JP2005141994A - 高分子電解質型燃料電池 - Google Patents

高分子電解質型燃料電池 Download PDF

Info

Publication number
JP2005141994A
JP2005141994A JP2003376182A JP2003376182A JP2005141994A JP 2005141994 A JP2005141994 A JP 2005141994A JP 2003376182 A JP2003376182 A JP 2003376182A JP 2003376182 A JP2003376182 A JP 2003376182A JP 2005141994 A JP2005141994 A JP 2005141994A
Authority
JP
Japan
Prior art keywords
cell
manifold
gas
current collector
branch path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003376182A
Other languages
English (en)
Inventor
Hideo Kasahara
英男 笠原
Eiichi Yasumoto
栄一 安本
Hiroki Kusakabe
弘樹 日下部
Kazuhito Hado
一仁 羽藤
Takeshi Tomizawa
猛 富澤
Kiichi Shibata
礎一 柴田
Toshihiro Matsumoto
敏宏 松本
Hideo Obara
英夫 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003376182A priority Critical patent/JP2005141994A/ja
Publication of JP2005141994A publication Critical patent/JP2005141994A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 負荷条件等が変化しても、常に安定した性能を発揮する高分子電解質型燃料電池を提供する。
【解決手段】 第一の集電板40a−40cを介して積層した複数のセルブロック1a−1dを第二の集電板50及び絶縁板31等を介して締結セルスタック;セルスタックに燃料ガスおよび酸化剤ガスをそれぞれ供給・排出する入口側および出口側のマニホールド;第一の集電板の入口側マニホールドに設けられて、当該マニホールドのガス流路を分岐路へ切り換える切替弁;前記分岐路に連なる第二の出口側マニホールド;並びに前記ガスの入口側の第二の集電板に接続される一方の極性の端子、およびガス流路が分岐路に切り換えられた第一の集電板に接続される他方の極性の端子を具備する高分子電解質型燃料電池。第一の集電板のいずれかの切替弁を分岐路側へ切り換えることにより、当該集電板のマニホールドより下流のセルブロックを除いて発電できる。
【選択図】図5

Description

本発明は、モバイル用電源、電気自動車用電源、家庭内コージェネレーションシステム等に使用される燃料電池、特に高分子電解質型燃料電池に関する。
高分子電解質型燃料電池は、水素などの燃料ガスと空気などの酸化剤ガスをガス拡散電極によって電気化学的に反応させるもので、電気と熱を同時に発生させるものである。
この種の高分子電解質型燃料電池は、基本的には、水素イオンを選択的に輸送する水素イオン伝導性高分子電解質膜、およびその両面に配置された一対の電極からなる。電極は、白金族金属触媒を担持したカーボン粒子を主成分とする触媒層、およびこの触媒層の外面に形成された通気性と電子導電性を併せ持つ、例えば撥水処理を施したカーボンペーパー、カーボンクロス等からなるガス拡散層から構成される。電極および水素イオン伝導性高分子電解質膜を一体化したものをMEA(膜電極接合体)と呼ぶ。
このMEAを機械的に固定するとともに、隣接するMEA同士を互いに電気的に直列に接続するための導電性のセパレータ板がMEAの間に配される。セパレータ板のMEAと接触する部分には、電極に反応ガスを供給し、かつ反応により発生したガスや余剰のガスを運び去るためのガス流路が形成されている。ガス流路は、セパレータ板と別に設けることもできるが、セパレータ板の表面に溝を設けてガス流路とする方式が一般的である。セパレータ板の他方の面には、電池温度を一定に保つための冷却水を循環させる冷却水の流路が設けられる。MEAとこれを挟む一対のセパレータ板で単セルが構成される。
多くの燃料電池は、必要な出力に応じた数の単セルを積層した構造をとっている。燃料電池の運転により電力を取り出す際、使用状況から定格出力に対し低い出力で運転するときは、酸化剤ガスの流量を下げるとともに冷却水の流量を調整して温度を制御する必要がある。また、電気自動車のように出力変動が大きな用途の場合、燃料電池スタックを複数個組合わせて使用するのが一般的である。そのような場合は、スタック内の制御だけでなく、スタック間の制御も行わなければならないため、燃料ガス、酸化剤ガス等の制御がかなり複雑化する。このため任意の出力条件に対し安定な動作ができる燃料電池が求められている。特許文献1には、スタックを複数個相互に接続することにより、燃料電池として最適な状態で動作できるように、反応ガスへの加湿量をコントロールするようにした高分子電解質型燃料電池システムが報告されている。
一般に単電池を数多く重ねた積層構造を有する燃料電池は、ガス利用率を一定にして、出力を定格運転条件より下げると、安定動作ができない場合がある。また、運転条件を変更することにより、積層された各MEAに送られる燃料ガス、酸化剤ガス等の供給量が変化して電極表面上の水分量が変化し、電極反応の進行が低下する。このように、燃料電池の運転条件を変更するには、電子負荷だけでなく燃料利用率を変更する必要性が生じたりし、効率の低下が起こる場合がある。よって運転条件を変更した時に、スタックへ送り込まれる燃料ガスや電子負荷の変化をできる限り小さくする必要がある。特許文献2は、負荷条件等の作動条件が変化しても、燃料電池として最適な状態で運転できる方法を提案している。しかしながら、この方法によると、燃料ガスや、冷却水等の配管を多く必要とし、また各MEAの電子負荷条件は変動するため、安定したスタックの動作を長期間確保するのが難しく、配管による複雑性やコンパクト化に対しては問題が残る。
特公平59−149663号公報 特開昭59−149663号公報
本発明は、以上に鑑み、出力を変化させても常に安定した動作をし、比較的構造の簡単な高分子電解質型燃料電池を提供することを目的とする。
本発明は、また負荷に応じて作動しているセルの負荷条件は変動せず、耐久性に優れた高分子電解質型燃料電池を提供することを目的とする。
本発明の高分子電解質型燃料電池は、
(1)高分子電解質型燃料電池の単セルの少なくとも1個を含む複数のセルブロック、各セルブロック間に介在させた第一の集電板、並びに前記セルブロックと第一の集電板との積層体を第二の集電板および絶縁板を介して締結する端板からなるセルスタック、
(2)前記セルスタックに設けられ、セルブロックのセルに燃料ガスおよび酸化剤ガスをそれぞれ供給・排出する入口側および出口側のマニホールド、
(3)第一の集電板の入口側マニホールドに設けられて、当該マニホールドのガス流路を分岐路へ切り替える切替弁、
(4)前記分岐路に連なる第二の出口側マニホールド、並びに
(5)前記ガスの入口側の第二の集電板に接続される一方の極性の端子、およびガス流路が分岐路に切り換えられた第一の集電板に接続される他方の極性の端子、
を具備し、いずれかの第一の集電板の切替弁を分岐路側へ切り替えることにより、当該集電板のマニホールドより下流のセルブロックを除いて発電できるように構成されている。
本発明の高分子電解質型燃料電池は、さらに、
(a)前記セルスタックに設けられ、セルブロックの単セルに冷却水を供給・排出する入口側および出口側マニホールド、
(b)第一の集電板の冷却水の入口側マニホールドに設けられて、当該マニホールドの冷却水の流路を分岐路へ切り替える冷却水用切替弁、並びに
(c)前記冷却水の分岐路に連なる第二の冷却水の出口側マニホールド、
を具備し、前記切替弁の分岐路側への切替と同期させて前記冷却水用切替弁を分岐路側へ切り替えるように構成されていることが好ましい。
本発明の高分子電解質型燃料電池は、第一の集電板を介して積層された複数のセルブロックのなかから出力に応じて反応ガスの入口側のセルブロックのみに反応ガスを供給するようにして、発電に寄与するセルブロックは定格出力で運転する場合と同じ条件で、かつ電池全体では定格より少ない出力で運転することができる。このため発電に与るセルの負荷条件は変わらず、電極管理の簡易化が図れ、セルの耐久性を向上することができる。また、出力の変更も第一の集電板に設けた切替弁および出力端子の切り替えにより行えるので、操作が簡単であるばかりか反応ガスの配管も複雑となることなく燃料電池全体のコンパクト化が図れる。さらに、分割式スタックに比べスタックの表面積が小さくなり、放熱ロスの低減が可能となり、効率の向上が図れる。また、必要に応じて冷却水の切り替えを行えるようにすることができる。第一の集電板間に挟まれるセル数および第一の集電板の数を適宜調整することにより、出力の広い範囲の変化幅がとれる。従って、用途に応じて電極面積を調整することにより、設計に柔軟性が生じ、モバイル用や車、工場等定置用電源等への多様な商品設計が可能となる。
本発明の高分子電解質型燃料電池の特徴の1つは、単電池の積層体を複数のセルブロックに分割し、これらセルブロックを第一の集電板を介して積層し、第一の集電板の反応ガスの入口側マニホールドに、当該マニホールドのガス流路を分岐路へ切り替える切替弁を設けたことである。そして、前記分岐路に連なる第二の出口側マニホールドを設ける。これによって、いずれかの第一の集電板の切替弁を分岐路側へ切り替えることにより、当該集電板のマニホールドより下流のセルブロックを発電休止とすることができる。
以下、本発明に係る高分子電解質型燃料電池の実施の形態を図面を参照して説明する。
図1はセルブロック1の構成例を示す。MEA10は、高分子電解質膜11、これを挟むアノード12およびカソード13、並びに電極の外周において高分子電解質膜を挟むガスケット14からなる。MEA10は、アノード側セパレータ板22およびカソード側セパレータ板23に挟まれている。アノード側セパレータ板22はアノード12に燃料ガスを供給するガス流路24を有し、反対側には冷却水の流路26を有する。同様に、カソード側セパレータ板23はカソード13に酸化剤ガスを供給するガス流路25を有し、反対側には冷却水の流路27を有する。図1においては、各セルに燃料ガスを供給・排出する入口側マニホールド16および出口側マニホールド18が示され、ガス流路24は入口側マニホールド16と出口側マニホールド18を連絡している。この他酸化剤ガスの入口側マニホールドおよび出口側マニホールドが設けられ、酸化剤ガスの流路25が両マニホールドを連絡している。さらに、冷却水の入口側マニホールドおよび出口側マニホールドが設けられ、冷却水の流路26および27が両マニホールドを連絡している。
図2は、上記のようなセルブロックを4個含むセルスタック30の平面図である。セルブロック1a、1b、1cおよび1dは第一の集電板40a、40bおよび40cを介して積層されている。この積層体は、第二の集電板50および絶縁板31を介して端板32で挟まれ、両端板はボルト33とナット34により締結されている。一方の端板には、図1で説明した燃料ガスの入口側マニホールド16に燃料ガスを供給するための燃料ガス供給管を連結する接続管56および酸化剤ガスの入口側マニホールドに酸化剤ガスを供給するための酸化剤ガス供給管を連結する接続管57が設けられ、他方の端板には燃料ガスの出口側マニホールド18からのガスを排出するための排出管を連結する接続管58および酸化剤ガスの出口側マニホールドからのガスを排出するための排出管を連結する接続管59が設けられている。
第一の集電板40a、40bおよび40cは、図3に示すように、セルブロックの燃料ガスの入口側マニホールドおよび酸化剤ガスの入口側マニホールドの部分にそれぞれ切替弁62および63を設けるとともに、これらの切替弁を切替動作するステッピングモータ42および43を設けている。切替弁63は、図4に示すように、酸化剤ガスの入口側マニホールドと連通する孔67とそれから分岐する分岐路65をもつ三方弁で構成され、分岐路65は集電板の分岐路45から接続管47を経て第二の出口側マニホールドに連通する。切替弁63は、ステッピングモータ43を制御することにより、酸化剤ガスの入口側マニホールドを解放したまま後続のセルブロックへ酸化剤ガスを流すか、または分岐路65側に切り換えて酸化剤ガスを分岐路へ流し、後続のセルブロックへは酸化剤ガスを流さないようにすることができる。
同様に、切替弁62は、燃料ガスの入口側マニホールドと連通する孔66とそれから分岐する分岐路をもつ三方弁で構成され、その分岐路は集電板の分岐路44から接続管46を経て第二の出口側マニホールドに連通する。切替弁62は、ステッピングモータ42を制御することにより、燃料ガスの入口側マニホールドを解放したまま後続のセルブロックへ燃料ガスを流すか、または分岐路44側に切り換えて燃料ガスを分岐路へ流し、後続のセルブロックへは燃料ガスを流さないようにすることができる。
図5は、図2に示すセルスタックの燃料ガスおよび酸化剤ガスの流れを説明するためのブロック図である。図2と同じ符号は同じ要素を示す。図5では、第一の集電板に設けられた接続管46に連結された燃料ガスの第二の出口側マニホールド48および接続管47に連結された酸化剤ガスの第二の出口側マニホールド49をも示している。
以下、図5〜8を参照して出力を変更して運転する操作を説明する。
図5は定格運転する場合の燃料ガスおよび酸化剤ガスの流れを示している。すなわち、第一の集電板に設けられた切替弁42および43は、いずれも分岐路側を閉じ、燃料ガスおよび酸化剤ガスのマニホールドを開放している。従って、端板32の接続管56に供給される燃料ガスは、セルブロック1a〜1dの燃料ガスの入口側マニホールド16からアノード側セパレータ板22のガス流路24に流れ、アノード12に拡散して発電反応に与る。余剰の燃料ガスおよび反応生成物などは出口側マニホールド18を経て、他方の絶縁板31の接続管58より排出される。
同様に、端板32の接続管57に供給される酸化剤ガスは、セルブロック1a〜1dの酸化剤ガスの入口側マニホールドからカソード側セパレータ板23のガス流路25に流れ、カソード13に拡散して発電反応に与る。余剰の酸化剤ガスおよび反応生成物などは出口側マニホールドを経て、他方の絶縁板31の接続管59より排出される。
上記のようにして、セルスタック30のセルブロック1a〜1dのすべてが発電に関与する。
次に、図6は定格の50%の出力で運転する場合の燃料ガスおよび酸化剤ガスの流れを示している。すなわち、第一の集電板40aに設けられた切替弁42および43は、上と同じく分岐路側を閉じ、燃料ガスおよび酸化剤ガスのマニホールドを開放している。一方、第一の集電板40bの切替弁42および43は、分岐路側に切り替えている。従って、端板32の接続管56に供給される燃料ガスは、セルブロック1aおよび1bの燃料ガスの入口側マニホールド16からアノード側セパレータ板22のガス流路24に流れ、アノード12に拡散して発電反応に与り、出口側マニホールド18を経て端板の接続管58より排出される。しかし、集電板40bの切替弁42は分岐路側に切り替えられているから、入口側マニホールドの燃料ガスは集電板40bの接続管46を経て第二の出口側マニホールド48から排出される。
同様に、端板32の接続管57に供給される酸化剤ガスは、セルブロック1aおよび1bの酸化剤ガスの入口側マニホールドからカソード側セパレータ板23のガス流路25に流れ、カソード13に拡散して発電反応に与り、出口側マニホールドを経て端板の接続管59より排出される。しかし、集電板40bの切替弁43は分岐路側に切り替えられているから、入口側マニホールドの酸化剤ガスは集電板40bの接続管47を経て第二の出口側マニホールド49から排出される。
なお、第二の出口側マニホールド48および49は、それぞれ接続管58および59とともに同じ排出管に接続しても良い。
集電板40bより下流のセルブロック1cおよび1dにおいては、燃料ガスおよび酸化剤ガスは入口側マニホールドに流れないから、発電反応には与らない。
図7は定格の25%の出力で運転する場合の燃料ガスおよび酸化剤ガスの流れを示している。すなわち、第一の集電板40aに設けられた切替弁42および43は、分岐路側に切り替えている。従って、端板32の接続管56に供給される燃料ガスは、セルブロック1aの燃料ガスの入口側マニホールド16からアノード側セパレータ板22のガス流路24に流れ、アノード12に拡散して発電反応に与り、出口側マニホールド18を経て端板の接続管58より排出される。また、入口側マニホールドの燃料ガスは集電板40aの接続管46を経て第二の出口側マニホールド48から排出される。
同様に、端板32の接続管57に供給される酸化剤ガスは、セルブロック1aの酸化剤ガスの入口側マニホールドからカソード側セパレータ板23のガス流路25に流れ、カソード13に拡散して発電反応に与り、出口側マニホールドを経て端板の接続管59より排出される。また、入口側マニホールドの酸化剤ガスは集電板40aの接続管47を経て第二の出口側マニホールド49から排出される。
集電板40aより下流のセルブロック1b、1cおよび1dにおいては、燃料ガスおよび酸化剤ガスは入口側マニホールドに流れないから、発電反応には与らない。
以上においては、燃料ガスおよび酸化剤ガスの流れを説明した。上記のように発電反応に与るセルブロックの切り替えに伴い電力の出力端子の切り替えを行う必要がある。図8はセルスタックからの電力取りだし端子の切り替えを表す。反応ガスの入口側の第二の集電板50に正極端子70を接続している。一方、負極端子71は、第一の集電板40a、40bおよび40c、並びに反応ガスの出口側の第二の集電板50にそれぞれ接続された端子a、bおよびc、並びにdに接触する切替スイッチTを有する。この切替スイッチTは、定格で運転するときには端子dに、定格の50%の出力で運転するときには端子bに、定格の25%の出力で運転するときには端子aに接続する。この出力端子の切り替えと、反応ガスの流れを制御する切替弁42および43の切り替えとは同期させて行うように切替機構を設定する。
定格の75%の出力で運転する場合は、集電板40cの切替弁42および43のみを分岐路側に切り替え、切替スイッチTは端子cに接続すればよい。
以上の例では、セルブロック1a、1b、1cおよび1dのセルの積層数は同じとしたが、所望とする出力の切替割合に応じて各セルブロックのセル積層数を変えても良い。
また、以上の例では、冷却水の流れを切り替える切替機構については示していない。しかし、反応ガスの切り替えと同様に、第一の集電板における冷却水の入口側マニホールドに切替弁を設けることにより、冷却水の切り替えを行うことができることは当業者には容易に理解できよう。
以下、本発明の実施例を説明する。
《実施例1》
粒径が数ミクロン以下のカーボン粉末を、塩化白金酸水溶液に浸漬し、還元処理によりカーボン粉末の表面に白金触媒を担持させた。このときのカーボンと担持した白金の重量比は1:1とした。ついで、この白金を担持したカーボン粉末を高分子電解質のアルコール溶液中に分散させ、スラリー化した。
一方、電極となる厚さ400μmのカーボンペーパーを、フッ素樹脂の水性ディスパージョン(ダイキン工業(株)製:商品名ネオフロンND1)に浸漬した後、乾燥し、400℃で30分間加熱処理して撥水性を付与した。
この撥水処理を施したカーボンペーパーの片面に、前記のカーボン粉末を含むスラリーを均一に塗工して触媒層を形成した。こうして作製した大きさ12×12cmの二枚の電極を、触媒層を内側にして高分子電解質膜の両側に接合してMEAを作製した。このMEAを、その両面から気密性を有するカーボン製のセパレータ板で挟み込んで単セルを組み立てた。セパレータ板の厚さは4mmである。
以上の単電池を25セル積層してセルブロックを構成した。セパレータ板に形成したガス流路は、幅2mm、深さ1mmである。また、セパレータ板の背面には冷却水の流路を形成した。冷却水の流路は、幅1mm、深さ1mmである。
上記の4組のセルブロックを用いて図5に示すようなセルスタックを組み立て、両端板をボルトとナットにより締結した。締結圧はセパレータ板の面積当たり10kgf/cm2とした。図5には示されていないが、第一の集電板には冷却水の入口側マニホールドの流路を分岐路に切り替える切り替え機構を有する。
《実施例2》
本実施例では、10セルを積層したセルブロックを10組用いてセルスタックを組み立てた。従って、反応ガスおよび冷却水の切替弁を有する第一の集電板は9枚用いた。その他は実施例1と同様である。
《比較例》
実施例1と同じ構成のセルを100セル積層し、これを集電板および絶縁板を介して端板で挟み、両端板をボルトとナットにより締結した。締結圧はセパレータ板の面積当たり10kgf/cm2とした。
実施例1および比較例のセルスタックの評価試験をした。
セルスタックの温度を80℃に保持し、露点が80℃となるように加温・加湿された水素ガスをアノードに、露点が80℃となるように加温・加湿された空気をカソードにそれぞれ供給し、水素ガスの利用率70%、空気の利用率40%、負荷電流28.8Aで稼働させた。
次に、出力を上記の50%および25%に変更し、その他の条件は上記と同じにしてセルスタックを稼働させた。ただし、実施例1のセルスタックについては、セルブロック間に入れた集電板の反応ガスおよび冷却水のマニホールドの切替弁を操作して、出力50%のときは入口側の2つのセルブロックに、また出力25%のときは入口側の1つのセルブロックにそれぞれ反応ガスと冷却水を流し、他のセルブロックには反応ガスおよび冷却水を流さないようにした。従って、実際に発電に寄与しているセルブロックに流れる負荷電流は28.8Aである。一方、比較例のセルスタックは、出力を変えてもすべてのセルが発電に寄与しているので、出力50%および25%のときはそれぞれ負荷電流を14.4Aおよび7.2Aにした。
出力100%で運転したときのセルスタックの単セルの平均電圧を図9に示す。また、出力50%および25%で運転したときのセルスタックの単セルの平均電圧をそれぞれ図10および図11に示す。これらの図から明らかなように、出力100%(負荷電流28.8A)で運転するときには、実施例1および比較例のセルスタックは同等の特性を示した。しかし、出力を50%および25%に下げると、比較例のセルスタックは、各電極間の電圧にばらつきが発生し、次第に電圧は低下した。これに対し、実施例1のセルスタックでは、各MEAの電圧のばらつきは少なく、安定した特性を示した。
この理由は以下のように考えられる。すなわち、比較例のセルスタックにおいては、負荷電流のみを変え、ガス利用率を一定にして運転した場合、加湿ガスが供給されている電極表面は、負荷電流を下げると、水分が残りやすい。このため電極表面の水分バランスが崩れ、電極反応が阻害され、電圧が低下する。実施例1のセルスタックにおいては、各MEAの負荷条件は変わらないため、電極反応が安定に進行する。
また、比較例の場合、カソードの利用率を20〜30%に下げる、つまりガス流量を上げると、電圧がほぼ安定化した。これは、ガス量が増えることで電極表面上の水分を飛ばし、電極触媒層の水分バランスが保たれ、電極反応が進行する結果、電圧が安定したものと考えられる。
次に、実施例2のセルスタックについて、実施例1のセルスタックと同様に、セルブロック間に入れた集電板の反応ガスおよび冷却水のマニホールドの切替弁を操作して、出力100%、50%および10%で稼働させた。その結果、いずれの出力で運転した場合も安定した特性を示すことが確認された。
本発明の高分子電解質型燃料電池は、出力の広い範囲の変化幅がとれるので、用途に応じて電極面積を調整することにより、設計に柔軟性が生じ、モバイル用や車、工場等定置用電源等への多様な商品設計が可能となる。
本発明の一実施の形態における高分子電解質型燃料電池のセルの構造を示す縦断面図である。 本発明の一実施の形態における高分子電解質型燃料電池の平面図である。 第一の集電板の断面図である。 第一の集電板のガス流路の切替弁の横断面図である。 本発明による高分子電解質型燃料電池を定格出力で運転する場合における燃料ガスおよび酸化剤ガスの流れを説明するためのブロック図である。 本発明による高分子電解質型燃料電池を定格出力の50%で運転する場合における燃料ガスおよび酸化剤ガスの流れを説明するためのブロック図である。 本発明による高分子電解質型燃料電池を定格出力の25%で運転する場合における燃料ガスおよび酸化剤ガスの流れを説明するためのブロック図である。 本発明による高分子電解質型燃料電池の電力取りだし端子の切り替えを表すブロック図である。 本発明の実施例1および比較例の高分子電解質型燃料電池を定格出力で運転したときのセルの平均電圧の経時変化を示すグラフである。 本発明の実施例1および比較例の高分子電解質型燃料電池を定格の50%の出力で運転したときのセルの平均電圧の経時変化を示すグラフである。 本発明の実施例1および比較例の高分子電解質型燃料電池を定格の25%の出力で運転したときのセルの平均電圧の経時変化を示すグラフである。
符号の説明
1、1a、1b、1c、1d セルブロック
10 MEA
11 高分子電解質膜
12 アノード
13 カソード
16 燃料ガスの入口側マニホールド
18 燃料ガスの出口側マニホールド
22 アノード側セパレータ板
23 カソード側セパレータ板
31 絶縁板
32 端板
40、40a、40b、40c 第一の集電板
44、45 分岐路
48 燃料ガスの第二の出口側マニホールド
49 酸化剤ガスの第二の出口側マニホールド
50 第二の集電板
62 燃料ガスの切替弁
63 酸化剤ガスの切替弁
70、71 出力端子
a、b、c、d 集電板の端子
T 切替スイッチ

Claims (2)

  1. (1)高分子電解質型燃料電池の単セルの少なくとも1個を含む複数のセルブロック、各セルブロック間に介在させた第一の集電板、並びに前記セルブロックと第一の集電板との積層体を第二の集電板および絶縁板を介して締結する端板からなるセルスタック、
    (2)前記セルスタックに設けられ、セルブロックの単セルに燃料ガスおよび酸化剤ガスをそれぞれ供給・排出する入口側および出口側のマニホールド、
    (3)第一の集電板の入口側マニホールドに設けられて、当該マニホールドのガス流路を分岐路へ切り換える切替弁、
    (4)前記分岐路に連なる第二の出口側マニホールド、並びに
    (5)前記ガスの入口側の第二の集電板に接続される一方の極性の端子、およびガス流路が分岐路に切り換えられた第一の集電板に接続される他方の極性の端子、
    を具備し、前記第一の集電板のいずれかの切替弁を分岐路側へ切り換えることにより、当該集電板のマニホールドより下流のセルブロックを除いて発電できるように構成された高分子電解質型燃料電池。
  2. (a)前記セルスタックに設けられ、セルブロックのセルを冷却するための冷却水を供給・排出する入口側および出口側マニホールド、
    (b)第一の集電板の冷却水の入口側マニホールドに設けられて、当該マニホールドの冷却水の流路を分岐路へ切り換える冷却水用切替弁、並びに
    (c)前記冷却水の分岐路に連なる第二の冷却水の出口側マニホールド、
    を具備し、前記切替弁の分岐路側への切替と同期させて前記冷却水用切替弁を分岐路側へ切り換えるように構成された請求項1記載の高分子電解質型燃料電池。
JP2003376182A 2003-11-05 2003-11-05 高分子電解質型燃料電池 Withdrawn JP2005141994A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376182A JP2005141994A (ja) 2003-11-05 2003-11-05 高分子電解質型燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376182A JP2005141994A (ja) 2003-11-05 2003-11-05 高分子電解質型燃料電池

Publications (1)

Publication Number Publication Date
JP2005141994A true JP2005141994A (ja) 2005-06-02

Family

ID=34687329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376182A Withdrawn JP2005141994A (ja) 2003-11-05 2003-11-05 高分子電解質型燃料電池

Country Status (1)

Country Link
JP (1) JP2005141994A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129647A1 (ja) * 2006-05-08 2007-11-15 Panasonic Corporation 燃料電池スタック、燃料電池システム、及び燃料電池システムの運転方法
JP2015176736A (ja) * 2014-03-14 2015-10-05 大阪瓦斯株式会社 固体高分子形燃料電池
WO2020212137A1 (en) * 2019-04-18 2020-10-22 Vitesco Technologies GmbH Improved fuel cell
FR3114920A1 (fr) * 2020-10-07 2022-04-08 Safran Power Units Pile à combustible et procédé de contrôle de pile à combustible
CN114709455A (zh) * 2022-06-08 2022-07-05 佛山市清极能源科技有限公司 一种燃料电池的多堆集成装置及其工作方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129647A1 (ja) * 2006-05-08 2007-11-15 Panasonic Corporation 燃料電池スタック、燃料電池システム、及び燃料電池システムの運転方法
JP4932831B2 (ja) * 2006-05-08 2012-05-16 パナソニック株式会社 燃料電池スタック、燃料電池システム、及び燃料電池システムの運転方法
JP2015176736A (ja) * 2014-03-14 2015-10-05 大阪瓦斯株式会社 固体高分子形燃料電池
WO2020212137A1 (en) * 2019-04-18 2020-10-22 Vitesco Technologies GmbH Improved fuel cell
FR3114920A1 (fr) * 2020-10-07 2022-04-08 Safran Power Units Pile à combustible et procédé de contrôle de pile à combustible
WO2022074338A1 (fr) * 2020-10-07 2022-04-14 Safran Power Units Pile à combustible et procédé de contrôle de pile à combustible
CN114709455A (zh) * 2022-06-08 2022-07-05 佛山市清极能源科技有限公司 一种燃料电池的多堆集成装置及其工作方法

Similar Documents

Publication Publication Date Title
EP1517392B1 (en) Solid high polymer type cell assembly
JP4505204B2 (ja) 燃料電池システム
JP4630529B2 (ja) 燃料電池システム
JPH10172587A (ja) 固体高分子型燃料電池
JP2002260695A (ja) 燃料電池スタックおよびその運転方法
WO2004075326A1 (ja) 高分子電解質型燃料電池および高分子電解質型燃料電池の運転方法
JP5299504B2 (ja) 燃料電池スタック
JP2001332288A (ja) 燃料電池スタック
JP2004087457A (ja) 燃料電池および燃料電池システム
JP2004247289A (ja) 燃料電池及びその運転方法
JP2005056671A (ja) 燃料電池
JP2005141994A (ja) 高分子電解質型燃料電池
JP3673252B2 (ja) 燃料電池スタック
KR20200072201A (ko) 공냉식 연료전지 스택 및 이를 포함한 공기 공급 시스템
US20040038103A1 (en) Solid polymer electrolyte fuel cell assembly
JP2004234973A (ja) 燃料電池ユニットおよびその運転方法
JP2006269409A (ja) 固体酸化物形燃料電池
EP1646099A2 (en) Electrochemical device
JP2000100458A (ja) 固体高分子型燃料電池
JP2002141090A (ja) 固体高分子型燃料電池システムの運転方法
WO2008056615A1 (fr) Pile à combustible
JP4197514B2 (ja) 燃料電池システム及びスタック
JP2002198072A (ja) 固体高分子型燃料電池
JP2006210212A (ja) 高分子電解質型燃料電池
JPH06333581A (ja) 固体高分子電解質型燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090916