CN101118974A - 燃料电池和电源片技术 - Google Patents

燃料电池和电源片技术 Download PDF

Info

Publication number
CN101118974A
CN101118974A CNA2007101527074A CN200710152707A CN101118974A CN 101118974 A CN101118974 A CN 101118974A CN A2007101527074 A CNA2007101527074 A CN A2007101527074A CN 200710152707 A CN200710152707 A CN 200710152707A CN 101118974 A CN101118974 A CN 101118974A
Authority
CN
China
Prior art keywords
power
electric energy
battery
supply
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101527074A
Other languages
English (en)
Inventor
斯蒂芬·A·马莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Encite LLC
Original Assignee
INTEGRATED FUEL CELL TECHNOLOG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTEGRATED FUEL CELL TECHNOLOG filed Critical INTEGRATED FUEL CELL TECHNOLOG
Publication of CN101118974A publication Critical patent/CN101118974A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

在此公开的燃料电池是在半导体晶片上构成的,燃料电池是通过在晶片上构造槽道并在蚀刻的槽道上构造质子交换膜PEM隔离层而构成。该隔离层将槽道分为两部分。氢燃料被导入其中的一个分割出的槽道而氧化剂被导入另一个槽道。氢与槽道内的氢一侧的阳极上形成的催化剂起反应释放出氢离子(质子),释放出的氢离子(质子)被吸收进入PEM。质子穿过PEM迁移并且与在PEM的氧一侧的阴极上返回的氢的电子和氧重新结合形成水。

