WO2024055467A1 - 一种利用磷矿与硫酸亚铁制备磷酸铁的方法 - Google Patents

一种利用磷矿与硫酸亚铁制备磷酸铁的方法 Download PDF

Info

Publication number
WO2024055467A1
WO2024055467A1 PCT/CN2022/141946 CN2022141946W WO2024055467A1 WO 2024055467 A1 WO2024055467 A1 WO 2024055467A1 CN 2022141946 W CN2022141946 W CN 2022141946W WO 2024055467 A1 WO2024055467 A1 WO 2024055467A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
phosphate
ferrous sulfate
phosphorus
iron phosphate
Prior art date
Application number
PCT/CN2022/141946
Other languages
English (en)
French (fr)
Inventor
徐善皖
李锦�
郭米艳
Original Assignee
湖北虹润高科新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北虹润高科新材料有限公司 filed Critical 湖北虹润高科新材料有限公司
Publication of WO2024055467A1 publication Critical patent/WO2024055467A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention belongs to the technical field of iron phosphate, and in particular relates to a method for preparing iron phosphate by utilizing phosphate rock and ferrous sulfate.
  • Lithium iron phosphate has become the first choice for new energy power batteries due to its high safety and good cycle performance.
  • most lithium iron phosphate in the industry is synthesized using iron phosphate as a precursor.
  • phosphoric acid or soluble phosphate as the phosphorus source for iron phosphate synthesis, such as phosphoric acid, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate.
  • Soluble phosphates such as sodium dihydrogen phosphate and disodium hydrogen phosphate.
  • soluble phosphates are all prepared by wet phosphoric acid technology and then processed through different process routes, resulting in a higher unit price of the phosphorus source.
  • the cost of phosphorus sources accounts for more than 80% of the total raw material costs. Therefore, if the phosphate rock from the wet phosphoric acid process can be used as the phosphorus source for iron phosphate synthesis, since the price of phosphate rock is significantly lower than the price of phosphoric acid or other downstream soluble phosphates, the cost of the phosphorus source as the raw material for iron phosphate synthesis will be greatly reduced.
  • the mainstream process route for preparing iron phosphate is: 1 Iron sheet and phosphoric acid are used as raw materials, and the heating reaction generates ferric dihydrogen phosphate, which is then oxidized with hydrogen peroxide and hydrolyzed to prepare iron phosphate.
  • the phosphoric acid needs to be recycled and the quality of the raw material phosphoric acid and iron sheet is required. Pure enough to ensure the consistency of synthetic iron phosphate. High-purity phosphoric acid and iron sheets are expensive, resulting in higher raw material costs for synthesizing iron phosphate; 2 A mixed solution of sodium hydroxide, phosphoric acid, and hydrogen peroxide is added dropwise to the divalent iron compound solution to prepare iron phosphate.
  • the by-product of this process route is: Sodium sulfate can only be produced in coastal areas, and the raw materials require the use of expensive phosphoric acid, resulting in higher raw material costs; 3 Add a mixed solution of ammonium dihydrogen phosphate or diammonium hydrogen phosphate and hydrogen peroxide into the divalent iron compound solution Add dropwise to prepare ferric phosphate.
  • the by-product of this process route is ammonium sulfate.
  • the industrialization process requires an expensive sewage treatment system to process a large amount of by-product ammonium sulfate, and the purity requirements of diammonium hydrogen phosphate or ammonium dihydrogen phosphate used are relatively high. High, the cost of raw materials is high.
  • the object of the present invention is to provide a method for preparing iron phosphate using phosphate rock and ferrous sulfate.
  • This method uses phosphate rock as a phosphorus source, which not only greatly reduces the cost of the phosphorus source in the iron phosphate process, thereby reducing It reduces the cost of raw materials for synthesizing iron phosphate and greatly increases the tap density of iron phosphate.
  • the invention provides a method for preparing iron phosphate by utilizing phosphate rock and ferrous sulfate, which includes the following steps:
  • the added amount of phosphoric acid is 1.4 to 2.0 times the amount of calcium in the phosphate rock;
  • the added amount of ferrous sulfate is 1.0 to 1.2 times the amount of calcium in the phosphate rock.
  • the reaction temperature in step 1) is 70-95°C, and the reaction time is 1-4 hours.
  • the reaction time in step 2) is 2 to 5 hours.
