CN101144566B - 具有单块碳吸附剂的气体储存和分配系统 - Google Patents

具有单块碳吸附剂的气体储存和分配系统 Download PDF

Info

Publication number
CN101144566B
CN101144566B CN2007101537610A CN200710153761A CN101144566B CN 101144566 B CN101144566 B CN 101144566B CN 2007101537610 A CN2007101537610 A CN 2007101537610A CN 200710153761 A CN200710153761 A CN 200710153761A CN 101144566 B CN101144566 B CN 101144566B
Authority
CN
China
Prior art keywords
sorbent
monolithic
arsine
container
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2007101537610A
Other languages
English (en)
Other versions
CN101144566A (zh
Inventor
唐纳德·J·卡拉瑟斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Advanced Technology Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Technology Materials Inc filed Critical Advanced Technology Materials Inc
Publication of CN101144566A publication Critical patent/CN101144566A/zh
Application granted granted Critical
Publication of CN101144566B publication Critical patent/CN101144566B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/26Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • B01D2257/553Compounds comprising hydrogen, e.g. silanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4525Gas separation or purification devices adapted for specific applications for storage and dispensing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/455Gas separation or purification devices adapted for specific applications for transportable use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/901Activated carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明公开了一种流体储存和分配装置,所述装置包括具有内部容积的流体储存和分配容器,其中内部容积含有物理吸附剂,所述吸附剂上吸附性保持流体并且从其可脱吸附流体用于自容器分配,以及与容器耦合的分配组件用于从容器中分配脱吸附的流体。物理吸附剂包括单块碳物理吸附剂,所述单块吸附剂的特征在于至少一种如下特征:(a)25℃和650托压力下对胂气测量的填充密度大于400g胂/升吸附剂;(b)所述吸附剂中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔;以及(c)在温度低于1000℃,通过热解和任选活化已经形成,并且具有约0.80到约2.0g/cm3的容积密度。

