CN101320728A - 半导体结构 - Google Patents

半导体结构 Download PDF

Info

Publication number
CN101320728A
CN101320728A CNA200710181797XA CN200710181797A CN101320728A CN 101320728 A CN101320728 A CN 101320728A CN A200710181797X A CNA200710181797X A CN A200710181797XA CN 200710181797 A CN200710181797 A CN 200710181797A CN 101320728 A CN101320728 A CN 101320728A
Authority
CN
China
Prior art keywords
semiconductor structure
dielectric material
substrate
transistor
insulated trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200710181797XA
Other languages
English (en)
Other versions
CN100590873C (zh
Inventor
梁孟松
李资良
黄国泰
陈昭成
连浩明
彭治棠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101320728A publication Critical patent/CN101320728A/zh
Application granted granted Critical
Publication of CN100590873C publication Critical patent/CN100590873C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体结构。在本发明的各实施例中,沟槽形成于基底中,其中至少部分沟槽填入介电材料。在一个实施例中,沟槽中填入介电层且进行平坦化步骤,以使介电层表面和基底表面等水平。之后,使介电材料的顶部表面凹陷至低于基底的顶部表面,沿着沟槽的凹陷部分的侧壁保留部分介电材料,或沿着侧壁移除介电材料,形成具有压应力或张应力的应力薄膜于介电材料的凹陷部分上方,应力薄膜可延伸至晶体管或其它半导体结构上方。

