WO2023231732A1 - 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法 - Google Patents

含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法 Download PDF

Info

Publication number
WO2023231732A1
WO2023231732A1 PCT/CN2023/093386 CN2023093386W WO2023231732A1 WO 2023231732 A1 WO2023231732 A1 WO 2023231732A1 CN 2023093386 W CN2023093386 W CN 2023093386W WO 2023231732 A1 WO2023231732 A1 WO 2023231732A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyhydroxyalkanoate
nucleating agent
temperature
alcohol
molded body
Prior art date
Application number
PCT/CN2023/093386
Other languages
English (en)
French (fr)
Inventor
马一鸣
李腾
张浩千
Original Assignee
北京蓝晶微生物科技有限公司
江苏蓝素生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝晶微生物科技有限公司, 江苏蓝素生物材料有限公司 filed Critical 北京蓝晶微生物科技有限公司
Publication of WO2023231732A1 publication Critical patent/WO2023231732A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to the field of polymer materials, and in particular to a polyhydroxyalkanoate composition containing an alcohol nucleating agent, a polyhydroxyalkanoate molded body and a preparation method thereof.
  • Polyhydroxyalkanoates are intracellular polyhydroxyalkanoates synthesized by many microorganisms and are a natural polymer biomaterial. Most monomers of polyhydroxyalkanoates are 3-hydroxy fatty acids with a chain length of 3 to 14 carbon atoms, and their side chain R is highly variable saturated or unsaturated, linear or branched, aliphatic or aromatic The diversity of groups and structures brings diversification of properties, giving it obvious advantages in applications.
  • polyhydroxyalkanoate is a polymer of bio-based origin and biodegradable in the marine environment. It can solve the environmental problems caused by waste plastics and has excellent biocompatibility and mechanical properties. Therefore, polyhydroxyalkanoate Acid esters can be processed into various shaped bodies, such as films, straws, tableware, etc.
  • Control of the crystallization rate is an important factor in the processing rate of polyhydroxyalkanoates.
  • simple polyhydroxyalkanoates have shortcomings such as slow crystallization speed, low crystallinity, and low processing efficiency during the thermal processing of various types of molded bodies.
  • the crystallization speed of PHAs is often increased by adding nucleating agents and other additives.
  • patent document [1] Chinese invention patent application with publication number CN1503824A discloses a polyhydroxyalkanoate-processed composition using a nucleating agent and a plasticizer.
  • the nucleating agent is a nucleating agent.
  • the crystallization is maintained at a certain temperature after extrusion, such as 30-40°C for the wire and 30-45°C for the film.
  • Patent Document [2] a Chinese invention patent application with publication number CN102906193A, which discloses toughened polylactic acid containing polyhydroxyalkanoates. It specifically discloses that the nucleating agent contained is selected from carbon black, cyanuric acid, uracil, Thymine, mica talc, silicon dioxide, boron nitride, barium nitride, clay, calcium carbonate, synthetic silicic acid and salts, metal salts of organophosphates, and kaolin, or combinations thereof.
  • nucleating agents are mainly inorganic substances or metal salts. Although they can improve the crystallization speed and crystallinity of molded bodies prepared by traditional polyhydroxyalkanoates to a certain extent, the degree of improvement is limited; more importantly, this Nucleating agents will affect the proportion of biocarbon in the polyhydroxyalkanoate molded body, making it difficult to completely degrade in the ocean. It will also cause the molded body to be colored, reduce its transparency, and affect its application.
  • the present invention provides a polyhydroxyalkanoate composition, a polyhydroxyalkanoate molded body and a preparation method thereof.
  • the present invention provides a polyhydroxyalkanoate composition, including a polyhydroxyalkanoate and a nucleating agent.
  • the nucleating agent is one or more alcohol compounds.
  • the nucleating agent is The nucleating agent is one or more fatty alcohols.
  • the nucleating agent is one or more fatty alcohols with a carbon number of 5-32.
  • the present invention has found that alcohol compounds, including fatty alcohol compounds, as nucleating agents, such as fatty alcohols with 5-32 carbon atoms, can be used as nucleating agents in the preparation of polyhydroxyalkanoate molded bodies, which can significantly improve polyhydroxyalkanoate moldings.
  • the crystallization speed and crystallinity of hydroxyalkanoate esters when preparing molded bodies have the advantages of high nucleation efficiency and simpler processing methods.
  • the polyhydroxyalkanoate molded body produced has the advantage of high transparency. Therefore, Has a wider range of application scenarios.
  • the nucleating agent of the present invention is preferably a saturated fatty alcohol. From the perspective of the number of hydroxyl groups, the nucleating agent can be a monohydric alcohol or a polyhydric alcohol.
  • the nucleating agent is 1,16-hexadecanediol, 1,22-docosanediol, stearyldiol (1,2-octadecanediol), behenyl alcohol (Behenyl alcohol), Arachidol (Eicosanol), Palmityl alcohol (cetyl alcohol), ceryl alcohol (cetosanol), polyol (octadecyl alcohol), melisyl alcohol (triacontanol), insectyl alcohol, myristyl alcohol (tetradecanol) Alcohol), one or more of lauryl alcohol (dodecanol). More preferably, the nucleating agent is behenyl alcohol (behenyl alcohol).
  • the added amount of the nucleating agent is 0.01%-20% of the mass of the polyhydroxyalkanoate; preferably 0.1%-5%.
  • the polyhydroxyalkanoate of the present invention can be a single polymer or a combination of two or more polymers.
  • the polymerized monomers of each polymer may be one or more types (ie, the structural units in the polymer may be one or more types).
  • any polymer contains a structural unit represented by the following general formula (1):
  • R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15, preferably an integer of 1 to 10, and more preferably an integer of 1 to 8.
  • R include linear or branched alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, and hexyl.
  • 3-hydroxyalkanoate structural unit (hereinafter sometimes referred to as 3HB), 4-hydroxybutyrate structural unit ( hereinafter sometimes referred to as 4HB).
  • 3HB 3-hydroxybutyrate structural unit
  • 4HB 4-hydroxybutyrate structural unit
  • the polyhydroxyalkanoates of the present invention include at least one poly(3-hydroxyalkanoate).
  • poly(3-hydroxyalkanoate) only contains 3-hydroxybutyrate structural units, or contains 3-hydroxybutyrate structural units and other hydroxyalkanoate structural units.
  • the method for producing the polyhydroxyalkanoate of the present invention is not particularly limited, and may be chemical
  • the synthetic manufacturing method may be a manufacturing method using microorganisms.
  • the polyhydroxyalkanoate of the present invention is particularly preferably a polyhydroxyalkanoate produced by microorganisms.
  • all 3-hydroxyalkanoate structural units are (R) 3-hydroxyalkanoates. Contains in the form of acid ester structural units.
  • the poly(3-hydroxyalkanoate) includes a copolymer of 3-hydroxybutyrate structural unit and other structural units, and in the poly(3-hydroxyalkanoate),
  • the average content ratio of the 3-hydroxybutyrate structural unit and other structural units is 50/50 ⁇ 99/1 (mol%/mol%);
  • the nucleating agent pair of the present invention is preferably 80/20 ⁇ 94/
  • the crystallization-promoting effect of 6 (mol%/mol%) is more obvious; when the polyhydroxyalkanoate raw material is a mixture of two or more polyhydroxyalkanoates, the average content ratio refers to the individual monomers contained in the entire mixture.
  • the molar ratio of the body Within this preferred range, both ease of secondary molding and processing efficiency can be achieved.
  • the other hydroxyalkanoate structural units include: 3-hydroxypropionate, 3-hydroxyvalerate, 3-hydroxycaproate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, One or more of 3-hydroxynonanoate, 3-hydroxydecanoate, 3-hydroxyundecanoate or 4-hydroxybutyrate; preferably 3-hydroxycaproate.
  • poly(3-hydroxyalkanoate) examples include poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate).
  • poly(3-hydroxybutyrate-co-3-hydroxyvalerate) abbreviation: P3HB3HV
  • poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) abbreviation: P3HB3HH
  • poly(3-hydroxybutyrate-co-3-hydroxyheptanoate) poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) -Hydroxybutyrate-co-3-hydroxyoctanoate)
  • poly(3-hydroxybutyrate-co-3-hydroxynonanoate) poly(3-hydroxybutyrate-co-3-hydroxydecanoate) acid ester)
  • the weight average molecular weight of the polyhydroxyalkanoate is 100,000 to 1,000,000; preferably 200,000 to 900,000; further preferably 300,000 to 800,000.
  • the weight average molecular weight is less than 100,000, there is The mechanical properties of the obtained polyhydroxyalkanoate-based resin molded article tend to be reduced.
  • the weight average molecular weight exceeds 1 million, the load on machinery during melt processing tends to increase and productivity tends to decrease.
  • the present invention provides a polyhydroxyalkanoate molded body prepared from raw materials including the above-mentioned polyhydroxyalkanoate composition.
  • the polyhydroxyalkanoate molded body obtained by the present invention has the advantages of high transparency and good mechanical properties, and therefore has a wider range of application scenarios.
  • additives and other auxiliaries can be added to the composition according to the production needs of the molded body.
  • the additives may include plasticizers, cross-linking agents, chain extenders, lubricants and other organic or inorganic materials.
  • Organic or inorganic materials may be used alone or in combination of two or more.
  • the addition amount of the additive can also be adjusted according to production needs, and the present invention has no particular limitation on this.
  • the molded bodies of the present invention may include various forms, such as films, fibers, straws, plates, pellets, etc.
  • the present invention provides a method for preparing the above-mentioned polyhydroxyalkanoate molded body.
  • the polyhydroxyalkanoate molded body of the present invention can be prepared by various thermal processing molding methods such as extrusion molding, injection molding, calendering molding, tape molding, blow molding, biaxial stretching molding, etc., or can also be prepared by solution pouring It is prepared by other non-thermal processing molding methods. Preferably it is produced by hot working forming methods.
  • the thermal processing molding preparation method of the polyhydroxyalkanoate molded body provided by the invention includes:
  • the polyhydroxyalkanoate composition is heated and melted at a temperature higher than the melting temperature; and cooled and formed at a temperature between the glass transition temperature and the melting temperature.
  • the preparation method includes:
  • the polyhydroxyalkanoate composition is heated and melted at a temperature of 10°C to 60°C above the melting temperature (corresponding to the first temperature); more than 50% of the polyhydroxyalkanoate composition is melted at a temperature between the glass transition temperature and the cold crystallization temperature. Stretching (corresponding to the second temperature); cooling and forming at a temperature between the glass transition temperature and the melting temperature (corresponding to the third temperature).
  • the more preferred ones are:
  • the crystallization enthalpy is preferably 12.5 J/g or less, more preferably 7.5 J/g or less, and even more preferably 2 J/g or less.
  • the cold crystallization half-peak width is preferably 15°C or less, more preferably 10°C or less, and still more preferably 8°C or less.
  • the first temperature is not particularly limited, and is preferably above the melting temperature of the polyhydroxyalkanoate. It is more preferable that it is 10°C or higher of the melting temperature of the polyhydroxyalkanoate, and still more preferably 20°C or higher of the melting temperature of the polyhydroxyalkanoate. Because if the second temperature is too low or too high, the maximum stretch ratio of the polyhydroxyalkanoate molded body will decrease and the transparency will decrease.
  • cooling from the first temperature to the second temperature is a primary molding process, and secondary molding is performed by stretching at the second temperature.
  • the second temperature is above 20°C and below the cold crystallization temperature of polyhydroxyalkanoate; further preferably, it is above 30°C and below the cold crystallization temperature of polyhydroxyalkanoate; during the research process, it was found that within the above preferred range, typical non- Limitingly, it may be 40°C, for example.
  • Crystallization is carried out at the third temperature, so that the polyhydroxyalkanoate molded body is better formed and has high stability and physical properties.
  • the third temperature is above the glass transition temperature of the polyhydroxyalkanoate and below the melting temperature.
  • the transparency of the polyhydroxyalkanoate molded body prepared from raw materials including the above composition is greatly improved.
  • the greater the light transmittance and the smaller the haze the better the transparency of the film sample.
  • the molded article obtained by the present invention has a light rate of 80% or more and a haze of 50% or less.
  • a fully biodegradable resin film with a total light transmittance of 90% or more and a haze of 40% or less and a total light transmittance of 90% or more and a haze of 30% or less was obtained.
  • Taste was obtained.
  • the present invention at least includes the following advantages:
  • the nucleating agent for polyhydroxyalkanoate provided by the present invention has high nucleation efficiency and can improve the slow crystallization speed and low processing efficiency of polyhydroxyalkanoate in the process of preparing various types of molded bodies through thermoplastic processing. and other shortcomings.
  • the nucleating agent provided by the present invention has a wide range of sources and the product price is low, which reduces the raw material cost of various polyhydroxyalkanoate molded bodies; at the same time, the nucleating agent provided by the present invention is of biological origin and does not affect the polyhydroxyalkanoic acid. The proportion of biocarbon in the ester molded body can still reach 100% biological origin.
  • the molded body provided by the present invention facilitates secondary processing and molding at a second temperature lower than the melting temperature, and still maintains good transparency after the secondary processing and molding.
  • PHBH-350 Poly(3-hydroxybutyrate-co-3-hydroxycaproate), homemade (BP350).
  • PHBH-330 Poly(3-hydroxybutyrate-co-3-hydroxycaproate), homemade (BP330).
  • PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate), homemade.
  • Mixing equipment Use high-speed mixer to blend at room temperature.
  • Granulation equipment Parallel co-rotating twin-screw extruders with different aspect ratios, parallel counter-rotating twin-screw extruders, conical twin-screw extruders, and single-screw machines are commonly used in this field. ; Place the composition in the lower hopper of the twin-screw extruder or the weight loss scale; the temperature of the extrusion granulation equipment is set in the range of 50-180°C, the main engine speed is 50-500r/min, the feeding amount or production capacity Adjust according to the actual production status; subsequent granulation methods such as air-cooled strand cutting, water bath strand cutting, grinding hot cutting, water ring cutting and underwater pelletizing can be used for granulation, and can be maintained during the production and processing process. Water bath conditions of 25-65°C; the prepared particles are dried in a blast drying oven to eliminate the impact of moisture on particle properties and to completely crystallize the particles.
  • Film production equipment Molding machine (produced by Jiangsu Tianyuan Company), which molds biodegradable resin at low temperatures to prepare molded products, and then puts the two ends of the molded film into water at a second temperature to stretch at a certain rate. , and finally placed in the oven for heating at the third temperature.
  • This embodiment provides 12 groups of polyhydroxyalkanoate compositions, including polyhydroxyalkanoate and nucleating agents.
  • the specific compositions are shown in Table 1.
  • the production steps are:
  • Step 1 Mixing: Place polyhydroxyalkanoate powder and nucleating agent in a high-speed mixer, mix at room temperature, mixing speed 200 (r/min), mixing time 5 (min); After feeding, place the mixture in the lower hopper of the twin-screw extruder;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment and perform extrusion at a melt temperature of about 165°C;
  • Step 3 Granulation and cooling: Granulation is carried out by stretching and cutting in a water bath.
  • the water bath heating temperature and heating time are as shown in Table 2.
  • PHBH-350 100 parts by weight of PHBH-350 is used as the raw material, and no nucleating agent is added.
  • the production steps are: directly melt and extrud the raw materials: set the conditions of the extrusion granulation equipment, and perform extrusion at a melt temperature of about 165°C; then perform granulation and cooling: use a water bath to draw strips and cut into granules. granulation method, the water bath temperature is set to 55°C, and the heating time is 3 minutes.
  • the cooling crystallization enthalpy of the particle molded body was 0J/g, and the cold crystallization half-peak width of the secondary heating was 27°C.
  • twin-screw extrusion and granulation are used; 100 parts by weight of PHBH-350 is used as raw material, and 1 part by weight of boron nitride is used as the nucleating agent.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-350 and the nucleating agent boron nitride in a high-speed mixer, mix at room temperature, the mixing speed is 200 (r/min), and the mixing time is 5 (min ); After mixing, place the mixture in the lower hopper of the twin-screw extruder;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment and perform extrusion at a melt temperature of about 165°C;
  • Step 3 Granulation and cooling: granulate using water bath stretching and cutting.
  • the water bath temperature is set to 55°C and the heating time is 0.5 minutes.
  • the cooling crystallization enthalpy of the particle molded body was 17.2J/g, and the cold crystallization half-peak width of the secondary heating was 21°C.
  • the half-peak width data of the secondary heating cold crystallization of the particle molded bodies 1-5 and 11-12 of this embodiment are smaller, indicating that they are more conducive to processing and molding; moreover, their The crystallization enthalpy of cooling is also smaller, indicating that it is more conducive to secondary molding. That is to say, the thermoplastic processing difficulty of the particle molded body prepared by using the nucleating agent provided by the present invention is relatively lower, it can be processed continuously and stably, and the quality of the pellet molded body is good.
  • the water bath time is the crystallization time of the molded body in the water bath.
  • the water bath time (0.5-1.0 min) of the particle molded body 6-10 is compared with the comparative example 2 (0.5 min). ) is slightly longer, but still better than Comparative Example 1 without nucleating agent. From the perspective of crystallization time, this is mainly affected by the water bath heating temperature of 25°C, because the water bath temperature of molded bodies 6-10 is 25°C. Comparative Example 2 is 55°C. It can be seen that the water bath heating temperature is preferably set at 40-90°C. That is, when the nucleating agent of this embodiment is used, compared with the water bath temperature of 25°C, a higher water bath temperature can obtain better results. Effect.
  • the water bath temperature is set as a consistent single variable, for example, compare the cooling crystallization enthalpy, secondary enthalpy and secondary temperature of molded bodies 1-5 and 11-12 (water bath temperature 55°C) and Comparative Example 1-2 (water bath temperature 55°C). From the half-peak width of the cold crystallization at elevated temperature, it can be found that the molding effects of molded bodies 1-5 and 11-12 are better.
  • the half-peak width of the cold crystallization at the second heating of the molded body 6-10 cannot be detected (the half-peak width of the cold crystallization at the second heating of the particles 6-10 in Table 2 is "none"), which does not mean that the result is not ideal.
  • twin-screw extrusion and granulation are used; 100 parts by weight of PHBH-350 is used as the raw material, and the nucleating agent is selected from 1 part by weight of 1,4-cyclohexanediol and sorbitol.
  • Step 1 Mixing: Place the powder of PHBH-350 and the above alcohols in a high-speed mixer, mix at room temperature, the mixing speed is 200 (r/min), and the mixing time is 5 (min); After mixing, place the mixture into the lower hopper of the twin-screw extruder;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment and perform extrusion at a melt temperature of about 165°C;
  • Step 3 Granulation and cooling: granulate using water bath stretching and cutting.
  • the water bath temperature is set to 55°C and the heating time is 0.5 minutes.
  • Example 2 The particles 1-12 in Example 2 and the particles in Comparative Example 1-2 were respectively used for secondary processing to prepare films.
  • the raw materials of particles 1-12 i.e., composition 1-12
  • the production steps are: use a molding machine to mold the biodegradable resin at a first temperature (melt temperature) to prepare a molded product with a thickness of 200 ⁇ m, and then place it in water at a second temperature (extension temperature) to hold the molded film. Both ends are stretched at a certain rate, and finally placed in an oven at a third temperature (heating temperature) for heating to prepare a film sample.
  • first temperature melting temperature
  • second temperature extension temperature
  • Both ends are stretched at a certain rate, and finally placed in an oven at a third temperature (heating temperature) for heating to prepare a film sample.
  • heating temperature The specific process parameters are shown in Table 4.
  • the performance parameters of each obtained film formed body are shown in Table 5.
  • thermoplastic processing difficulty of the molded film prepared by using the composition of the nucleating agent and polyhydroxyalkanoate of the present invention is relatively low, can be continuously and stably processed into the film, and the quality of the molded body is particularly transparent. Sex is better.
  • the performance parameters mentioned above are evaluated through the following performance evaluation method of polyhydroxyalkanoate molded bodies.
  • the polyhydroxyalkanoate molded bodies are passed through an injection molding machine to obtain test pieces required by corresponding standards, and then evaluated.
  • the crystallization enthalpy is preferably 12.5 J/g or less (film 5) or less, more preferably 7.5 J/g or less (film 4), and even more preferably 2 J/g or less. below (films 1-3, 11, 13-16). Although the crystallization enthalpy in Comparative Examples 17 and 19 is very low, the half-peak width of cold crystallization with secondary heating is very large and the molding efficiency is low.
  • DSC25 model manufactured by TA Instruments Use a differential scanning calorimeter (DSC25 model manufactured by TA Instruments) to measure 2-10 mg of the polyhydroxyalkanoate molded body, heat it from -50°C to 180°C at a temperature rise rate of 10°C/min, and keep it warm at 180°C. 3min, cooling from 180°C to -50°C at a cooling rate of 10°C/min, and heating twice from -50°C to 180°C at a heating rate of 10°C/min to obtain the DSC curve of the second heating.
  • a secondary heating curve is obtained. When the secondary heating curve has a cold crystallization peak, the cold crystallization half-peak width is obtained from the secondary heating curve.
  • the cold crystallization half-peak width is preferably 15°C or less (film 1), more preferably 10°C or less (films 11, 12), and even more preferably 8°C or less (such as films 2-5, 12). 13-16).

Abstract

一种含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法。所述聚羟基烷酸酯组合物包括聚羟基烷酸酯和成核剂,所述成核剂为醇类化合物,包括脂肪醇,尤其是碳原子数为5-32的脂肪醇中的一种或多种。聚羟基烷酸酯组合物中的成核剂成核效率高,可改善聚羟基烷酸酯在热塑加工制备各类成型体的过程中存在的结晶速度慢、加工效率低等缺点。而且成核剂来源广泛且产品价格较低,降低各类聚羟基烷酸酯成型体的原料成本;同时,成核剂为生物来源,不影响聚羟基烷酸酯成型体的生物碳占比,其仍可达到100%生物来源。所得聚羟基烷酸酯成型体具有透明度高的优点。

Description

含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
相关申请的引用
本发明要求于2022年06月02日提交的标题为“含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法”的中国专利申请第202210626393.1号的优先权。上述申请的全部内容通过引用全部并入本申请。
技术领域
本发明涉及高分子材料领域,尤其涉及一种含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法。
背景技术
聚羟基烷酸酯(PHAs)是很多微生物合成的一种细胞内聚羟基脂肪酸酯,是一种天然的高分子生物材料。聚羟基烷酸酯的大多数单体是链长3~14个碳原子的3-羟基脂肪酸,其侧链R是高度可变的饱和或不饱和、直链或支链、脂肪族或芳香族的基团,组成结构的多样性带来性能的多样化,使其在应用中具有明显的优势。同时,聚羟基烷酸酯是一种生物基来源且在海洋环境中可生物降解的聚合物,能够解决废弃塑料引起的环境问题,且具有优异的生物相容性和机械性能,因此聚羟基脂肪酸酯可以被加工成各类的成型体,如薄膜、吸管、餐具等。
结晶速率的控制是聚羟基脂肪酸酯加工速率的重要因素。但单纯的聚羟基烷酸酯在热加工制备各类成型体的过程中,存在结晶速度慢、结晶度低、加工效率低等缺点。现有技术中往往通过添加成核剂等助剂的方法来提高PHAs的结晶速度。
如专利文献【1】公开号为CN1503824A的中国发明专利申请中公开了一种使用成核剂与增塑剂的聚羟基链烷酸酯加工的组合物,其成核剂为核化剂,选自滑石、微米化云母、碳酸钙、氮化硼、氯化铵、钠盐、以及 元素周期表第I族和第II族金属的羧酸盐组成的一组。同时在挤出后在一定温度下保温结晶,如线材是在30-40℃、薄膜是在30-45℃。
再如专利文献【2】公开号为CN102906193A的中国发明专利申请中公开了含有聚羟基烷酸酯的增韧聚乳酸,具体公开了包含的成核剂选自炭黑、氰尿酸、尿嘧啶、胸腺嘧啶、云母滑石、二氧化硅、氮化硼、氮化钡、粘土、碳酸钙、合成硅酸及盐、有机磷酸的金属盐、和高岭土或其组合。
然而,上述成核剂均以无机物或金属盐为主,其虽能够一定程度提高传统聚羟基烷酸酯制备成型体的结晶速度及结晶度,但改善程度有限;更为重要的是,这类成核剂会影响聚羟基烷酸酯成型体中生物碳占比,难以在海洋中全部降解,同时还会导致成型体带有颜色,降低其透明度,影响其应用。
发明内容
针对现有技术存在的问题,本发明提供一种聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法。
第一方面,本发明提供一种聚羟基烷酸酯组合物,包括聚羟基烷酸酯和成核剂,所述成核剂为醇类化合物的一种或多种,优选的,所述成核剂为脂肪醇的一种或多种。
进一步的,所述成核剂为碳原子数为5-32的脂肪醇中的一种或多种。
本发明研究发现,醇类化合物作为成核剂,包括脂肪醇类化合物,例如碳原子数为5-32的脂肪醇可以作为制备聚羟基烷酸酯成型体中的成核剂,可显著提高聚羟基烷酸酯制备成型体时的结晶速度和结晶度,具有成核效率高、加工方式更加简便的优点,同时还能够使所制得的聚羟基烷酸酯成型体具有透明度高的优点,因而具有更广泛的应用场景。
从饱和度看,本发明所述成核剂优选为饱和脂肪醇。从羟基数目看,所述成核剂可以为一元醇,也可以为多元醇。
进一步优选地,所述成核剂为1,16-十六烷二醇、1,22-二十二烷二醇、硬脂二醇(1,2-十八烷二醇)、山嵛醇(二十二醇)、花生醇(二十烷醇)、 棕榈醇(十六烷醇)、蜡醇(二十六烷醇)、普利醇(二十八烷醇)、蜂花醇(三十烷醇)、虫蜡醇、肉豆蔻醇(十四醇)、月桂醇(十二醇)中的一种或多种。更进一步优选地,所述成核剂为山嵛醇(二十二醇)。
进一步地,所述成核剂的添加量为所述聚羟基烷酸酯质量的0.01%-20%;优选为0.1%-5%。
研究表明,通过控制成核剂的添加比例在此优选范围内,可使得结晶效果更好,且制备的成型体可加工性能也更好。在研究过程中,发现在上述优选范围中,典型非限制性地,例如可以是0.1%、1%、2%、2.5%、3%、4%、5%。
本发明所述聚羟基烷酸酯可以为单独的聚合物,也可以为两种以上聚合物的组合物。其中每种聚合物的聚合单体可以为一种或多种(即聚合物中结构单元为一种或多种)。
具体而言,任一种聚合物含有下述通式(1)表示的结构单元:
[CHR(CH2)mCOO](1)
在通式(1)中,R表示CpH2p+1所示的烷基,p表示1~15的整数,优选为1~10的整数,更优选为1~8的整数。作为R,可列举例如:甲基、乙基、丙基、丁基、异丁基、叔丁基、戊基、己基等直链或支链状的烷基。
m=1,2或3,当m=1时,通式(1)表示3-羟基链烷酸酯结构单元,当m=2时,通式(1)表示4-羟基链烷酸酯结构单元,当m=3时,通式(1)表示5-羟基链烷酸酯结构单元。其中,3-羟基链烷酸酯结构单元和4-羟基链烷酸酯结构单元较为常见,如3-羟基丁酸酯结构单元(以下有时称为3HB)、4-羟基丁酸酯结构单元(以下有时称为4HB)。
优选地,本发明所述聚羟基烷酸酯包括至少一种聚(3-羟基链烷酸酯)。
进一步地,所述聚(3-羟基链烷酸酯)仅包含3-羟基丁酸酯结构单元,或者包含3-羟基丁酸酯结构单元和其他羟基链烷酸酯结构单元。
本发明所述聚羟基烷酸酯的制造方法没有特别限定,可以是利用化学 合成的制造方法,可以是利用微生物的制造方法。
研究表明,采用本发明的成核剂时,总的来说都可以实现加快结晶,与组合物中聚羟基烷酸酯中的结构单体的占比没有关系。本发明所述聚羟基烷酸酯特别优选由微生物产生的聚羟基烷酸酯,在由微生物产生的聚羟基烷酸酯中,3-羟基烷酸酯结构单元全部以(R)3-羟基烷酸酯结构单元的形式含有。其中,所述聚(3-羟基链烷酸酯)中,包括3-羟基丁酸酯结构单元与其它结构单元的共聚聚合物,且在所述聚(3-羟基链烷酸酯)中,所述3-羟基丁酸酯结构单元与其它结构单元的平均含有比率为50/50~99/1(摩尔%/摩尔%);本发明所述成核剂对优选为80/20~94/6(摩尔%/摩尔%)的促结晶效果更明显;在聚羟基烷酸酯原料为两种以上聚羟基烷酸酯的混合物的情况下,平均含有比率是指混合物整体中所含的各单体的摩尔比。在该优选范围内能兼顾二次成型难易度和加工效率。
进一步的,所述其他羟基链烷酸酯结构单元包括:3-羟基丙酸酯、3-羟基戊酸酯、3-羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯或4-羟基丁酸酯中的一种或多种;优选为3-羟基己酸酯。
质言之,作为聚(3-羟基链烷酸酯)的具体例,可列举例如:聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(简称:P3HB3HV)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)(简称:P3HB3HH)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(简称:P3HB4HB)等。特别是从加工性及机械特性等观点考虑,优选聚(3-羟基丁酸酯-共-3-羟基己酸酯)。
进一步地,所述聚羟基烷酸酯的重均分子量为10万~100万;优选为20万~90万;进一步优选为30万~80万。重均分子量小于10万时,存在 得到的聚羟基烷酸酯系树脂成型体的机械特性变低的倾向。另一方面,重均分子量超过100万时,存在熔融加工时对机械的负荷变高、生产性变低的倾向。
第二方面,本发明提供一种聚羟基烷酸酯成型体,由包括上述聚羟基烷酸酯组合物的原料制备得到。本发明所得聚羟基烷酸酯成型体具有透明度高、力学性能较好的优点,因而具有更广泛的应用场景。
此外在不抑制本发明效果的前提下,还可根据成型体的生产需要,添加添加剂等助剂与组合物复配。所述添加剂可包括增塑剂、交联剂、扩链剂、润滑剂等有机或无机材料。有机或无机材料可以单独使用,也可以两种以上组合使用。而且,还可以根据生产需要,调整添加剂的添加量,本发明对此没有特别限制。
本发明所述成型体可包括多种形式,如薄膜、纤维、吸管、板材、粒料等。
第三方面,本发明提供上述聚羟基烷酸酯成型体的制备方法。
本发明的聚羟基烷酸酯成型体可以通过挤出成型、注塑成型、压延成型、流延成型、吹塑成型、双向拉伸成型等各种热加工成型方法制备而成,也可以通过溶液浇筑等非热加工成型方法制备而成。优选通过热加工成型方法制备。
本发明提供的聚羟基烷酸酯成型体的热加工成型制备方法包括:
将所述聚羟基烷酸酯组合物在高于熔融温度的温度下加热熔融;在玻璃化转变温度与熔融温度之间的温度下冷却成型。
进一步地,当成型体为薄膜时,所述制备方法包括:
将所述聚羟基烷酸酯组合物在熔融温度以上10℃~60℃的温度下加热熔融(对应第一温度);在玻璃化转变温度与冷结晶温度之间的温度下进行50%以上的延伸(对应第二温度);在玻璃化转变温度与熔融温度之间的温度下冷却成型(对应第三温度)。
其中,更优选的是:
考虑到结晶焓越小,成型体在第二温度(延伸成型)下的加工成型性越好,更利于二次成型,即二次温度下的延伸率可以越高。考虑到在第二温度(延伸成型)下易加工成型,对于结晶焓,优选在12.5J/g以下,进一步优选在7.5J/g以下,更进一步优选在2J/g以下。
考虑到二次升温冷结晶半峰宽数据越小,在加工过程中,成型体越易结晶变硬,更利于加工成型。考虑到提高加工效率,对于冷结晶半峰宽,优选在15℃以下,进一步优选在10℃以下,更进一步优选在8℃以下。
聚羟基烷酸酯成型体在加工过程中,极易发生粘连,导致成型品的品质下降。因此,现有技术中,本领域技术人员所熟知的是可以通过延长加工时间,降低成型品的粘连,但是却大大降低了加工效率。
为此,本发明人在研究中发现,考虑到混合的均匀性,在制备聚羟基烷酸酯成型体时,对第一温度没有特别限定,优选在所述聚羟基烷酸酯熔融温度以上,进一步优选为在所述聚羟基烷酸酯熔融温度的10℃以上,更进一步优选为在所述聚羟基烷酸酯熔融温度的20℃以上。由于,第二温度选择过低和过高,均会导致所述聚羟基烷酸酯成型体最大可延伸倍率下降,透明性降低。因此,优选的如制备聚羟基烷酸酯薄膜成型体的时候,从第一温度降温到第二温度为一次成型过程,在第二温度下通过拉伸进行二次成型。优选第二温度为20℃以上,聚羟基烷酸酯冷结晶温度以下;进一步优选为30℃以上,聚羟基烷酸酯冷结晶温度以下;在研究过程中,发现在上述优选范围中,典型非限制性地,例如可以是40℃。在第三温度下进行结晶定型,使所述聚羟基烷酸酯成型体更好成型、稳定物性高。优选第三温度在所述聚羟基烷酸酯玻璃化转变温度以上,熔融温度以下。
由包括上述组合物的原料制备的所述聚羟基烷酸酯成型体的透明度被极大提高。在本领域中,透光率越大、雾度越小,薄膜样品的透明性越好。本发明得到的成型体的线光率在80%以上,雾度在50%以下。尤其是实施例中进一步得到了全光线透过率为90%以上/雾度为40%以下以及全光线透过率为90%以上/雾度为30%以下的可全生物降解的树脂薄膜制 品。
与现有技术相比,本发明至少包括以下优点:
1、本发明提供的用于聚羟基烷酸酯的成核剂成核效率高,可改善聚羟基烷酸酯在热塑加工制备各类成型体的过程中存在的结晶速度慢、加工效率低等缺点。
2、本发明提供的成核剂来源广泛且产品价格较低,降低各类聚羟基烷酸酯成型体的原料成本;同时,本发明提供的成核剂为生物来源,不影响聚羟基烷酸酯成型体的生物碳占比,其仍可达到100%生物来源。
3、相比于现有其他成核剂,使用本发明提供的成核剂制备的各类聚羟基烷酸酯成型体的透明度较高,不会影响各类成型体的颜色。
4、本发明提供的成型体在低于熔融温度的第二温度下,便于进行二次加工成型,且二次加工成型后仍然保持良好的透明度。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。以下将通过实施例对本发明进行详细描述。以下实施例中,如无特别说明,所用的各材料均可通过商购获得,如无特别说明,所用的方法为本领域的常规方法。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
通过以下实施例对本发明做更详细的描述,但所述实施例均不构成对本发明的限制。以下各实施例、对比例中用到的所有原料除特殊说明外,均为市购。
采用原材料:
PHBH-350:聚(3-羟基丁酸酯-共-3-羟基己酸酯),自制(BP350)。
PHBH-330:聚(3-羟基丁酸酯-共-3-羟基己酸酯),自制(BP330)。
PHBV:聚(3-羟基丁酸酯-共-3-羟基戊酸酯),自制。
采用设备:
混料设备:采用高速混料机中在室温下共混。
造粒设备:可使用不同长径比的平行同向双螺杆挤出机、平行异向双螺杆挤出机、锥形双螺杆挤出机,以及单螺杆机等本领域常用挤出造粒设备;将组合物置于双螺杆挤出机的下料斗或失重秤中;挤出造粒设备的温度设定在50-180℃的范围内,主机转速为50-500r/min,喂料量或产能根据实际生产状态进行调整;后续可使风冷拉条切粒、水浴拉条切粒、磨面热切、水环切和水下切粒等切粒方式进行制粒,并在生产加工的过程中保持25-65℃的水浴条件;制备的粒子使用鼓风干燥箱,烘干,排除水分对粒子性能的影响,同时使粒子结晶完全。
薄膜制作设备:模压机(江苏天源公司产),将生物降解树脂于低温温度下进行模压、制备成模压品,继而放入第二温度的水中手持模压膜的两端进行一定倍率的拉伸,最后放于烘箱中在第三温度下进行加热。
实施例1组合物
本实施例提供12组聚羟基烷酸酯组合物,包括聚羟基烷酸酯和成核剂,具体组成如表1所示。
表1

