US3287432A - Selective sorption process - Google Patents

Selective sorption process Download PDF

Info

Publication number
US3287432A
US3287432A US201204A US20120462A US3287432A US 3287432 A US3287432 A US 3287432A US 201204 A US201204 A US 201204A US 20120462 A US20120462 A US 20120462A US 3287432 A US3287432 A US 3287432A
Authority
US
United States
Prior art keywords
straight chain
zeolite
chain hydrocarbon
manganese
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US201204A
Inventor
Eugene E Sensel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US201204A priority Critical patent/US3287432A/en
Application granted granted Critical
Publication of US3287432A publication Critical patent/US3287432A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves

Definitions

  • This invention relates to an improved process for separating straight chain hydrocarbon from non-straight chain hydrocarbon in a mixture thereof, and to a manganese-containing zeolite effective in said process.
  • straight chain hydrocarbon any aliphatic or acyclic or open chain hydrocarbon which does not possess side chain branching.
  • Representative straight chain hydrocarbons are lthe normal parans and the normal olens, mono or polyolefins, or straight chain acetylenic hydrocarbons.
  • the non-straight chain hydrocarbons comprise the aromatic and naphenic hydrocarbons as well as the isoparans, isoolenic hydrocarbons, and the like.
  • Straight chain hydrocarbon-containing mixtures which are suitably treated in accordance with this invention include mixed butanes, mixtures of normal alkanes and their isomers, and Various petroleum fractions such as naphtha fraction, a gasoline fraction, a diesel oil fraction, a kerosene fraction, a gas oil fraction and the like.
  • Particularly suitable for treatment in accordance with this invention are straight chain hydrocarbon-containing fractions having a boiling point or a boiling range in the range of 40-550" F. and containing a substantial amount of straight chain hydrocarbons, e.g., 2-35% by volume.
  • a petroleum fraction suitable for use in practice of this invention could have an initial boiling point in the range of 40-300 F. and an end point in the range of 15G-550 F.
  • a petroleum fraction for use in the practice of this invention must contain both straight chain and non-straight chain hydrocarbons as demonstrated by the following composition:
  • Hydrocarbon type Percent by volume
  • Typical refinery stocks or fractions which are applicable to the practice of this invention are a wide boiling straight run naphtha, a light straight run naphtha, a heavy straight run naphtha, a catalytically cracked naphtha, a thermally cracked or thermally reformed naphtha, a catalytically reformed naphtha and the like.
  • a synthetic sodium calcium alumino-silicate, a dehydrated crystalline zeolite, having a ratio of calcium to sodium (measured as a molecular ratio of calcium oxide to sodium oxide) between about 2:1 and about 4:1 and designated in the trade as Linde 5A molecular sieve, has been proposed for separating certain straight chain hydrocarbons from non-straight chain hydrocarbons in a gasiform mixture thereof.
  • the empirical formula for such sodium calcium aluminosilicate, in dehydrated state can be Written (ca, Napomzoszsio,
  • This sorbent can be made by exchanging calcium for some of the sodium in the sodium form of the type A Fice zeolite, then removing crystal water.
  • Properties and structure of the type A zeolite are described in the articles of Breek et al. and Reed et al. which appear on pages 5963-5977 of the Journal of the American Chemical Society, No. 23, volume 78.
  • the formula (less crystal water) represented for the sodium form of the type A zeolite in the above-mentioned articles is N312 (A102) 12- (SOa) 12 which is a multiple of six of the empirical mineralogical oxide formula Na2O.Al2O3.2SiO2.
  • Capacity and selectivity of said 5A molecular sieve for straight chain hydrocarbons are good, c g., approximately 40-45 cc. of normal butane per gram of this mineral sorbent at temperature of F. and pressure of 760 mm. Hg as against approximately l to 3 cc. of isobutane per gram of the sorbent under the same conditions.
  • this mineral sorbent becomes, for all practical purposes, saturated (i.e., it has no more capacity for a gaseous normal paraffin such as normal butane or those of higher molecular weight) after a contact time of about l5 minutes with the straight chain hydrocarbon vapor. Furthermore, it takes almost 5 minutes to reach 90% of saturation of this sorbent with normal butane at room temperature and atmospheric pressure.
  • Efficiency of a plant for separation of straight from non-straight hydrocarbon using the contacting process outlined above is a function of the mineral sorbents selectivity for, and sorbing and desorbing rates for the straight chain hydrocarbons in process. This becomes particularly evident in the instance of a fixed bed contacting plant wherein a substantial shortening of the sorbing phase of the operating cycle coupled with only a small reduction in capacity of the mineral sorbent for straight chain hydrocarbons will permit a greater number of operating cycles a day and, consequently, will increase the production significantly.
  • I iind that I can obtain 80-95% of saturation capacity of said zeolite for a straight chain hydrocarbon or hydrocarbons present in a very short time, generally in substantially less than 4 minutes, e.g., 1-3 minutes, and usually in a time as short as l-2 minutes, or even less.
  • the preferred manganese-containing sorbents of my invention are most conveniently prepared by exchanging manganese for sodium in the hydrated sodium form of the type A zeolite, Na2O.Al2O3.2SiO2.4.5HZO, for example, by agitating such hydrated parent zeolite for 1/2 to 12 hours in a 0.1 to N aqueous manganese salt solution, discarding the salt solution, and repeating the treatment with fresh solution until the necessary proportion of the sodium originally present in the structure has been replaced by manganese.
  • Operating at room temperature and pressure tive changes of aqueous 1 N manganese chloride are usually adequate to obtain sufficient manganese substitution for purposes of practicing my invention. After calcining or otherwise ridding the resultant sorbent of Water, it is receptive to straight chain hydrocarbons.
  • a hydrated sodium-calcium form of the type A zeolite e.g., the Linde 5A molecular sieve, or a hydrated sodium-lithium or hydrated sodium-potassium form of the type A zeolite, can be treated with a manganese salt solution in a similar manner to produce a similarly useful type A zeolite having 0.25-0.95 of its exchangeable cation content of divalent manganese.