Description

半导体结构
技术领域
本发明涉及一种半导体元件,且特别涉及一种金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,以下可简称MOSFET)和其制造方法。
背景技术
在过去数年间,尺寸的微缩(包括栅极长度和栅极氧化层厚度的缩减)使金属氧化物半导体场效应晶体管持续改进速度、效能、电路密度和单位功能的成本。为进一步增进晶体管的效能,金属氧化物半导体场效应晶体管应用于半导体基底中的应变沟道区,于沟道区施加应变可使载子的移动速率增加,因此,使得N沟道金属氧化物半导体场效应晶体管(NMOSFET)和P沟道金属氧化物半导体场效应晶体管(PMOSFET)增加效能。一般来说,沿源极至漏极方向施加张应力于N型金属氧化物半导体场效应晶体管的N沟道,可增加电子移动率,沿源极至漏极方向施加压应力于P型金属氧化物半导体场效应晶体管的P沟道,可增加空穴移动率。现已发展出许多导引应变至晶体管沟道区的方法。
在已知技术的方法中,例如硅-锗或硅-锗-碳的半导体混合层形成于薄半导体层下,其中半导体混合层的晶格结构和其上的半导体层不同,而晶格结构的不同,使其上的半导体层产生应变,增加载子移动率。
然而,此形成毯覆的半导体混合层的方法,除了需考虑接面漏电流,亦难以进行。举例来说,外延成长硅锗层的半导体混合层花费成本较高,且难以精确的控制外延成长半导体混合层中的锗的程度。此外,半导体混合层的存在会于源极/漏极区的接面产生不需要的接面,进而可能产生接面漏电流。
在已知技术的另一方法中,在形成晶体管后,将应变导引至沟道中。在此方法中,高应力薄膜形成于全部硅基底的晶体管结构上方,高应力薄膜或应变条于沟道上提供显著的影响,调整沟道区的硅晶格间距,因此导引应变至沟道区。另外,应变条放置于整个晶体管结构上,可通过增加应变条或加厚高应力薄膜的厚度,改进元件的效能。
然而,可施加的应力量受限,举例来说,通过形成高应力薄膜施加的应力,受限于后续的空隙填充能力和蚀刻工艺范围。
发明内容
根据上述问题,本发明目的为提供有效和低成本的方法,可导引额外的应变,以增加晶体管的性能。
根据本发明的一种半导体结构,包括:基底;绝缘沟槽,形成于所述基底中,其中至少部分所述绝缘沟槽填入介电材料,且所述绝缘沟槽中,至少部分所述介电材料的顶部表面凹陷至低于所述基底的顶部表面;晶体管栅极,位于所述基底上方;及接触蚀刻阻挡层,位于所述基底和所述绝缘沟槽中的介电材料上方。
根据本发明的半导体结构,其中所述介电材料的顶部表面凹陷,如此所述介电材料沿着所述绝缘沟槽的侧壁,延伸至所述基底的顶部表面。
根据本发明的半导体结构,其中所述绝缘沟槽中,所有所述介电材料的顶部表面凹陷至低于所述基底的顶部表面。
根据本发明的半导体结构,其中所述接触蚀刻阻挡层为张应力薄膜或压应力薄膜。
根据本发明的半导体结构,其中所述接触蚀刻阻挡层覆盖所述晶体管。
根据本发明的一种半导体结构,包括:基底;浅沟槽绝缘,形成于所述基底中,其中所述浅沟槽绝缘包括填入介电材料的沟槽;凹槽,位于所述浅沟槽绝缘中;及接触蚀刻阻挡层,位于所述凹槽中和所述基底上。
根据本发明的半导体结构,其中所述凹槽的侧壁覆盖所述介电材料。
根据本发明的半导体结构,其中所述浅沟槽绝缘的所有介电材料凹陷至低于所述基底的顶部表面。
根据本发明的半导体结构,其中所述接触蚀刻阻挡层为张应力薄膜或压应力薄膜。
根据本发明的半导体结构,还包括晶体管,位于所述基底上,且所述接触蚀刻阻挡层覆盖所述晶体管。
根据本发明的一种半导体结构,包括:基底,具有第一顶部侧边和相对的第一底部侧边,所述基底于第一顶部侧边形成绝缘沟槽,所述绝缘沟槽至少部分填入介电材料,至少部分所述介电材料的顶部表面低于所述绝缘沟槽的上部边角;晶体管,位于所述基底上方;及应力层,位于所述介电材料和所述基底上方。
根据本发明的半导体结构,其中所述绝缘沟槽的侧壁覆盖所述介电材料。
根据本发明的半导体结构,其中所述应力层直接接触所述绝缘沟槽的上部部分。
附图说明
图1~图5示出本发明实施例包括应变沟道区的半导体元件的制造方法。
图6~图8示出本发明另一实施例包括应变沟道区的半导体元件的制造方法。
其中,附图标记说明如下:
100~晶圆;        110~绝缘沟槽;
112~基底;        200~晶圆;
210~绝缘材料;    310~凹槽;
410~晶体管;      412~栅极介电;
414~栅极电极;    416~间隙壁;
418~源极/漏极区; 510~高应力薄膜;
710~晶体管;      810~高应力薄膜。
具体实施方式
以下详细讨论本发明较佳实施例的制造和使用,然而,根据本发明的概念,其可包括或运用于更广泛的技术范围。须注意的是,实施例仅用以揭示本发明制造和使用的特定方法,并不用以限定本发明。