Description

燃料电池和电源片技术
本申请是2000年11月17日递交的申请号为00816129.1,发明名称为“燃料电池和电源片技术”的分案申请。
本发明的背景
电化学燃料电池并不是新出现的。Alexander Grove于1839年发明以后,它最近又成为广泛发展的对象。美国国家航空和宇宙航行局在他们二十世纪六十年代的航天计划中运用了这项技术,但是最近推动这项技术在很大程度上是通过汽车工业的驱使。戴姆勒-克莱斯勒汽车公司和福特汽车公司一起在一家合股经营的公司投资了7.5亿美元用于发展燃料电池装置。随着与环境相关的规定和立法的加强,即使不是必需的,在法律进程中发展“绿色”能源也变得更加合法。
信息化时代已经预示了用于检验,处理,运用,接近和控制信息的新方法的必要性。随着基础技术和设备的发展以运用这些新的需求,对于更小,更轻和更快(燃料更换/再充电)的电能资源的需求不断增加。特别是便携式的计算和通讯设备将从基于电源的小型燃料电池而大大地受益。
本发明的概述
依照本发明,提供一种使用聚合物/SAMs(自装配单分子层技术),MEMS(微型机电系统),“化学芯片技术”和半导体制造技术的组合来直接在衬底上制造规模可调的电池组的方法和设备,优选的衬底是半导体晶片。这些半导体晶片可以是“堆叠的”(例如电学上串联或并联,也单独地编排以获得不同的功率(V*I)特性和应用驱动配置)。
本发明的一个优选实施方案通过在平面半导体晶片上制造多个单个的燃料电池构成的,其中液流槽道是通过蚀刻或者其他众所周知的半导体加工方法形成的。氧被导入槽道的一端而氢被导入另一端;两种气体被隔膜分开。电极在隔膜的相对的面上构成,催化剂在两边与电极和隔膜电连接。最后,气密外罩或盖子被连接在电池上。
优选地,隔膜是一种将聚合物柱沉淀或层集在衬底中的蚀刻槽道中以在氧和氢之间构造气密阻挡层的PEM(质子交换隔膜),隔膜使在催化剂下形成的氢离子穿过阻挡层,从而能在H离子与氧在另一条槽道结合时产生通过接点的电流和水。
另外,许多燃料电池可以在部分相同的晶片上相互电连接并连接到气源上形成“电源片”。常规的电路系统可以与电源片一起整体结合到晶片上,以提供用于单个电池的过程监测和控制作用。包括多个电源片(电源盘)或多个电池的晶片可以垂直地堆叠。
本发明的特性和优势的进一步的理解在这里可以在考虑到通过随后的详细描述和下面插图的说明而被认识到。
本发明附图的简单描述
本发明前述的和其他的目的,特征和优点将通过随后本发明优选实施方案的更加详细的描述变得显然,如在附图中所演示的,在不同附图中相同的参考符号指相同的部分。这些附图不是按比例的,附图重点放在说明本发明的原理上。
图1是依照本发明的半导体燃料电池组的平面示意图。
图2是本发明燃料电池12的沿II-II线的截面示意简图。
图3(a)-(h)是制备本发明的PEM阻挡层结构30主要加工步骤的剖面示意图。
图4是说明本发明PEM阻挡层替换的铸件的截面示意图。
图5是PEM结构实施方案的剖面图。
图6是替换的PEM结构的剖面图。
图7是另一个替换PEM结构的剖面图。
图8是可以被集成到燃料电池片上的电路的方块图。
图9是用于操作单个电池或电池组的集成控制系统线路的示意图。
图10是用于电池的汇集管系统的侧视示意图。
图11是多个电池并排排列在晶片上形成一个电源片并且彼此在顶端堆放形成一个电源盘的平面示意图。
图12是图11的片段侧视图。
本发明的详细描述
下面是本发明的实施方案的描述。
如图1所示,是在常规的半导体晶片10上集成有多个半导体燃料电池12的平面图。多个电池可以在晶片上相互电连接并且被供以气体形成电源片15。为了简化,燃料电池12和电源片15都没有按比例表示,因为在一个4”的晶片上至少有80,000,000个电池。如图2所示的是一个这样的电池的片段。以它最简单的形态,每个电池12包括衬底14,接触点16A和B,和在绝缘层状聚合物支撑结构20的第一层20(a)的两面上形成的并且紧密地与金属电接触点接触的导电聚合物基层18。
在中央结构20两侧的带有嵌入的催化剂粒子28的导电聚合物22形成PEM阻挡层把氢隔离在左边而氧隔离在右边。蚀刻槽道50B和50A分别用于导入O2和H2气体,散热罩40盖在电池12上,如图2所示。
图3a-3h是一系列的剖面示意图,表示的是在个别步骤中PEM阻挡层30制造细节。图3a表示的是已经被蚀刻到半导体衬底14上的电池槽道的底部。它也显示了负责从电池12输出电子到配电规定路线和其它电路的接触点16。这些接触点都通过众所周知的半导体制造工艺的光刻的工艺来沉积的。
图3b表示的是已经涂抹在该结构上的导电聚合物基层18。基层18通过物理/导电的方式与接触点16连接用来吸引如图3a-3h所示的步骤的导电聚合物22。
图3c表示的是已涂抹在该结构上的绝缘聚合物基层20(a)。它被安置在两个导电聚合物基层18位置之间并用于吸引绝缘的聚合物20。
图3d所示是涂抹在该结构上的聚合物保护层21。保护层21负责排斥聚合物并防止聚合物在不需要的地方生长。
图3e所示是已经生长在它的基层20A上的第一层20B绝缘聚合物。这是PEM阻挡层的中心材料。它帮助在构造的时候支撑较薄的外侧22。
图3f所示是随后铺设的绝缘聚合物层20,按照一层接一层的方式构成垂直的阻挡层。在这种垂直方向上面积放大。
图3g所示是生长在它的基层18上的导电聚合物22的第一层22a。这是PEM阻挡层的带有催化剂的外侧材料。
图3h所示是导电聚合物22的按照在结构上一层接一层铺设的方式随后铺设的各层。图2所示的是在移去聚合物保护层21并加上盖子40和预先存在的侧壁52(为了简化从图3a-3h中省略的)后的全部结构。如果层21是半导体制造程序中最后的步骤的原始钝化层,保护层可能不必移去。
再如图2所示,构成燃料电池12的元件的进一步的细节将得到说明。通常表示为30的质子交换隔膜在燃料H2和氧化剂O2之间形成阻挡层。
PEM阻挡层30由两种材料三个部分组成。先是第一外壁22B,然后是中心20,最后是第二外壁22C。阻挡层由第一种材料的中心块20接触两个第二种材料的外壁构成的。
构成中心块的材料20,优选的是能够使氢离子(质子)从氢的一侧通过到氧的一侧的离子聚合物。它是电学上的绝缘体,所以它实际上不会在电池的两个接点16A和16B之间出现短路。它可以由Nafion或者与之有相同特征材料构成。如图中点划线(虚线)所示的外负载5可以穿过接触点连接来输出电能。
第二种材料22,形成两个外壁,也是一种能够通过氢离子的类似的离子聚合物。另外,它掺杂有微小的催化剂粒子28(如图中小点所示),例如,铂/合金催化剂,并且也是导电的。
通过将催化剂粒子28嵌入到聚合物22中,达到与PEM30的最大限度的密切接触。这样的密切接触提供了允许离子朝着阴极16B自由地移动的容易利用的途径。催化作用是表面效应。通过将催化粒子28悬浮在聚合物22中,可有效运用全部表面。这样将显著地增大系统效率。