  • the fraction of exchangeable cation content referred to herein is computed as the ratio of the number of equivalents of divalent manganese to the sum of the equivalent of all the exchangeable metals, eg., Mn++, Na+, Li+, K+, Ca++ etc., in the resulting type A structure.
  • manganese salts useful in the ion exchanging are manganese nitrate, chloride, bromide, iodide, fluosilicate, formate, and sulfate.
  • the parent sodium form of the type A zeolite can be made by the processes shown in the following U.S. patent applications, both of which are assigned to The Texas Company: Sensel, Serial No. 617,734, now U.S. Patent N o. 2,841,471 and Estes, Serial No. 6l7,735, now U.S. Patent No. 2,847,280, both filed on October 23, 1956.
  • FIGURE 11 of the drawing shows curves plotted from experimental results finding the percentage of saturation (ultimate capacity) obtained with n-butane at room temrperature (75 F.) and atmospheric pressure for various contact times lof .the nJbutane with two selective mineral sonbents, one (Ca2, Na)O.Al2O3.2SiO2, i.e., the Linde 5A molecular sieve, wherein the ratio of Ca to Nag Was about 3:1, 'and the other a typical sodium-manganese type A zeolite of this invention wherein 39% of the exchangeable cation content in the structure -Was divalent manganese.
  • FIGURE 2 shows curves plotted from experimental results finding straight and non-straight chain :hydrocarbon capacity and selectivity characteristics at about room temperature (75 F.) and atmospheric pressure for type A zeolites wherein the content of divalent lmanganese in the zeolite was varied over a wide range.
  • these manganesecontainin-g type A zeolites are made most conveniently and preferably ilzvy exchanging a portion lof Na+ ions for Mn++ ions in the sodium [60mn of the type A zeolite, the test zeoli-tes were made that way and the x axis indicates the percentage of sodium replaced by manganese in the type A structure.
  • the capacities of the manganese-containing ty-pe A zeolites for the non-straight chain hydrocarbon, isofbutane, and the straight chain hydrocarbons, normal butane and ethane, are indicated on the y axis.
  • hydrocarbons are representa-tive of the two broad classes of hydrocarbons forpurposes of this invention, namely straight-chain and non-straight chain hydrocanbons, and that hydrocarbons ⁇ of higher molecular weight, e.'g., up to about 550 F. nunmal boiling point, can fbe treated similarly except with the reservation that temperature and/or pressure conditions must tbe such 'that the hydrocarbons are in vapor phase for sonption.
  • a convenient and rapid 'Way to chan-ge from sor-hing conditions to describing conditions in the practice of my process is rto operate essentially isothermally at a temperature ffnom about 50 to about ⁇ 800" F. and to sonb under a pressure of Ito 2000 p.s.i.1g., then to desonb at lower pressure in the range from 0 to 100 p.s.i.
  • Such operation is described in U.S. Patent No. 2,859,256, of Hess et al., also assigned to The Texas Company.
  • the pnocess vorf -my invention can also be operated wherein temperature of sorbin-g contact is 'between 50 and 500 F. and is raised for desorption.
  • desorption can Ibe done at a temperature substantially' above, and at a pressure substantially lbelow fthe s'oribing temperature and pressure to drive off soi-bed straight chain hydrocarbons.
  • Describing can be done advantageously by using a swbatmospheric pressure, eig., 10 to 25 inches of Hg absolute, and/ or a sweep of low molecular weight gas, eig., hydrogen, nitrogen, isopentane, or methane to help drive oi described straight chain hydrocarbon vapors from the mineral sorbent.
  • a type A zeolite in which 37% of the exchangeable ca-tion content was manganese was made as follows: 50 ,grams of pelleted and dehydrated sodium form tof the type A zeolite, marketed as Linde 4A molecular sieve, was allowed to soak tor 38 'hours at 200 F. in 60 cc. of 3 N aqueous MnCl2 solution. The exchanged zeolite was washed with water and dehydrated at about 575 F. for two hours to prepare it for sorption of straight chain hydrocarbons.
  • a manganese-calcium-sodium form of type A zeolite was made as follows: '30 grams of granular dehydrated calcium-sodium form of t-ype A zeolite was allowed to soak in 72 cc. of 4.5 N aqueous MnCl2 solution at 200 F. for 184 hours. The ygranules were washed thoroughly 'with Wa-ter and dehydrated .to remove zeolitic water. Chemical analysis of the product zeolite indicated a for-.mula (dehydratedv state) as follows: (0.5Mn, 0.35Ca, 0.15Na2)O.A12O3.2SiO2. Capacity of the product at 75 F. and atmospheric pressure, found by test, was 45 cc. of ethane per gram, 39 cc. of n-butane per gram, and 4 cc. of isobutane per gram.
  • a typical hydrocarbon separation contemplated with my manganese-containing formof type A zeolitie is the removal of straight chain hydrocarbons :from stabilized, catalytically reformed motor naphtha, such naphtha having characteristics, for example, of API gravity, 48.8; refractive index (20 C./4 C.), about 1.444; ASTM distillation IBP., 126 F. and EP., 377 F.; and ASTM research clear octane rating, 87.1.
  • the naph-tha in vapor form is passed through a first lbed of my manganese-containing type A zeolite in -pelleted form at temperature of about 750 F., and under pressure of about 350 p.s..g. for 2 minutes.
  • the zeolite has 35- 70% of its exchangeable cation content manganese with balance of sodium. Saturation of the pellets with straight chain hydrocarbon components is .tiren about 85% complete.
  • the unsorbed naphtha vapors emerge from the bed low in the straight chain hydrocarbon content which detracts from the octane rating of the feed stock. At this point the naphtha feed is shunte-d t-o another similar sorbent bed.
  • a stream of recycle hydrogen from catalytic reforming of the feed napfhtha is passed through the rst bed, briefly under elevated pressure to purge the vessel of unsorbed material. Then -the pressure on the tirst lbed is reduced to O p.s.i.
  • the effluent vapors from the desorbing operation are used as part of the recycle feed to the naphtha reforming process.
  • Process for ⁇ the separation of a straight chain hydrocarbon from a n-on-straight chain Ihydrocarbon in admixture therewith which comprises contacting said admix- .ture in vapor phase with a dehydrated crystalline Zeolite of type A structure having 0.25 to 0:95 of its exchange- ⁇ able cation content as divalent manganese to adsonb said straight chain hydrocarbon therefrom, discontinuing said contact when about Ito albout 95% of the saturation capacity of said crystalline zeolites or said straight chain hydrocanbon is reached, desorbing said yadsorbed straight chain hydrocarbon, discontinuing ⁇ said desonbing when about 80-90% of the adsorbed straight chain hydrocarbon has been described and repeating said contacting and desorbing steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