实施例2造粒
制作粒子成型体,采用双螺杆挤出造粒;原料分别采用表1中的组合物1-12。
制作步骤为:
步骤1、混料:将聚羟基烷酸酯粉末与成核剂置于高速混料机中,在室温下混料,混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗中;
步骤2、挤出:设定挤出造粒设备的条件,在熔体温度165℃左右的条件下,进行挤出;
步骤3、造粒冷却:采用水浴拉条切粒的方式进行造粒,其中水浴加热温度和加热时间如表2所示。
各粒子成型体的性能参数(降温结晶焓和二次升温的冷结晶半峰宽)如表2所示。
表2

对比例1
制作粒子成型体,原料采用PHBH-350 100重量份,不添加成核剂。
制作步骤为:直接将原料进行熔融挤出:设定挤出造粒设备的条件,在熔体温度165℃左右的条件下,进行挤出;然后进行造粒冷却:采用水浴拉条切粒的方式造粒,水浴温度设定为55℃,加热时间为3min。
结果粒子成型体的降温结晶焓为0J/g,二次升温的冷结晶半峰宽为27℃。
对比例2
制作粒子成型体,采用双螺杆挤出造粒;原料采用PHBH-350 100重量份,成核剂二氮化硼1重量份。
制作步骤为:
步骤1、混料:将PHBH-350的粉末与成核剂二氮化硼置于高速混料机中,在室温下混料,混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗中;
步骤2、挤出:设定挤出造粒设备的条件,在熔体温度165℃左右的条件下,进行挤出;
步骤3、造粒冷却:采用水浴拉条切粒的方式造粒,水浴温度设定为55℃,加热时间为0.5min。
结果粒子成型体的降温结晶焓为17.2J/g,二次升温的冷结晶半峰宽为21℃。
由以上结果可知,相较于对比例1和2,本实施例粒子成型体1-5和11-12的二次升温冷结晶半峰宽数据较小,说明更利于加工成型;而且,它们的降温结晶焓也较小,表明更利于二次成型。即采用本发明提供的成核剂制得的粒子成型体的热塑加工难度相对更低,可连续稳定加工,且粒料成型体品质较好。其中,水浴时间即成型体在水浴中的结晶时间,比较对比例及实施例的结晶时间可以发现,粒子成型体6-10的水浴时间(0.5~1.0min)相比于对比例2(0.5min)稍长,但依然优于不加成核剂的对比例1,从结晶时间上来看,这主要是受水浴加热温度为25℃的影响,因为成型体6-10的水浴温度为25℃,而对比例2为55℃,可见,水浴加热温度优选设置在40-90℃,即当采用本实施例成核剂时,相较25℃的水浴温度,采用更高的水浴温度能获得更好的效果。
当把水浴温度定为一致的单一变量的情况下,如比较成型体1-5和11-12(水浴温度55℃)以及对比例1-2(水浴温度55℃)的降温结晶焓、二次升温的冷结晶半峰宽,可以发现,成型体1-5、11-12的成型效果较好。
而成型体6-10的二次升温的冷结晶半峰宽检测不出(表2中粒子6-10的二次升温的冷结晶半峰宽为“无”),这不代表结果不理想,因为,当降温结晶焓比较大(≈熔融焓)的情况下,由于没有冷结晶峰,因此测试时并不会产生冷结晶半峰宽,即当冷结晶峰温降低至无法测量出,而这代表结晶速率加快,结晶更为完善,并且晶粒尺寸减小,分布均匀,即无半峰宽代表成型效果更好。
此外,进一步研究了其他短碳链醇对聚羟基烷酸酯的结晶性能的影 响。具体如下:
制备过程:
制作粒子成型体,采用双螺杆挤出造粒;原料采用PHBH-350 100重量份,成核剂分别选自1重量份的1,4环己二醇、山梨糖醇。
步骤1、混料:将PHBH-350的粉末分别与上述醇类物质置于高速混料机中,在室温下混料,混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗中;
步骤2、挤出:设定挤出造粒设备的条件,在熔体温度165℃左右的条件下,进行挤出;
步骤3、造粒冷却:采用水浴拉条切粒的方式造粒,水浴温度设定为55℃,加热时间为0.5min。
结果见下表:
表3
如表3所示,制备粒子13-14的过程中,与对比例1相比,粒子13、14的二次升温的冷结晶半峰宽虽然小于27℃,但效果基本与对比例2相近,结晶度较低,且制备的粒子挤出机挤出时不稳定,成型体/粒子黏连且无法分离,可见,与采用较短碳链的醇类物质相比,本实施例中采用的长链脂肪醇具有突出的成核作用且制备加工过程较为稳定。
实施例3制备薄膜
分别使用实施例2中的粒子1-12、对比例1-2中的粒子进行二次加工制备薄膜。当然这里需要注意的是,采用粒子1-12的原料(即组合物1-12) 直接制备薄膜也是可以的,应当在本发明保护范围内。
同时增加4组实验,使用粒子3,分别把延伸率设置为:100(未延伸)、150、250、300;
再增加1组对比实验,使用对比例1的粒子,延长了加热时间,为3(min)。
制作步骤为:使用模压机,将生物降解树脂于第一温度(熔体温度)下进行模压、制备成厚度为200μm的模压品,继而放入第二温度(延伸温度)的水中手持模压膜的两端进行一定倍率的拉伸,最后放于第三温度(加热温度)的烘箱中进行加热,制得薄膜样品。具体工艺参数如表4所示。所得各薄膜成型体的性能参数如表5所示。
表4

表5

由以上结果可知,采用本发明的成核剂与聚羟基烷酸酯的组合物制得的成型体薄膜的热塑加工难度相对更低,可连续稳定加工成膜,且成型体品质特别是透明性更好。
上述涉及的性能参数通过下面的聚羟基烷酸酯成型体的性能评价方式、将聚羟基烷酸酯成型体通过注塑机制得相应标准要求的测试件,测定后进行评价。
聚羟基烷酸酯成型体的性能评价方式:
降温结晶焓:
使用差示扫描量热计(TA Instrument公司制DSC25型),计量聚羟基烷酸酯成型体2-10mg,以10℃/min的升温速度从-50℃一次升温至180℃,以10℃/min的降温速度从180℃降温至-50℃,得到降温曲线,从降温曲线上得到结晶焓。
结晶焓越小,成型体在第二温度下的加工成型性越好,更利于二次成型,即二次温度下的延伸率可以越高。考虑到在第二温度下易加工成型,对于结晶焓,优选在12.5J/g以下(薄膜5)以下,进一步优选在7.5J/g以下(薄膜4)以下,更进一步优选在2J/g及以下(薄膜1-3、11、13-16)。虽然对比例17、19中的结晶焓很低,但是二次升温的冷结晶半峰宽很大,成型效率低。
二次升温的冷结晶半峰宽:
使用差示扫描量热计(TA Instrument公司制DSC25型),计量聚羟基烷酸酯成型体2-10mg,以10℃/min的升温速度从-50℃一次升温至180℃,在180℃保温3min,以10℃/min的降温速度从180℃降温至-50℃,以10℃/min的升温速度从-50℃二次升温至180℃得到二次升温的DSC曲线中。得到二次升温曲线,在二次升温曲线具有冷结晶峰的情况下,从二次升温曲线上得到冷结晶半峰宽。
二次升温冷结晶半峰宽数据越小,在加工过程中,成型体越易结晶变硬,更利于加工成型。考虑到提高加工效率,对于冷结晶半峰宽,优选在15℃(薄膜1)以下,进一步优选在10℃(薄膜11、12)以下,更进一步优选在8℃以下(如薄膜2-5、13-16)。
透光率和雾度:
将5cm×5cm的样品,使用日本SUGA雾度计HZ-V3,以D65为光源,测定雾度和透光率。
透光率越大、雾度越小,薄膜样品的透明性越好。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种聚羟基烷酸酯组合物,其特征在于,包括聚羟基烷酸酯和成核剂,所述成核剂为醇类化合物中的一种或多种。
  2. 根据权利要求1所述的聚羟基烷酸酯组合物,其特征在于,所述成核剂为脂肪醇的一种或多种;优选的,所述脂肪醇为碳原子数为5-32的脂肪醇。
  3. 根据权利要求2所述的聚羟基烷酸酯组合物,其特征在于,所述成核剂为1,16-十六烷二醇、1,22-二十二烷二醇、硬脂二醇、山嵛醇、花生醇、棕榈醇、蜡醇、普利醇、蜂花醇、虫蜡醇、肉豆蔻醇、月桂醇中的一种或多种;所述成核剂的添加量为所述聚羟基烷酸酯质量的0.01%-20%。
  4. 根据权利要求3所述的聚羟基烷酸酯组合物,其特征在于,所述成核剂为山嵛醇,所述山嵛醇的添加量为所述聚羟基烷酸酯质量的0.1%-5%。
  5. 根据权利要求1-4任一项所述的聚羟基烷酸酯组合物,其特征在于,所述聚羟基烷酸酯包括至少一种聚(3-羟基链烷酸酯)。
  6. 根据权利要求5所述的聚羟基烷酸酯组合物,其特征在于,所述聚(3-羟基链烷酸酯)仅包含3-羟基丁酸酯结构单元,或者包含3-羟基丁酸酯结构单元和其他羟基链烷酸酯结构单元。
  7. 根据权利要求6所述的聚羟基烷酸酯组合物,其特征在于,所述聚(3-羟基链烷酸酯)包含至少一种3-羟基丁酸酯结构单元和其他羟基链烷酸酯结构单元的共聚物。
  8. 根据权利要求6或7所述的聚羟基烷酸酯组合物,其特征在于,所述其他羟基链烷酸酯结构单元包括:3-羟基丙酸酯、3-羟基戊酸酯、3-羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯或4-羟基丁酸酯中的一种或多种;
    优选为3-羟基己酸酯。
  9. 一种聚羟基烷酸酯成型体,其特征在于,由包括权利要求1-8任一项所述聚羟基烷酸酯组合物的原料制备得到;所述成型体包括薄膜、纤维、吸管、板材或粒料。
  10. 一种聚羟基烷酸酯成型体的制备方法,其特征在于,包括:
    将权利要求1-8任一项所述的聚羟基烷酸酯组合物在高于熔融温度的温度下加热熔融;在玻璃化转变温度与熔融温度之间的温度下冷却成型;
    优选的,在制备所述聚羟基烷酸酯成型体时,将权利要求1-8任一项所述的聚羟基烷酸酯组合物在熔融温度以上10℃~60℃的温度下加热熔融;在玻璃化转变温度与冷结晶温度之间的温度下进行50%以上的延伸;在玻璃化转变温度与熔融温度之间的温度下冷却成型。
PCT/CN2023/093386 2022-06-02 2023-05-11 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法 WO2023231732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210626393.1 2022-06-02
CN202210626393.1A CN114989586A (zh) 2022-06-02 2022-06-02 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法

Publications (1)

Publication Number Publication Date
WO2023231732A1 true WO2023231732A1 (zh) 2023-12-07

Family

ID=83031217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093386 WO2023231732A1 (zh) 2022-06-02 2023-05-11 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法

Country Status (3)

Country Link
CN (1) CN114989586A (zh)
TW (1) TW202348722A (zh)
WO (1) WO2023231732A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989586A (zh) * 2022-06-02 2022-09-02 北京蓝晶微生物科技有限公司 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115232455B (zh) * 2022-09-22 2023-01-17 北京蓝晶微生物科技有限公司 含酯类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115386211B (zh) * 2022-10-28 2023-03-24 北京蓝晶微生物科技有限公司 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171302A (zh) * 2005-05-09 2008-04-30 株式会社钟化 生物降解性树脂组合物及其成型体
WO2009048797A1 (en) * 2007-10-10 2009-04-16 E.I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles
CN104662088A (zh) * 2012-08-03 2015-05-27 株式会社钟化 聚酯树脂组合物及含有该树脂组合物的成形体
US20150291771A1 (en) * 2012-10-29 2015-10-15 Kaneka Corporation Aliphatic polyester resin composition and molded article containing this resin composition
US20160251494A1 (en) * 2013-10-11 2016-09-01 Kaneka Corporation Aliphatic polyester resin composition and aliphatic polyester resin molded article
JP2017222791A (ja) * 2016-06-15 2017-12-21 株式会社カネカ ポリ−3−ヒドロキシアルカノエート系樹脂組成物および成形体
JP2020064221A (ja) * 2018-10-19 2020-04-23 コニカミノルタ株式会社 静電荷像現像用トナー及び静電荷像現像用トナーの製造方法
CN114989586A (zh) * 2022-06-02 2022-09-02 北京蓝晶微生物科技有限公司 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110138B2 (en) * 2008-05-08 2012-02-07 E. I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171302A (zh) * 2005-05-09 2008-04-30 株式会社钟化 生物降解性树脂组合物及其成型体
WO2009048797A1 (en) * 2007-10-10 2009-04-16 E.I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles
CN104662088A (zh) * 2012-08-03 2015-05-27 株式会社钟化 聚酯树脂组合物及含有该树脂组合物的成形体
US20150291771A1 (en) * 2012-10-29 2015-10-15 Kaneka Corporation Aliphatic polyester resin composition and molded article containing this resin composition
US20160251494A1 (en) * 2013-10-11 2016-09-01 Kaneka Corporation Aliphatic polyester resin composition and aliphatic polyester resin molded article
JP2017222791A (ja) * 2016-06-15 2017-12-21 株式会社カネカ ポリ−3−ヒドロキシアルカノエート系樹脂組成物および成形体
JP2020064221A (ja) * 2018-10-19 2020-04-23 コニカミノルタ株式会社 静電荷像現像用トナー及び静電荷像現像用トナーの製造方法
CN114989586A (zh) * 2022-06-02 2022-09-02 北京蓝晶微生物科技有限公司 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法

Also Published As

Publication number Publication date
TW202348722A (zh) 2023-12-16
CN114989586A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023231732A1 (zh) 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115232456B (zh) 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
JP6457644B2 (ja) ポリラクチド成形品およびその製造法
WO2023221849A1 (zh) 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN115044180B (zh) 包含结晶促进剂的聚羟基烷酸酯组合物和成型体
CN114851528B (zh) 一种聚羟基烷酸酯成型体及其制备方法
CN115058108B (zh) 可海洋降解的聚羟基烷酸酯组合物、成型体及其制备方法
TW201333101A (zh) 包含聚左旋乳酸以及聚右旋乳酸之組合物
WO2024045338A1 (zh) 一种可降解材料的造粒加工方法及其制备的成型体
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
CN115386211B (zh) 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
WO2024031897A1 (zh) 聚羟基烷酸酯组合物及其成型体
CN115232455B (zh) 含酯类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115627057B (zh) 一种吸管及其制备方法
JPH11240962A (ja) 成形加工性の改良されたポリエステル樹脂組成物からなる成形体
JP4326832B2 (ja) 生分解性ポリエステル系樹脂組成物の製造方法
CN117209980B (zh) 一种聚羟基脂肪酸酯组合物、聚羟基脂肪酸酯成型体及其制备方法
TW202408769A (zh) 聚羥基烷酸酯成型體及其製備方法
TW202405074A (zh) 包含結晶促進劑的聚羥基烷酸酯組合物和成型體
TW202404773A (zh) 可降解材料的造粒加工方法及其製備的成型體
CN101654563B (zh) 结晶聚合物共混物及其成型制品
TW202409173A (zh) 可海洋降解的聚羥基烷酸酯組合物、成型體及其製備方法
WO2024087609A1 (zh) 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
TW202407042A (zh) 聚羥基烷酸酯組合物及其成型體
TW202407020A (zh) 含多元酸的聚羥基烷酸酯組合物及聚羥基烷酸酯成型體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814917

Country of ref document: EP

Kind code of ref document: A1