通过使得第二种物质22导电,制造出电极。电极接近催化反应的程度影响它收集电子的能力。这一方法允许催化反应在电极本身内部有效地发生。这样紧密的接触提供了允许电子朝着阳极16A自由地移动的容易利用的途径。这样将成功地收集最大量的自由电子。此外,这样将显著的增大系统的效率。
除了上面已经描述的PEM30电学上和化学上的功能特点以外,还有一些重要的物理特征,描述如下:
这一自组装工艺考虑到更加优化的PEM阻挡层结构。通过设计其将更加有效。
首先,关于形成分开氢和氧的槽道的问题。这要求生长/构成PEM结构,以便其完全分割蚀刻槽道50成为两个独立的槽道50A和50B。这意味着它必须定型以在槽道的中央并且坚固地向上倚靠着电池末端的壁生长。它还必须生长到槽道的高度以允许它接触到底部的盖子40上的粘合剂42。
第二,关于形成气体密封的问题。这要求PEM结构30完全地结合基层结构18和20A,衬底14和电池末端的壁(未显示),并且结合涂在盖子40上的粘合剂42。通过适当选择聚合物,在它们在槽道中接触的物质间形成化学结合。除了这种化学结合,还有通过在PEM阻挡层顶部向下压的盖子40形成的物理密封效果。如果PEM30的高度控制得恰当,外加的盖子的压力形成机械“O环”型自密封。在衬底14上生长PEM30排除了在将它与盖子40结合时的任何细微的对准问题。在盖子上没有细微的细节需要瞄准。
再如图4所示,表示的是包括铸造/喷射工艺和结构的PEM阻挡层替换实施方案简化透视图。
使用MEMS加工方法,三条槽道60A,60B和60C都被蚀刻在半导体衬底140中。外侧的两个槽道60A和60C通过薄壁70A和70B与中间槽道60B分隔开。这些壁中蚀刻有许多细小的缝隙S1-Sn。产生的齿T1-Tn+1在缝隙区域中有催化剂280附着在上面。在这些薄壁70A,70B的底部,在组成外侧槽道60A和60C的壁的一侧,金属电极160A,160B就附着在上面。当电极160定位后,催化剂280被附着在那些齿上。这样就使得催化剂附着,以便产生电接触并且在一定程度覆盖在它们底部的相应电极160。另外,金属导线90被放置成与每个电极160连接,然后向上延伸离开外部槽道。
盖子400和用来将盖子粘结到衬底140的粘合层420一起提供。以这样的方式,在衬底上形成三个独立的槽道;氢槽道60A,反应槽道60B,和氧槽道60C。另外,盖子400还有在不同的在关键部位放置的电解液注入口或者孔500。这些孔500提供了通向仅仅在反应槽道中的聚合物材料(未显示)的电解液隔膜的加料通道。如果这些孔能够穿过衬底设立,那么一个或更多的这样的槽道就可以垂直通过电池。汇集管可以和晶片的一个顶部盖子或者底部一侧上的孔紧密配合以控制向槽道的分配。
图4所示的结构是按照下面所述装配的:
首先,构造半导体制造工艺包括衬底加工和所有电路沉积。
接着,加工盖子400同时准备有粘合剂420。盖子400被粘结在衬底140上。然后电解液(未显示)注入该结构。
反应槽道60B的薄壁70A和70B用来在电解液浇铸期间保持电解液。缝隙S1-Sn允许氢和氧在各自的通道60A和60B中可以接近催化剂280和PEM300。在缝隙区域用催化剂280敷盖齿T1-Tn+1在氢气进入缝隙时提供反应地点。当电解液被灌/注入反应槽道60B时,电解液将会完全充满反应槽道。电解液的表面张力使它不会穿过缝隙并进入气体槽道,否则也会充满气体槽道。因为在电解液使用之后存在一些压力,当压力将其推进到缝隙中时,在电解液的表面会产生鼓胀效应。这样将导致电解液与涂在缝隙S1-Sn侧面的催化剂280接触。一旦形成这样的接触并且隔膜(电解液)水合,它将会进一步膨胀,以确保以催化剂的良好接触。H2/O2气体都能够扩散进入隔膜(非常薄,例如5微米),进到催化剂区域。因为它如此的薄,可以产生更好的效果,即小阻力(12R)损耗很低。然后将反应的三个组成相互接触。与催化剂280保持电接触的电极160A和160B是第四组成并在氢离子通过电解液隔膜在另外一侧完成反应时为自由电子提供槽道[通过外负载(未显示)]。
如图5-7的横断面视图所示,本发明的PEM结构30的不同的替换构造将会详细地描述。如图5,中央PEM结构20构成为连续的绝缘垂直元件,电极/催化剂16/28非连续元件,导线90连接在它们上面。图6是替换的PEM结构的视图,其中催化剂28被嵌入在绝缘的芯20上,电极16被构成从侧面临近催化剂。最后,如图7,该PEM结构与图5中的相似,但是它的位于中间的芯201是非连续的。
图8是示意方块图,表示的是一些可以和多个微控制器一起被结合到半导体晶片10上的可能的电路,用来监测和控制多路电池的性能。一些传感电路80,82,84和86都提供用来执行某些功能。剩余的可以用来提高容量。
温度电路80提供输入值来使微控制器88限定燃料电池12的热量曲线。电压电路82在电池的不同程度的配置体系或组合的情况下监测电压。它提供关于负载变化的信息。通过这些信息,处理器88可以调节系统的配置以达到/维持所需要的性能。电流电路84执行类似于上面提到的电压监测电路82的功能。
压力电路86监测在内部气体槽道50A,50B中的压力。因为系统的性能受到这个压力的影响,微控制器88可以根据这些读取数据作出调整以保持系统在最优化的性能状态下运转。未定义电路81的构成可以用来为微控制器88预先考虑到的未来功能提供几个备用输入。
另外,配置电路94可以至少用于控制V*I开关,如结合图9描述的。输出电压和电流的能力通过配置这些开关来确定。按所需的动态程序控制提供局部电路92,例如监测电路的参数。这些输出值可以用来实现那些变化。本地子系统94通过微控制器98控气体流速,故障导致隔离和除去生成物。本地电源电路96用来分接一部分通过燃料电池12产生的电流来给所载的电子元件提供动力。这一电源供应电路96具有自我调节和控制电路。两线通信I/F装置98可以被整体结合到电源片上来在通信装置和与它们连接电源总线(未显示)之间提供电连接。
微控制器8是集成电子子系统的核心部分。它负责监测和控制所有指定的系统功能。另外,它控制任何外部通信的通信协议。它能够实现电路内部程序编制以便它的执行控制程序能够按照需要更新。它能够实现数据的存储和处理并且也能够具有自我/系统诊断和安全特征。
参照图9,表示的是本发明的进一步的细节。在这个实施方案中,单独的电池121,122-12n都在半导体晶片上构成并且使用能够通过如图8所示的微控制器88控制的晶体管开关97平行接线并联在电源总线99A和99B上。开关97B和97A分别是阴极总线开关和阳极总线开关,而97C是串联开关,开关97D和97E分别是阳极和阴极并联开关。