NOV- 22, 1966 E. E. sENsEl. 3,287,432
SELECTIVE soRPTIoN PRocEss Original Filed April l1, 1957 peren/age United States Patent O 6 Claims. (cl. 26o-676) This application is a division of my copending patent application Serial No. 652,147 filed April 11, 1957, now abandoned. v
This invention relates to an improved process for separating straight chain hydrocarbon from non-straight chain hydrocarbon in a mixture thereof, and to a manganese-containing zeolite effective in said process.
By straight chain hydrocarbon is meant any aliphatic or acyclic or open chain hydrocarbon which does not possess side chain branching. Representative straight chain hydrocarbons are lthe normal parans and the normal olens, mono or polyolefins, or straight chain acetylenic hydrocarbons. The non-straight chain hydrocarbons comprise the aromatic and naphenic hydrocarbons as well as the isoparans, isoolenic hydrocarbons, and the like. Straight chain hydrocarbon-containing mixtures which are suitably treated in accordance with this invention include mixed butanes, mixtures of normal alkanes and their isomers, and Various petroleum fractions such as naphtha fraction, a gasoline fraction, a diesel oil fraction, a kerosene fraction, a gas oil fraction and the like. Particularly suitable for treatment in accordance with this invention are straight chain hydrocarbon-containing fractions having a boiling point or a boiling range in the range of 40-550" F. and containing a substantial amount of straight chain hydrocarbons, e.g., 2-35% by volume. More particularly, a petroleum fraction suitable for use in practice of this invention could have an initial boiling point in the range of 40-300 F. and an end point in the range of 15G-550 F. A petroleum fraction for use in the practice of this invention must contain both straight chain and non-straight chain hydrocarbons as demonstrated by the following composition:
Hydrocarbon type: Percent by volume Typical refinery stocks or fractions which are applicable to the practice of this invention are a wide boiling straight run naphtha, a light straight run naphtha, a heavy straight run naphtha, a catalytically cracked naphtha, a thermally cracked or thermally reformed naphtha, a catalytically reformed naphtha and the like.
Heretofore, a synthetic sodium calcium alumino-silicate, a dehydrated crystalline zeolite, having a ratio of calcium to sodium (measured as a molecular ratio of calcium oxide to sodium oxide) between about 2:1 and about 4:1 and designated in the trade as Linde 5A molecular sieve, has been proposed for separating certain straight chain hydrocarbons from non-straight chain hydrocarbons in a gasiform mixture thereof. Broadly, the empirical formula for such sodium calcium aluminosilicate, in dehydrated state, can be Written (ca, Napomzoszsio,
This sorbent can be made by exchanging calcium for some of the sodium in the sodium form of the type A Fice zeolite, then removing crystal water. Properties and structure of the type A zeolite are described in the articles of Breek et al. and Reed et al. which appear on pages 5963-5977 of the Journal of the American Chemical Society, No. 23, volume 78. The formula (less crystal water) represented for the sodium form of the type A zeolite in the above-mentioned articles is N312 (A102) 12- (SOa) 12 which is a multiple of six of the empirical mineralogical oxide formula Na2O.Al2O3.2SiO2. For purposes of simplicity I prefer to use the oxide sort of formula for describing the type A zeolite structure, but it will be understood that both vkinds of formulae are interchangeable for purposes of reference herein to zeolites of type A structure, and, where an oxide formula concluding with Al2O3.2SiO2 is used herein, the material being referred to is a type A zeolite.
Capacity and selectivity of said 5A molecular sieve for straight chain hydrocarbons are good, c g., approximately 40-45 cc. of normal butane per gram of this mineral sorbent at temperature of F. and pressure of 760 mm. Hg as against approximately l to 3 cc. of isobutane per gram of the sorbent under the same conditions. At room temperature and approximately atmospheric pressure this mineral sorbent becomes, for all practical purposes, saturated (i.e., it has no more capacity for a gaseous normal paraffin such as normal butane or those of higher molecular weight) after a contact time of about l5 minutes with the straight chain hydrocarbon vapor. Furthermore, it takes almost 5 minutes to reach 90% of saturation of this sorbent with normal butane at room temperature and atmospheric pressure.
It has been proposed, for example, to separate normal butane from isobutane as one typical operation with said 5A molecular sieve, and to separate higher normal parafiins land olefins from non-straight chain hydrocarbons in other operations by the process which comprises contacting the mixture of non-straight and straight chain hydrocarbons in vapor phase with said 5A molecular sieve, thereby selectively sorbing some of the straight chain hydrocarbon; withdrawing the resulting hydrocarbon mixture depleted of straight chain hydrocarbons; and desorbing sorbed straight chain hydrocarbon from the laden mineral sorbent to dit it for reuse. Alternating from sorption to desorption and vice-versa can be done very simply and rapidly by an essentially isothermal pressure swing technique. This technique is more fully described hereinafter.
Efficiency of a plant for separation of straight from non-straight hydrocarbon using the contacting process outlined above is a function of the mineral sorbents selectivity for, and sorbing and desorbing rates for the straight chain hydrocarbons in process. This becomes particularly evident in the instance of a fixed bed contacting plant wherein a substantial shortening of the sorbing phase of the operating cycle coupled with only a small reduction in capacity of the mineral sorbent for straight chain hydrocarbons will permit a greater number of operating cycles a day and, consequently, will increase the production significantly.
I have now found, in a process for separating straight chain from non-straight chain hydrocarbons in a mixture thereof, that use of a synthetic crystalline zeolite of type A structure having 0.25 to 0.95 of its exchangeable cation content as divalent manganese under certain controlled operating conditions hereinafter described can shorten significantly the sorbing time without a proportional sacrifice in sorbing capacity or any significant loss in selectivity. Viewed from one aspect, my invention permits the processing of a larger quantity of particular hydrocarbon 3 mixture to desired specifications with a given Weight of sorbent than has been possible heretofore. Thus, by contacting the hydrocarbon mixture with the aforementioned manganese-containing type A zeolite under vapor phase sorbing conditions, I iind that I can obtain 80-95% of saturation capacity of said zeolite for a straight chain hydrocarbon or hydrocarbons present in a very short time, generally in substantially less than 4 minutes, e.g., 1-3 minutes, and usually in a time as short as l-2 minutes, or even less.