  • the substance ratio of P/Fe in the iron-phosphorus solution with an iron ion concentration of 0.5-1.0 mol/L in step 3) is 1.0-1.4:1.
  • the excess coefficient of hydrogen peroxide in step 3) is 10 to 50%;
  • the time for adding hydrogen peroxide dropwise is 5 to 60 minutes.
  • the aging temperature in step 3 is 80-95°C, and the aging time is 3-6 hours.
  • the iron phosphate After obtaining the iron phosphate, it is washed, dried and sintered to obtain anhydrous iron phosphate.
  • the drying temperature is 90-110°C;
  • the sintering temperature is 550-650°C.
  • the invention provides a method for preparing ferric phosphate by utilizing phosphate rock and ferrous sulfate, which includes the following steps: 1) mixing phosphate rock with phosphoric acid and water and reacting to obtain pretreated phosphate rock slurry; 2) mixing the pretreated phosphate rock Process the phosphate rock slurry and ferrous sulfate solution, mix, react, and filter to obtain a phosphogypsum and iron-phosphorus mixed solution; 3) Add ferrous sulfate and water to the iron-phosphorus mixed solution to obtain an iron ion concentration of 0.5 to 1.0 mol/L, the iron-phosphorus solution with a P/Fe molar ratio of 1.0 to 1.4 is then added dropwise with hydrogen peroxide, heated and aged, filtered, and rinsed to obtain iron phosphate.
  • This method uses phosphate rock as the phosphorus source, which not only greatly reduces the cost of the phosphorus source in the iron phosphate process, thereby reducing the cost of raw materials for synthesizing iron phosphate, but also greatly increases the tap density of iron phosphate.
  • Figure 1 is a schematic flow chart for preparing ferric phosphate using phosphate rock and ferrous sulfate in Embodiment 1 of the present invention
  • Figure 2 is an XRD pattern of anhydrous ferric phosphate prepared in Example 1 of the present invention.
  • Figure 3 is an SEM image of ferric phosphate dihydrate in Example 1 of the present invention at 100,000 times and 10,000 times.
  • the invention provides a method for preparing iron phosphate by utilizing phosphate rock and ferrous sulfate, which includes the following steps:
  • phosphate rock, phosphoric acid and water are mixed and reacted to obtain pretreated phosphate rock slurry.
  • the present invention preferably uses phosphate rock that passes through a 100-mesh sieve. In the present invention, it is preferred to mix phosphate rock and phosphoric acid first, and then add pure water to prepare a pretreated phosphate rock slurry.
  • the present invention uses phosphoric acid to acidify phosphate rock. The main purpose of acidification is to convert Ca 5 F(PO 4 ) 3 in the phosphate rock into Ca(H 2 PO 4 ) 2 with relatively high solubility.
  • the added amount of phosphoric acid is 1.4 to 2.0 times the amount of calcium in the phosphate rock.
  • the mass proportion of phosphate rock in the phosphate rock slurry is 1/3 to 1/5.
  • reaction temperature after the phosphate rock, phosphoric acid and water are mixed is 70-95°C, and the reaction time is 1-4 hours.
  • phosphate rock and phosphoric acid react to form calcium dihydrogen phosphate.
  • Reaction principle 1CaMg(CO 3 ) 3 +H 3 PO 4 ⁇ Ca(H 2 PO 4 ) 2 +Mg(H 2 PO 4 ) 2 +2CO 2 +2H 2 O; 2Ca 5 F(PO 4 ) 3 +7H 3 PO 4 ⁇ 5Ca(H 2 PO 4 ) 2 +HF ⁇ .
  • the present invention mixes the pretreated phosphate rock slurry and ferrous sulfate solution, reacts, and filters to obtain a mixed solution of phosphogypsum and iron-phosphorus.
  • the added amount of ferrous sulfate is 1.0 to 1.2 times the amount of calcium in the phosphate rock.
  • the reaction time is 2 to 5 hours.
  • the reaction equation involved is:
  • the present invention uses phosphate rock as the phosphorus source, which not only greatly reduces the cost of the phosphorus source in the iron phosphate process, thereby reducing the cost of raw materials for synthesizing iron phosphate, but also greatly increases the tap density of iron phosphate, which is beneficial to improving the lithium iron phosphate The tap density is very beneficial.