Description

具有单块碳吸附剂的气体储存和分配系统
本申请是申请日为2003年12月4日、申请号为200380105594.2的中国国家申请的分案申请。
发明领域
本发明总体上涉及气体储存和分配系统,具体涉及利用单块碳吸附剂作为气体储存介质的这类系统。
相关技术描述
Tom等美国专利5,518,528中公开的基于物理吸附剂的气体储存和分配系统已使半导体工业彻底改变了有毒气体的运输,供应和使用。该系统包括容器,用于储存诸如分子筛或活性碳等的物理吸附剂,对气体具有吸着亲和性,所述气体一定储存在容器中并从中选择性分配。相对于以“自由”(未吸附)状态储存等量气体的相应空(吸附剂)容器,气体以吸附状态、减压下储存在容器中的吸附介质上。
通过这样的减压储存,气体储存和分配操作的安全性基本上得以提高,这是因为任何泄漏都会导致气体相对于常规高压气体储存气缸以非常低的速率向周围环境外漏。此外,由于减压降低了对诸如阀门,流量控制器,连结器,接头等的系统组件的压力和磨损,基于吸附剂的系统的低压操作与这种气体泄漏事件的更低可能性相关。
在这种基于吸附剂的气体储存和分配系统中,物理吸附剂介质的工作容量在操作中是限制条件。工作容量为可储存(“负载”)在吸附介质上并且从这种吸附介质脱吸附性去除备用的气体量。工作容量为含吸附介质的气体储存容器中气体储存压力,吸附气体的分配条件(例如,当压差用于实现解吸附时的脱吸附气体的分配压力,以及当气体的热脱吸附用作分配形式时的各自储存和分配条件的温度),与吸附介质自身的类型和特征(例如,包括诸如吸附介质大小,形状,孔隙度,孔径分布以及内孔通道的曲率)的函数。
本领域继续寻求对基于物理吸附剂的气体储存和分配系统的工作容量进行改进。
发明概述
本发明涉及基于物理吸附剂的气体储存和分配系统,以及涉及工作容量改进的这种系统。
一方面,本发明涉及流体储存和分配装置,包括具有内部容积的流体储存和分配容器,其中内部容积含有物理吸附剂,其上吸附性保持流体并从中可脱吸附流体用于自容器分配,以及含有与容器耦合的分配组件,用于自容器分配脱吸附的流体,其中物理吸附剂包括单块碳物理吸附剂,其特征在于至少一种如下特征:
(a)25℃和650托压力下对胂气测量的填充密度大于400g胂/升吸附剂;
(b)所述吸附剂中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔;以及
(c)已在温度低于1000℃下,通过热解和任选活化形成,并且容积密度为约0.80到约2.0g/cm3
本发明的另一方面涉及用于气体储存和分配系统中的单块吸附剂的制备方法,所述方法包括:将可热解材料铸模成单块形状;以及在产生单块吸附剂的热解条件下,热解可热解材料,所述单块吸附剂的特征在于至少一种如下特征:
(a)25℃和650托压力下对胂气测量的填充密度大于400g胂/升吸附剂;
(b)所述吸附剂中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔;以及
(c)容积密度为约0.80到约2.0g/cm3,其中上述热解条件包括温度低于1000℃。
本发明进一步方面涉及储存和分配气体的方法,包括:制作气体储存和分配容器;在容器中布置对所述气体具有吸附亲和性的物理吸附剂;向所述容器中充气以吸附于物理吸附剂上;用含有可致动阀的阀头密封容器,以装入物理吸附剂和吸附的气体并将它们与容器的外部环境隔离;从物理吸附剂中脱吸附吸附的气体,并且致动阀头中的可致动阀门,以使气体从容器中流出,并穿过可致动阀门,用于气体分配;其中物理吸附剂的特征在于至少一种如下特征:
(a)25℃和650托压力下对胂气测量的填充密度大于400g胂/升吸附剂;
(b)所述吸附剂中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔;以及
(c)容积密度为约0.80到约2.0g/cm3,其中所述热解条件包括温度低于1000℃。
本发明的其他方面,特征和实施方案从随后的公开内容和所附的权利要求书中会变得一目了然。
附图简述
图1对Kureha 578-66-6珠活性碳(数据点以实体菱形标记),Takachiho ABF 14-03微粒活性碳(数据点以实体方形标记),以及形成自聚偏二乙烯氯聚合物的碳(Saran A,Dow Chemical Co.)(数据点以空心三角形标记)示出每升碳吸附的磷化氢(PH3)的重量克作为压力值(托)的函数。
图2对Kureha 578-66-6珠活性碳(数据点以实体菱形标记)以及形成自聚偏二乙烯氯聚合物的碳(Saran A,Dow Chemical Co.)(数据点以空心三角形标记)示出每升碳吸附的胂(AsH3)的容积(cm3)作为压力值(托)的函数。
图3示意性表示本发明一个实施方案的利用单块吸附剂的储存和传递系统。
图4为本发明另一实施方案的利用单块吸附剂的长方体流体储存和分配容器的透视图。
图5对Kureha 578-66-6珠活性碳(数据点以实体菱形标记)以及形成自聚偏二乙烯氯聚合物的碳(Saran A,Dow Chemical Co.)(数据点以实体方形标记)示出每升碳吸附的三氟化硼(BF3)的重量(g)作为压力值(托)的函数。
发明详述及其优选实施方案
本发明基于下列发现:基于物理吸附剂的流体储存和分配装置可以利用其中具有单块碳吸附材料的流体储存和分配容器进行制作,令人惊奇和预料之外的效果是气体在吸附剂上的吸附和脱吸附的性质和程度,物理吸附剂介质在容器中可实现的填充密度,以及包含这种容器的流体储存和分配装置在半导体制作过程中的效用。
由此,本发明相对于Tom等在美国专利No.5,518,528中所述类型的基于吸附剂的气体储存和分配系统取得了实质性进展,所述系统在Tom以前一直使用细分形式的物理吸附剂介质,诸如所谓的珠活性碳。根据本发明,当活性碳不是以珠形或微粒形,而是以单块形式的特征提供时,气体储存和分配系统可显著改进其工作容量。
通过使用单块形式的活性碳,相对于现有技术中使用的细分形式,可实现的改进水平是高度预料之外的,并且当气体储存和分配容器的形状与单块吸附剂相符时,甚至是令人惊奇地提高。
例如,当容器优选为立方体或其他长方体形状,与共同提交的美国专利申请No.10/314,777的公开内容一致,该申请于200年12月以Dennis Brestovansky,Michael J.Wodjenski,Jose I.Arno和J.D.Carruthers的名义提交,发明名称为“长方体流体储存和分配系统”,使用形状相符的单块相对于现有技术使用同样“覆盖区”和容器内容积的气体储存气缸、填充有珠活性碳的系统可增加基于物理吸附剂的气体储存和分配系统的工作容量至少85%。
通过背景途径解释在基于物理吸附剂的流体储存和分配装置的长方体构型容器中,优选包装本发明的单块物理吸附剂带来不曾预料到的效果,最初认为对基于物理吸附剂的流体储存和分配系统采用长方体构型似乎是高度不利的,这是因为:(i)长方体容器有六个面,如果容器的各个面都是单独部件,则需要制作12条焊缝线(与之相反,圆柱容器形成自管状轧制钢料无需接缝);(ii)与(i)一致,长方体构型容器的制作成本预计大大高于相应的圆柱容器;(iii)长方体构型在相邻垂直取向的壁的接合处包括“尖”角,这可能在接合线处形成空隙,其中相对于对应的圆柱几何容器(无这样的角落,相反是最小横截面的形状,在容器内容积中环绕物理吸附材料的床),吸附剂床将不“填充”角落;以及(iv)相对于“无缝”圆柱容器,两个垂直壁彼此间的交叉线产生接缝,易于受到指向其上压力或力的破坏。
然而,现已确定长方体构型导致容器在相邻壁的交叉线处靠近接缝的地方的确具有填充较不紧密的吸附剂床区域,但是这种较低密度吸附剂床区域与其说是个缺点,实际上还不如说是优点,因为有气流传导更高的通道用于间隙脱吸附或未吸附的气体流出吸附剂床的填充容积(bulk volume)。
进一步,恰好由于圆柱容器的横截面面积构型最小,外接壁面的围周程度最小,从而使“呈递”给圆柱容器壁的吸附剂的量最大化。反过来考虑,以吸附剂床为界(与吸附剂床相邻)的壁的围周程度在横截面上,长方体构型比圆柱容器大得多。由此,长方体构型能从该容器中比从相应大小的圆柱容器中泄漏出更高体积的气体,这是因为以吸附剂床为界的壁表面其特征是非吸附性的,并且按比例在吸附剂床的外缘,长方形构型容器比圆柱容器有更多的壁表面。结果,在其从吸附剂介质中首先脱吸附释放之后,壁区域处脱吸附气体比吸附剂床的内部部分中脱吸附气体的重吸收更少。
为此,长方体容器构型对保持本发明单块形式的物理吸附剂具有特殊的效用。
如本发明所用的“单块”表示吸附剂介质为单式,块样形式,例如,块,砖,盘,宝石等形式,与此对比不同的是,常规细分形式诸如珠,微粒,细粒,小球等,一般采用床的形式,包括多个这样的珠,微粒,细粒,小球等。因此,在多个细分物理吸附剂成分的床形式中,活性吸附剂的空隙体积随着吸附剂粒子的尺寸,形状和填充密度而在主要部分间隙或粒间特征上相应发生变化。相比之下,在单块形式中,活性吸附剂的空隙体积处于吸附材料固有的孔隙度和空隙形式,所述空隙在其加工过程中也许已形成于散粒吸附剂体(bulk sorbent body)中。
本发明一方面涉及流体储存和分配装置,包括具有内部容积的流体储存和分配容器,其中内部容积含有物理吸附剂,其上吸附性保持流体并从中可脱吸附流体用于自容器分配,以及含有与容器耦合的分配组件,用于自容器分配脱吸附的流体,其中物理吸附剂包括单块碳物理吸附剂,其特征在于至少一种如下特征:
(a)25℃和650托压力下对胂气测量的填充密度大于400g胂/升吸附剂;
(b)所述吸附剂中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔;以及
(c)已在温度低于1000℃下,通过热解和任选活化形成,并且容积密度为约0.80到约2.0g/cm3
单块吸附剂的形式可为单个单块吸附剂物件,也可为多个单块吸附剂物件。吸附剂被合适地成型与容器的内部容积相符,在所述容器中布置有吸附剂,并且吸附剂优选占至少60%的容器内部容积,例如,75-95%的内部容积。尽管本发明下文将更充分讨论单块吸附剂保持在优选的长方体形状的容器中,但应理解的是,本发明并不限于此,其他容器形状和构型也可利用,例如,圆柱形容器,桶形容器,截头圆锥体形容器等。
单块吸附剂可制备成有机树脂的热解产物,更通常形成自任何合适的可热解材料,诸如,聚偏二乙烯氯,酚甲醛树脂,聚糠基醇,椰子壳,花生壳,桃核,橄榄石,聚丙烯腈,和聚丙烯酰胺。吸附剂形成在流体储存和分配容器中,其中流体被原位保存用于随后的分配,或者吸附剂形成后再导入流体储存和分配容器中。在一个实施方案中,吸附剂中有至少20%的孔隙孔径小于2nm。
吸附剂提供在流体储存和分配容器中作为多个单块吸附剂物件,其聚集在一起构成吸附剂团。在这种多个单块物件安排中,多个离散单块吸附剂物件各自具有的长度为容器内部容积高度的0.3-1.0倍,而横截面面积为容器长方形横截面面积的0.1-0.5倍。多个离散单块物件各自具有长方体形状或替代的圆柱形状或其他合适的形状。在流体储存和分配容器的内部容积中,离散单块物件可横向和/或纵向邻接以表面接触于附近的单块构件。在一个实施方案中,多个离散单块物件各自的长度与横截面面积之比L/D为约2至约20,例如,在约4至约15的范围内,其中L为单块碳吸附剂物件的长度或长轴尺寸,而D为横向或短轴尺寸。在另一实施方案中,单块吸附剂物件具有圆盘形状,高度与直径之比H/D为约0.10至约0.80。
流体储存和分配容器中的流体吸附性保留于吸附剂上,并在合适的脱吸附条件下脱吸附用于分配流体,其可以是任何合适类型的流体,例如,在半导体制作中具有效用的流体,诸如,氢化物,卤化物以及气相有机金属试剂,例如,硅烷,锗烷(germane),胂,磷化氢,光气,乙硼烷,锗烷,氨,锑化氢,硫化氢,硒化氢,碲化氢,氧化氮,氰化氢,环氧乙烷,氘化氢化物,卤(氯,溴,氟,和碘)化合物,以及有机金属化合物。
容器中的流体可储存在任何合适的大气压,亚大气压或超大气压下,例如低于2500托的压力,诸如约20托至约1200托的范围,或压力范围约20托至约750托,以亚大气压供应离子注入用气体,或其他亚大气压应用。
保持流体吸附其上的吸附剂的容器形成自任何合适的容器构建材料,诸如金属(例如,钢,不锈钢,铝,铜,黄铜,青铜,及其合金),玻璃,陶瓷,玻璃质材料,聚合物,以及复合材料。
容器可为任何合适的形状和大小,如适于特定的流体储存和分配应用。容器例如为长方体形状,细长的垂直直立形式,具有方形横截面,或者容器为带有圆形横截面的圆柱体,或者以任何其他合适的形状,大小和形式等。
在一个实施方案中,本发明在长方体容器中利用单块形式的物理吸附剂,所述容器形成密封的内部容积并具有端口,气体分配组件与所述端口连接,用于选择性从容器中排放气体。本发明单块形式的吸附剂介质提供了以所需数量用于吸附性保持吸着物气体的足够容量,在脱吸附条件下良好的脱吸附释放气体,以及良好的工作容量和良好的尾随行为(即,高程度地脱吸附初始吸附的气体),并且对目的气体具有合适的吸附亲和性,以便在其中储存气体的过程中将低气压维持在容器的内部容积中。
本发明的物理吸附剂有任何合适的单块形式,例如以大小与流体储存和分配容器相称的吸附材料的块,砖,宝石或类似形式,以便容器含有一个或少量,例如小于75,更优选小于20个离散单块物件。在进一步优选的方面,容器含有不超过8个这样的离散单块物件,甚至更优选不超过4个这样的物件,以及最优选容器含有单个单块物理吸附剂物件。
配置在流体储存和分配容器中的单块物件提供聚集的吸附剂团,其优选在大小和形状上符合流体储存和分配容器的内部容积,以便单块物件的吸附剂团占容器内部容积的至少60%,优选在这种容器的内部容积的约75%至约95%的范围内。
如果提供成单个单块吸附剂物件,为此目的,例如,通过热解液体形式或可流动形式的有机树脂,吸附剂介质可原位形成在容器中,在容器中热解有机树脂之前,用此填充容器至所需的程度。
如果替代地提供在多个单块物件的形式中,各个这类物件的长度都为容器内部容积高度的0.3-1.0倍,而横截面面积为容器长方形横截面面积的0.1-0.5倍。各个单块构件具有长方体形状,当容器为长方体形状时使容器内部容积的利用率最大化,其中各个单块构件在容器内部容积中可横向和/或纵向邻接以表面接触于附近的单块构件。或者,在一些场合下,吸附剂单块构件理想的形式为立体圆柱体,各自圆柱体构件装载到内部容积内,以沿其面层面表面(facing side surface)相切性彼此邻接,以及至少部分彼此邻接,在其圆形横截面端表面处面对面接触。在除了立方体或其他长方体之外形状的流体储存和分配容器中,为了与容器内部容积的形状相符,可相应地形成单块吸附剂物件。例如,流体储存和分配容器的形状为圆柱体,其中的单块吸附剂物件含有垂直堆叠的吸附剂的盘形体,每个具有的直径在它的外围使其符合容器的形状,紧临于容器的面层内壁表面。
伴随使用单块形式的活性碳相对于现有技术的细分微粒形式的水平提高是预料之外的,这是因为物理吸附材料一般根据其可用于吸附性保持工作气体(吸附物)的表面积进行分类,因而,具有高的表面与体积之比的微粒形式已被视为固有地优于具有更低的表观表面与体积之比的散粒形式,诸如块和砖(即,单块形式)。由此,人们会直观地预期,吸附剂的单块形式将是低效形式,具有降低的吸附性容量和工作容量。
然而,现已发现,可形成单块碳,其具有与相应的碳珠相似的微孔体积,但是密度实际上更高,例如,密度高于相应碳珠的压实密度的约25%至约80%,以及这样高密度单块当用在基于物理吸附剂的气体储存和分配系统中时与碳珠的床比较在每单位体积的吸附剂吸附的气体质量上有显著的改进。
在广泛实施本发明中有益的单块碳包括粗制的砖,块和锭形式,作为散粒形式,优选具有三维(x,y,z)特征,其中各个这样的尺寸大于1.5,以及优选大于2cm。例如,单块碳的形式为整体压块,如制自聚合炭,诸如聚偏二乙烯氯(PVDC)或其他合适的聚合物,具有高的容积密度(以空隙测量),例如,以约0.80至约2.0g/cm3的量级,具有高的工作容量(高微孔性和低渣(heel))和足够低的孔曲度以确保迅速地吸附和脱吸附。
在一个实施方案中,本发明的单块碳吸附剂包括活性碳上的掺杂剂,以在延长的储存过程中使吸着物的分解最小化。在广泛实施本发明中有用的示例性掺杂剂为硼酸(H3BO3),四硼酸钠(Na2B4O7),硅酸钠(Na2SiO3)和磷酸氢二钠(Na2HPO4)。
在另一方面,单块碳吸附剂物件的长度与横截面面积之比L/D为约2至约20,以及更优选约4至约15,其中L为单块碳吸附剂物件的长度或长轴尺寸,而D为横向或短轴尺寸。在特定的实施方案中,单块碳吸附剂提供以1″×1″方形横截面PVDC炭整体压块,高度近6″的形式。
优选的单块碳吸附剂包含Saran A,Saran MC-10S或SaranXPR-1367-D-01452-050PVDC均聚物或共聚物的热解产物,作为具有高比例的小尺寸,例如约0.3至约0.75nm范围的裂缝型孔的超微孔碳。
当单块碳吸附剂的孔径为小于约2nm时,单块碳吸附剂在气体临界温度之上能够吸收气体,例如,三氟化硼,至一定程度,该程度与吸附材料的微孔体积成比例。为此目的,优选的单块碳吸附材料中具有高比例的孔,例如,至少50%的孔隙度为小微孔,例如超微孔大小范围中。该效果参见图5,对(i)Kureha珠活性碳(数据点以实体菱形标记)以及(ii)形成自聚偏二乙烯氯聚合物的碳(Saran A,DowChemical Co.)(数据点以实体方形标记)示出每升碳吸附的三氟化硼(BF3)的重量(g)作为压力值(托)的函数。
虽然微孔体积是选择本发明单块碳吸附剂系统中所用的碳的重要标准,以及微孔体积理想地最大化,但是保存于固定体积容器中的气体以每升吸附剂的体积为基础适当地进行比较。这样距离中的吸附剂填充密度变成极其重要。为此,单块碳消除了在流体储存和分配容器中使用的空隙容积。
在优选的实施方案中,本发明的流体储存和分配容器中的空隙体积不超过约40%的总容器内部容积,更优选尽可能低。单块碳吸附剂的填充密度理想地尽可能高,以每体积的吸附剂的体积为基础,具有最大的微孔体积,以及高比例的孔容积存在于超微孔中。微孔的构型也是重要的,孔理想地是裂缝型以提供高吸附水平,但是不太小,以致在脱吸附条件下,裂缝构型干扰气体的迅速释放,例如,压力水平在40托量级的脱吸附。
在碳活化形成活性碳过程中,在诸如氮的非氧化气体存在下,孔在高温时被扩大,接着接触诸如氧或蒸汽的氧化气体持续短的时间,然后在非氧化大气下冷却。在这样的活化中,材料蒸发的水平小心得以控制,这是因为高水平的蒸发导致孔扩大,同时微孔体积增加并伴随着粒子密度减少。
本发明的单块碳吸附剂可以任何合适的方式形成。在一个实施方案中,单块碳形成自聚合物材料,诸如可商购自Dow Chemical Company(Midland,MI)以Saran A或Saran MC-10S聚合物的聚偏二乙烯氯聚合物,在合适压力下,例如每平方英寸约10千磅至约20千磅的压力进行压模,然后在氮气流和约600℃至约900℃,例如约700℃的温度下热解。该方法生产填充密度大大增加的碳吸附材料(即,例如每升碳吸附的气体重,克),如图1和2中所示。
本发明的单块碳吸附剂显著背离于现有技术的实施,现有技术利用细分粒子,诸如粒径为0.1-1.0cm,通常为0.25-2.0mm的珠活性碳,或者在散粒微孔碳材料的情形下(参见,Wojtowicz等美国专利申请公布US2002/0020292A1,2002年2月21日公布),利用高温,例如,>1000℃以及优选>1100℃,以诱导高石墨化水平,与包括反复进行多至76次的化学吸附/脱吸附步骤的活化组合(参见,Quinn等美国专利5,071,820)以实现合适的微孔体积、表面积和每单位体积的碳吸附剂的微孔体积,这是一种获得高压气体储存用的合适吸附材料的费时和昂贵的途径(Wojtowicz等美国专利申请公布US2002/0020292A1公开了吸着物气体的最适储存容量要求气体“以约500psi至约3500psi的压力范围导入储存容器”,第2页,第0013段,最后1句)。
与这些现有技术途径相反,本发明的单块碳吸附剂形成自合适的聚合物材料,例如,选自下列的聚合物:聚偏二乙烯氯,酚甲醛树脂,聚糠基醇,椰子壳,花生壳,桃核,橄榄石,聚丙烯腈,聚丙烯酰胺等,这些聚合物在例如高达约20,000psi或更高的铸模压力下可模压成在温度低于1000℃,优选不超过约900℃,例如在约500℃至约900℃的范围内,以及更优选在约600℃至约900℃的范围内可热解的压模的“生树脂”体,从而为预定气体储存和分配用途生成合适的高填充密度值的单块碳材料。在实施本发明中有用的单块碳吸附剂包括那些填充密度为每升碳吸附剂超过400g胂以及优选大于450g胂的吸附剂,所述填充密度在25℃和压力650托下对胂气测量。
热解产物可用作本发明的单块吸附剂体,但是正如这样的热解产物优选以生产单块碳吸附剂产品的方式被活化,所述单块碳吸附剂产品的超微孔性具有高比例,例如至少30%的孔隙度,以及优选至少60%的孔隙度的裂缝形孔,孔径约0.3至约0.72nm和显著的孔隙度,例如至少20%,以及优选至少30%的包括微孔的总孔隙的直径<2nm。活化方法包括任何合适的加工步骤,用于提高目的吸着物气体用材料的吸附亲和性,或者用于改进吸附/脱吸附负载用吸附剂介质的特性。例如,活化方法包括在例如氮气,氩气,氦气或其他非氧化气体的非氧化气氛下加热,接着在转换成非氧化气氛并冷却至环境温度(例如,室温)之前,将该气氛转化成氧化气氛,诸如二氧化碳,或蒸汽,持续短暂的时间。活化方法的细节,例如,连续步骤的温度和持续时间通过简单地改变各自方法条件,以及分析确定所得吸附剂性能,诸如填充密度,孔隙率计特征等,本领域技术人员无需过多的实验就可容易地确定。
图1对Kureha 578-66-6珠活性碳(数据点以实体菱形标记),Takachiho ABF 14-03微粒活性碳(Takachiho Kabushiku Kogyo,Ltd.,Tokyo,Japan)(数据点以实体方形标记),以及形成自聚偏二乙烯氯聚合物的碳(Saran A,Dow Chemical Co.)(数据点以空心三角形标记)示出每升碳吸附的磷化氢(PH3)的重量克作为压力值(托)的函数。
图1中的数据示出,形成自PVDC聚合物的单块碳比珠活性炭吸附剂或Takachiho粒子活性碳吸附剂,具有实质上更高重量的吸附的磷化氢/升碳,通常在0-750托的压力范围下是磷化氢吸附载量的两倍以上。
图2对Kureha 578-66-6珠活性碳(数据点以实体菱形标记)以及形成自聚偏二乙烯氯聚合物的碳(Saran A,Dow Chemical Co.)(数据点以空心三角形标记)示出每升碳吸附的胂(AsH3)的容积(cm3)作为压力值(托)的函数。
图2证明单块碳吸附剂对胂负载优于珠活性碳。每升碳的胂容积载量(cm3)在0-770托的压力范围下,单块碳吸附剂要高出50-100%。
如下表1中所示为胂在上述图1的三种类型吸附材料上的填充密度,包括Kureha 578-66-6珠活性碳,Takachiho ABF 14-03粒子活性炭,以及PVDC炭单块吸附剂。各个材料对两个样品在胂压为650托下进行评价。填充密度基于重量确定成每克吸附剂吸附胂的克数,以及基于容积,确定成每升吸附剂吸附胂的克数。
表1.非单块活性碳和单块碳吸附剂上的胂容量
吸附剂  650托压力下的填充密度(g胂/g吸附剂)   650托压力下的填充密度(g胂/升吸附剂)
  Kureha 578-66-6(样品1)   0.51   301
  Kureha 578-66-6(样品2)   0.51   301
  Takachiho ABF 14-03(样品1)   0.55   319
  Takachiho ABF 14-03(样品2)   0.55   319
  PVDC炭(样品1)   0.43   486
  PVDC炭(样品2)   0.45   504
表1中的结果显示,尽管基于重量,单块碳吸附剂的填充密度比非单块活性碳吸附剂约低15-20%,但是基于容积,单块碳吸附剂比非单块活性碳吸附剂的相应填充密度却要高出50%以上。
下表2是对磷化氢在上述图1的三种类型吸附材料上的填充密度值进行相应的填充密度制表,包括Kureha 578-66-6珠活性碳,TakachihoABF 14-03粒子活性碳,以及PVDC炭单块吸附剂。
表2.非单块活性碳和单块碳上的磷化氢容量
吸附剂  650托压力下的填充密度(g磷化氢/g吸附剂)  650托压力下的填充密度(g磷化氢/升吸附剂)
  Kureha 578-66-6   0.165   97.4
  Takachiho ABF 14-03   0.184   107
  PVDC炭   0.188   212
表2中的结果显示,基于重量和容积,单块碳吸附剂(PVDC炭)的填充密度都在非单块形式的活性碳吸附剂之上,同时其基于容积的填充密度比磷化氢在非单块形式的活性碳上的容积填充密度高出100%。
在广泛实施本发明中,保持在单块碳吸附剂上的吸着物流体可有任何合适的类型,包括,例如,氢化物气体(诸如胂,磷化氢,锗烷,硅烷,单-,二-和三-取代的硅烷,例如,这些类型的烷基硅烷),卤化物气体(诸如,三氟化硼,三氯化硼,卤素取代的硅烷等)以及气相有机金属合成物。
在实施本发明中可用于储存和分配的例证性吸着物气体包括硅烷,锗烷,胂,磷化氢,光气,乙硼烷,锗烷,氨,锑化氢,硫化氢,硒化氢,碲化氢,氧化氮,氰化氢,环氧乙烷,氘化氢化物,卤(氯,溴,氟,和碘)化合物,包括诸如F2,SiF4,Cl2,ClF3,GeF4,SiF4,卤化硼等化合物,以及诸如铝,钡,锶,镓,铟,钨,锑,银,金,钯,钆等金属的有机金属化合物。
吸着物气体储存在容器中的压力可以为任何合适的压力,只要适用于本发明的气体储存和分配系统。本发明实施中通常有用的例证性压力包括压力不超过约2500托,更优选不超过约2000托,例如压力范围为约20托至约1800托,或更限制性为约20托至约1200托。对诸如离子注入的应用而言,气体储存和分配容器中的气体压力通常不超过约800托,储存的气体为大气压,例如压力范围为约20托至约750托。
图3示意性表示本发明一个实施方案的储存和传递系统。
如图所示,储存和分配系统200包括储存和分配容器204,204在其上部与阀头206连接,206包括部分分配组件,所述分配组件在圆柱体上包括阀头的手工致动器208。容器可以任何合适的构建材料形成,例如,包括诸如金属,玻璃,陶瓷,玻璃质材料,聚合物,和复合材料等材料。为此目的,例证性金属包括钢,不锈钢,铝,铜,黄铜,青铜,及其合金。阀头通过耦接头210连接于分配导管212,212中已布置压力传感器214,惰性吹洗单元216,用于以惰性气体吹洗分配组件,质量流量控制器220,用于在分配操作过程中维持恒定流速通过分配导管212,以及过滤器222,用于在分配气体从分配组件排放之前,去除其中的粒子。
分配组件进一步包括耦接头224,用于配对(matably)接合分配组件与下游管道,阀门,或其他与吸附流体的利用地点有关的结构,例如,包括半导体制作设施,诸如利用分配气体作为输入物的离子注入工具。
流体储存和分配容器204以部分分解图显示内部单块吸附剂体205。
图4是本发明另一优选方面的利用长方体流体储存和分配容器310的流体储存和分配装置的透视图。长方体流体储存和分配容器310装备有焊接于容器前刃面的管道阀门连接阀头312和把手314。具体实施方案中的容器310以焊接的钢壁构造形成,沿容器的垂直(纵向)轴具有方形横截面。容器的壁为0.100英寸厚碳钢,容器内部容积为3.62升。把手314为1/4英寸线材坯,制成所示形状,并且焊接在容器310的相应端。
管道阀门连接阀头312的分配阀通过1/2″管螺纹连接以螺丝接合有容器310。阀头可具有任何合适数量的端口,例如单一端口阀头,双端口阀头,3-端口阀头等。
长方体流体储存和分配容器310在其内部容积中含有单块碳吸附剂,其中单块团包括一种或多种单块碳体,每个优选为长方体形状,符合容器内部容积的形状,如上所述。
应理解的是,本发明的合成物和方法可以广泛的变体方式实施,与本文的公开内容一致。因此,尽管本发明在此参照具体特征,方面和实施方案已加以说明,但公认的是,本发明不限于此,而是易于以其他变体,修饰和实施方案实施。所以,本发明旨在广泛地解释成包括所有这样的其他变体,修饰和实施方案,正如落入本发明要求保护的范围内一样。

Claims (23)

1.一种热解的碳单块吸附剂,其特征在于至少一种下列特征:
(a)25℃、650托压力下对胂气测量的填充密度大于400g胂/升碳单块;
(b)所述碳单块中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔;以及
(c)约0.80到约2.0g/cm3的容积密度。
2.权利要求1的吸附剂,其具有吸附于其上的吸附物,其中所述吸附物选自硅烷,锗烷,胂,磷化氢,光气,乙硼烷,锗烷,氨,锑化氢,硫化氢,硒化氢,碲化氢,氧化氮,氰化氢,环氧乙烷,氘化氢化物,卤(氯,溴,氟,和碘)化合物,F2,SiF4,Cl2,ClF3,GeF4,SiF4,卤化硼,金属的有机金属化合物,以及前述两种以上的组合。
3.权利要求2的吸附剂,其中所述吸附物包括选自如下金属的有机金属化合物:铝,钡,锶,镓,铟,钨,锑,银,金,钯,钆。
4.权利要求1的吸附剂,所述吸附剂在25℃、650托压力下对胂气测量的填充密度大于400g胂/升碳单块。
5.权利要求1的吸附剂,所述碳单块中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔。
6.权利要求1的吸附剂,所述吸附剂具有约0.80到约2.0g/cm3的容积密度。
7.权利要求1的吸附剂,所述吸附剂在25℃、650托压力下对胂气测量的填充密度大于400g胂/升碳单块,且所述碳单块中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔。
8.权利要求1的吸附剂,所述吸附剂在25℃、650托压力下对胂气测量的填充密度大于400g胂/升碳单块,且所述吸附剂具有约0.80到约2.0g/cm3的容积密度。
9.权利要求1的吸附剂,所述吸附剂在25℃、650托压力下对胂气测量的填充密度大于400g胂/升碳单块,且所述碳单块中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔,且所述吸附剂具有约0.80到约2.0g/cm3的容积密度。
10.权利要求1的吸附剂,所述碳单块中至少30%的总孔隙包含裂缝形状的孔,孔径范围为约0.3到约0.72nm,以及至少20%的总孔隙包含直径<2nm的微孔,且所述吸附剂具有约0.80到约2.0g/cm3的容积密度。
11.权利要求1的吸附剂,所述吸附剂上吸附有磷化氢。
12.权利要求1的吸附剂,所述吸附剂上吸附有三氟化硼。
13.权利要求1的吸附剂,其具有预定的形状并容纳于气体储存和分配容器中,所述气体储存和分配容器的形状与至少一部分所述预定形状的吸附剂相符。
14.权利要求13的吸附剂,其占至少60%的容器内部容积。
15.权利要求1的吸附剂,其为块的形式。
16.权利要求1的吸附剂,其为盘的形状。
17.权利要求1的吸附剂,其具有含吸附于其内的吸附物流体的孔隙,其中所述吸附剂布置成在不需使用所述吸附物流体时储存所述流体,在需要使用所述吸附物流体时选择性脱吸附所述流体。
18.权利要求17的吸附剂,其中所述储存包括2500托以下的储存压力条件。
19.权利要求17的吸附剂,其中所述储存包括20至1200托范围的储存压力条件。
20.权利要求17的吸附剂,其中所述储存包括20至750托范围的储存压力条件。
21.权利要求17的吸附剂,其被布置用于所述选择性脱吸附,从而对半导体制作设施提供脱吸附的吸附物流体。
22.权利要求17的吸附剂,其被布置用于所述选择性脱吸附,从而对离子注入工具提供脱吸附的吸附物流体。
23.权利要求1的吸附剂,其中所述热解的碳单块吸附剂在低于1000℃的温度下热解。
CN2007101537610A 2002-12-10 2003-12-04 具有单块碳吸附剂的气体储存和分配系统 Expired - Lifetime CN101144566B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/315,635 US6743278B1 (en) 2002-12-10 2002-12-10 Gas storage and dispensing system with monolithic carbon adsorbent
US10/315,635 2002-12-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801055942A Division CN100349640C (zh) 2002-12-10 2003-12-04 具有单块碳吸附剂的气体储存和分配系统

Publications (2)

Publication Number Publication Date
CN101144566A CN101144566A (zh) 2008-03-19
CN101144566B true CN101144566B (zh) 2010-06-09

Family

ID=32325903

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007101537610A Expired - Lifetime CN101144566B (zh) 2002-12-10 2003-12-04 具有单块碳吸附剂的气体储存和分配系统
CNB2003801055942A Expired - Lifetime CN100349640C (zh) 2002-12-10 2003-12-04 具有单块碳吸附剂的气体储存和分配系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB2003801055942A Expired - Lifetime CN100349640C (zh) 2002-12-10 2003-12-04 具有单块碳吸附剂的气体储存和分配系统

Country Status (10)

Country Link
US (3) US6743278B1 (zh)
EP (2) EP2614875A3 (zh)
JP (5) JP2006509974A (zh)
KR (3) KR101135452B1 (zh)
CN (2) CN101144566B (zh)
AU (2) AU2003293346A1 (zh)
MY (1) MY146174A (zh)
SG (4) SG2011091535A (zh)
TW (5) TWI386587B (zh)
WO (2) WO2004053383A2 (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991671B2 (en) 2002-12-09 2006-01-31 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US8002880B2 (en) * 2002-12-10 2011-08-23 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US7494530B2 (en) * 2002-12-10 2009-02-24 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US6743278B1 (en) * 2002-12-10 2004-06-01 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
ATE501955T1 (de) * 2004-01-23 2011-04-15 Kbig Ltd Produktabgabesystem und dessen herstellungsverfahren
US7122065B2 (en) * 2004-02-25 2006-10-17 Honeywell International, Inc. Adapter for low volume air sampler
US7955797B2 (en) * 2004-10-25 2011-06-07 Advanced Technology Materials, Inc. Fluid storage and dispensing system including dynamic fluid monitoring of fluid storage and dispensing vessel
US20060115591A1 (en) * 2004-11-29 2006-06-01 Olander W K Pentaborane(9) storage and delivery
CN102284224A (zh) * 2005-05-03 2011-12-21 高级技术材料公司 流体供应系统、熏蒸系统以及供应流体用于应用的方法
JP2009506276A (ja) * 2005-08-22 2009-02-12 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド 物質閉じ込めシステム
EP2813294A1 (en) 2005-08-30 2014-12-17 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
EP1984096B1 (en) * 2006-01-30 2014-04-30 Advanced Technology Materials, Inc. A method of increasing the loading capacity of a porous carbon adsorbent
GB0621881D0 (en) * 2006-11-02 2006-12-13 Kbig Ltd Product dispensing sytems
US7779608B2 (en) * 2007-02-02 2010-08-24 Lim Walter K Pressurized containers and methods for filling them
EP2174076A4 (en) * 2007-06-22 2011-04-13 Advanced Tech Materials COMPONENT FOR SOLAR ADSORPTION REFRIGERATION SYSTEM AND METHOD FOR MANUFACTURING THE SAME
DE102007063630B4 (de) * 2007-06-27 2010-02-04 BLüCHER GMBH Speicherbehälter für gasförmige Kraftstoffe und dessen Anwendung
DE102007030106A1 (de) 2007-06-28 2009-01-02 Intega Gmbh Verfahren und Vorrichtung zum Behandeln eines Halbleitersubstrats
WO2009011750A2 (en) 2007-06-29 2009-01-22 Advanced Fuel Research, Inc. Carbon-based sorbent for gas storage, and method for preparation thereof
US8119853B2 (en) * 2008-01-10 2012-02-21 L'Air Liquide SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Low pressure acetylene storage
EA022697B1 (ru) * 2008-04-30 2016-02-29 Эксонмобил Апстрим Рисерч Компани Способ и система избирательного удаления масла из потока газа, содержащего метан
DE102008028136A1 (de) 2008-06-13 2009-12-17 Intega Gmbh Vorrichtung und Verfahren zum Behandeln von Halbleitersubstraten
US8147599B2 (en) * 2009-02-17 2012-04-03 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
US8615812B2 (en) * 2009-03-31 2013-12-31 Advanced Fuel Research, Inc. High-strength porous carbon and its multifunctional applications
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
EP2585401A4 (en) 2010-06-25 2014-10-29 Advanced Tech Materials RECOVERING XE AND OTHER HIGH-VALUE COMPOUNDS
US8679231B2 (en) 2011-01-19 2014-03-25 Advanced Technology Materials, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
EP2678103A4 (en) 2011-01-31 2016-07-20 Entegris Inc CARBON PYROLYSATE ADSORPTION AGENTS FOR CO2 DETECTION AND METHOD FOR THE PRODUCTION AND USE THEREOF
WO2013025643A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Dynamic filtration system and associated methods
WO2013025654A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Fluid distribution filter having spiral filter media and associated systems and methods
TWI583445B (zh) * 2012-04-13 2017-05-21 恩特葛瑞斯股份有限公司 乙炔的儲存與安定化
WO2013181295A1 (en) * 2012-05-29 2013-12-05 Advanced Technology Materials, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent
EP2906868A4 (en) * 2012-10-09 2016-08-24 Basf Se METHOD FOR LOADING A SORPTION ACCUMULATOR WITH A GAS
CN102847413B (zh) * 2012-10-22 2014-12-10 黑龙江省对俄工业技术合作中心 提纯气体的方法
HUE038669T2 (hu) 2013-01-29 2018-11-28 Vibracoustic Gmbh Légrugó adszorpciós anyaggal
WO2014145882A1 (en) 2013-03-15 2014-09-18 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9186650B2 (en) 2013-04-05 2015-11-17 Entegris, Inc. Adsorbent having utility for CO2 capture from gas mixtures
WO2014194124A1 (en) 2013-05-29 2014-12-04 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
KR102056900B1 (ko) * 2013-08-05 2020-01-22 누맷 테크놀로지스, 인코포레이티드 전자 가스 저장을 위한 금속 유기 프레임워크
CN106030220A (zh) * 2013-11-28 2016-10-12 安格斯公司 用于吸附式制冷和加热应用的碳单块
GB201405647D0 (en) 2014-03-28 2014-05-14 Carbon Air Ltd Transfer method and apparatus
JP6160982B2 (ja) * 2014-11-10 2017-07-12 トヨタ自動車株式会社 燃料電池スタックの製造方法
CN104595704B (zh) * 2015-01-26 2016-06-22 卢亨俊 一种天然气ang汽车用钢瓶充气装置及其方法
EP3257014B1 (en) 2015-02-12 2022-03-30 Entegris, Inc. Smart package
KR102312962B1 (ko) * 2015-03-26 2021-10-18 한국에너지기술연구원 반응 및 분리 동시 공정을 통한 과불화 화합물 처리용 장치 및 방법
EP3093550A1 (en) * 2015-05-11 2016-11-16 Basf Se Storage vessel comprising at least one shaped body of a porous solid
CN108136365A (zh) * 2015-08-22 2018-06-08 恩特格里斯公司 微晶纤维素热解吸附剂和其制造与使用方法
JP6994032B2 (ja) 2016-11-17 2022-01-14 ソルヴェイ(ソシエテ アノニム) Co2捕獲および分離のための進歩した多孔性炭素吸着剤
JP7175889B2 (ja) 2016-11-30 2022-11-21 ソルヴェイ(ソシエテ アノニム) 進歩した多孔性炭素質材料およびそれらの調製方法
RU2648387C1 (ru) * 2016-12-15 2018-03-26 Публичное акционерное общество "Газпром" Адсорбционный газовый терминал
CN106423104A (zh) * 2016-12-22 2017-02-22 安徽乐金环境科技有限公司 甲醛吸附剂及其制备方法
JP2021515699A (ja) * 2017-05-26 2021-06-24 モナシュ ユニバーシティー 炭素モノリス及び炭素モノリスの製造方法
WO2019025544A1 (en) 2017-08-02 2019-02-07 Solvay Sa METHOD FOR FORMING AN ADSORBENT CARBON SHAPED BODY AND SHAPED CRUDE BODY AND ADSORBENT CARBON BODIES OBTAINED THEREFROM
US11098402B2 (en) 2017-08-22 2021-08-24 Praxair Technology, Inc. Storage and delivery of antimony-containing materials to an ion implanter
US10837603B2 (en) * 2018-03-06 2020-11-17 Entegris, Inc. Gas supply vessel
CN109012600A (zh) * 2018-09-17 2018-12-18 天津市职业大学 一种活性炭负载的锂离子筛填料及其制备和应用方法
JPWO2020196491A1 (zh) * 2019-03-27 2020-10-01
KR102660643B1 (ko) * 2019-05-24 2024-04-26 엔테그리스, 아이엔씨. 유기금속 증기를 흡착하기 위한 방법 및 시스템
CN116391090A (zh) * 2020-10-23 2023-07-04 恩特格里斯公司 具有高纯度输送气体的吸附型储运容器和相关方法
KR20230125003A (ko) * 2020-12-23 2023-08-28 엔테그리스, 아이엔씨. 가스 저장 시스템 및 가스 저장 방법
KR20240064008A (ko) * 2021-09-29 2024-05-10 엔테그리스, 아이엔씨. 고순도 기체 전달을 위한 흡착제-유형 저장 및 전달 용기 및 관련 방법
CN115957717A (zh) * 2022-12-20 2023-04-14 张家港安储科技有限公司 一种单块多孔无机材料吸附剂及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376609A (en) * 1993-08-23 1994-12-27 Corning Incorporated Activated carbon bodies having bentonite and cellulose fibers
US5416056A (en) * 1993-10-25 1995-05-16 Westvaco Corporation Production of highly microporous activated carbon products
US5518528A (en) * 1994-10-13 1996-05-21 Advanced Technology Materials, Inc. Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds

Family Cites Families (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US240423A (en) 1881-04-19 Alexander james
US1608155A (en) 1920-08-02 1926-11-23 American Solvent Recovery Corp Means for transporting and storing gases
US1714245A (en) 1927-12-23 1929-05-21 American Signs Corp Gas-purifying trap and method of restoring same
US2356334A (en) 1941-12-18 1944-08-22 Hooker Electrochemical Co Means for storing and concentrating anhydrous hydrogen chloride
US2450289A (en) 1944-04-15 1948-09-28 Little Inc A Gas treating apparatus
US2663626A (en) 1949-05-14 1953-12-22 Pritchard & Co J F Method of storing gases
BE532054A (zh) 1953-09-25 1900-01-01
US3287432A (en) 1957-04-11 1966-11-22 Texaco Inc Selective sorption process
US3093564A (en) 1957-10-21 1963-06-11 Westinghouse Electric Corp Gas handling systems for radioactive gases
US3080307A (en) 1957-10-21 1963-03-05 Westinghouse Electric Corp Radioactive fluid handling system
NL241272A (zh) 1958-07-14
US2997371A (en) 1958-12-01 1961-08-22 Standard Oil Co Recovering of bf3 from admixture with hydrocarbons
US3116132A (en) 1960-01-22 1963-12-31 Olin Mathieson Process for the adsorption and desorption of diborane
US3006153A (en) 1960-08-29 1961-10-31 Union Carbide Corp Method and apparatus for storing and transporting ozone
US3144200A (en) 1962-10-17 1964-08-11 Clyde E Taylor Process and device for cryogenic adsorption pumping
US3264803A (en) 1963-01-21 1966-08-09 Gen Electric Sorption vacuum pump
US3415069A (en) 1966-10-31 1968-12-10 Nasa High pressure helium purifier
US3469375A (en) 1967-10-16 1969-09-30 Nasa Sorption vacuum trap
US3539467A (en) 1967-11-30 1970-11-10 Kewanee Oil Co Hot briquetting and oxidation of coal-pitch mixtures in preparing activated carbon
BE755109A (fr) 1969-08-22 1971-02-01 Patent Protection Ltd Procede d'agglomeration de matieres adsorbantes ou absorbantes en particules
US3675392A (en) 1970-01-30 1972-07-11 Ite Imperial Corp Adsorption-desorption method for purifying sf{11
US3884830A (en) 1971-04-07 1975-05-20 Calgon Corp Controlled selectivity activated carbon
US3713273A (en) 1971-05-03 1973-01-30 R Coffee Method and apparatus for storing gases and fueling internal combustion engines
US3719026A (en) 1971-06-01 1973-03-06 Zeochem Corp Selective sorption of non-polar molecules
US3912472A (en) 1971-12-29 1975-10-14 Farr Co Air filter for gaseous pollutants
US3788036A (en) 1972-07-26 1974-01-29 D Stahl Pressure equalization and purging system for heatless adsorption systems
US4023701A (en) 1974-03-04 1977-05-17 Dockery Denzel J Breathing apparatus for underwater use
US4139416A (en) 1975-01-21 1979-02-13 Centro Sperimentale Metallurgico S.P.A. Carbonaceous material with high characteristics of surface area and activity and process for producing the same
US4082694A (en) 1975-12-24 1978-04-04 Standard Oil Company (Indiana) Active carbon process and composition
US4343770A (en) 1977-12-19 1982-08-10 Billings Energy Corporation Self-regenerating system of removing oxygen and water impurities from hydrogen gas
US4263018A (en) 1978-02-01 1981-04-21 Greene & Kellogg Pressure swing adsorption process and system for gas separation
JPS5573315A (en) 1978-11-25 1980-06-03 Toyota Motor Corp Canister for automobile
US4302224A (en) 1979-10-12 1981-11-24 Greene & Kellogg, Inc. Compact oxygen concentrator
NL8005645A (nl) 1980-10-13 1982-05-03 Euratom Werkwijze voor het omkeerbaar opsluiten van gassen of dampen in een natuurlijk of synthetisch zeoliet.
US4378982A (en) 1981-08-28 1983-04-05 Greene & Kellogg, Inc. Compact oxygen concentrator
US4540678A (en) 1982-09-07 1985-09-10 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
US4526887A (en) * 1983-03-16 1985-07-02 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
US4528281A (en) 1983-03-16 1985-07-09 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
JPS6071040A (ja) 1983-09-27 1985-04-22 Takeda Chem Ind Ltd 有害ガス吸着剤
JPS60150831A (ja) * 1984-01-20 1985-08-08 Agency Of Ind Science & Technol 微細細孔を有する炭素系吸着材の製造方法
IT1178519B (it) 1984-09-28 1987-09-09 Alusuisse Italia Spa Procedimento per la produzione di corpi carboniosi
FR2580947B1 (fr) 1985-04-25 1989-09-01 Air Liquide Procede et installation d'epuration par adsorption sur charbon actif, et pot adsorbeur correspondant
US4788973A (en) 1986-05-13 1988-12-06 John Kirchgeorg Gas dispensing system and case therefor
DE3618426C1 (de) 1986-05-31 1987-07-02 Bergwerksverband Gmbh Verfahren zur Herstellung von Kohlenstoffmolekularsieben
US5151395A (en) 1987-03-24 1992-09-29 Novapure Corporation Bulk gas sorption and apparatus, gas containment/treatment system comprising same, and sorbent composition therefor
US4749384A (en) 1987-04-24 1988-06-07 Union Carbide Corporation Method and apparatus for quick filling gas cylinders
US4738693A (en) 1987-04-27 1988-04-19 Advanced Technology Materials, Inc. Valve block and container for semiconductor source reagent dispensing and/or purification
US4723967A (en) 1987-04-27 1988-02-09 Advanced Technology Materials, Inc. Valve block and container for semiconductor source reagent dispensing and/or purification
US4744221A (en) 1987-06-29 1988-05-17 Olin Corporation Zeolite based arsine storage and delivery system
DE3729517A1 (de) 1987-09-03 1989-03-16 Siemens Ag Adsorptionseinrichtung zur gastrennung
JPH01131015A (ja) 1987-11-13 1989-05-23 Toyota Motor Corp モノリス活性炭
DE3741625A1 (de) * 1987-12-04 1989-06-15 Hydrid Wasserstofftech Druckbehaelter fuer die speicherung von wasserstoff
US4957897A (en) * 1988-01-29 1990-09-18 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers
GB8812643D0 (en) * 1988-05-27 1988-06-29 Boc Group Plc Apparatus for separation of gas mixtures
US4967934A (en) 1988-06-07 1990-11-06 Andonian Martin D Pack of high pressure gas containers
US4830643A (en) 1988-07-13 1989-05-16 W. L. Gore & Associates, Inc. Expanded polytetrafluoroethylene tubular container
GB8828912D0 (en) * 1988-12-10 1989-01-18 Emi Plc Thorn Frequency measurement
DE3843313A1 (de) 1988-12-22 1990-06-28 Wacker Chemitronic Verfahren zur entfernung von gasfoermigen kontaminierenden, insbesondere dotierstoffverbindungen aus halogensilanverbindungen enthaltenden traegergasen
US5110328A (en) * 1989-06-07 1992-05-05 Kabushiki Kaisha Kobe Seiko Sho Solvent adsorber and solvent recovery system
FR2652346B1 (fr) 1989-09-22 1991-11-29 Air Liquide Procede de preparation de disilane.
US5112367A (en) 1989-11-20 1992-05-12 Hill Charles C Fluid fractionator
US5202096A (en) 1990-01-19 1993-04-13 The Boc Group, Inc. Apparatus for low temperature purification of gases
FR2659030B1 (fr) 1990-03-02 1993-01-08 Air Liquide Enceinte et installation d'absorption pour separation des melanges gazeux.
US5071820A (en) 1990-05-25 1991-12-10 Atlanta Gas Light Company Carbonaceous material with high micropore and low macropore volume and process for producing same
EP0492081A1 (en) * 1990-12-24 1992-07-01 Corning Incorporated Activated carbon structures
US5171373A (en) * 1991-07-30 1992-12-15 At&T Bell Laboratories Devices involving the photo behavior of fullerenes
DE4130484A1 (de) * 1991-09-13 1993-03-18 Bayer Ag Verfahren zum nachbleichen gefaerbter rohcellulose
US5213769A (en) 1991-10-30 1993-05-25 Whitlock Walter H Mixture forming method and apparatus
US5238469A (en) 1992-04-02 1993-08-24 Saes Pure Gas, Inc. Method and apparatus for removing residual hydrogen from a purified gas
US5512087A (en) 1992-05-12 1996-04-30 Newport Petroleum Petroleum vapor control apparatus
FR2695568B1 (fr) 1992-09-14 1994-10-21 Air Liquide Procédé et installation de séparation de gaz par perméation.
EP0662070B1 (en) * 1992-09-28 1997-12-29 AlliedSignal Inc. Storage of hydrogen
GB9220975D0 (en) 1992-10-06 1992-11-18 Air Prod & Chem Apparatus for supplying high purity gas
US5372619A (en) 1992-10-14 1994-12-13 Ucar Carbon Technology Corporation Method for storing methane using a halogenating agent treated activated carbon
JPH0775734A (ja) * 1993-06-18 1995-03-20 Hitachi Plant Eng & Constr Co Ltd 空気浄化剤の製造方法
US5965483A (en) 1993-10-25 1999-10-12 Westvaco Corporation Highly microporous carbons and process of manufacture
US5710092A (en) 1993-10-25 1998-01-20 Westvaco Corporation Highly microporous carbon
JPH07124468A (ja) 1993-11-01 1995-05-16 Nissan Motor Co Ltd 炭化水素吸着材および吸着触媒の製造方法
US5417742A (en) 1993-12-03 1995-05-23 The Boc Group, Inc. Removal of perfluorocarbons from gas streams
FR2714595B1 (fr) 1993-12-30 1996-02-02 Oreal Emulsion eau dans huile contenant du rétinol, son utilisation et son conditionnement.
US5549736A (en) 1994-01-19 1996-08-27 Litton Systems, Inc. Modular, stackable pressure swing absorption concentrator
US5674462A (en) * 1994-07-25 1997-10-07 Calgon Carbon Corporation Method for the removal of non-metal and metalloid hydrides
US6132492A (en) 1994-10-13 2000-10-17 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same
US5704967A (en) * 1995-10-13 1998-01-06 Advanced Technology Materials, Inc. Fluid storage and delivery system comprising high work capacity physical sorbent
US5707424A (en) 1994-10-13 1998-01-13 Advanced Technology Materials, Inc. Process system with integrated gas storage and delivery unit
US6030698A (en) * 1994-12-19 2000-02-29 Lockheed Martin Energy Research Corporation Activated carbon fiber composite material and method of making
US5851403A (en) * 1995-01-04 1998-12-22 Northrop Grumman Corporation Ceramic honeycomb and method
JP3208272B2 (ja) * 1995-01-11 2001-09-10 ダイセル化学工業株式会社 フィルター材料およびその製造方法
US5972834A (en) * 1995-04-27 1999-10-26 Nippon Sanso Corporation Carbon adsorbent, manufacturing method therefor, gas separation method and device therefor
US5658372A (en) 1995-07-10 1997-08-19 Corning Incorporated System and method for adsorbing contaminants and regenerating the adsorber
AU714062B2 (en) * 1995-08-23 1999-12-16 Syracuse University Composite microporous carbons for fuel gas storage
GB9522476D0 (en) * 1995-11-02 1996-01-03 Boc Group Plc Method and vessel for the storage of gas
US5902562A (en) 1995-12-21 1999-05-11 Sandia Corporation Method for the preparation of high surface area high permeability carbons
US5744421A (en) 1996-02-13 1998-04-28 Mega-Carbon Company Monolithic carbonaceous article
US5846639A (en) 1996-02-13 1998-12-08 Mega-Carbon Company Monolithic activated carbon
US6171373B1 (en) 1996-04-23 2001-01-09 Applied Ceramics, Inc. Adsorptive monolith including activated carbon, method for making said monolith, and method for adsorbing chemical agents from fluid streams
US5914294A (en) 1996-04-23 1999-06-22 Applied Ceramics, Inc. Adsorptive monolith including activated carbon and method for making said monlith
US5961697A (en) 1996-05-20 1999-10-05 Advanced Technology Materials, Inc. Bulk storage and dispensing system for fluids
CN1128652C (zh) * 1996-05-20 2003-11-26 高级技术材料公司 包含高工作量的物理吸附剂的流体贮藏和分送系统
US5917140A (en) 1996-05-21 1999-06-29 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing vessel with enhanced heat transfer means
JP3847379B2 (ja) * 1996-08-27 2006-11-22 富士写真フイルム株式会社 磁気記録媒体
US5972253A (en) 1996-09-30 1999-10-26 University Of Kentucky Research Foundation Preparation of monolithic carbon fiber composite material
US6187713B1 (en) 1996-10-31 2001-02-13 Corning Incorporated Method of making activated carbon bodies having improved adsorption properties
US5676735A (en) 1996-10-31 1997-10-14 Advanced Technology Materials, Inc. Reclaiming system for gas recovery from decommissioned gas storage and dispensing vessels and recycle of recovered gas
JPH10180092A (ja) * 1996-12-24 1998-07-07 Ootake Seramu Kk 焼結積層吸着体およびその製造法
CA2248218A1 (en) * 1997-01-09 1998-07-16 Nippon Sanso Corporation Porous carbon stock material and method of manufacturing same
US6309446B1 (en) * 1997-02-17 2001-10-30 Kanebo, Ltd. Activated carbon for adsorptive storage of gaseous compound
JP3021412B2 (ja) * 1997-02-17 2000-03-15 高千穂化学工業株式会社 気体の貯蔵・送出方法及び気体の貯蔵・送出装置
US5912424A (en) * 1997-03-31 1999-06-15 Lockheed Martin Energy Research Corporation Electrical swing adsorption gas storage and delivery system
US6019823A (en) * 1997-05-16 2000-02-01 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing vessel with replaceable sorbent cartridge members
US5851270A (en) * 1997-05-20 1998-12-22 Advanced Technology Materials, Inc. Low pressure gas source and dispensing apparatus with enhanced diffusive/extractive means
US5914284A (en) * 1997-08-04 1999-06-22 Heuer; Kenneth System for generating methane gas from sewer sludge and process utilizing same
DE19745549C2 (de) * 1997-10-10 1999-11-04 Mannesmann Ag Gasspeicher
US6156697A (en) 1997-11-04 2000-12-05 Corning Incorporated Method of producing high surface area carbon structures
JP3592636B2 (ja) * 1998-02-17 2004-11-24 カネボウ株式会社 気体化合物吸着貯蔵用活性炭
US6670304B2 (en) * 1998-03-09 2003-12-30 Honeywell International Inc. Enhanced functionalized carbon molecular sieves for simultaneous CO2 and water removal from air
US6453924B1 (en) * 2000-07-24 2002-09-24 Advanced Technology Materials, Inc. Fluid distribution system and process, and semiconductor fabrication facility utilizing same
US6406519B1 (en) * 1998-03-27 2002-06-18 Advanced Technology Materials, Inc. Gas cabinet assembly comprising sorbent-based gas storage and delivery system
US6101816A (en) 1998-04-28 2000-08-15 Advanced Technology Materials, Inc. Fluid storage and dispensing system
US6475411B1 (en) * 1998-09-11 2002-11-05 Ut-Battelle, Llc Method of making improved gas storage carbon with enhanced thermal conductivity
US6090477A (en) * 1998-09-11 2000-07-18 Ut-Battelle, Llc Gas storage carbon with enhanced thermal conductivity
US6155289A (en) 1999-05-07 2000-12-05 International Business Machines Method of and system for sub-atmospheric gas delivery with backflow control
US6521019B2 (en) * 1999-07-23 2003-02-18 The Boc Group, Inc. Air separation using monolith adsorbent bed
JP3759372B2 (ja) * 1999-09-08 2006-03-22 東京瓦斯株式会社 活性炭の製造方法
US6225257B1 (en) 1999-09-14 2001-05-01 Niagara Mohawk Power Corporation Post-carbonization treatment of microporous carbons for enhancement of methane and natural gas storage properties
AU2000260133A1 (en) 2000-06-07 2001-12-17 Chemisar Laboratories Process for storage, transmission and distribution of gaseous fuel
US6626981B2 (en) * 2000-07-07 2003-09-30 Advanced Fuel Research, Inc. Microporous carbons for gas storage
JP2002102689A (ja) * 2000-07-27 2002-04-09 Mitsubishi Chemicals Corp 炭素質吸着剤
US6500238B1 (en) * 2000-08-10 2002-12-31 Advanced Technology Materials, Inc. Fluid storage and dispensing system
US20020073847A1 (en) * 2000-12-15 2002-06-20 Sheline Matthew R. Cell within a cell monolith structure for an evaporative emissions hydrocarbon scrubber
DE10104882B4 (de) * 2001-02-01 2005-01-05 Helsa-Werke Helmut Sandler Gmbh & Co. Kg Aktivkohleformkörper, Verfahren zu dessen Herstellung, dessen Verwendung sowie Verfahren zur Regeneration desselben
TW541200B (en) * 2001-04-04 2003-07-11 Kuraray Chemical Kk Filter element, process for producing it and filter using the element
US6592653B2 (en) * 2001-11-12 2003-07-15 Advanced Technology Materials, Inc. Fluid storage and delivery system utilizing low heels carbon sorbent medium
US6764755B2 (en) * 2001-12-17 2004-07-20 Advanced Technology Materials, Inc. Channelized sorbent media, and methods of making same
DE10203959A1 (de) * 2002-02-01 2003-08-14 Delphi Technologies Inc N D Ge Speichervorrichtung
JP4393747B2 (ja) * 2002-04-18 2010-01-06 株式会社キャタラー 燃料蒸気吸着剤
US6991671B2 (en) * 2002-12-09 2006-01-31 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US7494530B2 (en) * 2002-12-10 2009-02-24 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US6743278B1 (en) * 2002-12-10 2004-06-01 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US6739718B1 (en) * 2003-06-18 2004-05-25 Man-Young Jung Visor sunglasses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376609A (en) * 1993-08-23 1994-12-27 Corning Incorporated Activated carbon bodies having bentonite and cellulose fibers
US5416056A (en) * 1993-10-25 1995-05-16 Westvaco Corporation Production of highly microporous activated carbon products
US5518528A (en) * 1994-10-13 1996-05-21 Advanced Technology Materials, Inc. Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds

Also Published As

Publication number Publication date
AU2003293346A8 (en) 2004-06-30
KR20110043672A (ko) 2011-04-27
US20040185254A1 (en) 2004-09-23
TWI386587B (zh) 2013-02-21
KR101135452B1 (ko) 2012-04-13
JP6214881B2 (ja) 2017-10-18
EP1569738A4 (en) 2006-11-02
JP2012081472A (ja) 2012-04-26
TW201627582A (zh) 2016-08-01
KR101137461B1 (ko) 2012-04-20
CN1723072A (zh) 2006-01-18
MY146174A (en) 2012-07-13
WO2004053383A3 (en) 2005-02-17
TWI591269B (zh) 2017-07-11
JP2009008266A (ja) 2009-01-15
US20060011064A1 (en) 2006-01-19
EP2614875A3 (en) 2013-07-24
JP2006509974A (ja) 2006-03-23
KR101135453B1 (ko) 2012-04-16
TW200925486A (en) 2009-06-16
US7455719B2 (en) 2008-11-25
AU2003293346A1 (en) 2004-06-30
JP2013139878A (ja) 2013-07-18
JP2016052655A (ja) 2016-04-14
TW201314065A (zh) 2013-04-01
TWI521149B (zh) 2016-02-11
EP2614875A2 (en) 2013-07-17
KR20050085522A (ko) 2005-08-29
EP1569738B1 (en) 2014-07-23
SG10201604686PA (en) 2016-07-28
WO2004052507A1 (en) 2004-06-24
EP1569738A1 (en) 2005-09-07
SG2011091535A (en) 2015-06-29
CN101144566A (zh) 2008-03-19
TW201333362A (zh) 2013-08-16
SG156534A1 (en) 2009-11-26
US6743278B1 (en) 2004-06-01
US6939394B2 (en) 2005-09-06
TWI579485B (zh) 2017-04-21
US20040107838A1 (en) 2004-06-10
TW200420853A (en) 2004-10-16
SG10201402125XA (en) 2014-09-26
JP5875373B2 (ja) 2016-03-02
TWI412682B (zh) 2013-10-21
AU2003293344A1 (en) 2004-06-30
KR20080096812A (ko) 2008-11-03
CN100349640C (zh) 2007-11-21
WO2004053383A2 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
CN101144566B (zh) 具有单块碳吸附剂的气体储存和分配系统
US9518701B2 (en) Gas storage and dispensing system with monolithic carbon adsorbent
US7494530B2 (en) Gas storage and dispensing system with monolithic carbon adsorbent

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ANGES INC.

Free format text: FORMER OWNER: ADVANCED TECHNOLOGY MATERIALS, INC.

Effective date: 20150519

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150519

Address after: Massachusetts, USA

Patentee after: MYKROLIS Corp.

Address before: American Connecticut

Patentee before: Advanced Technology Materials, Inc.

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: ENTEGRIS, Inc.

Address before: Massachusetts, USA

Patentee before: MYKROLIS Corp.

CX01 Expiry of patent term

Granted publication date: 20100609

CX01 Expiry of patent term