图1~图5示出本发明实施例包括应变沟道区的半导体元件的制造方法,本发明在此所揭示的实施例可应用于各种电路。首先,请参照图1,其显示一部分晶圆100,包括形成于基底112中的绝缘沟槽110。基底112可包括硅块材、掺杂或未掺杂基底,或绝缘层上有硅基底的有源层。一般来说,绝缘层上有硅基底包括形成于绝缘层上的半导体材料层(例如硅)。绝缘层可例如为埋藏氧化层(buried oxide,以下可简称BOX)或氧化硅层。绝缘层一般形成于硅或玻璃的基底上,另外,本发明的实施例可使用多层或渐进(gradient)的基底。
使用本领域所熟知的光刻技术形成绝缘沟槽110。一般来说,光刻技术包括以下步骤:沉积光致抗蚀剂材料,接着进行掩模、曝光和显影。如图1所示,在图形化光致抗蚀剂掩模后,可进行蚀刻工艺以移除基底112不需要的部分。在基底包括硅块材的较佳实施例中,蚀刻工艺可以是湿式或干式、等向性或非等向性蚀刻工艺,只蚀刻工艺较佳为非等向性的干蚀刻工艺。在一个实施例中,绝缘沟槽110的深度约为2000埃~3000埃。
图2示出本发明实施例在绝缘沟槽110填入绝缘材料210后的晶圆100。在实施例中,绝缘材料210包括氧化工艺形成的氧化层,其中氧化工艺例如为在包括氧气、水气、氧化氮或其组合的环境的湿式或干式热氧化。或者,氧化层可采用化学气相沉积(CVD)使用四乙氧基硅烷(tetra-ethyl-ortho-silicate,TEOS)和氧气作为前体形成。
之后,可进行平坦化步骤,以平坦化绝缘材料210的表面,并使其和基底112的顶部表面共面。平坦化步骤可采用此技艺所熟知的化学机械研磨法(chemical mechanical polishing,以下可简称CMP)。
图3示出本发明实施例在绝缘材料210中形成凹槽310后的晶圆100。可进行固定时间的湿式蚀刻工艺形成凹槽310,例如在绝缘材料210凹陷至低于基底112表面约200埃~500埃深度的实施例中,可将绝缘材料210浸泡稀释HF溶液约150秒~600秒,以使绝缘材料形成凹槽。
图4示出本发明实施例形成晶体管410的步骤。晶体管410包括栅极介电412、栅极电极414、间隙壁416和源极/漏极区418。如同一般的技术,形成并图形化栅极介电412和栅极电极414于基底112。其中,较佳栅极介电412为例如氧化硅、氮氧化硅、氮化硅、氧化物、含氮氧化物、上述组合或类似物质。栅极介电412的较佳介电常数约大于4。另外,栅极介电可包括氧化铝、氧化镧、氧化铪、氧化锆、氮氧化铪或上述组合的高介电材料。
在栅极介电412包括氧化层的实施例中,栅极介电412可采用氧化工艺形成,氧化工艺例如为在包括氧气、水气、氧化氮或其组合的环境的湿式或干式热氧化,或栅极介电可采用化学气相沉积(CVD)使用四乙氧基硅烷(TEOS)和氧气作为前体形成。在本发明实施例中,栅极介电412的厚度约为8埃~50埃,较佳厚度约为20埃。
较佳栅极电极414包括导电材料,例如金属、金属硅化物、金属氮化物、掺杂多晶硅、其它导电材料或上述组合。金属例如为钽、钛、钼、钨、铂、铝、铪或钌,金属硅化物例如为硅化钛、硅化钴、硅化镍或硅化钽,金属氮化物例如为氮化钛或氮化钽。在一个范例中,多晶硅的形成包括沉积非晶硅,并使非晶硅再结晶以形成多晶硅。在栅极电极是多晶硅的较佳实施例中,可通过低压化学气相沉积法(LPCVD)沉积掺杂或未掺杂的多晶硅,形成栅极电极414,其中沉积多晶硅的厚度可以约为400埃~2500埃,较佳厚度约为800埃。
采用本领域所熟知的光刻技术图形化栅极介电412和栅极电极414,一般来说,光刻工艺包括沉积光致抗蚀剂材料,之后对光致抗蚀剂材料进行掩模、曝光和显影。在图形化光致抗蚀剂掩模后,可进行蚀刻工艺,移除栅极介电材料和栅极电极材料不必需的部分,以形成栅极介电412和栅极电极414,如图4所示。在栅极电极材料是多晶硅,且栅极介电材料是氧化物的较佳实施例中,蚀刻工艺可以是湿式或干式、等向性或非等向性蚀刻工艺,惟较佳蚀刻工艺是非等向性干蚀刻工艺。
通过离子注入工艺形成源极/漏极区418,对源极/漏极区418注入N型掺杂物(例如磷、氮、砷、锑或类似的物质),以制作NMOS元件,或对源极/漏极区注入P型掺杂物(例如硼、铝、铟或类似的物质),以制作PMOS元件。在另一实施例中,需使用此技艺所熟知的多道掩模和离子注入步骤,以仅于特定的区域注入N型或P型离子。
间隙壁416较佳包括氮化硅(Si3N4)、其它成分的含氮层(SixNy,不包括Si3N4)、氮氧化硅(SiOxNy)、肟化硅(silicon oxime,SiOxNy:Hz)或上述的组合,其中形成间隙壁用以于源极/漏极区418进行第二次离子注入。在一个较佳实施例中,进行化学气相沉积法(以硅烷和氨为前体)形成包括氮化硅(Si3N4)的层,以制作间隙壁416。
进行等向性(例如浸泡磷酸H3PO4溶液)或非等向性工艺图形化间隙壁416。在等向性蚀刻形成间隙壁的范例中,由于氮化硅(Si3N4)层位于栅极电极414侧壁的厚度大于邻接栅极电极414顶部的部分,等向性蚀刻移除位于栅极电极414顶部的部分氮化硅(Si3N4)材料,和基底112不直接邻接栅极电极414的另一部分氮化硅(Si3N4)材料,而保留图4所示的间隙壁416。
