01-20 2014-12-02 Ube Industries, Ltd. Ceramic composite material for light conversion and use thereof
JP3890416B2 (ja) * 2003-08-19 2007-03-07 国立大学法人豊橋技術科学大学 窒化物半導体基板及びその製造方法
KR100506739B1 (ko) * 2003-12-23 2005-08-08 삼성전기주식회사 알루미늄(Al)을 함유한 질화물 반도체 결정 성장방법
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
KR101181182B1 (ko) * 2004-11-11 2012-09-18 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
JP5490407B2 (ja) * 2005-03-14 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ 多結晶セラミック構造の蛍光体、及び前記蛍光体を有する発光素子
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2314546Y (zh) * 1997-10-08 1999-04-14 张志林 平板型电致发光元件
US6630691B1 (en) * 1999-09-27 2003-10-07 Lumileds Lighting U.S., Llc Light emitting diode device comprising a luminescent substrate that performs phosphor conversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages

Also Published As

Publication number Publication date
CN101366126A (zh) 2009-02-11
US7514721B2 (en) 2009-04-07
EP1958269A1 (en) 2008-08-20
JP5032839B2 (ja) 2012-09-26
TW200805706A (en) 2008-01-16
US20070126017A1 (en) 2007-06-07
US20090155943A1 (en) 2009-06-18
JP2007150331A (ja) 2007-06-14
US8278674B2 (en) 2012-10-02
WO2007063460A1 (en) 2007-06-07
TWI418051B (zh) 2013-12-01
EP1958269B1 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
CN101366126B (zh) 用于发光器件的发光陶瓷层
US10290775B2 (en) Luminescent ceramic for a light emitting device
EP2106621B1 (en) Light emitting device including luminescent ceramic and light-scattering material
JP6257764B2 (ja) 発光半導体コンポーネント及びその製造方法並びに当該発光半導体コンポーネントを備えた波長変換素子の製造方法
TWI622186B (zh) 發光裝置及發光結構
EP2115790A2 (en) Multi-grain luminescent ceramics for light emitting devices
EP1979438A1 (en) Phosphor converted light emitting device
WO2007080555A1 (en) Phosphor converted light emitting device
EP3313960B1 (en) Phosphor ceramic

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Eindhoven, Netherlands

Co-patentee after: LUMILEDS LLC

Patentee after: KONINKLIJKE PHILIPS N.V.

Address before: Eindhoven, Netherlands

Co-patentee before: Philips Ramildes Lighting Equipment Co.,Ltd.

Patentee before: KONINKLIJKE PHILIPS ELECTRONICS N.V.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20200901

Address after: Holland Schiphol

Patentee after: KONINKLIJKE PHILIPS NV

Address before: Eindhoven, Netherlands

Co-patentee before: LUMILEDS LLC

Patentee before: KONINKLIJKE PHILIPS N.V.

TR01 Transfer of patent right