As this sorption of the straight chain hydrocarbon is occurring, there is withdrawn from sorbing contact a hydrocarbon mixture containing a reduced amount of straight chain hydrocarbon. When 80-90% saturation of my zeolite with sorbed hydrocarbons has been eiected in Vthe aforesaid short time, the feed mixture of hydrocarbons is shut off, and the laden zcolite subjected to desorbing conditions whereby previously sorbed straight chain hydrocarbon is driven off and the zeolite made readily for another cycle.
Not only can sorbing be made materially faster using the above processing technique and said manganese-con taining type A zeolite (as compared to using the conventional sodium calcium alumino-silicate 5A molecular sieve), but also desorbing appears to proceed at a correspondingly faster rate under comparable desorbing conditions. For greatest processing throughput with a given amount of mineral sorbent, desorbing is advantageously discontinued when the zeolite contains straight chain hydrocarbon material from previous sorbing operations amounting to roughly l-20% of saturation capacity. Thus, in preferred operation both sorbing and desorbing is only 80-90% complete, but done very rapidly with short contact time.
While the hydrocarbon contacting operations with my sorbents are conducted preferably as a cyclic process with a fixed bed of sorbent particles, it is possible also to use moving or uidized bed contact. This is particularly true when the particles of sorbent are stabilized by methods described in the following U.S. patent applications, all of which are assigned to The Texas Company: Riordan et al., Serial N o. 544,244, tiled on November 1, 1955; Hess et al., Serial No. 544,185, tiled on November 1, 1955; and Ray, Serial No. 599,231, filed on July 20, 1956, now U.S. Patent No. 2,947,709.
The preferred manganese-containing sorbents of my invention are most conveniently prepared by exchanging manganese for sodium in the hydrated sodium form of the type A zeolite, Na2O.Al2O3.2SiO2.4.5HZO, for example, by agitating such hydrated parent zeolite for 1/2 to 12 hours in a 0.1 to N aqueous manganese salt solution, discarding the salt solution, and repeating the treatment with fresh solution until the necessary proportion of the sodium originally present in the structure has been replaced by manganese. Operating at room temperature and pressure tive changes of aqueous 1 N manganese chloride are usually adequate to obtain sufficient manganese substitution for purposes of practicing my invention. After calcining or otherwise ridding the resultant sorbent of Water, it is receptive to straight chain hydrocarbons.
Alternatively, a hydrated sodium-calcium form of the type A zeolite, e.g., the Linde 5A molecular sieve, or a hydrated sodium-lithium or hydrated sodium-potassium form of the type A zeolite, can be treated with a manganese salt solution in a similar manner to produce a similarly useful type A zeolite having 0.25-0.95 of its exchangeable cation content of divalent manganese. The fraction of exchangeable cation content referred to herein is computed as the ratio of the number of equivalents of divalent manganese to the sum of the equivalent of all the exchangeable metals, eg., Mn++, Na+, Li+, K+, Ca++ etc., in the resulting type A structure.
Among the manganese salts useful in the ion exchanging are manganese nitrate, chloride, bromide, iodide, fluosilicate, formate, and sulfate. The parent sodium form of the type A zeolite can be made by the processes shown in the following U.S. patent applications, both of which are assigned to The Texas Company: Sensel, Serial No. 617,734, now U.S. Patent N o. 2,841,471 and Estes, Serial No. 6l7,735, now U.S. Patent No. 2,847,280, both filed on October 23, 1956.
FIGURE 11 of the drawing shows curves plotted from experimental results finding the percentage of saturation (ultimate capacity) obtained with n-butane at room temrperature (75 F.) and atmospheric pressure for various contact times lof .the nJbutane with two selective mineral sonbents, one (Ca2, Na)O.Al2O3.2SiO2, i.e., the Linde 5A molecular sieve, wherein the ratio of Ca to Nag Was about 3:1, 'and the other a typical sodium-manganese type A zeolite of this invention wherein 39% of the exchangeable cation content in the structure -Was divalent manganese. Inspection of the ligure shows that the conventional zeolite attained only about 73% of saturation with the normal hydrocarbon in 2 minutes, whereas the manganese-containing zeolite of my invention attained about 88% |of sa-turation in 2 minutes. Ultimate capacity of the two scribe-nts for n-butane under the test conditions Was practically the same. N-butane siorbing rate characteristics for manganese-containing type A zeolites having lbroadly 0.25 to 0.95 of their exchangeable cation content as divalent manganese and corresponding to the 'above test zeolite are about the same. However, for economy and efficiency of preparation, those having 0.35-07 of the exchangeable cation content as divalent manganese are preferred.
FIGURE 2 shows curves plotted from experimental results finding straight and non-straight chain :hydrocarbon capacity and selectivity characteristics at about room temperature (75 F.) and atmospheric pressure for type A zeolites wherein the content of divalent lmanganese in the zeolite was varied over a wide range. As these manganesecontainin-g type A zeolites are made most conveniently and preferably ilzvy exchanging a portion lof Na+ ions for Mn++ ions in the sodium [60mn of the type A zeolite, the test zeoli-tes were made that way and the x axis indicates the percentage of sodium replaced by manganese in the type A structure. The capacities of the manganese-containing ty-pe A zeolites for the non-straight chain hydrocarbon, isofbutane, and the straight chain hydrocarbons, normal butane and ethane, are indicated on the y axis.
While the foregoing experimental work was done mainly wit-h butane and isoibutane, it will be understood that these two hydrocarbons are representa-tive of the two broad classes of hydrocarbons forpurposes of this invention, namely straight-chain and non-straight chain hydrocanbons, and that hydrocarbons `of higher molecular weight, e.'g., up to about 550 F. nunmal boiling point, can fbe treated similarly except with the reservation that temperature and/or pressure conditions must tbe such 'that the hydrocarbons are in vapor phase for sonption.
A convenient and rapid 'Way to chan-ge from sor-hing conditions to describing conditions in the practice of my process is rto operate essentially isothermally at a temperature ffnom about 50 to about `800" F. and to sonb under a pressure of Ito 2000 p.s.i.1g., then to desonb at lower pressure in the range from 0 to 100 p.s.i.|g. or even subatmospheric pressure. Such operation is described in U.S. Patent No. 2,859,256, of Hess et al., also assigned to The Texas Company.
The pnocess vorf -my invention can also be operated wherein temperature of sorbin-g contact is 'between 50 and 500 F. and is raised for desorption. Alternatively, desorption can Ibe done at a temperature substantially' above, and at a pressure substantially lbelow fthe s'oribing temperature and pressure to drive off soi-bed straight chain hydrocarbons. Describing can be done advantageously by using a swbatmospheric pressure, eig., 10 to 25 inches of Hg absolute, and/ or a sweep of low molecular weight gas, eig., hydrogen, nitrogen, isopentane, or methane to help drive oi described straight chain hydrocarbon vapors from the mineral sorbent.
The following examples show how type A zeolites 'having manganese as a portion of Itheir exchangeable cation content have been prepared and how such zeolites can 'be used in a renery, but should not ibe construed as limiting the invention.
A type A zeolite in which 37% of the exchangeable ca-tion content was manganese was made as follows: 50 ,grams of pelleted and dehydrated sodium form tof the type A zeolite, marketed as Linde 4A molecular sieve, was allowed to soak tor 38 'hours at 200 F. in 60 cc. of 3 N aqueous MnCl2 solution. The exchanged zeolite was washed with water and dehydrated at about 575 F. for two hours to prepare it for sorption of straight chain hydrocarbons.
A manganese-calcium-sodium form of type A zeolite was made as follows: '30 grams of granular dehydrated calcium-sodium form of t-ype A zeolite was allowed to soak in 72 cc. of 4.5 N aqueous MnCl2 solution at 200 F. for 184 hours. The ygranules were washed thoroughly 'with Wa-ter and dehydrated .to remove zeolitic water. Chemical analysis of the product zeolite indicated a for-.mula (dehydratedv state) as follows: (0.5Mn, 0.35Ca, 0.15Na2)O.A12O3.2SiO2. Capacity of the product at 75 F. and atmospheric pressure, found by test, was 45 cc. of ethane per gram, 39 cc. of n-butane per gram, and 4 cc. of isobutane per gram.
One-half of the product produced in the immediately previous ion exchanging operation was treated for a second .time with 72 cc. of 4.5 N aqueous `MnClZ solution at 205 F. for 83 hours. The granules were washed thoroughly with water, and dried to remove water. Chemical a-nalysis indicated the following formula (dehydrated state) (0.75Mn, 0.14C-a, 0.11Na2)O.A12O3.2SiO2. Capacity of the product at 75 F. temperature and atmospheric pressure, found by test, was 44 cc. of ethane per igram, 41 cc. of normalbutane per tgrarn, a-nd 4 cc. of isohutane per gram. The three foregoing products were capable of attaining from 80-90% saturation with normal butane at room temperature (75 F.) and atmospheric pressure in `substantially less than 4 minutes.
A typical hydrocarbon separation contemplated with my manganese-containing formof type A zeolitie is the removal of straight chain hydrocarbons :from stabilized, catalytically reformed motor naphtha, such naphtha having characteristics, for example, of API gravity, 48.8; refractive index (20 C./4 C.), about 1.444; ASTM distillation IBP., 126 F. and EP., 377 F.; and ASTM research clear octane rating, 87.1.
The naph-tha in vapor form is passed through a first lbed of my manganese-containing type A zeolite in -pelleted form at temperature of about 750 F., and under pressure of about 350 p.s..g. for 2 minutes. The zeolite has 35- 70% of its exchangeable cation content manganese with balance of sodium. Saturation of the pellets with straight chain hydrocarbon components is .tiren about 85% complete. The unsorbed naphtha vapors emerge from the bed low in the straight chain hydrocarbon content which detracts from the octane rating of the feed stock. At this point the naphtha feed is shunte-d t-o another similar sorbent bed. A stream of recycle hydrogen from catalytic reforming of the feed napfhtha is passed through the rst bed, briefly under elevated pressure to purge the vessel of unsorbed material. Then -the pressure on the tirst lbed is reduced to O p.s.i.|g. and the hydrogen is continued for about 2 minutes to -desorb all but approximately l5-20% of the straight chain hydrocarbons in the laden sorbent pellets. The effluent vapors from the desorbing operation are used as part of the recycle feed to the naphtha reforming process.
I claim:
1. Process for `the separation of a straight chain hydrocarbon from a n-on-straight chain Ihydrocarbon in admixture therewith which comprises contacting said admix- .ture in vapor phase with a dehydrated crystalline Zeolite of type A structure having 0.25 to 0:95 of its exchange- `able cation content as divalent manganese to adsonb said straight chain hydrocarbon therefrom, discontinuing said contact when about Ito albout 95% of the saturation capacity of said crystalline zeolites or said straight chain hydrocanbon is reached, desorbing said yadsorbed straight chain hydrocarbon, discontinuing `said desonbing when about 80-90% of the adsorbed straight chain hydrocarbon has been described and repeating said contacting and desorbing steps.
2. Process as claimed in claim 1 wherein contacting is carried out to adsorib from about 8O to about `90% of the saturation capacity of said zeolite for said straight chain hydrocarbon.
3. Process as claimed in claim 1 wherein desorbing is carried out to desonb from about 80 Ito about `85% orf the adsorbed straight chain hydrocarbon from said zeolite.
4. Process as claimed in claim 1 wherein the mixture is in contact with the selective adsorbent for a period not in excess of about 5 minutes.
5. Process as claimed in claim 1 wherein contacting is carried ou-t at a temperature between about 50 and 800 F., and a pressure between about 100 and 2000 p.s.i.fg.
6. Process as claimed in claim 5 wherein contacting and desorbing are carried out under substantially isothermal conditions and the describing pressure is less than the contacting pressure.
References Cited by the Examiner UNITED STATES PATENTS 2,859,256 11/1958 Hess et al. 260-676 2,882,243y 4/1959 |Milton 26o-676 2,988,577 6/1961 sensel 26o-67s 2,988,502 6/1961 Richards er a1. 26o- 676 ALPHONSO D. SULLIVAN, Primary Examiner.
PAUL M. COUG'HLAN, Examiner. D. S. ABRAMS, Assistant Examiner,

Claims (1)

1. PROCESS FOR THE SEPARATION OF A STRAIGHT CHAIN HYDROCARBON FROM A NON-STRAIGHT CHAIN HYDROCARBON IN ADMIXTURE THEREWITH WHICH COMPRISES CONTACTING SAID ADMIXTURE IN VAPOR PHASE WITH A DEHYDRATED CRYSTALLINE ZEOLITE OF TYPE A STRUCTURE HAVING 0.25 TO 0.95 OF ITS EXCHANGEABLE CATION CONTENT AS DIVALENT MANGANESE TO ABSORB SAID STRAIGHT CHAIN HYDROCARBON THEREFROM, DISCONTINUING SAID CONTACT WHEN ABOUT 80 TO ABOUT 95% OF THE SATURATION CAPACITY OF SAID CRYSTALLINE ZEOLITES FOR SAID STRAIGHT CHAIN HYDROCARBON IS REACHED, DESORBING SAID ABSORBED STRAIGHT CHAIN HYDROCARBON, DISCONTINUING SAID DESORBING WHEN ABOUT 80-90% OF THE ADSORBED STRAIGHT CHAIN HYDROCARBON HAS BEEN DESORBED AND REPEATING SAID CONTACTING AND DESORBING STEPS.
US201204A 1957-04-11 1962-06-08 Selective sorption process Expired - Lifetime US3287432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US201204A US3287432A (en) 1957-04-11 1962-06-08 Selective sorption process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65214757A 1957-04-11 1957-04-11
US201204A US3287432A (en) 1957-04-11 1962-06-08 Selective sorption process

Publications (1)

Publication Number Publication Date
US3287432A true US3287432A (en) 1966-11-22

Family

ID=26896507

Family Applications (1)

Application Number Title Priority Date Filing Date
US201204A Expired - Lifetime US3287432A (en) 1957-04-11 1962-06-08 Selective sorption process

Country Status (1)

Country Link
US (1) US3287432A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518528A (en) * 1994-10-13 1996-05-21 Advanced Technology Materials, Inc. Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds
US5676735A (en) * 1996-10-31 1997-10-14 Advanced Technology Materials, Inc. Reclaiming system for gas recovery from decommissioned gas storage and dispensing vessels and recycle of recovered gas
US5704967A (en) * 1995-10-13 1998-01-06 Advanced Technology Materials, Inc. Fluid storage and delivery system comprising high work capacity physical sorbent
US5707424A (en) * 1994-10-13 1998-01-13 Advanced Technology Materials, Inc. Process system with integrated gas storage and delivery unit
US5851270A (en) * 1997-05-20 1998-12-22 Advanced Technology Materials, Inc. Low pressure gas source and dispensing apparatus with enhanced diffusive/extractive means
US5916245A (en) * 1996-05-20 1999-06-29 Advanced Technology Materials, Inc. High capacity gas storage and dispensing system
US5980608A (en) * 1998-01-07 1999-11-09 Advanced Technology Materials, Inc. Throughflow gas storage and dispensing system
US5985008A (en) * 1997-05-20 1999-11-16 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing system with high efficiency sorbent medium
US6019823A (en) * 1997-05-16 2000-02-01 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing vessel with replaceable sorbent cartridge members
US6027547A (en) * 1997-05-16 2000-02-22 Advanced Technology Materials, Inc. Fluid storage and dispensing vessel with modified high surface area solid as fluid storage medium
US6070576A (en) * 1998-06-02 2000-06-06 Advanced Technology Materials, Inc. Adsorbent-based storage and dispensing system
US6083298A (en) * 1994-10-13 2000-07-04 Advanced Technology Materials, Inc. Process for fabricating a sorbent-based gas storage and dispensing system, utilizing sorbent material pretreatment
US6132492A (en) * 1994-10-13 2000-10-17 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same
US6204180B1 (en) 1997-05-16 2001-03-20 Advanced Technology Materials, Inc. Apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing sorbent-based fluid storage and dispensing system for reagent delivery
US6406519B1 (en) * 1998-03-27 2002-06-18 Advanced Technology Materials, Inc. Gas cabinet assembly comprising sorbent-based gas storage and delivery system
WO2003097215A1 (en) * 2002-05-16 2003-11-27 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system
US20040118286A1 (en) * 2002-12-09 2004-06-24 Dennis Brestovansky Rectangular parallelepiped fluid storage and dispensing vessel
US7455719B2 (en) 2002-12-10 2008-11-25 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US7494530B2 (en) 2002-12-10 2009-02-24 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US20090188392A1 (en) * 2002-12-10 2009-07-30 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US20090272272A1 (en) * 2002-10-31 2009-11-05 Advanced Technology Materials, Inc. Semiconductor manufacturing facility utilizing exhaust recirculation
US8679231B2 (en) 2011-01-19 2014-03-25 Advanced Technology Materials, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
US9126139B2 (en) 2012-05-29 2015-09-08 Entegris, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859256A (en) * 1955-01-28 1958-11-04 Texas Co Separation process involving adsorption and desorption
US2882243A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US2988577A (en) * 1957-04-11 1961-06-13 Texaco Inc Selective sorption process
US2988502A (en) * 1957-04-26 1961-06-13 Exxon Research Engineering Co High efficiency hydrocarbon separation process employing molecular sieve adsorbents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882243A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US2859256A (en) * 1955-01-28 1958-11-04 Texas Co Separation process involving adsorption and desorption
US2988577A (en) * 1957-04-11 1961-06-13 Texaco Inc Selective sorption process
US2988502A (en) * 1957-04-26 1961-06-13 Exxon Research Engineering Co High efficiency hydrocarbon separation process employing molecular sieve adsorbents

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518528A (en) * 1994-10-13 1996-05-21 Advanced Technology Materials, Inc. Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds
US5935305A (en) * 1994-10-13 1999-08-10 Advanced Technology Materials, Inc. Storage and delivery system for gaseous compounds
US5704965A (en) * 1994-10-13 1998-01-06 Advanced Technology Materials, Inc. Fluid storage and delivery system utilizing carbon sorbent medium
US6132492A (en) * 1994-10-13 2000-10-17 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same
US6125131A (en) * 1994-10-13 2000-09-26 Advanced Technology Materials, Inc. Laser system utilizing sorbent-based gas storage and delivery system
US5707424A (en) * 1994-10-13 1998-01-13 Advanced Technology Materials, Inc. Process system with integrated gas storage and delivery unit
US6083298A (en) * 1994-10-13 2000-07-04 Advanced Technology Materials, Inc. Process for fabricating a sorbent-based gas storage and dispensing system, utilizing sorbent material pretreatment
US5704967A (en) * 1995-10-13 1998-01-06 Advanced Technology Materials, Inc. Fluid storage and delivery system comprising high work capacity physical sorbent
US5916245A (en) * 1996-05-20 1999-06-29 Advanced Technology Materials, Inc. High capacity gas storage and dispensing system
US5676735A (en) * 1996-10-31 1997-10-14 Advanced Technology Materials, Inc. Reclaiming system for gas recovery from decommissioned gas storage and dispensing vessels and recycle of recovered gas
US6019823A (en) * 1997-05-16 2000-02-01 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing vessel with replaceable sorbent cartridge members
US6027547A (en) * 1997-05-16 2000-02-22 Advanced Technology Materials, Inc. Fluid storage and dispensing vessel with modified high surface area solid as fluid storage medium
US6204180B1 (en) 1997-05-16 2001-03-20 Advanced Technology Materials, Inc. Apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing sorbent-based fluid storage and dispensing system for reagent delivery
US5985008A (en) * 1997-05-20 1999-11-16 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing system with high efficiency sorbent medium
US5851270A (en) * 1997-05-20 1998-12-22 Advanced Technology Materials, Inc. Low pressure gas source and dispensing apparatus with enhanced diffusive/extractive means
US5980608A (en) * 1998-01-07 1999-11-09 Advanced Technology Materials, Inc. Throughflow gas storage and dispensing system
US6660063B2 (en) 1998-03-27 2003-12-09 Advanced Technology Materials, Inc Sorbent-based gas storage and delivery system
US6406519B1 (en) * 1998-03-27 2002-06-18 Advanced Technology Materials, Inc. Gas cabinet assembly comprising sorbent-based gas storage and delivery system
US6540819B2 (en) * 1998-03-27 2003-04-01 Advanced Technology Materials, Inc. Gas cabinet assembly comprising sorbent-based gas storage and delivery system
US6070576A (en) * 1998-06-02 2000-06-06 Advanced Technology Materials, Inc. Adsorbent-based storage and dispensing system
WO2003097215A1 (en) * 2002-05-16 2003-11-27 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system
US7857880B2 (en) 2002-10-31 2010-12-28 Advanced Technology Materials, Inc. Semiconductor manufacturing facility utilizing exhaust recirculation
US20090272272A1 (en) * 2002-10-31 2009-11-05 Advanced Technology Materials, Inc. Semiconductor manufacturing facility utilizing exhaust recirculation
US20060054018A1 (en) * 2002-12-09 2006-03-16 Dennis Brestovansky Rectangular parallelepiped fluid storage and dispensing vessel
US9062829B2 (en) 2002-12-09 2015-06-23 Entegris, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US9636626B2 (en) 2002-12-09 2017-05-02 Entegris, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US7501010B2 (en) 2002-12-09 2009-03-10 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispending vessel
US8506689B2 (en) 2002-12-09 2013-08-13 Advanced Technology Mateials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US6991671B2 (en) 2002-12-09 2006-01-31 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US20040118286A1 (en) * 2002-12-09 2004-06-24 Dennis Brestovansky Rectangular parallelepiped fluid storage and dispensing vessel
US7972421B2 (en) 2002-12-09 2011-07-05 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US8002880B2 (en) 2002-12-10 2011-08-23 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US8282714B2 (en) 2002-12-10 2012-10-09 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US20090188392A1 (en) * 2002-12-10 2009-07-30 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US8858685B2 (en) 2002-12-10 2014-10-14 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US7455719B2 (en) 2002-12-10 2008-11-25 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US9518701B2 (en) 2002-12-10 2016-12-13 Entegris, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US7494530B2 (en) 2002-12-10 2009-02-24 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US8679231B2 (en) 2011-01-19 2014-03-25 Advanced Technology Materials, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
US9234628B2 (en) 2011-01-19 2016-01-12 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
US9126139B2 (en) 2012-05-29 2015-09-08 Entegris, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent

Similar Documents

Publication Publication Date Title
US3287432A (en) Selective sorption process
US2818455A (en) Desorption of straight chain hydrocarbons from selective adsorbents
Decroocq Catalytic cracking of heavy petroleum fractions
US3039953A (en) Selective conversion of normal paraffins with a crystalline zeolite
US3660967A (en) Purification of fluid streams by selective adsorption
Turkevich Zeolites as catalysts. I
US3188293A (en) Process for regenerating molecular sieves
US3114696A (en) Upgrading of naphthas
US2889893A (en) Adsorption separation process
US2950240A (en) Selective cracking of aliphatic hydrocarbons
US2988577A (en) Selective sorption process
US3658696A (en) Selected adsorption with a silanized crystalline alumino-silicate
US3226914A (en) Pressure cycle for molecular sieve separation of normal paraffins from hydrocarbon mixtures
US2971993A (en) Separation of olefinic hydrocarbons with co, ba, k. or ag substituted 10 to 13 angstrom molecular sieves
US2886508A (en) Method of treating a petroleum fraction using molecular sieve aluminosilicate selective adsorbents
US3654144A (en) Purification of liquid hydrocarbons containing carbonyl sulfide
US4605805A (en) Acid-catalyzed organic compound conversion
US2891902A (en) Method of treating a petroleum fraction using selective solid adsorbents
US2917449A (en) Method of upgrading a petroleum naphtha
US2920038A (en) Gasoline hydrocarbon separation recovery process utilizing molecular sieves
US2966531A (en) Increasing efficiency of hydrocarbon separation with adsorbents
US2987471A (en) Separation of hydrocarbons
US3813330A (en) Process for aromatizing olefins in the presence of easily cracked paraffins
US3182017A (en) Separation of naphthenes from hydrocarbon mixtures using 7 a. to 12 a. molecular sieves
US3247098A (en) Cracking a naphtha with a cracking conversion catalyst comprising a synthetic mordenite zeolite