请注意本实施例尚可进行硅化工艺。使用硅化工艺可改进导电栅极电极414的导电率,并减少源极/漏极区418的阻抗。硅化工艺可包括以下步骤:以物理气相沉积法(physical vapor deposition,PVD)沉积例如钛、镍、钨或钴的金属层。接着进行退火工艺,使金属层与导电栅极电极414和源极/漏极区418反应,以形成金属硅化物,而部分位于绝缘间隙壁416上的金属层未反应,可采用例如湿蚀刻工艺选择性的移除金属层未反应的部分。若需要,可进行额外的退火工艺,改变硅化区的相,以降低电阻。
请注意以上所描述为应用于本发明实施例的晶体管410范例,本发明可使用其它晶体管和半导体元件。举例来说,晶体管可包括凸起的源极/漏极,晶体管可以为分離栅极(split gate)晶体管或鳍式晶体管(FinFET)的设计。另外,本发明可采用不同的材料和厚度。此外,本发明可于间隙壁和栅极电极间可形成衬层。本发明另可使用复合间隙壁,或使用不同的掺杂剖面,或类似工艺。
图5示出本发明实施例形成高应力薄膜510后的晶圆100,其中高应力薄膜覆盖晶体管410和绝缘沟槽110的凹槽310(在此实施例中高应力薄膜510可以为接触蚀刻阻挡层)。请注意高应力薄膜510可以是张应力或压应力。张应力薄膜会于沟道区产生张应变,增加N沟道晶体管的电子移动率,而压应力薄膜会于沟道区产生压应变,增加P沟道晶体管的空穴移动率。
采用例如化学气相沉积法(CVD)、物理气相沉积法(PVD)、原子层沉积法(atomic layer deposition,ALD)或类似的工艺形成高应力薄膜510。张应力薄膜的较佳厚度约为5nm~500nm,且其大体上沿着源极至漏极方向施加0GPa~5GPa的应力。压应力薄膜的较佳厚度约为5nm~500nm,且其大体上施加0GPa~-5GPa的应力。适用于张应力薄膜的材料包括氮化硅(SiN)、氧化物、氮氧化物、碳化硅(SiC)、碳氮化硅(SiCN)、硅化镍、硅化钴、上述的组合或类似的物质。适用于压应力薄膜的材料包括锗化硅(SiGe)、氮锗化硅(SiGeN)、氧化物、氮氧化物、上述的组合或类似的物质。
请注意高应力薄膜510可包括多层相同或不同的材料,或是相同或不同应力特性的材料。本发明的实施例可用于制造包括NMOS和PMOS元件的晶圆,例如,可通过熟知的沉积和图形化技术于同一晶圆上,分别制作具有张应力薄膜的NMOS晶体管和压应力薄膜的PMOS晶体管,可使晶体管依特定的功能制作。
后续,可采用标准工艺完成半导体元件的制作和封装。例如,可形成和图形化接触蚀刻阻挡层(可选择)、层间介电层和金属层,另外可形成其它电路,切割和封装晶圆。
图6-图8示出本发明另一实施例形的晶圆200。图6-图8所示出此实施例的晶圆200的初始元件,如图1-图2的范例所揭示,请注意此实施例与第1-2图范例类似的单元采用相同的符号。
首先请参照图6,其显示本发明一个实施例,绝缘材料210凹陷后的晶圆200。在此实施例中,虽然绝缘材料210凹陷,沿着凹槽310的绝缘沟槽110的侧壁,仍保留部分绝缘材料210。其凹槽310可采用例如上述的光刻技术形成。在此实施例中,可形成和图形化光致抗蚀剂材料,至暴露绝缘沟槽110的绝缘材料210。可使用时间控制的干蚀刻工艺使绝缘材料210产生凹陷。例如,在绝缘材料210凹陷约200埃~500埃的实施例中,可进行干蚀刻工艺约30秒~150秒,使绝缘材料210凹陷;沿着凹槽310的绝缘沟槽110侧壁的绝缘材料210较佳厚度约为40埃~150埃。
图7示出本发明一个实施例晶体管710的形成。可采用类似形成图4晶体管410的方法,形成本实施例的晶体管710,其中类似的单元使用相同的符号。请注意本发明可采用其它型态或结构。
图8示出本发明一个实施例高应力薄膜810的形成。本实施例高应力薄膜810的形成类似于上述图5实施例高应力薄膜510的形成(在此实施例中高应力薄膜810可以为接触蚀刻阻挡层)。由于沿着绝缘沟槽110侧壁的部分绝缘材料210保留,高应力薄膜810不直接接触绝缘沟槽110的侧壁。此实施例传递大量的应力至晶体管710的沟道区,可避免漏电流的问题。
请注意,上述的工艺可以不同方式进行,例如为方便说明,上述的工艺在形成栅极介电412、栅极电极414和间隙壁416前,凹陷绝缘沟槽110的绝缘材料210。在另一实施例中,凹陷绝缘沟槽的绝缘材料210在形成栅极介电412、栅极电极414和间隙壁416之后进行。又另一实施例中,若需要在凹陷工艺中保护其下结构,可于栅极电极414和间隙壁416上方形成掩模。
以上提供的实施例用以描述本发明不同的技术特征,但根据本发明的概念,其可包括或运用于更广泛的技术范围。须注意的是,实施例仅用以示出本发明工艺、装置、组成、制造和使用的特定方法,并不用以限定本发明,本领域技术人员在不脱离本发明的精神和范围内,当可作些许的变化与修改。因此,本发明的保护范围,当视后附的权利要求所界定者为准。

