CH699928A2 - Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril. - Google Patents

Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril. Download PDF

Info

Publication number
CH699928A2
CH699928A2 CH18132008A CH18132008A CH699928A2 CH 699928 A2 CH699928 A2 CH 699928A2 CH 18132008 A CH18132008 A CH 18132008A CH 18132008 A CH18132008 A CH 18132008A CH 699928 A2 CH699928 A2 CH 699928A2
Authority
CH
Switzerland
Prior art keywords
hydrogen cyanide
sodium
ethandinitril
sep
potassium
Prior art date
Application number
CH18132008A
Other languages
English (en)
Inventor
Ellen Klegraf
Wolfgang Wenger
Andreas Breuer
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Priority to CH18132008A priority Critical patent/CH699928A2/de
Priority to PCT/EP2009/005836 priority patent/WO2010057544A1/de
Priority to TW98127337A priority patent/TW201020213A/zh
Priority to ARP090104489 priority patent/AR075100A1/es
Publication of CH699928A2 publication Critical patent/CH699928A2/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/32Separation; Purification; Stabilisation; Use of additives
    • C07C253/34Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/003Cyanogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/04Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton containing two cyano groups bound to the carbon skeleton

Abstract

Die Erfindung betrifft ein Verfahren zur Entfernung von beigemengtem Cyanwasserstoff aus Ethandinitril, dadurch gekennzeichnet, dass gasförmiges, Cyanwasserstoff-enthaltendes Ethandinitril mit einem Absorptionsmittel in Kontakt gebracht wird.

Description


  [0001]    Die vorliegende Erfindung betrifft ein Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril.

  

[0002]    Ethandinitril, auch Dicyan genannt, ist ein farbloses und giftiges, stechend-süsslich riechendes Gas mit einem Siedepunkt von -21[deg.]C. Es verhält sich chemisch ähnlich wie ein Halogen und wird daher als Pseudohalogen bezeichnet. Ethandinitril ist ein wichtiges Zwischenprodukt in der Herstellung von vielen kommerziellen Endprodukten wie etwa von Kunstdüngern und Nitrilen. Ausserdem findet Ethandinitril in der Schweisstechnik Anwendung, da es mit Sauerstoff in der am heissesten bekannten Flamme (4640 K) verbrennt. Weitere Anwendungsgebiete von Ethandinitril sind sein Einsatz als Hochleistungstreibstoff, als Stabilisator bei der Herstellung von Nitrozellulose oder als Begasungsmittel, insbesondere in der Landwirtschaft wie etwa zum Abtöten von Parasiten auf Agrarböden oder bei der Lagerung von Gütern (WO 2005/037 332, US 6 001 383).

  

[0003]    Üblicherweise wird Ethandinitril durch Oxidation von Cyanwasserstoff grosstechnisch gewonnen, wobei typischerweise Chlor an einem aktivierten Siliziumdioxid-Katalysator oder Stickstoffdioxid an Kupfersalzen verwendet wird. Alternativ kann Ethandinitril durch katalytische Oxidation von Cyanwasserstoff mit Wasserstoffperoxid in Gegenwart von Kupfer(ll)- und Eisen(lll)-Salzen produziert werden, wie beispielsweise in DE 2 012 509, DE 2 022 454, DE 2 022 455 und DE 2 118 819 beschrieben.

  

[0004]    Ethandinitril, das zum Beispiel nach einem der obigen Verfahren durch Oxidation von Cyanwasserstoff gewonnen wurde, enthält in der Regel unumgesetzten Cyanwasserstoff, sowie Nebenprodukte wie Sauerstoff, Kohlenstoffdioxid oder Wasser. Die Reinigung von Ethandinitril, insbesondere die selektive und quantitative Entfernung von Cyanwasserstoff, ist äusserst anspruchsvoll. Der Grund ist, dass Ethandinitril und Cyanwasserstoff ein ähnliches chemisches Verhalten aufweisen und ähnliche Schmelz- und Siedepunkte haben, so dass es schwierig ist, reines Ethandinitril durch einfache Kondensation oder Destillation zu gewinnen.

  

[0005]    Es ist daher eine Aufgabe der vorliegenden Erfindung, ein effizientes Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril zur Verfügung zu stellen, bei dem die Ausbeute an reinem Ethandinitril möglichst hoch ist.

  

[0006]    Diese Aufgabe wird gelöst durch das Verfahren gemäss Anspruch 1. Weitere bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.

  

[0007]    Die vorliegende Erfindung betrifft ein Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril, dadurch gekennzeichnet, dass gasförmiges, Cyanwasserstoff-enthaltendes Ethandinitril mit einem Absorptionsmittel in Kontakt gebracht wird.