这样允许单独的电池或电池组(电源片15)以不同的构建连线,例如,并联或串联。通过将电池串联产生不同的电压。电流的容量也可以通过并联这些电池来增加。一般而言,电源片的功率曲线可以被动态地控制以达到或维持“编程”的技术要求。相反地,电源片在制造的时候可以被设定为一些静态曲线,并且由此排除对电源片开关的需要。通过转换开关的开和关以及通过改变配线开关的极性可以产生交流AC和直流DC电源输出。
为实施电源管理子系统,要求从发电过程产生反馈。电路系统可以直接在电源片上构成,以不断地测量该过程的效率。这一反馈可以用来在闭合循环方式中改变系统的控制。这样就使动态维持系统最大效率成为可能。一些这样的电路接下来讨论。
随着系统需求在一段时间发生变化,功率生成过程的性质也发生变化。为了维持最优性能,了解几种运作参数的实时状态可有助于作出能使系统自我调节的决定。这些参数的范围通过程序来限定。
例如,它能够做到同时测量一个独立的电池或电池组的电压和电流。可以监测功率输出,并且如果电池或电池组没有运行,如果有必要它可以被移走。这可以通过先前已经描述的电源开关97来完成。另一方面,为了优化系统性能,一体化的MEMs构成的微型风扇可以用来控制氧或氢在燃料电池或电池组之间的流动。
在移动电源片上有效加载区域的时候,也可以维持平均功率水平。因为没有一个区域此时是100%的,这就必须提供一个较好的总工作特性水平。这种工作负载循环法尤其适用于电涌要求。在这里该概念是是把电力分成段来改善电池使用特征。
电源片的热特征期望得到改变,因为电力负载和它的热量可能对电池电力产生的程度有反作用。对电池使用的适当的温度传感和合理的响应将会将热量积聚的损毁影响减到最小。
盖子40是两片“电源片”组合的第二片。其优选的由金属制成以提供机械刚性支持易碎的半导体衬底14。这是考虑到容易操作和提供稳定的基础以在其上建立“电源组”,例如,许多电源片15逐个的堆叠在彼此的顶部。其目的是建立有更强电力的物理单元。
图10图解说明的是燃料50A和氧化剂/产物槽道50A(50B没有显示)如何被蚀刻在衬底14的表面上的。这些凹槽都是三面的。并且必须在顶部一侧被闭合和密封。盖子40和粘合剂42在结合到衬底14上并且完成这些槽道时提供这样的构成密封的作用。燃料供应和氧化剂的基质床以及产物水的移去槽道由此在衬底的表面构成。
盖子40提供了机械稳定的连接体,输入/输出口就构造在它上面。这些是气体供应和水脱除口。该设计必须在衬底上包含从巨大的外部环境到微米大小特征的尺寸转换。这是通过延伸微米大小的槽道到相对更大的孔H实现的。这种较大的孔使衬底和盖子之间的定位技术要求降低。在盖子上的大孔与衬底中的大孔对齐,衬底具有同样加工在衬底中的微米大小的连通大孔到电池的槽道。
每个晶片都有自己的汇集管。这将需要外部连接以进行燃料供应,氧化剂和产物的排除。外部管路系统可能要求有自动对接系统。现在的MEMS工艺过程可以实现蚀刻穿过晶片的孔。这样的垂直通过孔可以简化汇集管的设计并且改善气体流动。
图11和图12图解说明的是许多方法之一,其中几个电池12(在这个示例中是三个电池)可并排构成在晶片14上而形成电源片15。电源盘可以相互垂直向上堆叠,来构成带有分别与氢和氧源连接的输入口50HI,50OI的垂直的柱状物。晶片的垂直柱状物和在晶片的垂直柱状物中构成的电源片包括电源组(93)。
图12图解说明的是堆叠若干电源盘15是如何用来构成带有可观功率的电源组(93)的。“堆叠”一词的使用是由于它建议紧密接近晶片,以实现缩短电连接和减小的管路系统。实际上,堆叠实际涉及结合晶片的电能以构成更加强大的单元。它们仅仅需要电学上的堆叠来实现它的结合。然而,在最小的空间内产生最大数量的电力并且拥有最高的功效是所希望的。当考虑到最短的电连接(电源总线)替换时,也应该考虑到使用两个主汇集管作为电气电源总线的可能性。这可以通过电学上隔离这些汇集管/电气电源总线段并且使用它们从一个晶片到另一个晶片传送电力来实现。这样减少了大的电源接线需求并且允许这一作用在增长的准确性和可靠性同时通过自动的方式完成。
理想的汇集管设计将允许电源盘的堆叠。通过这样的设计,实用的汇集管95将被分段构成,每段都是盖子40的一个完整部分。当盘被堆叠起来,汇集管(管路)也就形成了。这种类型的设计将大大地减少外部管路系统的需求。特殊的末端罩将在电源组的末端完成汇集管。
总之,本发明的一个主要的目的是能够利用类似的标准半导体晶片加工方法大量生产由晶片10组成的电源片15,在每个电源片15包含多个电池12。这一工艺原本就支持非常小的部件结构。反过来,这些部件结构(电池)预期产生单位电池非常小量的电能。各个电池都将被设计成材料能够支持的最大电能。为获得任何有效的实际电能,数百万个电池将被构造在单个电源片15上并且许多电源片15被构造在“电源盘”(半导体晶片10)上。这就是为什么适当的功率输出可以从单个晶片获得。10μMx10μM的电池使得在每平方厘米的面积上含一百万个电池成为可能。最终的电池布局将由组成物质的物理性质和它们的特征决定。
固体聚合物氢燃料电池的基本电化学反应在大约80到100℃之间的工作温度下有最大效率。这在一般象硅一样的半导体衬底的工作范围之内。然而,如果晶片都堆叠,可能会要求另外的散热装置。既然不管怎样都需要有罩,可以合理的把盖子40制成散热片用来增加安全系数。
燃料和氧化剂/产物槽道都被蚀刻在半导体衬底的表面。这些凹槽都有三个侧面顶部一侧必须被盖上并密封。盖子40提供这样的作用。它被涂上粘合剂以在结合到半导体衬底上并完成槽道时形成密封。这样就半导体衬底的表面上形成了燃料供应和氧化剂基质床及水的移去的槽道。电池的两个主要的槽道都通过结合到同样的粘合剂的PEM彼此隔开。这样,消除了对任何微粒临界调整的要求。
等同物
虽然本发明通过参照它的优选实施方案进行了详细地展示和描述,但是所属领域的普通技术人员将会理解在形式和细节上不同的改变也可以制造出来而不用脱离本发明附加权利要求书的范围。例如,虽然硅因为它明确确定的电学和机械特征而成为衬底14的选择材料,但其他半导体材料也可以作为替代物,因此,例如Gd,Ge,或者III-V化合物例如GaAs可作为替代物。另一方面,用来做电池的衬底也可以由非晶体的材料例如玻璃或者是塑料,或者是酚醛塑料构成;在某些情况下,电池的控制可以在单独的半导体模上构成并且与电池保持电连接以形成杂合结构。PEM的结构之间的接触面优选的是由金构成的组合单分子层(SAM)接触面,然而,其他的金属例如银或者是铂,也可以用作替代。同样地,虽然PEM是许多由分子链构成的,但是优选的都带有对金亲合力的基础,以便将其被结合到金的SAM结构上。此外,其他纯金属例如铂和银也可以替代。SAM的替换催化剂也是有可能的。这样的催化剂和PEMs可能通过牺牲模铸造或者是沉积和蚀刻被应用在衬底上。

Claims (5)

1.一种操作电源电池的方法,该方法包括:
通过连接到多个电源电池的至少子集上的至少一个电气元件的电控制,动态地控制多个电源电池中在多个电源电池中的电源电池的至少子集的电能的产生来响应燃料和氧化剂。
2.根据权利要求1的方法,其中至少一个电气元件是以被配置成串联或并行连接电池电源的排列方式连接到电源电池上的多个开关,其中动态控制电能的产生包括打开和关闭开关以控制多个电源电池总计的输出电压、电流或者电压和电流两者。
3.根据权利要求1的方法,其中动态控制电能的产生包括以闭环方式将电能的产生控制成多个电源电池可能的物理操作状态范围内的任意操作状态。
4.根据权利要求1的方法,进一步包括监控多个电源电池的电能输出,并反馈电能的表示以控制至少一个电气元件从而调整多个电源电池的电能输出。
5.根据权利要求1的方法,进一步包括感应负载的电能牵引,反馈该电能牵引的表示,并动态地将电能的产生控制到足够的量以支持电能牵引,但是比没有反馈电能牵引的表示的电能的产生具有减少的过量电能。
CNA2007101527074A 1999-11-24 2000-11-17 燃料电池和电源片技术 Pending CN101118974A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/449,377 1999-11-24
US09/449,377 US6312846B1 (en) 1999-11-24 1999-11-24 Fuel cell and power chip technology

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008161291A Division CN100349318C (zh) 1999-11-24 2000-11-17 燃料电池和电源片技术

Publications (1)

Publication Number Publication Date
CN101118974A true CN101118974A (zh) 2008-02-06

Family

ID=23783934

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB008161291A Expired - Lifetime CN100349318C (zh) 1999-11-24 2000-11-17 燃料电池和电源片技术
CNA2007101527074A Pending CN101118974A (zh) 1999-11-24 2000-11-17 燃料电池和电源片技术

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB008161291A Expired - Lifetime CN100349318C (zh) 1999-11-24 2000-11-17 燃料电池和电源片技术

Country Status (7)

Country Link
US (8) US6312846B1 (zh)
EP (2) EP1236237B1 (zh)
JP (1) JP5313423B2 (zh)
CN (2) CN100349318C (zh)
AU (1) AU5901601A (zh)
HK (1) HK1049069B (zh)
WO (1) WO2001054217A2 (zh)

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892681B2 (en) * 2005-07-19 2011-02-22 Pelton Walter E System of distributed electrochemical cells integrated with microelectronic structures
US20110117462A1 (en) * 2006-07-18 2011-05-19 Pelton Walter E Methods and apparatuses for distributed fuel cells with nanotechnology
US20120264024A1 (en) * 1999-04-29 2012-10-18 Pelton Walter E Methods and apparatuses for electrochemical cell system with movable medium and non-conducting substrate
US8518594B2 (en) 1999-11-24 2013-08-27 Encite, Llc Power cell and power chip architecture
US8980492B2 (en) * 1999-11-24 2015-03-17 Encite Llc Method and apparatus for controlling an array of power generators
US6312846B1 (en) * 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
US8834700B2 (en) * 1999-11-24 2014-09-16 Encite, Llc Method and apparatus for electro-chemical reaction
US6589883B2 (en) * 2000-03-29 2003-07-08 Georgia Tech Research Corporation Enhancement, stabilization and metallization of porous silicon
US6893892B2 (en) * 2000-03-29 2005-05-17 Georgia Tech Research Corp. Porous gas sensors and method of preparation thereof
US6696189B2 (en) 2000-12-15 2004-02-24 Motorola, Inc. Direct methanol fuel cell system including an integrated methanol sensor and method of fabrication
US7838949B2 (en) * 2001-03-29 2010-11-23 Georgia Tech Research Corporation Porous gas sensors and method of preparation thereof
US7141859B2 (en) * 2001-03-29 2006-11-28 Georgia Tech Research Corporation Porous gas sensors and method of preparation thereof
US6677070B2 (en) * 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
JP2003072059A (ja) * 2001-06-21 2003-03-12 Ricoh Co Ltd インクジェット記録装置及び複写機
JP4041961B2 (ja) * 2001-09-26 2008-02-06 ソニー株式会社 燃料電池,電気機器及び燃料電池の実装方法
FR2832549B1 (fr) * 2001-11-16 2004-05-28 Commissariat Energie Atomique Pile a combustible a surface active importante et a volume reduit et son procede de fabrication
US7252898B2 (en) * 2002-01-14 2007-08-07 The Board Of Trustees Of The University Of Illinois Fuel cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same
US7651797B2 (en) * 2002-01-14 2010-01-26 The Board Of Trustees Of The University Of Illinois Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same
US6713206B2 (en) * 2002-01-14 2004-03-30 Board Of Trustees Of University Of Illinois Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same
JP3700979B2 (ja) * 2002-01-29 2005-09-28 松下電器産業株式会社 燃料電池を備える半導体装置およびその製造方法
KR100441376B1 (ko) * 2002-01-31 2004-07-23 (주)퓨얼셀 파워 얇은 두께를 갖는 콤포지트 멤브레인
US6872287B1 (en) 2002-02-06 2005-03-29 Angstrom Power Electrochemical cell
US6989215B1 (en) 2002-02-06 2006-01-24 Angstrom Power Apparatus of high power density fuel cell layer with micro structured components
US6864010B1 (en) 2002-02-06 2005-03-08 Angstrom Power Apparatus of high power density fuel cell layer with micro for connecting to an external load
US7150933B1 (en) 2002-02-06 2006-12-19 Angstrom Power, Inc. Method of manufacturing high power density fuel cell layers with micro structured components
US6969563B1 (en) 2002-03-01 2005-11-29 Angstrom Power High power density fuel cell stack using micro structured components
US7087327B2 (en) * 2002-05-16 2006-08-08 Ballard Power Systems Inc. Electric power plant with adjustable array of fuel cell systems
US7393369B2 (en) * 2002-06-11 2008-07-01 Trulite, Inc. Apparatus, system, and method for generating hydrogen
US6838203B2 (en) * 2002-06-19 2005-01-04 Yongjian Zheng Monolithic fuel cell and method of manufacture of same
US20030234172A1 (en) * 2002-06-25 2003-12-25 Arthur Alan R. Method of facilitating a chemical reaction by applying radio frequency energy
US7491457B2 (en) * 2002-08-16 2009-02-17 Hewlett-Packard Development Company, L.P. Fuel cell apparatus
US20040053100A1 (en) * 2002-09-12 2004-03-18 Stanley Kevin G. Method of fabricating fuel cells and membrane electrode assemblies
US20040067404A1 (en) * 2002-10-03 2004-04-08 Dennis Lazaroff Fuel cell assembly and reactant distribution structure and method of making the same
US20040086767A1 (en) * 2002-10-31 2004-05-06 Dennis Lazaroff Fuel cell assembly and reactant distribution structure and method of making the same
DE10255736B4 (de) * 2002-11-29 2009-03-19 Micronas Gmbh Brennstoffzelle und Verfahren zur Herstellung
CN100424921C (zh) * 2002-12-06 2008-10-08 唐纳德·J·德比安 集成功率系统
US7029781B2 (en) * 2003-01-21 2006-04-18 Stmicroelectronics, Inc. Microfuel cell having anodic and cathodic microfluidic channels and related methods
US7147955B2 (en) * 2003-01-31 2006-12-12 Societe Bic Fuel cartridge for fuel cells
US7318970B2 (en) * 2003-04-04 2008-01-15 Texaco Inc. Architectural hierarchy of control for a fuel processor
US7521097B2 (en) * 2003-06-06 2009-04-21 Nanogram Corporation Reactive deposition for electrochemical cell production
US7438732B2 (en) * 2003-06-11 2008-10-21 Trulite, Inc Hydrogen generator cartridge
US7556660B2 (en) 2003-06-11 2009-07-07 James Kevin Shurtleff Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant
US7205057B2 (en) * 2003-06-19 2007-04-17 Angstrom Power Inc. Integrated fuel cell and heat sink assembly
WO2005004257A2 (en) * 2003-06-27 2005-01-13 Ultracell Corporation Efficient micro fuel cell systems and methods
US8318368B2 (en) * 2003-06-27 2012-11-27 UltraCell, L.L.C. Portable systems for engine block
US7462208B2 (en) * 2003-06-27 2008-12-09 Ultracell Corporation Planar micro fuel processor
WO2005004258A2 (en) * 2003-06-27 2005-01-13 Ultracell Corporation Portable fuel cartridge for fuel cells
US7666539B2 (en) * 2003-06-27 2010-02-23 Ultracell Corporation Heat efficient portable fuel cell systems
US20060156627A1 (en) * 2003-06-27 2006-07-20 Ultracell Corporation Fuel processor for use with portable fuel cells
US20060127711A1 (en) * 2004-06-25 2006-06-15 Ultracell Corporation, A California Corporation Systems and methods for fuel cartridge distribution
US8821832B2 (en) 2003-06-27 2014-09-02 UltraCell, L.L.C. Fuel processor for use with portable fuel cells
US7655337B2 (en) * 2003-06-27 2010-02-02 Ultracell Corporation Micro fuel cell thermal management
US7348087B2 (en) * 2003-07-28 2008-03-25 Hewlett-Packard Development Company, L.P. Fuel cell with integral manifold
US20050069740A1 (en) * 2003-09-29 2005-03-31 Kurt Ulmer Fuel cell modulation and temperature control
US7645537B2 (en) * 2003-10-15 2010-01-12 Hewlett-Packard Development Company, L.P. Multi-cell fuel cell layer and system
AU2004235658B2 (en) * 2003-12-08 2010-05-13 Rodolfo Antonio M Gomez Proton membrane fuel cells
US20050162122A1 (en) 2004-01-22 2005-07-28 Dunn Glenn M. Fuel cell power and management system, and technique for controlling and/or operating same
DE102004011554A1 (de) * 2004-03-08 2005-09-29 Micronas Gmbh Brennstoffzellenanordnung
US7521138B2 (en) * 2004-05-07 2009-04-21 Ballard Power Systems Inc. Apparatus and method for hybrid power module systems
US20050249989A1 (en) * 2004-05-07 2005-11-10 Pearson Martin T Apparatus and method for hybrid power module systems
US20050255368A1 (en) * 2004-05-12 2005-11-17 Ultracell Corporation, A California Corporation High surface area micro fuel cell architecture
US7648792B2 (en) 2004-06-25 2010-01-19 Ultracell Corporation Disposable component on a fuel cartridge and for use with a portable fuel cell system
US7968250B2 (en) 2004-06-25 2011-06-28 Ultracell Corporation Fuel cartridge connectivity
US7205060B2 (en) 2004-08-06 2007-04-17 Ultracell Corporation Method and system for controlling fluid delivery in a fuel cell
TWI241048B (en) * 2004-09-01 2005-10-01 Nan Ya Printed Circuit Board C Method for manufacturing bipolar plate and direct methanol fuel cell
WO2007013880A2 (en) * 2004-09-15 2007-02-01 Ini Power Systems, Inc. Electrochemical cells
US7807313B2 (en) * 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package
US20060170391A1 (en) * 2005-01-28 2006-08-03 Duhane Lam Fuel cell charger
US20060194082A1 (en) * 2005-02-02 2006-08-31 Ultracell Corporation Systems and methods for protecting a fuel cell
US7635530B2 (en) 2005-03-21 2009-12-22 The Board Of Trustees Of The University Of Illinois Membraneless electrochemical cell and microfluidic device without pH constraint
US20060246336A1 (en) * 2005-05-02 2006-11-02 Hsi-Ming Shu Electronic circuit board integrated with a fuel cell
US20070026266A1 (en) * 2005-07-19 2007-02-01 Pelton Walter E Distributed electrochemical cells integrated with microelectronic structures
US7871734B2 (en) * 2005-08-23 2011-01-18 Massachusetts Institute Of Technology Micro fuel cell
EP1798799B1 (en) * 2005-12-16 2008-09-24 STMicroelectronics S.r.l. Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication
US7901817B2 (en) * 2006-02-14 2011-03-08 Ini Power Systems, Inc. System for flexible in situ control of water in fuel cells
US20070202378A1 (en) * 2006-02-28 2007-08-30 D Urso John J Integrated micro fuel cell apparatus
HK1130951A1 (en) * 2006-03-02 2010-01-08 Encite Llc Power cell architectures and control of power generator arrays
CN101405909B (zh) * 2006-03-02 2013-03-27 恩西特有限公司 发电阵列的电池体系结构和控制
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell
DE102006026257A1 (de) * 2006-06-02 2007-12-06 Micronas Gmbh Stromversorgung mittels Brennstoffzellen
US20080003485A1 (en) * 2006-06-30 2008-01-03 Ramkumar Krishnan Fuel cell having patterned solid proton conducting electrolytes
US7648786B2 (en) * 2006-07-27 2010-01-19 Trulite, Inc System for generating electricity from a chemical hydride
US7651542B2 (en) * 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
US20080061027A1 (en) * 2006-09-12 2008-03-13 Mangat Pawitter S Method for forming a micro fuel cell
US8158300B2 (en) 2006-09-19 2012-04-17 Ini Power Systems, Inc. Permselective composite membrane for electrochemical cells
US20080118815A1 (en) * 2006-11-20 2008-05-22 D Urso John J Method for forming a micro fuel cell
EP2109909B1 (en) 2006-12-21 2016-07-06 Arizona Board of Regents, acting for and on behalf of, Arizona State University Fuel cell with transport flow across gap
US7776386B2 (en) * 2007-01-31 2010-08-17 Motorola, Inc. Method for forming a micro fuel cell
US8551667B2 (en) 2007-04-17 2013-10-08 Ini Power Systems, Inc. Hydrogel barrier for fuel cells
US8357214B2 (en) * 2007-04-26 2013-01-22 Trulite, Inc. Apparatus, system, and method for generating a gas from solid reactant pouches
WO2008153763A1 (en) * 2007-05-25 2008-12-18 Massachusetts Institute Of Technology Three dimensional single-chamber fuel cells
CN101355172A (zh) * 2007-07-25 2009-01-28 思柏科技股份有限公司 具串并联电路的燃料电池装置
CA2732060A1 (en) 2007-07-25 2009-01-29 Trulite, Inc. Apparatus, system, and method to manage the generation and use of hybrid electric power
US20090025293A1 (en) * 2007-07-25 2009-01-29 John Patton Apparatus, system, and method for processing hydrogen gas
EP2058649B1 (de) * 2007-11-06 2011-06-29 Micronas GmbH Sensor-Brennstoffzelle
US20090191443A1 (en) * 2008-01-28 2009-07-30 Panjak Sinha Planar fuel cell
US8309259B2 (en) 2008-05-19 2012-11-13 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrochemical cell, and particularly a cell with electrodeposited fuel
FR2931299B1 (fr) * 2008-05-19 2010-06-18 Commissariat Energie Atomique Pile a combustible a empilement membrane/electrodes perpendiculaire au substrat de support et procede de realisation
US20100040931A1 (en) * 2008-08-12 2010-02-18 Gm Global Technology Operations, Inc. Integration of electronics and electrical distribution inside a fuel cell stack
WO2010022321A1 (en) * 2008-08-21 2010-02-25 Georgia Tech Research Corporation Gas sensors, methods of preparation thereof, methods of selecting gas sensor materials, and methods of use of gas sensors
US8163429B2 (en) 2009-02-05 2012-04-24 Ini Power Systems, Inc. High efficiency fuel cell system
CA2802532C (en) 2010-06-24 2017-06-06 Fluidic, Inc. Electrochemical cell with stepped scaffold fuel anode
CN105206789B (zh) 2010-09-16 2018-09-07 流体公司 具有渐进析氧电极/燃料电极的电化学电池系统
EP2630689B1 (en) 2010-10-20 2015-09-23 Fluidic, Inc. Battery resetting process for scaffold fuel electrode
JP5908251B2 (ja) 2010-11-17 2016-04-26 フルイディック,インク.Fluidic,Inc. 階層型アノードのマルチモード充電
US9464356B2 (en) 2011-09-21 2016-10-11 Encite Llc High pressure gas system
US8986898B2 (en) 2011-09-30 2015-03-24 Blackberry Limited Apparatus including fuel cell and electrolyzer and method for controlling fuel cell operating conditions of the apparatus
US20130260183A1 (en) * 2012-03-28 2013-10-03 International Business Machines Corporation Three dimensional solid-state battery integrated with cmos devices
US9522371B2 (en) 2012-05-07 2016-12-20 Encite Llc Self-regulating gas generator and method
WO2013166424A1 (en) 2012-05-04 2013-11-07 Encite Llc Self-regulating gas generator and method
US9588558B2 (en) 2013-06-13 2017-03-07 Microsoft Technology Licensing, Llc On-chip integrated processing and power generation
CN109478643B (zh) 2016-07-22 2022-03-15 南特能源公司 电化学电池中的水分和二氧化碳管理系统
JP7043383B2 (ja) * 2018-07-30 2022-03-29 現代自動車株式会社 燃料電池用平板型膜電極接合体の製造方法及びこれによって製造された燃料電池用平板型膜電極接合体
CN110106512A (zh) * 2019-04-17 2019-08-09 河北工业大学 电解水制氢装置
US11251476B2 (en) 2019-05-10 2022-02-15 Form Energy, Inc. Nested annular metal-air cell and systems containing same
JP7221415B2 (ja) * 2019-11-07 2023-02-13 株式会社日立ハイテク 燃料電池アレイ、燃料電池検査方法
CN116314907A (zh) * 2021-12-20 2023-06-23 康蒂泰克振动控制有限公司 燃料电池模块

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248941A (en) * 1979-12-26 1981-02-03 United Tecnologies Corporation Solid electrolyte electrochemical cell
US4460444A (en) 1983-04-06 1984-07-17 Westinghouse Electric Corp. Hydriodic acid-anode-depolarized hydrogen generator
JPS6020468A (ja) * 1983-07-13 1985-02-01 Agency Of Ind Science & Technol 水素−酸素固体電解質燃料電池
US5023150A (en) * 1988-08-19 1991-06-11 Fuji Electric Co., Ltd. Method and apparatus for controlling a fuel cell
CN1011422B (zh) * 1988-09-21 1991-01-30 北京市印刷技术研究所 低熔点锌基合金及应用该合金制备轻钢字的方法
AT393045B (de) * 1989-08-08 1991-07-25 Peter Dipl Ing Dr Schuetz Plattenfoermige duennschicht-h2/o2-brennstoffzelle und verfahren zu ihrer herstellung
JP2745776B2 (ja) 1990-05-10 1998-04-28 富士電機株式会社 燃料電池発電システム
EP0559816B1 (en) * 1990-11-23 1997-05-28 Vickers Shipbuilding & Engineering Limited Application of fuel cells to power generation systems
US5364711A (en) 1992-04-01 1994-11-15 Kabushiki Kaisha Toshiba Fuel cell
JPH06319287A (ja) 1993-04-30 1994-11-15 Aqueous Res:Kk モータ駆動用電源装置
JP3369654B2 (ja) * 1993-07-29 2003-01-20 オリンパス光学工業株式会社 広角レンズ
JPH07201348A (ja) * 1993-12-28 1995-08-04 Nri & Ncc Co Ltd 超小型燃料電池システム
JP3564742B2 (ja) 1994-07-13 2004-09-15 トヨタ自動車株式会社 燃料電池発電装置
US5811062A (en) * 1994-07-29 1998-09-22 Battelle Memorial Institute Microcomponent chemical process sheet architecture
US5919583A (en) * 1995-03-20 1999-07-06 E. I. Du Pont De Nemours And Company Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
DE69708715T2 (de) * 1996-02-05 2002-08-08 Matsushita Electric Ind Co Ltd Brennstoffzelle zur Befestigung auf Geräten
US5945231A (en) * 1996-03-26 1999-08-31 California Institute Of Technology Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof
US6479177B1 (en) * 1996-06-07 2002-11-12 Ballard Power Systems Inc. Method for improving the cold starting capability of an electrochemical fuel cell
US5858568A (en) * 1996-09-19 1999-01-12 Ztek Corporation Fuel cell power supply system
JPH10144334A (ja) 1996-11-13 1998-05-29 Toshiba Corp 燃料電池発電プラント及びその起動・停止方法
US20030022033A1 (en) 1997-03-15 2003-01-30 Mannesmann Ag Fuel cell with pulsed anode potential
DE19710819C1 (de) 1997-03-15 1998-04-02 Forschungszentrum Juelich Gmbh Brennstoffzelle mit pulsförmig verändertem Anodenpotential
US6299744B1 (en) * 1997-09-10 2001-10-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
US6451463B1 (en) 1997-10-06 2002-09-17 Reveo, Inc. Electro-chemical power generation systems employing arrays of electronically-controllable discharging and/or recharging cells within a unity support structure
US5910378A (en) 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
US6387556B1 (en) * 1997-11-20 2002-05-14 Avista Laboratories, Inc. Fuel cell power systems and methods of controlling a fuel cell power system
US6472090B1 (en) 1999-06-25 2002-10-29 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
US6093500A (en) * 1998-07-28 2000-07-25 International Fuel Cells Corporation Method and apparatus for operating a fuel cell system
US6638654B2 (en) * 1999-02-01 2003-10-28 The Regents Of The University Of California MEMS-based thin-film fuel cells
JP3108686B2 (ja) * 1999-03-10 2000-11-13 株式会社関西新技術研究所 発電システム
DE19914681C2 (de) * 1999-03-31 2002-07-18 Joerg Mueller Polymer-Elektrolyt-Membran Brennstoffzellensystem in Mikrosystemtechnik
US6890677B2 (en) * 1999-05-06 2005-05-10 Sandia Corporation Fuel cell and membrane
AU4993200A (en) * 1999-05-06 2000-11-21 Sandia Corporation Fuel cell and membrane
CA2309025A1 (en) * 1999-07-06 2001-01-06 General Motors Corporation Fuel cell stack monitoring and system control
JP2001086691A (ja) 1999-09-14 2001-03-30 Nippon Densan Corp スピンドルモータ
US8518594B2 (en) 1999-11-24 2013-08-27 Encite, Llc Power cell and power chip architecture
US8980492B2 (en) 1999-11-24 2015-03-17 Encite Llc Method and apparatus for controlling an array of power generators
US8834700B2 (en) 1999-11-24 2014-09-16 Encite, Llc Method and apparatus for electro-chemical reaction
US6312846B1 (en) 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
US6465119B1 (en) * 2000-07-18 2002-10-15 Motorola, Inc. Fuel cell array apparatus and method of fabrication
DE10053851A1 (de) 2000-10-30 2002-05-08 Siemens Ag Verfahren zur Regenerierung von CO-Vergiftungen bei HT-PEM-Brennstoffzellen
JP2004535781A (ja) * 2001-03-12 2004-12-02 レキシコン・ジェネティクス・インコーポレーテッド 新規ヒトefgファミリータンパクおよびそれをコードするポリヌクレオチド
AU2002314744A1 (en) * 2001-04-17 2002-10-28 Sepracor, Inc. Thiazole and other heterocyclic ligands and use thereof
JP2003187822A (ja) 2001-12-20 2003-07-04 Sony Corp プロトン伝導体、膜電極接合体、燃料電池、燃料電池装置、並びに電圧変換装置
AU2003219726A1 (en) 2002-02-06 2003-09-02 Battelle Memorial Institute Methods of removing contaminants from a fuel cell electrode
JP2005518644A (ja) 2002-02-20 2005-06-23 エビオニクス、インク. 金属空気セルシステム
WO2003075113A1 (fr) 2002-03-04 2003-09-12 Josuke Nakata Systeme de production d'electricite
CA2480670C (en) 2002-03-29 2011-05-03 Estco Battery Management Inc. Fuel cell health management system
US7491457B2 (en) 2002-08-16 2009-02-17 Hewlett-Packard Development Company, L.P. Fuel cell apparatus
US7316719B2 (en) 2002-09-06 2008-01-08 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US20040053100A1 (en) 2002-09-12 2004-03-18 Stanley Kevin G. Method of fabricating fuel cells and membrane electrode assemblies
JP2004120831A (ja) 2002-09-24 2004-04-15 Terakawa Soji 充放電装置
CN100424921C (zh) 2002-12-06 2008-10-08 唐纳德·J·德比安 集成功率系统
JP4669654B2 (ja) 2003-05-15 2011-04-13 関西電力株式会社 小型燃料電池システム
JP4060756B2 (ja) 2003-06-03 2008-03-12 東芝電池株式会社 二次電池の充電方法及び充電装置とその充電制御プログラム
JP2005085509A (ja) 2003-09-04 2005-03-31 Nec Corp 燃料電池システムおよびその運転方法
US7491458B2 (en) 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7474078B2 (en) 2003-12-19 2009-01-06 Texaco Inc. Cell maintenance device for fuel cell stacks
JP4412001B2 (ja) 2004-02-27 2010-02-10 ソニー株式会社 発電ユニット、燃料電池
JP2005293901A (ja) 2004-03-31 2005-10-20 Nec Corp 燃料電池システムおよびその駆動方法
JP2006049110A (ja) 2004-08-05 2006-02-16 Hitachi Ltd 燃料電池用触媒、それを用いた膜電極接合体、その製造方法及び燃料電池
JP2006351343A (ja) 2005-06-15 2006-12-28 Toshiba Corp 燃料電池発電装置及び燃料電池発電方法
US8158286B2 (en) 2005-08-17 2012-04-17 Honda Motor Co., Ltd. Energy stations
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell
US7682719B2 (en) 2006-09-22 2010-03-23 Gm Global Technology Operations, Inc. Method for adaptive prediction of stack voltage in automotive fuel cell systems
JP2010216461A (ja) 2009-03-18 2010-09-30 Sango Co Ltd 排気マニホールド

Also Published As

Publication number Publication date
CN100349318C (zh) 2007-11-14
WO2001054217A9 (en) 2002-08-01
US20050060876A1 (en) 2005-03-24
WO2001054217A2 (en) 2001-07-26
WO2001054217A3 (en) 2002-05-02
US7029779B2 (en) 2006-04-18
EP2525431A2 (en) 2012-11-21
US20070116994A1 (en) 2007-05-24
US20140030621A1 (en) 2014-01-30
US20060110636A1 (en) 2006-05-25
US6312846B1 (en) 2001-11-06
US8431281B2 (en) 2013-04-30
JP5313423B2 (ja) 2013-10-09
US6991866B2 (en) 2006-01-31
US20050130021A1 (en) 2005-06-16
US20020045082A1 (en) 2002-04-18
EP1236237A2 (en) 2002-09-04
JP2003532977A (ja) 2003-11-05
US9406955B2 (en) 2016-08-02
US20080292920A1 (en) 2008-11-27
EP1236237B1 (en) 2017-04-12
HK1049069B (zh) 2018-04-27
US6815110B2 (en) 2004-11-09
EP2525431A3 (en) 2013-01-16
AU5901601A (en) 2001-07-31
CN1421054A (zh) 2003-05-28

Similar Documents

Publication Publication Date Title
CN100349318C (zh) 燃料电池和电源片技术
US20040115507A1 (en) Monolithic fuel cell and method of manufacture
US20040185323A1 (en) Monolithic fuel cell structure and method of manufacture
EP2320504B1 (en) Method of operating a fuel cell/battery passive hybrid power supply
US20070202378A1 (en) Integrated micro fuel cell apparatus
US20080003485A1 (en) Fuel cell having patterned solid proton conducting electrolytes
US20090023047A1 (en) Fuel cell
CN101405909B (zh) 发电阵列的电池体系结构和控制
CN101253641A (zh) 集成微型燃料电池装置
CA2936641C (en) Fuel cell system to suppress decrease in output of fuel cell and decrease in convergence performance of output
US20080061027A1 (en) Method for forming a micro fuel cell
JP2005141994A (ja) 高分子電解質型燃料電池
JP5049487B2 (ja) 燃料電池装置
US7090939B2 (en) Forming a layer on a flow plate of a fuel cell stack
KR20230076602A (ko) 연료전지 시스템 및 그 제어방법
JP2023115601A (ja) 燃料電池スタックの活性化方法及びその装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: ENSITE CO., LTD.

Free format text: FORMER OWNER: INTEGRATED FUEL CELL TECHNOLOGY COMPANY

Effective date: 20100610

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20100610

Address after: Massachusetts, USA

Applicant after: Encite LLC

Address before: Massachusetts, USA

Applicant before: Integrated Fuel Cell Technolog

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20080206