Claims (13)

1.一种半导体结构,包括:
基底;
绝缘沟槽,形成于所述基底中,其中至少部分所述绝缘沟槽填入介电材料,且所述绝缘沟槽中,至少部分所述介电材料的顶部表面凹陷至低于所述基底的顶部表面;
晶体管栅极,位于所述基底上方;及
接触蚀刻阻挡层,位于所述基底和所述绝缘沟槽中的介电材料上方。
2.如权利要求1所述的半导体结构,其中所述介电材料的顶部表面凹陷,所述介电材料沿着所述绝缘沟槽的侧壁,延伸至所述基底的顶部表面。
3.如权利要求1所述的半导体结构,其中所述绝缘沟槽中,所有所述介电材料的顶部表面凹陷至低于所述基底的顶部表面。
4.如权利要求1所述的半导体结构,其中所述接触蚀刻阻挡层为张应力薄膜或压应力薄膜。
5.如权利要求1所述的半导体结构,其中所述接触蚀刻阻挡层覆盖所述晶体管。
6.一种半导体结构,包括:
基底;
浅沟槽绝缘,形成于所述基底中,其中所述浅沟槽绝缘包括填入介电材料的沟槽;
凹槽,位于所述浅沟槽绝缘中;及
接触蚀刻阻挡层,位于所述凹槽中和所述基底上。
7.如权利要求6所述的半导体结构,其中所述凹槽的侧壁覆盖所述介电材料。
8.如权利要求6所述的半导体结构,其中所述浅沟槽绝缘的所有介电材料凹陷至低于所述基底的顶部表面。
9.如权利要求6所述的半导体结构,其中所述接触蚀刻阻挡层为张应力薄膜或压应力薄膜。
10.如权利要求6所述的半导体结构,还包括晶体管,位于所述基底上,且所述接触蚀刻阻挡层覆盖所述晶体管。
11.一种半导体结构,包括:
基底,具有第一顶部侧边和相对的第一底部侧边,所述基底于第一顶部侧边形成绝缘沟槽,所述绝缘沟槽至少部分填入介电材料,至少部分所述介电材料的顶部表面低于所述绝缘沟槽的上部边角;
晶体管,位于所述基底上方;及
应力层,位于所述介电材料和所述基底上方。
12.如权利要求11所述的半导体结构,其中所述绝缘沟槽的侧壁覆盖所述介电材料。
13.如权利要求11所述的半导体结构,其中所述应力层直接接触所述绝缘沟槽的上部部分。
CN200710181797A 2007-06-07 2007-10-29 半导体结构 Active CN100590873C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/759,791 US8736016B2 (en) 2007-06-07 2007-06-07 Strained isolation regions
US11/759,791 2007-06-07

Publications (2)

Publication Number Publication Date
CN101320728A true CN101320728A (zh) 2008-12-10
CN100590873C CN100590873C (zh) 2010-02-17