  

[0008]    In einer Ausführungsform der Erfindung wird als Absorptionsmittel ein Feststoff eingesetzt, der den Cyanwasserstoff, der im Ethandinitril als Verunreinigung enthalten ist, bindet.

  

[0009]    In einer besonders bevorzugten Ausführungsform enthält der Feststoff Kieselgel, Aluminiumoxid, oder eine Mischung von Kieselgel und Aluminiumoxid. Besonders bevorzugt wird als Feststoff Kieselgel, Aluminiumoxid oder eine Mischung von Kieselgel und Aluminiumoxid eingesetzt.

  

[0010]    Hier und im Folgenden soll unter dem Begriff "Kieselgel" nicht nur Kieselgel in seiner reinen, farblosen Form verstanden werden, sondern auch farbige Kieselgele, die Metallsalze als Indikatoren enthalten. Beispiele für farbige Kieselgele sind Blaugel (enthält Cobalt(ll)-chlorid) und Orangegel (enthält Ammoniumeisen(lll)-sulfat).

  

[0011]    Üblicherweise werden Kieselgele für die Entfernung von Wasser, d.h. für die Trocknung von wasserhaltigen Substanzen eingesetzt. Bei farbigem Kieselgel verändert sich dabei die Farbe des Metallsalzes aufgrund von Komplexbildung. Überraschenderweise wurde festgestellt, dass Kieselgel, Aluminiumoxid oder eine Mischung dieser beiden Substanzen selektiv Cyanwasserstoff absorbiert, während das chemisch ähnliche Ethandinitril nicht absorbiert wird. Da Kieselgel und Aluminiumoxid nicht nur Cyanwasserstoff, sondern auch Wasser binden, wird gleichzeitig allenfalls im Rohprodukt enthaltenes Wasser entfernt. Dadurch kann ein zusätzlicher Trocknungsschritt des gereinigten Ethandinitrils vermieden werden. Beide Feststoffe können beispielsweise durch Erhitzen regeneriert und mehrfach eingesetzt werden. Sie sind ausserdem käuflich erhältlich und kostengünstig.

  

[0012]    In einerweiteren bevorzugten Ausführungsform ist das Absorptionsmittel eine Flüssigkeit, die den Cyanwasserstoff löst. In einer besonders bevorzugten Ausführungsform ist die Flüssigkeit aus der Gruppe bestehend aus Essigsäureanhydrid, Wasser, Ethylenglykolmonoether, Ethylenglykoldiether, Propylenglykolmonoether, Propylen-glykoldiether, Butylenglykolmonoether, Butylenglykoldiether, Diethylenglykolmonoether, Diethylenglykoldiether, Triethylenglykolmonoether, Triethylenglykoldiether und Mischungen der zuvor genannten Glykolether ausgewählt.

  

[0013]    Essigsäureanhydrid ist besonders geeignet, da es relativ billig ist, und Transport, Lagerung und Entsorgung sehr unproblematisch sind. Da Essigsäureanhydrid aufgrund seiner hohen Reaktivität auch das im Ethandinitril enthaltene Wasser entfernt, kann auf einen zusätzlichen Trocknungsschritt des Produktgases verzichtet werden.

  

[0014]    Alternativ wird besonders bevorzugt als absorbierende Flüssigkeit Wasser verwendet. Da sich beim Lösen des Cyanwasserstoffs der pH-Wert ändert, wird zur pH-Regulierung, während des Einleitens der zu reinigenden Gasmischung in das Wasser, eine wässrige, basische Lösung beigefügt. Geeignete Basen sind beispielsweise Natriumhydroxid oder Kaliumhydroxid. Wasser hat den Vorteil, dass es billig ist. Ausserdem kann die entstehende Lösung von Natrium- oder Kaliumcyanid gegebenenfalls zur Gewinnung dieser Salze eingesetzt werden. Das Cyanwasserstoff-haltige Wasser kann auf an sich bekannte Weise entsorgt werden, zum Beispiel durch Hydrolyse oder Oxidation.

   Ein weiterer Vorteil ist, dass eventuelle Verunreinigungen des erfindungsgemäss gereinigten Ethandinitrils durch das verwendete Wasser sehr einfach entfernt werden können, beispielsweise mittels Trocknungsreagenzien wie Kieselgel oder Aluminiumoxid.

  

[0015]    Alternativ wird auch besonders bevorzugt ein Glykolether als absobierende Flüssigkeit verwendet. Geeignete Glykolether sind Ethylenglykolmonoether, wie beispielsweise Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Ethylenglykolmonopropylether, Ethylenglykolmonoisopropylether, Ethylenglykolmonobutylether, Ethylenglykolmonophenylether und Ethylenglykolmonobenzylether; Ethylenglykoldiether, wie beispielsweise Ethylenglykoldimethylether, Ethylenglykoldiethylether, Ethylenglykoldipropylether, Ethylenglykoldiisopropylether und Ethylenglykoldibutylether; Propylenglykolmonoether, wie beispielsweise 1,2-Propylenglykolmonomethylether, 1,2-Propylenglykolmonoethylether, 1,3-Propylenglykolmonomethylether und 1,3-Propylenglykolmonoethylether;

   Propylenglykoldiether, wie beispielsweise 1,2-Propylenglykoldimethylether, 1,2-Propylenglykoldiethylether, 1,2-Propylenglykolmethylethylether, 1.2- Propylenglykoldipropylether, 1,2-Propylenglykolmethylbutylether, 1,3-Propylenglykoldimethylether, 1,3-Propylenglykoldimethylether, 1,3-Propylenglykoldiethylether, 1.3- Propylenglykolmethylethylether und 1,3-Propylenglykoldipropylether; Butylen-glykolmonoether, wie beispielsweise Butylenglykolmonoethylether; Butylenglykoldiether, wie beispielsweise 1,2-Butylenglykoldimethylether; Diethylenglykolmonoether, wie beispielsweise Diethylenglykolmonomethylether (Methylcarbitol<(R)>), Diethylenglykolmonoethylether (Carbitol<(R)>), Diethylenglykolmonopropylether, Diethylenglykolmono-butylether (Butylcarbitol<(R)>) und Diethylenglykolmonohexylether (Hexylcarbitol<(R)>);

   Diethylenglykoldiether, wie beispielsweise Diethylenglykoldimethylether, Diethylenglykoldiethylether, Diethylenglykoldipropylether und Diethylenglykoldibutylether; Triethylenglykolmonoether, wie beispielsweise Triethylenglykolmonomethylether; Triethylenglykoldiether, wie beispielsweise Triethylenglykoldimethylether und Mischungen der zuvor genannten Glykolether. Es ist vorteilhaft, dass sich der absorbierte Cyanwasserstoff aufgrund der hohen Siedepunkte der erfindungsgemäss zu verwendenden Glykolether durch thermische Behandlung entfernen lässt, so dass man die so erhaltenen Flüssigkeiten erneut einsetzen kann. Auch sind diese Glykolether käuflich erhältlich und stellen an Lagerung und Transport keine besonderen Ansprüche.

  

[0016]    In einer weiteren bevorzugten Ausführungsform ist das Absorptionsmittel eine wässrige, basische Lösung, die den Cyanwasserstoff unter Salzbildung absorbiert. Bevorzugt enthält die basische, wässrige Lösung mindestens eine Base, die aus der Gruppe bestehend aus Natriumcarbonat, Kaliumcarbonat, Cäsiumcarbonat, Magnesiumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Natriumeitrat, Kaliumeitrat, Trinatriumphosphat, Trikaliumphosphat, Magnesiumthiosulfat, Natriumbenzoat, Natriumhydrogenphosphit, Natriumsuccinat, Natriumsulfit, Natriumtartrat, Kaliumtartrat, Natrium-Kalium-Tartrat, Natriumthiosulfat, Kaliumbenzoat, Natriumlactat, Kaliumlactat, Magnesiumlactat und Methylamin ausgewählt ist. Ein Überschuss an Base ist nicht nötig, so dass diese vorzugsweise in stöchiometrischer Menge eingesetzt wird.

   Durch Einstellung des pH-Werts der basischen wässrigen Lösung lässt sich selektiv Cyanwasserstoff aus dem Produktgemisch herauswaschen. Die Entsorgung der verbrauchten Reagentien erfolgt einfach und umweltschonend durch Hochdruckhydrolyse.

  

[0017]    In einer weiteren bevorzugten Ausführungsform ist das Absorptionsmittel eine wässrige Metallsalzlösung, die den Cyanwasserstoff unter Komplexbildung absorbiert. Die wässrige Metallsalzlösung enthält bevorzugt mindestens ein Metallion, das aus der Gruppe bestehend aus Fe<2+>, Fe<3+>, Cu<2+>, Ni<2+>, Mg<2+>, Zn<2+>, Cu<+>, Ag<+>, Pb<2+>, Cd<2+>, Au<+>, Hg<2+>, Co<2+>, Pt<2+> und Pd<2+> ausgewählt ist. Die Entfernung des Cyanwasserstoffs basiert auf einer Komplexbildungsreaktion des Cyanid-Ions aus dem Cyanwasserstoff mit den Metallionen unter Ausbildung einer dativen Bindung und ist hoch selektiv. Auch ist die Ausbeute an reinem Ethandinitril sehr hoch. Der Einsatz der erfindungsgemäss verwendeten Metallionen hat den Vorteil, dass die Metallionen rezykliert werden können. Da diese teilweise sehr wertvoll sind, können die Verfahrenskosten so massiv gesenkt werden.

   Im Weiteren können je nach verwendetem Metallion mehrere Cyanid-Ionen an ein Metallion koordinieren. So kann mit geringen Mengen von Metallionen gearbeitet werden. Die Komplexbildung ist in der Regel sehr schnell und vollständig. Die gebildeten Komplexsalze sind vorzugsweise Feststoffe, die leicht abfiltriert werden können. Alternativ kann einfach das Wasser abdestilliert und anschliessend problemlos entsorgt werden. Eventuelle Verunreinigungen des erfindungsgemäss gereinigten Ethandinitrils durch das Wasser aus der wässrigen Metallsalzlösung können sehr einfach entfernt werden, beispielsweise mittels Trocknungsreagenzien wie Kieselgel oder Aluminiumoxid.

  

[0018]    In einer bevorzugten Ausführungsform wird das durch das erfindungsgemässe Verfahren von Cyanwasserstoff befreite Ethandinitril getrocknet und/oder zur Kondensation oder Desublimation gebracht.

  

[0019]    Zum Trocknen, das heisst zum Entfernen von Wasser, wird das von Cyanwasserstoff befreite Ethandinitril vorzugsweise mit einem Sorptionsmittel in Kontakt gebracht. Geeignete Sorptionsmittel sind beispielsweise Silicagel, Natriumsulfat, Magnesiumsulfat, Calciumchlorid, Calciumsulfat, Calciumoxid, Natronkalk, Bariumoxid, Kaliumcarbonat, Phosphorpentoxid oder Molekularsiebe. Alternativ kann das Ethandinitril auch durch Ausfrieren von Wasser befreit werden.

  

[0020]    Das Kondensieren oder Desublimieren des Ethandinitrils dient insbesondere dazu, Kohlendioxid zu entfernen. Zu diesem Zweck wird das von Cyanwasserstoff befreite und allenfalls getrocknete Ethandinitril auf eine Temperatur abgekühlt, bei der Ethandinitril flüssig oder fest wird, Kohlendioxid aber noch nicht. Durch einfache Trennung der Phasen kann dann das Kohlendioxid vom Ethandinitril getrennt werden. Vorzugsweise wird die Kondensation beziehungsweise das Ausfrieren bei Normaldruck oder einem Überdruck, beispielsweise zwischen etwa 1 bis 15 bar, und einer Temperatur von -78 [deg.]C bis 30 [deg.]C durchgeführt, insbesondere bei einer Temperatur von -78 [deg.]C bis 20[deg.]C.

Beispiele

Beispiel 1: Herstellung von Ethandinitril und Reinigung mit Kieselgel (Blaugel)

  

[0021]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 25,3 g Eisen(lll)sulfat-Hydrat und 24,7 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 120 min wurden bei einer Temperatur von 20 [deg.]C 100 g Cyanwasserstoff (100%) und 209 g Wasserstoffperoxid (30%-ig) parallel zugetropft.

  

[0022]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>90,50%


  <tb>Cyanwasserstoff:<sep>1,80%


  <tb>Wasser:<sep>0,55%


  <tb>Kohlendioxid:<sep>7,20%

  

[0023]    Das Gasgemisch wurde durch einen Gaswäscher mit Blaugel (mit C0CI2 gefärbtes Kieselgel) und anschliessend zum Trocknen durch eine mit Molekularsieb (3 Ä) gefüllte Gaswaschflasche geleitet. Nach diesen Reinigungs- und Trockenschritten hatte das Ethandinitril-Gas gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>90,50%


  <tb>Cyanwasserstoff:<sep>-


  <tb>Wasser:<sep>-


  <tb>Kohlendioxid:<sep>9,40%

  

[0024]    Das so erhaltene Ethandinitril wurde in einer Kühlfalle bei -78 [deg.]C selektiv ausgefroren. Das Entweichen des gasförmigen Kohlendioxids konnte in einem nachgeschalteten Absorber mit 20%-iger wässriger Kaliumhydroxid-Lösung verfolgt werden.

  

[0025]    Die Ausbeute an reinem Ethandinitril betrug 24 g (25%).

Beispiel 2: Herstellung von Ethandinitril und Reinigung mit Aluminiumoxid

  

[0026]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 2,5 g Eisen(lll)sulfat-Hydrat und 2,5 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 120 min wurden bei einer Temperatur von 20[deg.]C 100 g Cyanwasserstoff (100%) und 126 g Wasserstoffperoxid (50%-ig) parallel zugetropft.

  

[0027]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>95,20%


  <tb>Cyanwasserstoff:<sep>2,20%


  <tb>Wasser:<sep>0,50%


  <tb>Kohlendioxid:<sep>2,10%

  

[0028]    Das Gasgemisch wurde durch einen Gaswäscher mit Aluminiumoxid und anschliessend zum Trocknen durch eine mit Molekularsieb (3 ÅA) gefüllte Gaswaschflasche geleitet. Nach diesen Reinigungs- und Trockenschritten wurde das Ethandinitril in 43%-iger Ausbeute und gemäss gaschromatographischer Analyse mit folgender Zusammensetzung erhalten:
<tb>Ethandinitril:<sep>97,40%


  <tb>Cyanwasserstoff:<sep>0,50%


  <tb>Wasser:<sep>-


  <tb>Kohlendioxid:<sep>2,10%

Beispiel 3: Herstellung von Ethandinitril und Reinigung mit Diethylenglykolmonoethylether

  

[0029]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 7,5 g Eisen(lll)sulfat-Hydrat und 7,5 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 180 min wurden bei einer Temperatur von 25 [deg.]C 100 g Cyanwasserstoff (100%) und 209 g Wasserstoffperoxid (30%-ig) parallel zugetropft.

  

[0030]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>95,60%


  <tb>Cyanwasserstoff:<sep>2,09%


  <tb>Wasser:<sep>0,57%


  <tb>Kohlendioxid:<sep>1,68%

  

[0031]    Das Gasgemisch wurde durch einen Gaswäscher mit Diethylenglykolmonoethylether (Carbitol<(R)>) und anschliessend zum Trocknen durch eine mit Molekularsieb (3 Ä) gefüllte Gaswaschflasche geleitet. Nach diesen Reinigungs- und Trockenschritten hatte das Ethandinitril-Gas gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>94,60%


  <tb>Cyanwasserstoff:<sep>0,40%


  <tb>Wasser:<sep>-


  <tb>Kohlendioxid:<sep>4,93%

  

[0032]    Das so erhaltene Ethandinitril wurde in einer Kühlfalle bei -78 [deg.]C selektiv ausgefroren. Das Entweichen des gasförmigen Kohlendioxids konnte in einem nachgeschalteten Absorber mit 20%-iger wässriger Kaliumhydroxid-Lösung verfolgt werden.

  

[0033]    Die Ausbeute an reinem Ethandinitril betrug 73 g (68%).

Beispiel 4: Herstellung von Ethandinitril und Reinigung mit Essigsäureanhydrid

  

[0034]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 2,5 g Eisen(lll)sulfat-Hydrat und 2,5 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 150 min wurden bei einer Temperatur von 20 [deg.]C 100 g Cyanwasserstoff (100%) und 126 g Wasserstoffperoxid (50%-ig) parallel zugetropft.

  

[0035]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>92,00%


  <tb>Cyanwasserstoff:<sep>1,70%


  <tb>Wasser:<sep>0,50%


  <tb>Kohlendioxid:<sep>5,80%

  

[0036]    Das Gasgemisch wurde durch einen Gaswäscher mit Essigsäureanhydrid und anschliessend zum Trocknen durch einen mit Molekularsieb (3 Ä) gefüllten Trockenturm geleitet. Nach diesen Reinigungs- und Trockenschritten wurde das Ethandinitril in 52%-iger Ausbeute und gemäss gaschromatographischer Analyse mit folgender Zusammensetzung erhalten:
<tb>Ethandinitril:<sep>88,20%


  <tb>Cyanwasserstoff:<sep>0,20%


  <tb>Wasser:<sep>-


  <tb>Kohlendioxid:<sep>11,60%

Beispiel 5: Herstellung von Ethandinitril und Reinigung mit Wasser

  

[0037]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 25,3 g Eisen(lll)sulfat-Hydrat und 24,7 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 120 min wurden bei einer Temperatur von 20[deg.]C 100 g Cyanwasserstoff (100%) und 209 g Wasserstoffperoxid (30%-ig) parallel zugetropft.

  

[0038]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>91,60%


  <tb>Cyanwasserstoff:<sep>2,00%


  <tb>Wasser:<sep>0,57%


  <tb>Kohlendioxid:<sep>5,83%

  

[0039]    Das Gasgemisch wurde durch einen Gaswäscher mit Wasser geleitet, wobei während dieses Vorgangs der pH-Wert des Wassers mit 10%-iger Natriumhydroxid-Lösung auf einen pH-Wert zwischen 6 und 7 reguliert wurde. Anschliessend wurde das erhaltene Gasgemisch zum Trocknen durch einen auf-10[deg.]C gekühlten Rückflusskühler geleitet. Nach diesen Reinigungs- und Trockenschritten hatte das Ethandinitril-Gas gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>92,60%


  <tb>Cyanwasserstoff:<sep>0,40%


  <tb>Wasser:<sep>0,08%


  <tb>Kohlendioxid:<sep>6,93%

  

[0040]    Das so erhaltene Ethandinitril wurde in einer Kühlfalle bei -78 [deg.]C selektiv ausgefroren. Das Entweichen des gasförmigen Kohlendioxids konnte in einem nachgeschalteten Absorber mit 20%-iger wässriger Kaliumhydroxid-Lösung verfolgt werden.

  

[0041]    Die Ausbeute an reinem Ethandinitril betrug 58 g (56%).

Beispiel 6: Herstellung von Ethandinitril und Reinigung mit Natriumcarbonat-Lösung

  

[0042]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 25,3 g Eisen(lll)sulfat-Hydrat und 24,7 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 140 min wurden bei einer Temperatur von 20 [deg.]C 77 g Cyanwasserstoff (100%) und 144,6 g Wasserstoffperoxid (30%-ig) parallel zugetropft.

  

[0043]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>90,90%


  <tb>Cyanwasserstoff:<sep>1,73%


  <tb>Wasser:<sep>0,56%


  <tb>Kohlendioxid:<sep>6,80%

  

[0044]    Das Gasgemisch wurde durch einen Gaswäscher mit wässriger 5%-iger Natriumcarbonat-Lösung und anschliessend zum Trocknen durch einen mit Molekularsieb (3) gefüllten Trockenturm geleitet. Nach diesen Reinigungs- und Trockenschritten hatte das Ethandinitril-Gas gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>90,00%


  <tb>Cyanwasserstoff:<sep>0,13%


  <tb>Wasser:<sep>0,04%


  <tb>Kohlendioxid:<sep>9,80%

  

[0045]    Das so erhaltene Ethandinitril wurde in einer Kühlfalle bei -78 [deg.]C selektiv ausgefroren. Das Entweichen des gasförmigen Kohlendioxids konnte in einem nachgeschalteten Absorber mit 20%-iger wässriger Kaliumhydroxid-Lösung verfolgt werden.

Beispiel 7: Herstellung von Ethandinitril und Reinigung mit Kupfer(ll)sulfat-Lösung

  

[0046]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 25,3 g Eisen(lll)sulfat-Hydrat und 24,7 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 360 min wurden bei einer Temperatur von 20[deg.]C 300 g Cyanwasserstoff (100%) und 632 g Wasserstoffperoxid (30%-ig) parallel zugetropft.

  

[0047]    Das bei der Reaktion entstehende Gas hatte gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>95,37%


  <tb>Cyanwasserstoff:<sep>1,95%


  <tb>Wasser:<sep>0,53%


  <tb>Kohlendioxid:<sep>2,15%

  

[0048]    Das Gasgemisch wurde durch einen Gaswäscher mit 20%-iger wässriger Kupfer(ll)-sulfat-Lösung und anschliessend zum Trocknen durch eine mit Molekularsieb (3 ÅA) gefüllte Gaswaschflasche geleitet. Nach diesen Reinigungs- und Trockenschritten hatte das Ethandinitril-Gas gemäss gaschromatographischer Analyse die folgende Zusammensetzung:
<tb>Ethandinitril:<sep>97,20%


  <tb>Cyanwasserstoff:<sep>-


  <tb>Wasser:<sep>-


  <tb>Kohlendioxid:<sep>2,80%

  

[0049]    Das so erhaltene Ethandinitril wurde in einer Kühlfalle bei -78[deg.]C selektiv ausgefroren. Das Entweichen des gasförmigen Kohlendioxids konnte in einem nachgeschalteten Absorber mit 20%-iger wässriger Kaliumhydroxid-Lösung verfolgt werden.

  

[0050]    Die Ausbeute an reinem Ethandinitril betrug 225 g (78%).

Beispiel 8: Herstellung von Ethandinitril und Reinigung mit Eisen(ll)sulfat-Lösung

  

[0051]    In einem 2 L-Rührwerk (Labmax) mit temperaturgeregeltem Mantel, Rührwerk, Rückflusskühler, pH-Sonde und zwei Dosiervorrichtungen wurden 25,3 g Eisen(lll)sulfat-Hydrat und 24,7 g Kupfer(ll)sulfat-Pentahydrat in 308 mL Wasser gelöst. Innerhalb von 120 min wurden bei einer Temperatur von 15 [deg.]C 100 g Cyanwasserstoff (100%) und 251 g Wasserstoffperoxid (30%-ig) parallel zugetropft.

  

[0052]    Das bei der Reaktion entstehende Gasgemisch wurde ohne vorgängige gaschromatographische Analyse durch einen Gaswäscher mit 10%-iger wässriger Eisen(ll)sulfat-Lösung und anschliessend durch einen auf-10 [deg.]C gekühlten Rückflusskühler geleitet. Nach diesen Reinigungs- und Trockenschritten wurde das Ethandinitril in 74%-iger Ausbeute und gemäss gaschromatographischer Analyse mit folgender Zusammensetzung erhalten:
<tb>Ethandinitril:<sep>89,60%


  <tb>Cyanwasserstoff:<sep>0,05%


  <tb>Wasser:<sep>0,15%


  <tb>Kohlendioxid:<sep>10,15%

Claims (10)

1. Verfahren zur Entfernung von beigemengtem Cyanwasserstoff aus Ethandinitril, dadurch gekennzeichnet, dass gasförmiges, Cyanwasserstoff-enthaltendes Ethandinitril mit einem Absorptionsmittel in Kontakt gebracht wird.
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das Absorptionsmittel ein Feststoff ist, der den Cyanwasserstoff bindet.
3. Verfahren gemäss Anspruch 2, dadurch gekennzeichnet, dass der Feststoff Kieselgel, Aluminiumoxid oder eine Mischung von Kieselgel und Aluminiumoxid enthält.
4. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das Absorptionsmittel eine Flüssigkeit ist, die den Cyanwasserstoff in der Flüssigkeit löst.
5. Verfahren gemäss Anspruch 4, dadurch gekennzeichnet, dass die Flüssigkeit aus der Gruppe bestehend aus Essigsäureanhydrid, Wasser, Ethylenglykolmonoether, Ethylenglykoldiether, Propylenglykolmonoether, Propylenglykol-diether, Butylenglykolmonoether, Butylenglykoldiether, Diethylenglykolmonoether, Diethylenglykoldiether, Triethylenglykolmonoether, Triethylenglykoldiether und Mischungen der zuvor genannten Glykolether ausgewählt ist.
6. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das Absorptionsmittel eine wässrige, basische Lösung ist, die den Cyanwasserstoff unter Salzbildung absorbiert.
7. Verfahren gemäss Anspruch 6, dadurch gekennzeichnet, dass die wässrige, basische Lösung mindestens eine Base enthält, die aus der Gruppe bestehend aus Natriumcarbonat, Kaliumcarbonat, Cäsiumcarbonat, Magnesiumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Natriumcitrat, Kaliumeitrat, Trinatriumphosphat, Trikaliumphosphat, Magnesiumthiosulfat, Natriumbenzoat, Natriumhydrogenphosphit, Natriumsuccinat, Natriumsulfit, Natriumtartrat, Kaliumtartrat, Natrium-Kalium-Tartrat, Natriumthiosulfat, Kaliumbenzoat, Natriumlactat, Kaliumlactat, Magnesiumlactat und Methylamin ausgewählt ist.
8. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das Absorptionsmittel eine wässrige Metallsalzlösung ist, die den Cyanwasserstoff unter Komplexbildung absorbiert.
9. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass die wässrige Metallsalzlösung mindestens ein Metallion enthält, das aus der Gruppe bestehend aus Fe<2+>, Fe<3+>, Cu<2+>, Ni<2+>, Mg<2+>, Zn<2+>, Cu<+>, Ag<+>, Pb<2+>, Cd<2+>, Au<+>, Hg<2+>, Co<2+>, Pt<2+> und Pd<2+> ausgewählt ist.
10. Verfahren gemäss einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das von Cyanwasserstoff befreite Ethandinitril getrocknet und/oder zur Kondensation oder Desublimation gebracht wird.
CH18132008A 2008-11-20 2008-11-20 Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril. CH699928A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CH18132008A CH699928A2 (de) 2008-11-20 2008-11-20 Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril.
PCT/EP2009/005836 WO2010057544A1 (de) 2008-11-20 2009-08-12 Verfahren zur entfernung von cyanwasserstoff aus ethandinitril
TW98127337A TW201020213A (en) 2008-11-20 2009-08-14 Method for removing hydrogen cyanide from ethane dinitrile
ARP090104489 AR075100A1 (es) 2008-11-20 2009-11-20 Proceso para separar cianuro de hidrogeno de etanodinitrilo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH18132008A CH699928A2 (de) 2008-11-20 2008-11-20 Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril.

Publications (1)

Publication Number Publication Date
CH699928A2 true CH699928A2 (de) 2010-05-31

Family

ID=41081770

Family Applications (1)

Application Number Title Priority Date Filing Date
CH18132008A CH699928A2 (de) 2008-11-20 2008-11-20 Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril.

Country Status (4)

Country Link
AR (1) AR075100A1 (de)
CH (1) CH699928A2 (de)
TW (1) TW201020213A (de)
WO (1) WO2010057544A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004113A1 (de) 2012-03-01 2013-09-05 Linde Aktiengesellschaft Verfahren zum Abfüllen von flüssigem Ethandinitril und Abfülleinrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1079611B (de) * 1959-01-24 1960-04-14 Roehm & Haas Gmbh Herstellung von Dicyan
DE1197860B (de) * 1960-10-29 1965-08-05 Roehm & Haas Gmbh Verfahren zur Herstellung von Dicyan
IT1046519B (it) * 1974-11-08 1980-07-31 Vetrocoke Cokapuania Spa Procedimento migliorato per la eliminazione e il ricupero di gas acidi co 2 e o h2s da miscele gassose che li contengono
JPS546889A (en) * 1977-06-20 1979-01-19 Mitsubishi Heavy Ind Ltd Absorbing solution for hydrogen cyanide in exhaust gas
DE69607423T2 (de) * 1995-08-08 2000-08-03 Exxon Research Engineering Co Verfahren zur Beseitigung von Cyanwasserstoff aus Synthesegas

Also Published As

Publication number Publication date
WO2010057544A1 (de) 2010-05-27
AR075100A1 (es) 2011-03-09
TW201020213A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
DE2519388C3 (de) Verfahren zur Herstellung von N-Phosphonmethylglycin
DE2600541C3 (de) Verfahren zur Herstellung von Phenylbrenztraubensäure oder Arylbrenztraubensäuren
DE2326784C3 (de) Verfahren zur Herstellung von Chinoxalin, insbesondere aus nicht gereinigten Rohstoffen
DE4238915A1 (de) Verfahren zur Wiedergewinnung von Jod
DE2036819A1 (de) Verfahren zur Herstellung von sihkati sehen Absorptions und Trocknungsmitteln
DE1642443A1 (de) Verfahren zur Entsalzung von Kesselspeisewasser
DE2018917A1 (de) Katalysatoren
DE2806161A1 (de) Stabilisierung von wasserfreiem natriummetasilicat
DE60029320T2 (de) Nichtzusammenbackende natriumchloridkristalle, ein verfahren zu deren herstellung und deren verwendung in einem elektrolyseverfahren
EP1916226B1 (de) Verwendung eines organischen Reduktionsmittels zur Wasseraufbereitung durch Entfernung von Chloramin, Chlor und anderen Aktivchlorverbindungen aus Hälterungswasser für Wasserorganismen.
DE2705340A1 (de) Verfahren zum oxydieren von monosacchariden
DE1518522C3 (de) Verfahren zur Reinigung einer wäßrigen Äpfelsäurelösung
CH699928A2 (de) Verfahren zur Entfernung von Cyanwasserstoff aus Ethandinitril.
DE69926697T2 (de) Verfahren zur reinigung von fluormethyl-1,1,1,3,3,3-hexafluorisopropylether
DE60105916T2 (de) Wasserfreie Reinigung von Nikotin unter Benützung eines Kationenaustauscherharzes
DE3390191C2 (de) Verfahren zur Herstellung von glyoxal
DE1443677C3 (de) Verfahren zur Gewinnung von spektrophotometrisch reinem Dimethylsulfoxid
DE534118C (de) Verfahren zur Herstellung stark adsorbierender, hochmolekularer Produkte durch katalytische Polymerisation und/oder Kondensation von Acetylen
AT201579B (de) Verfahren zur Herstellung von Acrylsäure
DE1592013B2 (de) Verfahren zur herstellung eines wasserfreien natrium-hyposulfits
DE2331668A1 (de) Verfahren zur reinigung von sorbinsaeure
DE4319461C2 (de) Erdalkali enthaltendes Sorptionsmittel zur Entfernung von Verunreinigungen aus einem Gasstrom, seine Herstellung und Verwendung
DE2733231A1 (de) Verfahren zur herstellung von vitamin-a-acetat
DE69733410T2 (de) Verfahren zur reinigung eines aminoalkohols
DE1223396B (de) Verfahren zur Herstellung von Trinatriumsalzen der Zinkkomplexe der Diaethylentriamin-N, N. N&#39;, N&#34;, N&#34;-pentaessigsaeure und der Triaethylentetramin-N, N, N&#39;, N&#34;, N&#39;&#39;&#39;, N&#39;&#39;&#39;-hexaessigsaeure

Legal Events

Date Code Title Description
AZW Rejection (application)