  • the present invention uses ferrous sulfate to replace concentrated sulfuric acid as the calcium precipitant in the process of extracting phosphate from phosphate rock, so that the ferrous sulfate not only serves as the iron source in the ferric phosphate synthesis process, but also serves as the calcium precipitant in the process of extracting phosphate from phosphate rock. , and also greatly reduces the consumption of alkali used to adjust the pH value during the synthesis of iron phosphate.
  • the present invention uses the sulfate radical of ferrous sulfate as a precipitating agent for calcium element.
  • the present invention replaces concentrated sulfuric acid with ferrous sulfate as the precipitating agent for calcium in phosphate rock, thereby avoiding the use of concentrated sulfuric acid to introduce a large amount of hydrogen ions in the process of precipitating calcium, thereby avoiding the consumption of neutralizing hydrogen ions during the synthesis of iron phosphate. of base.
  • ferrous sulfate and water are added to the iron-phosphorus mixed solution to obtain an iron-phosphorus solution with an iron ion concentration of 0.5 to 1.0 mol/L and a P/Fe molar ratio of 1.0 to 1.4, and then hydrogen peroxide is added dropwise, and the temperature is raised and aged. , filter and rinse to obtain iron phosphate.
  • the molar ratio of P/Fe in the iron-phosphorus solution with an ion concentration of 0.5-1.0 mol/L is 1.0-1.4; in specific embodiments, the molar ratio of P/Fe is 1.1.
  • hydrogen peroxide is added dropwise to an iron-phosphorus solution with an ion concentration of 0.5 to 1.0 mol/L and a P/Fe molar ratio of 1.0 to 1.4; the excess coefficient of the hydrogen peroxide is 10 to 50%; and the time for dripping the hydrogen peroxide is 5 ⁇ 60min.
  • the reaction slurry is aged.
  • the aging temperature is preferably 80 to 95°C, and the aging time is 3 to 6 hours; the temperature required for aging is achieved using a water bath.
  • the chemical reaction equation involved in this process is:
  • the aged material it is preferred to filter the aged material, wash it completely with pure water, dry it at 90-110°C, and sinter it at 550-650°C to obtain anhydrous iron phosphate.
  • the sintering temperature is 600°C.
  • the mother liquor obtained by filtration is recycled to step 3) to prepare phosphoric acid and ferrous sulfate solutions.
  • Phosphate rock pretreatment add phosphoric acid solution to the phosphate rock sample that has passed a 100-mesh sieve to acidify the phosphate rock.
  • the amount of phosphoric acid added is 1.6 times the amount of calcium material in the phosphate rock.
  • Mineral slurry/phosphoric acid solution 1/4 slurry, reaction temperature 70°C, reaction time 2.5h, to obtain pretreated phosphate rock slurry;
  • Figure 2 is an XRD pattern of the anhydrous ferric phosphate prepared in Example 1. It can be seen from Figure 1: the anhydrous ferric phosphate prepared in the Example is a pure phase anhydrous ferric phosphate.
  • Figure 3 is a SEM image of the iron phosphate dihydrate prepared in Example 1 at 100,000 times and 10,000 times. From the SEM results, the iron phosphate in the example has a uniform nanosheet structure with a microscopic size of about 100 nm and a secondary particle shape. Spherical. Example The primary particles of iron phosphate are regular and only 100nm, and the secondary structure is spherical, which is more suitable for preparing high-performance lithium iron phosphate.
  • Soluble phosphate ammonium dihydrogen phosphate is used as the phosphorus source instead of phosphate rock, so there are no pretreatment and phosphate extraction steps, and other process conditions are the same.
  • the tap density of iron phosphate prepared using the process route of the present invention is significantly higher than that of the comparative example, and is more suitable as a precursor for preparing high tap density lithium iron phosphate.
  • the iron to phosphorus ratio in the prepared anhydrous ferric phosphate is 0.9681, the impurity content is less than 200ppm, the purity is high, and it meets the requirements of battery-grade ferric phosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供了一种利用磷矿与硫酸亚铁制备磷酸铁的方法,包括以下步骤:1)将磷矿和磷酸、水混合后反应,得到预处理磷矿料浆;2)将所述预处理磷矿料浆和硫酸亚铁溶液混合,反应,过滤,得到磷石膏和铁磷混合溶液;3)向所述铁磷混合溶液中加硫酸亚铁和水,得到铁离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液后滴加双氧水,升温陈化,过滤,漂洗得到磷酸铁。该方法采用磷矿作为磷源,不仅大幅度降低了磷酸铁工艺中磷源的成本,从而降低了合成磷酸铁的原材料成本,还大大提高了磷酸铁的振实密度。

Description

一种利用磷矿与硫酸亚铁制备磷酸铁的方法
本申请要求2022年9月13日提交的,申请号为202211109963.6,发明名称为“一种利用磷矿与硫酸亚铁制备磷酸铁的方法”的中国发明专利申请的优先权,该申请的公开内容以引用的方式并入本文。
技术领域
本发明属于磷酸铁技术领域,尤其涉及一种利用磷矿与硫酸亚铁制备磷酸铁的方法。
背景技术
近年来,受国际燃油价格飙升等因素影响,新能源汽车行业呈现井喷式发展。作为新能汽车主要构成的锂离子动力电池需求不断提高。磷酸铁锂以其安全性高,循环性能好的优点,已成为新能源动力电池的首选。目前,行业大多数磷酸铁锂是以磷酸铁作为前驱体合成,目前行业大部分厂家采用磷酸或可溶性磷酸盐作为磷酸铁合成的磷源,如磷酸,磷磷酸二氢铵,酸氢二铵,磷酸二氢钠,磷酸氢二钠等可溶磷酸盐。这些可溶性磷酸盐都属于湿法磷酸工艺制备成湿法磷酸后,再经过不同工艺路线加工得到,导致磷源单价较高。且在生产磷酸铁所用原料中,磷源成本占总原料成本的80%以上。因此,如果能以湿法磷酸工艺的磷矿作为磷酸铁合成的磷源,因磷矿价格大幅低于磷酸或其它下游可溶磷酸盐价格,磷酸铁合成原料磷源的成本将大幅降低。
目前,制备磷酸铁的主流工艺路线有:①铁皮和磷酸为原材料,加热反应生成磷酸二氢铁,再通过双氧水氧化,水解制备磷酸铁,此工艺磷酸需回收利用,需要原材料磷酸和铁皮的品质足够纯净,才能保证合成磷酸铁的一致性。高纯的磷酸和铁皮价格昂贵,导致合成磷酸铁原材料成本较高;②以氢氧化钠,磷酸,双氧水组成混合溶液向二价铁化合物溶液中滴加,制备磷酸铁,此工艺路线副产物为硫酸钠,仅能在沿海地区进行相应生产,且原材料需要用到价格昂贵的磷酸导致原材料成本较高;③以磷酸二氢铵或磷酸氢 二铵与双氧水组成混合溶液向二价铁化合物溶液中滴加,制备磷酸铁,此工艺路线副产物为硫酸铵,产业化过程需配套价格昂贵的污水处理系统来处理大量副产物硫酸铵,且使用的磷酸氢二铵或磷酸二氢铵纯度要求较高,原材料成本较高。
发明内容
有鉴于此,本发明的目的在于提供一种利用磷矿与硫酸亚铁制备磷酸铁的方法,该方法采用磷矿作为磷源,不仅大幅度降低了磷酸铁工艺中磷源的成本,从而降低了合成磷酸铁的原材料成本,还大大提高了磷酸铁的振实密度。
本发明提供了一种利用磷矿与硫酸亚铁制备磷酸铁的方法,包括以下步骤:
1)将磷矿和磷酸、水混合后反应,得到预处理磷矿料浆;
2)将所述预处理磷矿料浆和硫酸亚铁溶液混合,反应,过滤,得到磷石膏和铁磷混合溶液;
3)向所述铁磷混合溶液中加硫酸亚铁和水,得到铁离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液后滴加双氧水,升温陈化,过滤,漂洗得到磷酸铁。
优选地,所述磷酸的加入量为磷矿中钙的物质的量的1.4~2.0倍;
所述硫酸亚铁的加入量为磷矿中钙的物质的量的1.0~1.2倍。
优选地,所述步骤1)中反应的温度为70~95℃,时间为1~4h。
优选地,所述步骤2)中反应的时间为2~5h。
优选地,所述步骤3)中铁离子浓度为0.5~1.0mol/L的铁磷溶液中P/Fe的物质的量比为1.0~1.4:1。
优选地,所述步骤3)中双氧水的过量系数为10~50%;
滴加双氧水的时间为5~60min。
优选地,所述步骤3)中陈化的温度为80~95℃,陈化的时间为3~6h。
优选地,得到磷酸铁后洗涤,干燥和烧结,得到无水磷酸铁。
优选地,所述干燥的温度为90~110℃;
所述烧结的温度为550~650℃。
本发明提供了一种利用磷矿与硫酸亚铁制备磷酸铁的方法,包括以下步骤:1)将磷矿和磷酸、水混合后反应,得到预处理磷矿料浆;2)将所述预处理磷矿料浆和硫酸亚铁溶液混合,反应,过滤,得到磷石膏和铁磷混合溶液;3)向所述铁磷混合溶液中加硫酸亚铁和水,得到铁离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液后滴加双氧水,升温陈化,过滤,漂洗得到磷酸铁。该方法采用磷矿作为磷源,不仅大幅度降低了磷酸铁工艺中磷源的成本,从而降低了合成磷酸铁的原材料成本,还大大提高了磷酸铁的振实密度。
附图说明
图1为本发明实施例1利用磷矿与硫酸亚铁制备磷酸铁的流程示意图;
图2为本发明实施例1制备的无水磷酸铁的XRD图;
图3为本发明实施例1中二水磷酸铁的100000倍和10000倍下的SEM图。
具体实施方式
本发明提供了一种利用磷矿与硫酸亚铁制备磷酸铁的方法,包括以下步骤:
1)将磷矿和磷酸、水混合后反应,得到预处理磷矿料浆;
2)将所述预处理磷矿料浆和硫酸亚铁溶液混合,反应,过滤,得到磷石膏和铁磷混合溶液;
3)向所述铁磷混合溶液中加硫酸亚铁和水,得到铁离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液后滴加双氧水,升温陈化,过滤,漂洗得到磷酸铁。
本发明将磷矿和磷酸、水混合后反应,得到预处理磷矿料浆。本发明优选采用过100目筛的磷矿。本发明优选将磷矿和磷酸先混合,再加入纯水配制成预处理磷矿料浆。本发明采用磷酸对磷矿进行酸化处理,酸化的主要目的是为了将磷矿中Ca 5F(PO 4) 3转化为溶解度相对较高的Ca(H 2PO 4) 2。所述磷矿中P 2O 5含量28%~34%,CaO/P 2O 5=1.40~1.45,MgO/P 2O 5小于0.08;所述磷矿的主要成分包括Ca 5F(PO 4) 3。所述磷酸的加入量为磷矿中钙的物质的量的 1.4~2.0倍。磷矿料浆中磷矿的质量占比为1/3~1/5。
所述磷矿、磷酸和水混合后反应的温度为70~95℃,时间为1~4h。反应过程中主要是磷矿和磷酸反应生成磷酸二氢钙。反应原理:①CaMg(CO 3) 3+H 3PO 4→Ca(H 2PO 4) 2+Mg(H 2PO 4) 2+2CO 2+2H 2O;②Ca 5F(PO 4) 3+7H 3PO 4→5Ca(H 2PO 4) 2+HF↑。
得到预处理磷矿料浆后,本发明将所述预处理磷矿料浆和硫酸亚铁溶液混合,反应,过滤,得到磷石膏和铁磷混合溶液。在本发明中,所述硫酸亚铁的加入量为磷矿中钙的物质的量的1.0~1.2倍。反应的时间为2~5h。涉及的反应方程式为:
xH 2O+Ca 5F(PO 4) 3+5FeSO 4+7H 3PO 4→5CaSO 4·xH 2O↓+Fe(H 2PO 4) 2+HF↑;
本发明采用磷矿作为磷源,不仅大幅度降低了磷酸铁工艺中磷源的成本,从而降低了合成磷酸铁的原材料成本,还大大提高了磷酸铁的振实密度,这对提高磷酸铁锂的振实密度非常有利。
本发明采用硫酸亚铁取代浓硫酸,作为磷矿提取磷酸根工艺中的钙沉淀剂,使硫酸亚铁不仅作为磷酸铁合成过程的铁源,还作为了磷矿提磷过程中的钙沉淀剂,同时还大大减少合成磷酸铁过程中调整pH值所用的碱消耗。本发明利用硫酸亚铁的硫酸根作为钙元素的沉淀剂,因硫酸钙沉淀带走了大量硫酸根,减少了磷酸铁合成母液中的硫酸根总量。因母液中总离子量减少,降低了磷酸铁合成工艺污水的处理难度。本发明通过硫酸亚铁取代浓硫酸作为磷矿中钙元素的沉淀剂,避免了使用浓硫酸在沉淀钙元素过程中引入的大量氢离子,从而避免了磷酸铁合成过程中中和氢离子所消耗的碱。
本发明向所述铁磷混合溶液中加硫酸亚铁和水,得到铁离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液后滴加双氧水,升温陈化,过滤,漂洗得到磷酸铁。在本发明中,离子浓度为0.5~1.0mol/L的铁磷溶液中P/Fe的摩尔比为1.0~1.4;具体实施例中,P/Fe的摩尔比为1.1。
本发明向离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液中滴加双氧水;所述双氧水的过量系数为10~50%;滴加双氧水的时间为5~60min。滴加完成后,将反应料浆进行陈化,陈化的温度优选为80~95℃,陈化的时间为3~6h;陈化所需的温度采用水浴的方式达到。此过程涉及的化学反应方程式为:
Fe(H 2PO 4) 2+FeSO 4+H 2O 2→H 2SO 4+2FePO 4+2H 2O。
本发明优选将陈化料将过滤,采用纯水洗涤完全,采用90~110℃干燥,550~650℃烧结,得到无水磷酸铁。具体实施例中,烧结的温度为600℃。其中过滤得到的母液回收至步骤3)中配制磷酸和硫酸亚铁溶液。
为了进一步说明本发明,下面结合实施例对本发明提供的一种利用磷矿与硫酸亚铁制备磷酸铁的方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
一种利用磷矿与硫酸亚铁制备高振实磷酸铁的方法,见图1,其步骤为:
①磷矿预处理:将过100目筛的磷矿样品中加入磷酸溶液中将磷矿进行酸化处理,磷酸加入量为磷矿中钙物质的量的1.6倍加入,加少量纯水配制成磷矿料浆/磷酸溶液=1/4料浆,反应温度70℃,反应时间2.5h,得到预处理磷矿料浆;
②磷酸根提取:向①中磷矿料浆中加入硫酸亚铁溶液,硫酸亚铁加入量为磷矿中钙的物质的量得到1.0倍,反应时间3h,除杂,过滤,得到磷石膏和铁磷混合溶液;
③铁磷溶液配制:向铁磷混合溶液中补加硫酸亚铁,调整体系P/Fe=1.1,再加入纯水稀释成铁离子浓度c=0.8mol/L的铁磷溶液;
④氧化-均相沉淀制备磷酸铁:向步骤②中配制好的铁磷溶液中滴加双氧水,双氧水过量系数为20%,滴加时间10min;滴加完成后将反应料浆进行95℃水浴陈化,陈化时间4h,得到二水磷酸铁;
⑤无水磷酸铁制备:将陈化完成料浆过滤,采用纯水洗涤完全,采用95℃干燥,600℃烧结得到无水磷酸铁。其中过滤得到的母液回收至步骤②中配制磷酸和硫酸亚铁溶液。
图2为实施例1制备的无水磷酸铁的XRD图,从图1可以看出:实施例制备的无水磷酸铁为纯相无水磷酸铁。
图3为实施例1制备的二水磷酸铁的100000倍和10000倍下的SEM图,从SEM结果来看,实施例磷酸铁微观尺寸为约100nm的大小均匀的纳米片结构,二次颗粒形状类球形。实施例磷酸铁一次颗粒规则且仅100nm,二次结构呈类球形,更适合制备高性能磷酸铁锂。
对比例
采用可溶性磷酸盐磷酸二氢铵作为磷源替代磷矿,故不存在预处理和磷酸根提取步骤,其它工艺条件相同。
①铁磷溶液配制:磷酸二氢铵1mol,放入总硫酸根n=1.2mol的硫酸亚铁溶液中分散,调整体系中P/Fe=1.1,再加入纯水稀释成c(Fe)=0.8mol/L的铁磷溶液;
②氧化-均相沉淀制备磷酸铁:向步骤②中配制好的铁磷溶液中滴加双氧水,双氧水过量20%,滴加时间10min;滴加完成后将反应料浆进行95℃水浴陈化,陈化时间4h;
③无水磷酸铁制备:将陈化完成料浆过滤,采用纯水洗涤完全,采用95℃干燥,600℃烧结得到无水磷酸铁。
表1实施例和对比例制备的磷酸铁的振实密度检测结果
  振实密度(g/cm 3)
实施例 1.11
对比例 0.51
从表1可以看出:采用本发明工艺路线制备的磷酸铁振实密度显著高于对比例,更适合作为前驱体制备高振实密度磷酸铁锂。
表2无水磷酸铁的元素分析结果
Figure PCTCN2022141946-appb-000001
从表2可以看出:制备的无水磷酸铁中铁磷比0.9681,杂质含量均低于200ppm,纯度较高,满足电池级磷酸铁要求。
由以上实施例可知,该方法简单,成本低廉,适用于高振实密度磷酸铁的工业化生产。实验结果表明:采用本发明的方法制备的磷酸铁的振实密度为1.11g/cm 3
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种利用磷矿与硫酸亚铁制备磷酸铁的方法,包括以下步骤:
    1)将磷矿和磷酸、水混合后反应,得到预处理磷矿料浆;
    2)将所述预处理磷矿料浆和硫酸亚铁溶液混合,反应,过滤,得到磷石膏和铁磷混合溶液;
    3)向所述铁磷混合溶液中加硫酸亚铁和水,得到铁离子浓度为0.5~1.0mol/L,P/Fe摩尔比为1.0~1.4的铁磷溶液后滴加双氧水,升温陈化,过滤,漂洗得到磷酸铁。
  2. 根据权利要求1所述的方法,其特征在于,所述磷酸的加入量为磷矿中钙的物质的量的1.4~2.0倍;
    所述硫酸亚铁的加入量为磷矿中钙的物质的量的1.0~1.2倍。
  3. 根据权利要求1所述的方法,其特征在于,所述步骤1)中反应的温度为70~95℃,时间为1~4h。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤2)中反应的时间为2~5h。
  5. 根据权利要求1所述的方法,其特征在于,所述步骤3)中双氧水的过量系数为10~50%;
    滴加双氧水的时间为5~60min。
  6. 根据权利要求1所述的方法,其特征在于,所述步骤3)中陈化的温度为80~95℃,陈化的时间为3~6h。
  7. 根据权利要求1所述的方法,其特征在于,得到磷酸铁后洗涤,干燥和烧结,得到无水磷酸铁。
  8. 根据权利要求7所述的方法,其特征在于,所述干燥的温度为90~110℃;
    所述烧结的温度为550~650℃。
PCT/CN2022/141946 2022-09-13 2022-12-26 一种利用磷矿与硫酸亚铁制备磷酸铁的方法 WO2024055467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211109963.6A CN115340078A (zh) 2022-09-13 2022-09-13 一种利用磷矿与硫酸亚铁制备磷酸铁的方法
CN202211109963.6 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024055467A1 true WO2024055467A1 (zh) 2024-03-21

Family

ID=83955471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141946 WO2024055467A1 (zh) 2022-09-13 2022-12-26 一种利用磷矿与硫酸亚铁制备磷酸铁的方法

Country Status (2)

Country Link
CN (1) CN115340078A (zh)
WO (1) WO2024055467A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340078A (zh) * 2022-09-13 2022-11-15 湖北虹润高科新材料有限公司 一种利用磷矿与硫酸亚铁制备磷酸铁的方法
CN116177509B (zh) * 2022-11-25 2024-05-24 贵州胜泽威化工有限公司 一种碳融合法连续制备纳米球形磷酸铁的方法
CN116022757A (zh) * 2022-12-26 2023-04-28 中南大学 一种电池级水合磷酸铁的制备方法
CN116253304B (zh) * 2023-02-28 2024-01-05 湖北虹润高科新材料有限公司 高振实密度磷酸铁及其制备方法、磷酸铁锂
CN116443835A (zh) * 2023-05-25 2023-07-18 河南佰利新能源材料有限公司 一种磷酸铁及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017256A1 (en) * 2012-01-10 2015-01-15 Chemische Fabrik Budenheim Kg Condensed iron (iii) phosphate
CN109928375A (zh) * 2019-04-16 2019-06-25 中钢集团南京新材料研究院有限公司 一种利用磷酸二氢钙制备磷酸铁的方法
CN113184819A (zh) * 2021-04-12 2021-07-30 深圳市德方纳米科技股份有限公司 利用磷矿制备磷酸铁的方法和磷酸铁锂的制备方法
CN115340078A (zh) * 2022-09-13 2022-11-15 湖北虹润高科新材料有限公司 一种利用磷矿与硫酸亚铁制备磷酸铁的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137964B (zh) * 2011-11-24 2016-02-17 清华大学 磷酸铁锂二次结构及其制备方法以及锂离子电池
CN104817059B (zh) * 2015-04-29 2017-07-18 江西东华科技园有限责任公司 一种由铁粉和磷酸反应制备电池级磷酸铁的方法
CN106865607A (zh) * 2017-03-17 2017-06-20 四川龙蟒磷化工有限公司 一种利用钛白废酸处理中低品位磷矿的方法
CN108987749A (zh) * 2018-08-28 2018-12-11 深圳市德方纳米科技股份有限公司 由磷矿制备磷酸铁的方法、磷酸锰铁锂及磷酸铁锂正极材料的制备方法
CN109573972B (zh) * 2019-01-23 2021-05-28 山东鲁北企业集团总公司 一种中低品位磷矿生产磷酸和低硅石膏的方法
CN113292055A (zh) * 2021-06-25 2021-08-24 甘肃东方钛业有限公司 回收利用钛白粉生产过程中产生的废硫酸、酸性废水生产磷酸的方法
CN114314680A (zh) * 2022-03-02 2022-04-12 湖北虹润高科新材料有限公司 一种利用磷酸二氢钙制备低杂质磷酸铁的方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017256A1 (en) * 2012-01-10 2015-01-15 Chemische Fabrik Budenheim Kg Condensed iron (iii) phosphate
CN109928375A (zh) * 2019-04-16 2019-06-25 中钢集团南京新材料研究院有限公司 一种利用磷酸二氢钙制备磷酸铁的方法
CN113184819A (zh) * 2021-04-12 2021-07-30 深圳市德方纳米科技股份有限公司 利用磷矿制备磷酸铁的方法和磷酸铁锂的制备方法
CN115340078A (zh) * 2022-09-13 2022-11-15 湖北虹润高科新材料有限公司 一种利用磷矿与硫酸亚铁制备磷酸铁的方法

Also Published As

Publication number Publication date
CN115340078A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2024055467A1 (zh) 一种利用磷矿与硫酸亚铁制备磷酸铁的方法
CN112645299A (zh) 一种磷酸铁的制备方法和应用
CN110482512A (zh) 一种电池级磷酸铁的制备方法
CN102101662B (zh) 一种磷酸铁的制备方法
CN112499609A (zh) 利用废磷酸铁锂正极粉提锂渣制备磷酸铁的方法和应用
CN113307243B (zh) 一种母液回用制备磷酸铁的方法
CN109721041B (zh) 一种高振实密度磷酸铁的制备方法
CN113336212B (zh) 一种母液回用制备磷酸铁的方法
CN110342483B (zh) 一种利用磷酸锂废料制备电池级磷酸铁的方法
CN114772569B (zh) 一种硫铁矿烧渣两步盐酸酸溶制备磷酸铁的方法
CN113772650A (zh) 一种磷酸铁锂的制备方法和用途
CN114906830B (zh) 一种由硫铁矿烧渣可控制备电池级磷酸铁的方法
CN113428848A (zh) 一种电池级磷酸铁的循环制备工艺
CN110436428A (zh) 一种片状磷酸铁的制备方法、制得的片状磷酸铁及其应用
CN114314680A (zh) 一种利用磷酸二氢钙制备低杂质磷酸铁的方法及应用
CN109928375B (zh) 一种利用磷酸二氢钙制备磷酸铁的方法
CN108557792B (zh) 一种包覆型磷酸锰铁的制备方法
CN117285022A (zh) 一种电池级磷酸铁连续化生产的方法
CN113213445A (zh) 一种电池级磷酸锂的制备方法
CN111017900A (zh) 一种电池级磷酸铁的制备方法
CN116902942A (zh) 一种以铁精矿制备电池级磷酸铁的方法
WO2023221213A1 (zh) 一种采用氧化铁和稀磷酸制备电池级磷酸铁的方法
CN110980679A (zh) 一种类球形低硫磷酸铁的制备方法
CN114084878B (zh) 一种利用双铁源合成磷酸铁的制备方法
CN113716539A (zh) 一种用湿法炼锌高铁溶液制备磷酸铁前驱体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958654

Country of ref document: EP

Kind code of ref document: A1