Family

ID=40095063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710181797A Active CN100590873C (zh) 2007-06-07 2007-10-29 半导体结构

Country Status (3)

Country Link
US (2) US8736016B2 (zh)
CN (1) CN100590873C (zh)
TW (1) TWI362076B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130171A (zh) * 2009-12-28 2011-07-20 索尼公司 半导体元件和用于制造半导体元件的方法
US8530328B1 (en) 2012-03-29 2013-09-10 The Institute Of Microelectronics, Chinese Academy Of Sciences Method for manufacturing semiconductor device
WO2013143031A1 (zh) * 2012-03-29 2013-10-03 中国科学院微电子研究所 半导体器件制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216904B2 (en) * 2008-12-31 2012-07-10 St Microelectronics, Inc. Strained transistor and method for forming the same
CN102315269B (zh) * 2010-07-01 2013-12-25 中国科学院微电子研究所 一种半导体器件及其形成方法
US8609508B2 (en) * 2010-12-08 2013-12-17 Stmicroelectronics, Inc. Method of fabricating an integrated circuit having a strain inducing hollow trench isolation region
US8962430B2 (en) 2013-05-31 2015-02-24 Stmicroelectronics, Inc. Method for the formation of a protective dual liner for a shallow trench isolation structure
US9385191B2 (en) * 2014-11-20 2016-07-05 United Microelectronics Corporation FINFET structure
US10043903B2 (en) 2015-12-21 2018-08-07 Samsung Electronics Co., Ltd. Semiconductor devices with source/drain stress liner

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599136A (en) * 1984-10-03 1986-07-08 International Business Machines Corporation Method for preparation of semiconductor structures and devices which utilize polymeric dielectric materials
US5719085A (en) * 1995-09-29 1998-02-17 Intel Corporation Shallow trench isolation technique
US5912188A (en) * 1997-08-04 1999-06-15 Advanced Micro Devices, Inc. Method of forming a contact hole in an interlevel dielectric layer using dual etch stops
US6146970A (en) * 1998-05-26 2000-11-14 Motorola Inc. Capped shallow trench isolation and method of formation
US6133105A (en) * 1999-04-27 2000-10-17 United Microelectronics Corp. Method of manufacturing borderless contact hole including a silicide layer on source/drain and sidewall of trench isolation structure
US6294823B1 (en) * 1999-05-12 2001-09-25 Intel Corporation Integrated circuit with insulating spacers separating borderless contacts from the well
KR100320957B1 (ko) * 2000-01-27 2002-01-29 윤종용 반도체 장치의 컨택홀 형성 방법
US6368931B1 (en) * 2000-03-27 2002-04-09 Intel Corporation Thin tensile layers in shallow trench isolation and method of making same
US6551901B1 (en) * 2001-08-21 2003-04-22 Lsi Logic Corporation Method for preventing borderless contact to well leakage
KR100450245B1 (ko) * 2002-12-20 2004-09-24 아남반도체 주식회사 반도체 소자의 게이트 형성방법
US6890833B2 (en) * 2003-03-26 2005-05-10 Infineon Technologies Ag Trench isolation employing a doped oxide trench fill
US6870179B2 (en) * 2003-03-31 2005-03-22 Intel Corporation Increasing stress-enhanced drive current in a MOS transistor
US6867433B2 (en) * 2003-04-30 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors
US7361973B2 (en) * 2004-05-21 2008-04-22 International Business Machines Corporation Embedded stressed nitride liners for CMOS performance improvement
JP4700295B2 (ja) * 2004-06-08 2011-06-15 富士通セミコンダクター株式会社 半導体装置とその製造方法
US7190036B2 (en) 2004-12-03 2007-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor mobility improvement by adjusting stress in shallow trench isolation
US7273796B2 (en) * 2005-03-23 2007-09-25 Micron Technology, Inc. Methods of forming trench isolation in the fabrication of integrated circuitry and methods of fabricating integrated circuitry
JP2006351694A (ja) * 2005-06-14 2006-12-28 Fujitsu Ltd 半導体装置およびその製造方法
US20070069307A1 (en) * 2005-09-27 2007-03-29 Kentaro Eda Semiconductor device and method of manufacturing the same
US20070132056A1 (en) * 2005-12-09 2007-06-14 Advanced Analogic Technologies, Inc. Isolation structures for semiconductor integrated circuit substrates and methods of forming the same
JP4984558B2 (ja) * 2006-02-08 2012-07-25 富士通セミコンダクター株式会社 半導体装置の製造方法
US7355262B2 (en) * 2006-03-17 2008-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Diffusion topography engineering for high performance CMOS fabrication
US7485519B2 (en) * 2007-03-30 2009-02-03 International Business Machines Corporation After gate fabrication of field effect transistor having tensile and compressive regions

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130171A (zh) * 2009-12-28 2011-07-20 索尼公司 半导体元件和用于制造半导体元件的方法
US9548360B2 (en) 2009-12-28 2017-01-17 Sony Corporation Semiconductor component and manufacturing method thereof
US9748384B2 (en) 2009-12-28 2017-08-29 Sony Corporation Semiconductor component and manufacturing method thereof
US9991383B2 (en) 2009-12-28 2018-06-05 Sony Corporation Semiconductor component and manufacturing method thereof
US10727335B2 (en) 2009-12-28 2020-07-28 Sony Corporation Semiconductor component and manufacturing method thereof
US11043590B2 (en) 2009-12-28 2021-06-22 Sony Corporation Semiconductor component and manufacturing method thereof
US11848380B2 (en) 2009-12-28 2023-12-19 Sony Group Corporation Semiconductor component and manufacturing method thereof
US8530328B1 (en) 2012-03-29 2013-09-10 The Institute Of Microelectronics, Chinese Academy Of Sciences Method for manufacturing semiconductor device
WO2013143031A1 (zh) * 2012-03-29 2013-10-03 中国科学院微电子研究所 半导体器件制造方法
CN103367227A (zh) * 2012-03-29 2013-10-23 中国科学院微电子研究所 半导体器件制造方法
CN103367227B (zh) * 2012-03-29 2015-09-23 中国科学院微电子研究所 半导体器件制造方法

Also Published As

Publication number Publication date
TWI362076B (en) 2012-04-11
CN100590873C (zh) 2010-02-17
US20140242776A1 (en) 2014-08-28
US20080303102A1 (en) 2008-12-11
US8736016B2 (en) 2014-05-27
US9564488B2 (en) 2017-02-07
TW200849405A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
CN100590873C (zh) 半导体结构
US9842897B2 (en) Bulk finFET with partial dielectric isolation featuring a punch-through stopping layer under the oxide
US8912606B2 (en) Integrated circuits having protruding source and drain regions and methods for forming integrated circuits
US8043919B2 (en) Method of fabricating semiconductor device
JP5689470B2 (ja) 埋め込みストレッサを有する高性能fetを形成するための方法および構造
JP5283233B2 (ja) 応力強化mosトランジスタならびにその製造方法
CN100594593C (zh) 半导体器件及其制造方法
EP1763073B1 (en) Strained Semiconductor Device
CN101295733B (zh) 半导体元件
US7678634B2 (en) Local stress engineering for CMOS devices
KR101124657B1 (ko) 서로 다른 결정 방향을 갖는 실리콘층을 구비한실리콘-온-절연막 반도체 소자 및 실리콘-온-절연막 반도체소자를 형성하는 방법
US20120012935A1 (en) Semiconductor device and method of manufacturing semiconductor device
CN103000572A (zh) 高k金属栅极器件的接触件
US20080102571A1 (en) Methods for fabricating a stress enhanced mos transistor
US10199392B2 (en) FinFET device having a partially dielectric isolated fin structure
CN102376551A (zh) 半导体器件结构的制造方法及其结构
KR20150047218A (ko) 반도체 장치 및 그 제조 방법
US20110121388A1 (en) Semiconductor device and method for fabricating the same
US6657261B2 (en) Ground-plane device with back oxide topography
US6329695B1 (en) Merged sidewall spacer formed between series-connected MOSFETs for improved integrated circuit operation
CN116504720A (zh) 一种全包围栅极纳米片cmos器件集成方法
CN103367226B (zh) 半导体器件制造方法
US11264499B2 (en) Transistor devices with source/drain regions comprising an interface layer that comprises a non-semiconductor material
US10886406B1 (en) Semiconductor structure and method of manufacturing the same
JP2012230993A (ja) 半導体基板、半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant