WO2024087609A1 - 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体 - Google Patents

含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体 Download PDF

Info

Publication number
WO2024087609A1
WO2024087609A1 PCT/CN2023/096517 CN2023096517W WO2024087609A1 WO 2024087609 A1 WO2024087609 A1 WO 2024087609A1 CN 2023096517 W CN2023096517 W CN 2023096517W WO 2024087609 A1 WO2024087609 A1 WO 2024087609A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyhydroxyalkanoate
acid
molded body
polyacid
molecular weight
Prior art date
Application number
PCT/CN2023/096517
Other languages
English (en)
French (fr)
Inventor
马志宇
徐勇
李生辉
张婷
马一鸣
李腾
张浩千
Original Assignee
北京蓝晶微生物科技有限公司
江苏蓝素生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝晶微生物科技有限公司, 江苏蓝素生物材料有限公司 filed Critical 北京蓝晶微生物科技有限公司
Publication of WO2024087609A1 publication Critical patent/WO2024087609A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to the technical field of polymer materials, and in particular to a polyhydroxyalkanoate composition containing a polyacid and a polyhydroxyalkanoate molded body.
  • Polyhydroxyalkanoates are intracellular polyhydroxyalkanoates synthesized by many microorganisms and are natural high-molecular biomaterials. Most monomers of polyhydroxyalkanoates are 3-hydroxy fatty acids with a chain length of 3-14 carbon atoms, and their side chains R are highly variable saturated or unsaturated, linear or branched, aliphatic or aromatic groups. The diversity of composition structures brings about the diversity of performance, which gives polyhydroxyalkanoates obvious advantages in applications. At the same time, polyhydroxyalkanoates are a bio-based polymer that is biodegradable in the marine environment, which can solve the environmental problems caused by waste plastics and has excellent biocompatibility and mechanical properties. Therefore, polyhydroxyalkanoates can be processed into various molded bodies, such as films, straws, tableware, etc.
  • polyhydroxyalkanoate has poor thermal stability, in the process of preparing it into various molded bodies by thermoplastic processing, polyhydroxyalkanoate has a large degree of thermal degradation, which will cause its molecular weight to drop significantly, and then make the performance of various molded bodies obtained poor, especially toughness.
  • the film molded body prepared by film blowing using polyhydroxyalkanoate as raw material has obvious problems such as decreased right-angle tear performance and elongation at break.
  • a large degree of thermal degradation will also reduce the processing stability of polyhydroxyalkanoate.
  • the peroxides, compounds with epoxy functional groups or cross-linking agents with at least two active double bonds used in the related art are prone to chemical reactions with acidic substances, antioxidant additives, etc. due to their high chemical activity, resulting in high storage risks and potential safety hazards.
  • the invention provides a polyhydroxyalkanoate composition containing a polyacid and a polyhydroxyalkanoate molded body, which are used to solve the problems that the existing polyhydroxyalkanoates have poor thermal stability, and in the process of preparing various molded bodies by thermoplastic processing, there are large thermal degradation degrees and significant decreases in molecular weight, resulting in poor performance of the prepared various molded bodies.
  • a toughening effect can be achieved, the molecular weight of the molded body can be increased, the melt flow rate can be reduced, and the influence of thermal degradation of the polyhydroxyalkanoate on the performance of the molded body in the process of preparing various molded bodies by thermoplastic processing can be reduced to a certain extent.
  • the present invention provides a polyhydroxyalkanoate composition comprising a polyhydroxyalkanoate and a polyacid compound.
  • the polyhydroxyalkanoate composition of the present invention includes polyhydroxyalkanoate and polyacid compounds, and the polyacid compounds can play a toughening effect, can increase the molecular weight of the molded body, reduce the melt flow rate, and to a certain extent reduce the effect of thermal degradation of polyhydroxyalkanoate on the performance of the molded body during the thermoplastic processing of various molded bodies.
  • the polyacid compound of the present invention is one or more polyacids, and the polyacid refers to an acid that can produce two or more hydrogen ions after an acid molecule is ionized, or a compound with two or more terminal carboxyl groups.
  • the acid in the polyacid can undergo an esterification reaction with the hydroxyl group at the end of the polyhydroxyalkanoate, so that the intermolecular chain is extended, the molecular chain is extended, and the molecular weight of the molded body is increased, thereby offsetting the problem of a decrease in the molecular weight of the polyhydroxyalkanoate due to a large degree of thermal degradation, and improving the toughness of the molded body.
  • the added amount of the polyacid compound is 0.01%-20% of the mass of the polyhydroxyalkanoate.
  • the added amount of the polyacid compound can be 0.01%, 0.03%, 0.05%, 0.08%, 0.1%, 0.2%, 0.5%, 0.8%, 1%, 1.5%, 2%, 2.5%, 3%, 5%, 8%, 10%, 15%, 20% of the mass of the polyhydroxyalkanoate, etc., and of course it can also be other values within the above range, which is not limited here.
  • the amount of the polyacid compound added is 0.01%-5% of the mass of the polyhydroxyalkanoate. Further, the amount of the polyacid compound added is 0.05%-5% of the mass of the polyhydroxyalkanoate.
  • the added amount of the polyacid compound is 0.05%-2.5% of the mass of the polyhydroxyalkanoate.
  • the processability of the prepared molded body is also better.
  • the polyacid compound is preferably an organic polyacid compound, and the polyacid compound is an organic acid compound represented by the general formula R'(COOH)n, wherein R' represents: a hydrocarbon group containing 2 to 30 carbon atoms, or a group composed of one or more combinations of aromatic groups, epoxy groups, ether bonds, hydroxyl groups, and hydrocarbon groups containing 2 to 30 carbon atoms; n is an integer greater than or equal to 2.
  • R' is a hydrocarbon group containing 2-30 carbon atoms, it can be an alkyl group, an alkene group, or an alkyne group containing 2-30 carbon atoms; R' can be an alkyl group containing 2-5 carbon atoms, an alkyl group containing 5-10 carbon atoms, an alkyl group containing 5-10 carbon atoms, an alkyl group containing 10-20 carbon atoms, or an alkyl group containing 20-30 carbon atoms; specific non-limiting groups include ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decanyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosy
  • R' is represented by: a group composed of one or more of an aryl group, an epoxy group, an ether bond, a hydroxyl group, and a hydrocarbon group having 2-30 carbon atoms
  • R' can be a group composed of the above hydrocarbon group having 2-30 carbon atoms and an aryl group, or a group composed of the above hydrocarbon group having 2-30 carbon atoms and a hydroxyl group, or a group composed of the above hydrocarbon group having 2-30 carbon atoms and an ether bond, etc.
  • the composition of the organic polyacid containing the above groups and the polyhydroxyalkanoate can meet the requirements of maintaining the molecular weight of the polyhydroxyalkanoate and reducing the melt index, it should be within the scope of protection of this application.
  • the polyacid compound includes an organic dibasic acid compound and/or an organic tribasic acid compound.
  • the polyacid compound may also be a saturated dibasic acid, an unsaturated dibasic acid, Saturated tribasic acids, unsaturated tribasic acids.
  • the polyacid compound is a dibasic acid compound.
  • dibasic acids refer to acids that can produce two hydrogen ions after ionization of an acid molecule, or compounds with two terminal carboxyl groups, or compounds represented by the general formula HOOC-R'-COOH.
  • Tribasic acids refer to acids that can produce three hydrogen ions after ionization of an acid molecule, or compounds with three terminal carboxyl groups, or compounds represented by the general formula R'(COOH) 3.
  • dibasic acids Compared with dibasic acids, using tribasic acids or other polybasic acids can increase molecular weight and reduce melt index, but due to the large degree of crosslinking, the movement of the molecular chain is affected, the elongation at break is not improved, and the notched impact strength is not improved.
  • Dibasic acid compounds are added to polyhydroxyalkanoates as polyacid compounds.
  • the molecular weight can be higher than that of polyhydroxyalkanoates without any additives, and the melt flow rate (MFR) of the particle molded body can be lower, so that the performance of the prepared molded body has been improved year-on-year, especially the toughness, the notched impact strength of the injection molded body is higher, the right-angle tear strength and elongation at break of the film molded body are higher, and the overall performance of the molded body is improved.
  • MFR melt flow rate
  • the polyacid compounds also include other types of polyacids, such as organic tetrabasic acids such as ethylenediaminetetraacetic acid and pyromellitic acid, and inorganic polyacids such as phosphoric acid, sulfuric acid, sulfurous acid, and carbonic acid, as long as the acid in these polyacids can react with the hydroxyl group at the end of the polyhydroxyalkanoate to undergo esterification reaction, so that the molecular chain is extended and the molecular chain is extended; therefore, these types of polyacids can also increase the molecular weight of the molded body to offset the problem of the decrease in the molecular weight of the polyhydroxyalkanoate due to the large degree of thermal degradation, and improve the toughness of the molded body.
  • organic tetrabasic acids such as ethylenediaminetetraacetic acid and pyromellitic acid
  • inorganic polyacids such as phosphoric acid, sulfuric acid, sulfurous acid, and carbonic acid
  • inorganic polyacids and polyhydroxyalkanoates to prepare a molded body can increase the weight-average molecular weight of the molded body, but the decrease in the melt flow rate of the molded body is not obvious, and the tensile strength, elongation at break and notched impact strength are relatively low.
  • inorganic acids do not have similar effects to organic polyacids.
  • an organic polyacid is used as a polyacid compound and combined with polyhydroxyalkanoates to prepare a molded body, although the problem of molecular weight reduction caused by thermal degradation can be offset as a whole, the effects of organic acids with different carbon chain lengths are slightly different.
  • the organic polyacid may also refer to a compound whose R' molecular structure contains a hydroxyl group
  • the polyacid compound may also be a polyacid compound containing a hydroxyl group, such as tartaric acid (or 2,3-dihydroxysuccinic acid), and according to its structure, L-tartaric acid (levorotatory) and D-tartaric acid (dextrorotatory), MESO-tartaric acid (internal
  • this solution is not limited to polyacids with R' containing two hydroxyl groups, but can also be polyacids with more than two hydroxyl groups, such as tetrahydroxysuccinic acid, etc.
  • Polyacids containing other groups are not limited, such as polyacid compounds with R' containing ether bonds, ester bonds, amino groups, etc.
  • Organic dibasic acids are compounds represented by the general formula HOOC-R'-COOH
  • organic tribasic acids are compounds containing three carboxyl groups in their molecular structure.
  • the terminal carboxyl groups in the molecular structure of organic dibasic acids and organic tribasic acids react with the hydroxyl groups at the end of polyhydroxyalkanoate to undergo esterification, which is more conducive to intermolecular chain extension and molecular chain extension, thereby achieving a more effective toughening effect.
  • organic dibasic acids as polyacid compounds can more effectively increase the weight average molecular weight of the molded body, more effectively improve the mechanical properties of the molded body such as elongation at break and notched impact strength, and thus more effectively improve the overall performance of the molded body.
  • the polyacid compound includes an organic saturated dibasic acid, an unsaturated dibasic acid, and/or an organic saturated tribasic acid, an unsaturated tribasic acid, and/or a hydroxy polyacid.
  • R' in the polyacid compound is an unsaturated aromatic group, a hydrocarbon group containing a double bond or a triple bond, and preferred unsaturated polyacid compounds include: pentaconic acid, 4,4-stilbene dicarboxylic acid, terephthalic acid, etc.
  • saturated polyacid compounds can better take into account the effective reduction of the melt flow rate of the molded body and the effective improvement of the elongation at break of the molded body, thereby more effectively improving the overall performance of the molded body.
  • the polyacid compound is selected from one or more of oxalic acid, malonic acid, succinic acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, heneicosanedioic acid, docosanedioic acid, tricosanedioic acid, tetracosanedioic acid, pentacosanedioic acid
  • the molded body prepared by the polyhydroxyalkanoate composition has the advantages of good toughness, good processing stability, good mechanical properties, etc., which improves the overall performance of the molded body and enables it to have a wider range of applications.
  • the organic dibasic acid selected by the present invention is easy to store, and it is not difficult to quantitatively control the reaction.
  • the polyacid compound is selected from one or more of oxalic acid, malonic acid, succinic acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, heneicosanedi
  • the polyacid compound includes one or more of succinic acid, tartaric acid, glutaric acid, adipic acid, dodecanedioic acid, and hexadecanedioic acid.
  • Tartaric acid is selected from DL-tartaric acid, L-tartaric acid, D-tartaric acid, and MESO-tartaric acid.
  • the polyhydroxyalkanoate of the present invention can be a single polymer or a composition of two or more polymers, wherein each polymer may have one or more polymerizable monomers (ie, the structural unit in the polymer is one or more).
  • the polyhydroxyalkanoate is a polymer comprising a repeating unit represented by the following general formula (1): [CHR(CH 2 )mCOO](1)
  • R represents an alkyl group represented by CpH 2 p+1, and p represents an integer of 1 to 15, preferably an integer of 1 to 10, and more preferably an integer of 1 to 8.
  • R include linear or branched alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, and hexyl.
  • the general formula (1) represents a 3-hydroxyalkanoate structural unit.
  • the general formula (1) represents a 4-hydroxyalkanoate structural unit.
  • the general formula (1) represents a 5-hydroxyalkanoate structural unit.
  • the 3-hydroxyalkanoate structural unit and the 4-hydroxyalkanoate structural unit are more common, such as the 3-hydroxybutyrate structural unit (hereinafter sometimes referred to as 3HB) and the 4-hydroxybutyrate structural unit (hereinafter sometimes referred to as 4HB).
  • the polyhydroxyalkanoate comprises at least one poly(3-hydroxyalkanoate); the poly(3-hydroxyalkanoate) comprises only 3-hydroxybutyrate structural units, or comprises 3-hydroxybutyrate structural units and other hydroxyalkanoate structural units;
  • the other hydroxyalkanoate structural units include 3-hydroxypropionate, 3-hydroxyvalerate, 3-hydroxyhexanoate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxynonanoate, 3-hydroxydecanoate, 3-hydroxyundecanoate, Or one or more of 4-hydroxybutyrate; preferably, the other hydroxyalkanoate structural unit is 3-hydroxyhexanoate.
  • the poly(3-hydroxyalkanoate) is selected from one or more of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyheptanoate), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3-hydroxynonanoate), poly(3-hydroxybutyrate-co-3-hydroxydecanoate), poly(3-hydroxybutyrate-co-3-hydroxyundecanoate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate);
  • the poly(3-hydroxyalkanoate) is selected from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • the method for producing the polyhydroxyalkanoate of the present invention is not particularly limited, and may be a method of producing by chemical synthesis or a method of producing by microorganisms.
  • the polyhydroxyalkanoates of the present invention are particularly preferably polyhydroxyalkanoates produced by microorganisms, in which the 3-hydroxyalkanoate structural units are all contained in the form of (R) 3-hydroxyalkanoate structural units.
  • the poly (3-hydroxyalkanoate) includes a copolymer of 3-hydroxybutyrate structural units and other structural units, and in the poly (3-hydroxyalkanoate), the average content ratio of the 3-hydroxybutyrate structural unit to other structural units is 50/50 to 99/1 (mol%/mol%); the polyacid compounds of the present invention preferably have a more obvious crystallization effect of 80/20 to 94/6 (mol%/mol%); in the case where the polyhydroxyalkanoate raw material is a mixture of two or more polyhydroxyalkanoates, the average content ratio refers to the molar ratio of each monomer contained in the mixture as a whole. Within this preferred range, both the difficulty of secondary molding and processing efficiency can be taken into account.
  • additives and other auxiliary agents can be added to the polyhydroxyalkanoate composition according to the production needs of the molded body.
  • the additives may include organic or inorganic materials such as nucleating agents, plasticizers, toughening agents, reinforcing agents, crosslinking agents, chain extenders, lubricants, and fillers.
  • the organic or inorganic materials can be used alone or in combination of two or more.
  • the amount of additives added can be adjusted according to production needs, and the present invention has no particular restrictions on this.
  • the polyhydroxyalkanoate composition provided by the present invention further comprises a nucleating agent, wherein the amount of the nucleating agent added is 0.1%-10% of the polyhydroxyalkanoate composition;
  • the nucleating agent includes an auxiliary agent that plays a nucleating role in the art, such as commonly used inorganic nucleating agents, including but not limited to one or more of calcium carbonate, talc, titanium dioxide, uracil, galactitol, zirconium hydrogen phosphate, amide compounds, and boron nitride; of course, it also includes organic nucleating agents with nucleating effects, including but not limited to acid and alcohol nucleating agents.
  • nucleating agent By adding a nucleating agent to the polyhydroxyalkanoate composition, the time required for the polyhydroxyalkanoate to be non-sticky can be reduced, thereby improving processing efficiency. Too much nucleating agent added will reduce the mechanical properties of the polyhydroxyalkanoate.
  • the present invention further provides a polyhydroxyalkanoate shaped body, comprising the polyhydroxyalkanoate composition described above.
  • the polyhydroxyalkanoate molded body obtained by the present invention has the advantages of good processing stability and good mechanical properties, and thus has a wider range of application scenarios.
  • the molded body of the present invention can include various forms, such as films, fibers, straws, plates, pellets, etc.
  • the present invention also provides a method for preparing the above-mentioned polyhydroxyalkanoate molded body, comprising the following steps:
  • the polyhydroxyalkanoate composition is heated at a first temperature to melt, and then cooled at a second temperature to form a shape;
  • the first temperature is 10°C to 60°C higher than the melting point of the polyhydroxyalkanoate
  • the second temperature is higher than the glass transition temperature of the polyhydroxyalkanoate molded body and lower than the melting point of the polyhydroxyalkanoate molded body; preferably, the second temperature is higher than the glass transition temperature of the polyhydroxyalkanoate molded body by more than 30°C and lower than the melting point of the polyhydroxyalkanoate molded body by less than 20°C.
  • the polyhydroxyalkanoate composition is first heated and melted at a first temperature, and then cooled and formed at a second temperature.
  • the present invention has found that the lower the first temperature, the shorter the time required for the molded body to not stick during the cooling and molding stage, but the higher the first temperature, the greater the fluidity of the polyhydroxyalkanoate, which is more conducive to molding.
  • the first temperature of the system is controlled to be 10°C to 60°C higher than the melting point of the polyhydroxyalkanoate.
  • the present invention also found that the second temperature affects the length of time required for the polyhydroxyalkanoate molded body to reach a non-sticky state.
  • the system temperature in the cooling and molding stage is between the glass transition temperature and the melting point temperature of the obtained molded body, preferably 30°C higher than the glass transition temperature of the obtained molded body, and 20°C lower than the melting point temperature of the obtained molded body.
  • thermoplastic processing and forming methods include extrusion molding, injection molding, calendering molding, casting molding, blow molding, biaxial stretching molding, etc.; the non-thermoplastic processing and forming methods include solution casting, etc.
  • the thermoplastic processing and forming method is preferred.
  • polyhydroxyalkanoate resins have the following problems in the preparation process: due to the effect of thermal degradation, the weight average molecular weight of the molded body decreases from 500,000 to 320,000, the melt flow rate is as high as 7.42g/10min, and the elongation at break is only 11%.
  • the polyhydroxyalkanoate composition containing polyacid compounds provided by the present invention is used to prepare a molded body, which can effectively reduce the thermal degradation effect, maintain the molecular weight of the molded body at 480,000 or more, reduce the melt flow rate to 1.14g/10min or less, and the elongation at break can be increased to 153% or more.
  • the effect of thermal degradation of polyhydroxyalkanoate on the performance of the molded body during the thermoplastic processing of various molded bodies can be reduced to a certain extent, thereby achieving a toughening effect.
  • the polyacid compound of the present invention is one or more polyacid compounds, and the carboxylic acid group end in the polyacid can undergo an esterification reaction with the hydroxyl group at the end of the polyhydroxyalkanoate, so as to extend the chain between molecules, lengthen the molecular chain, and increase the molecular weight of the molded body, thereby offsetting the problem of a decrease in the molecular weight of the polyhydroxyalkanoate due to a large degree of thermal degradation, so that the prepared molded body has a lower melt flow rate, higher tensile strength, elongation at break and notched impact strength, and further improves the toughness of the molded body.
  • the polyacid compound in the polyhydroxyalkanoate composition of the present invention is easy to use and can be mixed and compounded with the polyhydroxyalkanoate as an additive without requiring any extra preparation methods and steps, thereby reducing production costs.
  • the polyacid compounds in the polyhydroxyalkanoate composition of the present invention can not only reduce the thermal degradation during the thermal processing and increase the molecular weight, but also improve the toughness of the molded body, the injection molded body has a higher notched impact strength, and the film molded body has a higher right-angle tear strength and elongation at break.
  • polyacid compounds are more stable, effectively avoiding the safety hazards caused by the use of highly active organic peroxides in the production process, reducing the difficulty of quantitative control of the reaction, making the processing operation safer and simpler, and effectively improving the processing efficiency of polyhydroxyalkanoate resins.
  • any values of the ranges disclosed in this article are not limited to the precise ranges or values, and these ranges or values should be understood to include values close to these ranges or values.
  • the endpoint values of each range, the endpoint values of each range and the individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges, which should be regarded as specifically disclosed in this article.
  • PHBH Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), product number: BP330, Beijing Blue Crystal Microbiology Technology Co., Ltd., 3HB (3-hydroxybutyrate unit) content 94%, weight average molecular weight ⁇ 500,000.
  • PHBH Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), product number: BP350, Beijing Blue Crystal Microbiology Technology Co., Ltd., 3HB (3-hydroxybutyrate unit) content 89%, weight average molecular weight ⁇ 500,000.
  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB), weight average molecular weight ⁇ 500,000, Beijing Lanjing Microbiology Technology Co., Ltd.
  • Granulation equipment can use parallel co-rotating twin-screw extruders, parallel counter-rotating twin-screw extruders, conical twin-screw extruders, single-screw extruders and other common extrusion granulation equipment in the field; place the composition in the lower hopper or loss-in-weight scale of the twin-screw extruder; the temperature of the extrusion granulation equipment is set within the range of 50°C-180°C (first temperature), the main engine speed is 50r/min-500r/min, and the feed rate or production capacity is adjusted according to the actual production status; the subsequent pelletizing methods such as air-cooled strand pelletizing, water-bath strand pelletizing, grinding hot cutting, water ring cutting and underwater pelletizing can be used for pelletizing.
  • the particles are prepared and maintained in a water bath condition of 40°C-65°C (second temperature) during the production process; the prepared particles are dried using a blast drying oven to eliminate the influence of moisture on the particle properties and to allow the
  • Film production equipment single-layer or multi-layer film blowing machines and other commonly used film or tube making equipment in the field are used, and the screw and die head temperatures are set at 50°C-180°C (first temperature); the prepared film is crystallized online in a drying tunnel at 40°C-65°C (second temperature) before winding.
  • the molecular weight is measured by polystyrene conversion using a gel permeation chromatograph (HPLC GPC system manufactured by Shimadzu Corporation) using a chloroform solution.
  • a column for the gel permeation chromatograph a column suitable for measuring a weight average molecular weight may be used.
  • the melt flow rate is measured at 190°C and 2.16 kg according to ISO1133-1:2011; the unit of the melt flow rate is g/10 min.
  • the polyhydroxyalkanoate molded body is made into a test piece required by the corresponding standard by an injection molding machine, and the tensile strength and elongation at break are measured at a test speed of 5 mm/min; the unit of tensile strength is MPa, and the unit of elongation at break is %.
  • the polyhydroxyalkanoate molded body is made into a test piece in accordance with the corresponding standard through an injection molding machine, and the notched impact strength is tested on a simply supported beam impact strength tester; the unit is kJ/m 2 .
  • the film molding was tested according to ISO527-2-2012, and its longitudinal tensile strength and longitudinal elongation at break were measured at a test speed of 500 mm/min; the longitudinal tensile strength of the film was expressed in MPa, and the longitudinal elongation at break of the film was expressed in %.
  • the film forming body is tested according to QB/T 1130-1991 at a test speed of 200 mm/min.
  • Longitudinal right-angle tear strength The unit of longitudinal right-angle tear strength of the film is kN/m.
  • the particle molding was prepared by twin-screw extrusion granulation; the polyhydroxyalkanoate compositions were respectively Examples 1-22 and Comparative Examples 1-4 in the table.
  • the method for preparing a polyhydroxyalkanoate particle molded body comprises the following steps:
  • Step 1 mixing: placing polyhydroxyalkanoate powder and polyacid compound in a high-speed mixer, mixing at room temperature, with a mixing speed of 200 r/min and a mixing time of 5 min; after mixing, placing the mixture in the lower hopper of a twin-screw extruder.
  • Step 2 extrusion: set the conditions of the extrusion granulation equipment, and perform extrusion at a melt temperature of about 165°C.
  • Step 3 granulation and cooling: granulation is carried out by water bath strand cutting, and the water bath heating temperature is 50°C.
  • the molded body prepared by adding a combination of polyacid compounds can significantly increase the weight average molecular weight of the molded body, and the melt flow rate decreases significantly.
  • the tensile strength, elongation at break and notched impact strength of the molded body can also be significantly improved, which is beneficial to the improvement of the mechanical properties of the molded body and is more conducive to expanding the scope of use of the particle molded body.
  • polyacid compounds have smaller molecular weights and stronger molecular thermal motion, making it easier for two polyhydroxyalkanoate molecular chains to react to form chain extensions, thereby increasing the molecular weight of the molded body, thereby offsetting the problem of a decrease in the molecular weight of polyhydroxyalkanoate due to a high degree of thermal degradation during processing, and allowing the prepared molded body to have a lower melt flow rate.
  • the polyhydroxyalkanoate molded body prepared by using a combination of polyacid compounds can effectively increase the weight average molecular weight, reduce the melt flow rate, and also have higher tensile strength, elongation at break and notched impact strength. This may be because polyacid compounds have more carboxyl group ends than monoacids, which is more conducive to significantly increasing the weight average molecular weight. It also verifies from the measurement surface that the polycarboxyl groups of polyacid compounds are reactively connected to the polyhydroxyalkanoate in the mechanism of chain extension.
  • comparative example 4 uses boric acid as a comparison. It can be seen from the experimental results of the embodiments of the present invention that although inorganic boric acid and polyhydroxyalkanoate are combined to prepare a molded body, the weight average molecular weight of the molded body can be increased, but the decrease in the melt flow rate of the molded body is not obvious, and the tensile strength, elongation at break and notched impact strength are relatively low, and it is obvious that inorganic acids do not have similar effects as organic polyacids. In addition, considering that boric acid itself is harmful to the human body, it is not often used to prepare contactable molded products.
  • the amount of polyacid compounds added to the polyhydroxyalkanoate composition is between 0.01% and 20%, the weight average molecular weight of the prepared molded body is higher than that of the molded body prepared without adding polyacid compounds.
  • the amount of polyacid compounds added can be controlled at 0.05% to 5%.
  • the amount of adipic acid added in Example 13 is 2.5% of the polyhydroxyalkanoate, and its weight average molecular weight begins to be less than that of Examples 1-3, that is, it has no further effect on the weight average molecular weight of the molded body, resulting in an increase in the melt flow rate, which will affect the processing properties of the molded body.
  • the amount of polyacid compounds added can be controlled at 0.05% to 2.5%.
  • Example 9 Furthermore, it can be seen from the experimental results of Example 9 and Examples 5, 7, 8, 11, and 12 that compared with the use of organic tribasic acids as polyacid compounds and polyhydroxyalkanoates to prepare the molded body, the use of organic dibasic acids as polyacid compounds and polyhydroxyalkanoates to prepare the molded body is more convenient. Acids as polyacid compounds can more effectively increase the weight average molecular weight of the molded body, more effectively improve the mechanical properties of the molded body such as elongation at break and notched impact strength, and thus more effectively improve the overall performance of the molded body.
  • Example 7 It can be seen from the experimental results of Example 7 and Examples 5, 8, 11, and 12 that, compared with the molded bodies prepared by using unsaturated dibasic acids as polyacid compounds and using organic saturated dibasic acids as polyacid compounds, although the weight average molecular weight of the molded body in Example 7 is larger, the melt flow rate is larger and the elongation at break is lower. It can be seen that the saturated dibasic acid compounds are more capable of effectively reducing the melt flow rate of the molded body and effectively improving the elongation at break of the molded body, thereby more effectively improving the overall performance of the molded body.
  • the organic dibasic acid of the present invention is more stable as a polyacid compound during the processing of the molded body.
  • the polyhydroxyalkanoate composition of the present invention can be selected from one or more polymers, and the polyacid compound can be selected from one or more polyacid compounds.
  • succinic acid, adipic acid, glutaric acid, terephthalic acid, and DL-tartaric acid are added as polyacid compounds to polyhydroxyalkanoates of different monomers to prepare molded bodies, including PHBH, PHBV, P34HB, PHBO, and P3HB3HV3HH.
  • the weight average molecular weights of the molded bodies prepared in Examples 14-22 are slightly different, it can be seen in general that the composition A of the present invention can play a role in counteracting thermal degradation for different polyhydroxyalkanoates or their compositions.
  • ethylenediaminetetraacetic acid and pyromellitic acid are tetrabasic acids
  • 1,2,3,4,5,6-hexa(4′′-carboxybiphenyl)benzene is a hexabasic acid.
  • tetrabasic acids and hexabasic acids which are representatives of other polybasic acids, can also increase the molecular weight of the molded body, thereby offsetting the problem of a decrease in the molecular weight of polyhydroxyalkanoate due to a large degree of thermal degradation, and improving the toughness of the molded body.
  • the polyhydroxyalkanoate particle moldings prepared in the above-mentioned Example 1, Example 2, Example 3, Example 6, Example 8, Example 16, Example 17, Example 18, Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4 are placed in a single-layer or multi-layer film blowing machine to prepare polyhydroxyalkanoate films, and the screw and die temperature are set at 50°C-160°C (first temperature); the prepared film is crystallized online at 55°C (second temperature) using a drying tunnel before winding. Before preparing the film, the prepared polyhydroxyalkanoate particle molding is first dried at 60°C for more than 4 hours using a blast drying oven to eliminate the influence of moisture on the particle performance and to completely crystallize the particles.
  • Table 5 The specific implementation is shown in Table 5 below.
  • the film-forming body can also be directly prepared from the mixed raw powder of the polyhydroxyalkanoate composition of the present invention, and is not limited to the granules obtained by granulation as the raw material for preparing the film.
  • a shaped body with the same or similar composition as the raw material mentioned above, such as waste scraps from processing, or a mixture of waste scraps and raw powder can also be used as a raw material for preparing the film-forming body.
  • the molded film prepared by combining the organic dibasic acid as the polyacid compound with polyhydroxyalkanoate in the present invention can be continuously and stably processed into a film, and the longitudinal tensile strength and longitudinal elongation at break of the film are good, the right-angle tear strength is high, and it has a wider range of usage scenarios.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明涉及高分子材料技术领域,尤其涉及一种含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体,聚羟基烷酸酯组合物包括聚羟基烷酸酯和多元酸类化合物。多元酸类化合物可在一定程度上降低聚羟基烷酸酯在热塑加工制备各类成型体过程中的热降解对成型体性能的影响,从而维持成型体的分子量,降低熔体流动速率。在采用本发明所述组合物制备各类成型体时,可有效避免使用有机过氧化物等高活性物质而存在的安全隐患,降低了反应定量控制的难度,使得加工操作更加安全简捷,有效的提高了聚羟基烷酸酯树脂的加工效率,所制备的成型体韧性更高、品质更好。

Description

含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
交叉引用
本申请要求2022年10月28日提交的专利名称为“一含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体”的第202211330523.3号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及高分子材料技术领域,尤其涉及一种含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体。
背景技术
聚羟基烷酸酯(PHAs)是很多微生物合成的一种细胞内聚羟基脂肪酸酯,是一种天然的高分子生物材料。聚羟基烷酸酯的大多数单体是链长3-14个碳原子的3-羟基脂肪酸,其侧链R是高度可变的饱和或不饱和、直链或支链、脂肪族或芳香族的基团,组成结构的多样性带来性能的多样化,使聚羟基烷酸酯在应用中具有明显的优势。同时,聚羟基烷酸酯是一种生物基来源且在海洋环境中可生物降解的聚合物,能够解决废弃塑料引起的环境问题,且具有优异的生物相容性和机械性能,因此,聚羟基烷酸酯可以被加工成各类的成型体,如薄膜、吸管、餐具等。
分子量是影响聚羟基烷酸酯性能最重要的因素。因为聚羟基烷酸酯的热稳性较差,在采用热塑加工将其制备成各类成型体的过程中,聚羟基烷酸酯热降解程度大,从而会导致其分子量大幅度下降,进而使得制得的各类成型体性能较差,尤其是韧性。例如:相比于其他类型的聚酯,以聚羟基烷酸酯为原料,采用吹膜加工制备得到的薄膜成型体存在直角撕裂性能下降明显,断裂伸长率下降明显等问题。另外,热降解程度大还会降低聚羟基烷酸酯的加工稳定性。
相关技术中,为了降低聚羟基烷酸酯在加工过程中的热降解程度对其分子量和加工稳定性的影响,往往在聚羟基烷酸酯中通过添加一些具有交联作用的助剂,如扩链剂、有机过氧化物等来使分子间产生交联,提高分子量,降低热降解对分子量的影响。 或通过添加一定的具有增韧作用的小分子或聚合物,来抵消韧性下降等缺点,提高加工稳定性。
然而,为了解决上述问题,相关技术所采用的过氧化物、具有环氧官能团的化合物或具有至少两个活性双键的交联剂因化学活性较高容易与酸性物质、抗氧剂类助剂等发生化学反应,导致储存风险大,存在安全隐患,且由于其反应活性高,定量控制反应的难度较大。因此,亟需开发一种安全有效的助剂,来降低热加工过程中聚羟基烷酸酯的热降解对分子量的影响,并提高成型体的韧性,提升产品性能。
发明内容
本发明提供一种含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体,用以解决现有聚羟基烷酸酯的热稳性较差,在热塑加工制备各类成型体的过程中,存在热降解程度大,分子量大幅度下降,使得制备的各类成型体的性能较差等缺陷;而且通过将聚羟基烷酸酯与多元酸类化合物进行组合,能起到增韧的效果,可提高成型体的分子量,降低熔体流动速率,一定程度可降低聚羟基烷酸酯在热塑加工制备各类成型体的过程中热降解对成型体性能的影响。
第一方面,本发明提供一种聚羟基烷酸酯组合物,包括聚羟基烷酸酯和多元酸类化合物。
上述方案中,本发明的聚羟基烷酸酯组合物包括聚羟基烷酸酯和多元酸类化合物,所述多元酸类化合物能起到增韧的效果,可提高成型体的分子量,降低熔体流动速率,一定程度可降低聚羟基烷酸酯在热塑加工制备各类成型体的过程中热降解对成型体性能的影响。本发明的为多元酸类化合物为一种或多种多元酸,多元酸是指一个酸分子电离后能产生两个或两个以上氢离子的酸,或具有两个或两个以上端羧基的化合物。多元酸中的酸能与聚羟基烷酸酯末端的羟基发生酯化反应,使得分子间扩链,分子链延长,提高成型体的分子量从而抵消因热降解程度大导致聚羟基烷酸酯分子量下降的问题,提高成型体的韧性。
根据本发明提供的聚羟基烷酸酯组合物,所述多元酸类化合物的添加量为所述聚羟基烷酸酯质量的0.01%-20%。
可选地,所述多元酸类化合物的添加量可以为所述聚羟基烷酸酯质量的0.01%、0.03%、0.05%、0.08%、0.1%、0.2%、0.5%、0.8%、1%、1.5%、2%、2.5%、3%、5%、8%、10%、15%、20%等,当然也可以是上述范围内的其他值,在此不做限定。
优选地,所述多元酸类化合物的添加量为所述聚羟基烷酸酯质量的0.01%-5%。进一步的,所述多元酸类化合物的添加量为所述聚羟基烷酸酯质量的0.05%-5%。
更优选地,所述多元酸类化合物的添加量为所述聚羟基烷酸酯质量的0.05%-2.5%。
通过将多元酸类化合物的添加量控制在此合理的范围内,制备的成型体可加工性能也更好。
根据本发明提供的聚羟基烷酸酯组合物,所述多元酸类化合物优选为有机多元酸类化合物,所述多元酸类化合物为由通式R'(COOH)n表示的有机酸化合物,其中,R'表示为:含碳原子数为2-30的烃基,或,由芳基、环氧基、醚键、羟基、含碳原子数为2-30的烃基的一种或多种的组合的基团;n为大于等于2的整数。
当R'为含碳原子数为2-30的烃基时,可以是含碳原子数为2-30的烷基、烯烃基、炔烃基;R'可以为含碳原子数为2-5的烷基、含碳原子数为5-10的烷基、含碳原子数为5-10的烷基、含碳原子数为10-20的烷基、含碳原子数为20-30的烷基;具体非限制性的可以为乙基、丙基、异丙基、丁基、戊基、己基、庚基、辛基、壬基、十烷基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基等。
当R'表示为:由芳基、环氧基、醚键、羟基、含碳原子数为2-30的烃基的一种或多种的组合的基团时,R'可以为由上述含碳原子数为2-30的烃基与芳基组合的基团、或由上述含碳原子数为2-30的烃基与羟基组合的基团、或由上述含碳原子数为2-30的烃基与醚键组合的基团等。当包含上述基团的有机多元酸于聚羟基烷酸酯的组合物,能满足能够维持聚羟基烷酸酯的分子量、降低熔指的组合方案,都应当在本申请的保护范围内。
进一步的,n为2或3时,多元酸类化合物包括有机二元酸类化合物和/或有机三元酸类化合物。进一步的,多元酸类化合物还可以是饱和的二元酸、不饱和的二元酸、 饱和的三元酸、不饱和的三元酸。
优选的,所述多元酸类化合物为二元酸类化合物。
不同于一端含有一个羧基的脂肪族碳氢链的脂肪酸,二元酸即指一个酸分子电离后能产生两个氢离子的酸,或具有两个端羧基的化合物,或由通式HOOC-R'-COOH表示的化合物。三元酸即指一个酸分子电离后能产生三个氢离子的酸,或具有三个端羧基的化合物,或分子由通式R'(COOH)3表示的化合物。通常情况下,与二元酸相比,采用三元酸或其他多元酸时,可以提高分子量和降低熔指,但由于交联度较大,影响分子链运动,断裂伸长率没有提高,缺口冲击强度没有提高。二元酸类化合物作为多元酸类化合物添加到聚羟基烷酸酯中,在热塑加工制备各类成型体的过程中可以比不添加任何助剂的聚羟基烷酸酯的分子量更高,粒子成型体的熔体流动速率(MFR)更低,使制备的成型体性能同比有一定提升,尤其是韧性,注塑成型体的缺口冲击强度更高,薄膜成型体的直角撕裂强度和断裂伸长率更高,提高成型体的整体性能。同时在各类成型体的加工过程中,能保持适当的交联度,不影响分子链的运动,使得加工更加稳定。
当然在本方案,多元酸类化合物也包括其他类型的多元酸,如乙二胺四乙酸、均苯四甲酸等有机四元酸,还如磷酸、硫酸、亚硫酸、碳酸等无机多元酸,只要是这些多元酸中的酸能与聚羟基烷酸酯末端的羟基发生酯化反应,使得分子间扩链,分子链延长;因此,可以这些类型的多元酸同样的可以提高成型体的分子量从而抵消因热降解程度大导致聚羟基烷酸酯分子量下降的问题,提高成型体的韧性。研究发现,无机多元酸与聚羟基烷酸酯组合制备成型体,能够提高成型体的重均分子量,但是对成型体的熔体流动速率的降低不明显,且拉伸强度、断裂伸长率和缺口冲击强度均比较低,明显无机酸并不具有与有机多元酸相类似的作用。采用有机多元酸作为多元酸类化合物与聚羟基烷酸酯组合制备成型体时,虽然整体上都可以抵消热降解带来的分子量降低的问题,但不同碳链长度的有机酸起到的效果略有差距。
进一步的,有机多元酸还可以指是R'分子结构含有羟基的化合物,所述多元酸类化合物还可以是含有羟基的多元酸类化合物,如酒石酸(或称为2,3-二羟基丁二酸),根据其结构可以选择L-酒石酸(左旋体)和D-酒石酸(右旋体)、MESO-酒石酸(内 消旋体)及DL-酒石酸(外消旋体)等。当然,本方案不仅局限于R'为含有两个羟基的多元酸,也可以是两个以上多个羟基的多元酸,如四羟基丁二酸等。也不限制含有其他基团的多元酸,如含R'为醚键、酯键、氨基等的多元酸类化合物等。
有机二元酸是由通式HOOC-R'-COOH表示的化合物,有机三元酸是分子结构中含有三个羧基的化合物,有机二元酸和有机三元酸的分子结构中的末端羧基与聚羟基烷酸酯末端的羟基发生酯化反应,更有利于分子间扩链,更有利于分子链的延长,从而能起到更有效的增韧效果。相比于有机三元酸,有机二元酸作为多元酸类化合物能够更有效提高成型体的重均分子量,更有效地提升成型体的断裂伸长率和缺口冲击强度等力学性能,进而能更有效地提升成型体的整体性能。
根据本发明提供的聚羟基烷酸酯组合物,所述多元酸类化合物包括有机饱和二元酸、不饱和二元酸,和/或,有机饱和三元酸、不饱和三元酸,和/或,羟基多元酸。多元酸类化合物中的R'为包括不饱和的芳基、含有双键或三键的烃基,作为优选的不饱和多元酸类化合物包括:戊烯二酸、4,4-二苯乙烯二羧酸、对苯二甲酸等。研究发现,相比采用不饱和多元酸作为多元酸类化合物,采用有机饱和多元酸作为多元酸类化合物制备的成型体,饱和多元酸类化合物更能够兼顾有效地降低成型体的熔体流动速率及有效地提升成型体的断裂伸长率,进而能更有效地提升成型体的整体性能。根据本发明提供的聚羟基烷酸酯组合物,所述多元酸类化合物选自乙二酸、丙二酸、丁二酸、酒石酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸、十四烷二酸、十五烷二酸、十六烷二酸、十七烷二酸、十八烷二酸、十九烷二酸、二十烷二酸、二十一烷二酸、二十二烷二酸、二十三烷二酸、二十四烷二酸、二十五烷二酸、二十六烷二酸、二十七烷二酸、1,3,5-三羧基戊烷中的一种或多种。
通过对有机二元酸种类的特殊限定,能够采用聚羟基烷酸酯组合物制备的成型体同时具备韧性好、加工稳定性好、力学性能好等优点,提高了成型体的整体性能,使其具有更广泛的应用能力。另外,本发明选用的有机二元酸容易储存,定量控制反应的难度不大。
通过实验结果可以看出,多元酸类化合物选用有机饱和二元酸比不饱和二元酸得到的聚羟基烷酸酯组合物制备出的成型体整体性能更好。进一步地,为了保证成型体 的综合性能,根据本发明提供的聚羟基烷酸酯组合物,所述多元酸类化合物选自乙二酸、丙二酸、丁二酸、酒石酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸、十四烷二酸、十五烷二酸、十六烷二酸、十七烷二酸、十八烷二酸、十九烷二酸、二十烷二酸、二十一烷二酸、二十二烷二酸、二十三烷二酸、二十四烷二酸、二十五烷二酸、二十六烷二酸、二十七烷二酸中的一种或多种。
经过对所述饱和的有机二元酸化合物在改善聚羟基烷酸酯的热降解的研究中发现多种饱和有机二元酸均起到了一定的效果,优选的,所述多元酸类化合物包括丁二酸、酒石酸、戊二酸、己二酸、十二烷二酸、十六烷二酸一种或多种。酒石酸选自DL-酒石酸、L-酒石酸、D-酒石酸、MESO-酒石酸。
根据本发明提供的聚羟基烷酸酯组合物,本发明所述聚羟基烷酸酯可以为单独的聚合物,也可以为两种以上聚合物的组合物。其中每种聚合物的聚合单体可以为一种或多种(即聚合物中结构单元为一种或多种)。
根据本发明提供的聚羟基烷酸酯组合物,所述聚羟基烷酸酯为包括由以下通式(1)表示的重复单元的聚合物:
[CHR(CH2)mCOO](1)
在通式(1)中,R表示CpH2p+1所示的烷基,p表示1~15的整数,优选为1~10的整数,更优选为1~8的整数。作为R,可列举例如:甲基、乙基、丙基、丁基、异丁基、叔丁基、戊基、己基等直链或支链状的烷基。
m=1,2或3,当m=1时,通式(1)表示3-羟基链烷酸酯结构单元,当m=2时,通式(1)表示4-羟基链烷酸酯结构单元,当m=3时,通式(1)表示5-羟基链烷酸酯结构单元。其中,3-羟基链烷酸酯结构单元和4-羟基链烷酸酯结构单元较为常见,如3-羟基丁酸酯结构单元(以下有时称为3HB)、4-羟基丁酸酯结构单元(以下有时称为4HB)。
根据本发明提供的聚羟基烷酸酯组合物,所述聚羟基烷酸酯包括至少一种聚(3-羟基链烷酸酯);所述聚(3-羟基链烷酸酯)仅包含3-羟基丁酸酯结构单元,或者包含3-羟基丁酸酯结构单元和其他羟基链烷酸酯结构单元;
所述其他羟基链烷酸酯结构单元包括3-羟基丙酸酯、3-羟基戊酸酯、3-羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯 或4-羟基丁酸酯中的一种或多种;优选地,所述其他羟基链烷酸酯结构单元为3-羟基己酸酯。
根据本发明提供的聚羟基烷酸酯组合物,所述聚(3-羟基链烷酸酯)选自聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)中的一种或多种;
优选地,所述聚(3-羟基链烷酸酯)选自聚(3-羟基丁酸酯-共-3-羟基己酸酯)。
本发明所述聚羟基烷酸酯的制造方法没有特别限定,可以是利用化学合成的制造方法,可以是利用微生物的制造方法。
研究表明,采用本发明的多元酸类化合物时,与组合物中的聚羟基烷酸酯中的结构单体的占比没有关系。本发明所述聚羟基烷酸酯特别优选由微生物产生的聚羟基烷酸酯,在由微生物产生的聚羟基烷酸酯中,3-羟基烷酸酯结构单元全部以(R)3-羟基烷酸酯结构单元的形式含有。其中,所述聚(3-羟基链烷酸酯)中,包括3-羟基丁酸酯结构单元与其它结构单元的共聚聚合物,且在所述聚(3-羟基链烷酸酯)中,所述3-羟基丁酸酯结构单元与其它结构单元的平均含有比率为50/50~99/1(摩尔%/摩尔%);本发明所述多元酸类化合物对优选为80/20~94/6(摩尔%/摩尔%)的促结晶效果更明显;在聚羟基烷酸酯原料为两种以上聚羟基烷酸酯的混合物的情况下,平均含有比率是指混合物整体中所含的各单体的摩尔比。在该优选范围内能兼顾二次成型难易度和加工效率。
在具体实施时,在不抑制本发明效果的前提下,本领域人员可以依照成型体的生产需要,在所述聚羟基烷酸酯组合物中加入添加剂等助剂。所述添加剂可包括成核剂、增塑剂、增韧剂、增强剂、交联剂、扩链剂、润滑剂、填料等有机或无机材料。有机或无机材料可以单独使用,也可以两种以上组合使用。而且,还可以根据生产需要,调整添加剂的添加量,本发明对此没有特别限制。
根据本发明提供的聚羟基烷酸酯组合物,还包括成核剂,所述成核剂的添加量为 所述聚羟基烷酸酯组合物的0.1%-10%;所述成核剂包括本领域起到成核作用的助剂,如常用的无机成核剂,包括不限于碳酸钙、滑石粉、二氧化钛、尿嘧啶、半乳糖醇、磷酸氢锆、酰胺类化合物、氮化硼中的一种或几种;当然也包括具有成核作用的有机成核剂,包括不限于酸类、醇类成核剂等。
通过在聚羟基烷酸酯组合物中添加成核剂可以降低聚羟基烷酸酯不粘连所需的时间,从而提高加工效率。成核剂添加量过高会降低聚羟基烷酸酯的机械性能。
第二方面,本发明还提供一种聚羟基烷酸酯成型体,包括上述的聚羟基烷酸酯组合物。
本发明所得聚羟基烷酸酯成型体具有加工稳定性好、力学性能好的优点,因而具有更广泛的应用场景。本发明所述成型体可包括多种形式,如薄膜、纤维、吸管、板材、粒料等。
第三方面,本发明还提供上述的聚羟基烷酸酯成型体的制备方法,包括如下步骤:
将上述的聚羟基烷酸酯组合物在第一温度下加热后熔融,再在第二温度下冷却成型;
所述第一温度高于所述聚羟基烷酸酯的熔点10℃~60℃;
所述第二温度高于所述聚羟基烷酸酯成型体的玻璃转变温度,且低于所述聚羟基烷酸酯成型体的熔点;优选地,所述第二温度高于所述聚羟基烷酸酯成型体的玻璃转变温度30℃以上,且低于所述聚羟基烷酸酯成型体的熔点20℃以下。
上述制备方法中,先将上述聚羟基烷酸酯组合物在第一温度下加热熔融,再在第二温度下冷却成型。本发明研究发现,第一温度越低,成型体在冷却成型阶段下不发生粘连的所需时间越短,但第一温度越高,聚羟基烷酸酯的流动性会增加,更有利于成型。综合考虑,加热熔融阶段中,控制体系第一温度高于聚羟基烷酸酯的熔点10℃~60℃。同时本发明还发现,第二温度影响聚羟基烷酸酯成型体达到不发生粘连状态的所需时间的长短,通过大量试验验证,冷却成型阶段体系温度在所得成型体的玻璃转变温度与熔点温度之间,优选在高于所得成型体的玻璃化转变温度30℃以上,且低于所得成型体的熔点温度20℃以下。
同时,本发明所述的成型方式分为热塑加工成型方式和非热塑加工成型方式;所 述热塑加工成型方式包括挤出成型、注塑成型、压延成型、流延成型、吹塑成型、双向拉伸成型等;所述非热塑加工成型方式包括溶液浇筑等。优选热塑加工成型方式。
目前聚羟基烷酸酯类树脂在制备过程中存在以下问题:由于热降解的作用导致成型体的重均分子量由50万下降至32万,熔体流动速率较高7.42g/10min,且断裂伸长率也仅有11%。为解决这个问题,采用本发明提供包含多元酸类化合物的聚羟基烷酸酯组合物来制备成型体,可以有效降低热降解作用,将成型体的分子量维持在48万及以上,降低熔体流动速率到1.14g/10min及以下,且断裂伸长率能提高至153%及以上。一定程度可降低聚羟基烷酸酯在热塑加工制备各类成型体的过程中热降解对成型体性能的影响,进而起到增韧的效果。
本发明的多元酸类化合物为一种或多种多元酸类化合物,多元酸中的羧酸基团端能与聚羟基烷酸酯末端的羟基发生酯化反应,使得分子间扩链,分子链延长,提高成型体的分子量从而抵消因热降解程度大导致聚羟基烷酸酯分子量下降的问题,使得制备的成形体具有更低的熔体流动速率,更高的拉伸强度、断裂伸长率和缺口冲击强度,进一步提高了成型体的韧性。
本发明聚羟基烷酸酯组合物中的多元酸类化合物使用方法简便,作为添加剂与聚羟基烷酸酯共混复配即可,无需多余的制备方法与步骤,降低生产成本。
与已知的扩链剂、交联剂、增韧剂等功能性助剂不同的是,本发明聚羟基烷酸酯组合物中的多元酸类化合物不仅可以降低热加工过程中的热降解作用,提高分子量,还可以提高成型体的韧性,注塑成型体的缺口冲击强度更高,薄膜成型体的直角撕裂强度和断裂伸长率更高。且多元酸类化合物相比于同样具有交联作用的有机过氧化物更加稳定,在生产过程中有效的避免了使用有机过氧化物等高活性带来的安全隐患,降低了反应定量控制的难度,使得加工操作更加安全简洁,有效的提高了聚羟基烷酸酯树脂的加工效率。
具体实施方式
在以下的实施例中提供了本发明的示例性的实施方案。以下的实施例仅通过示例的方式给出,并用于帮助普通技术人员使用本发明。所述实施例并不能以任何方式来 限制本发明的范围。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
通过以下实施例对本发明做更详细的描述,但所述实施例均不构成对本发明的限制。以下各实施例、对比例中用到的所有原料除特殊说明外,均为市购。
采用原材料:
聚(3-羟基丁酸酯-共-3-羟基己酸酯)(PHBH),产品编号:BP330,北京蓝晶微生物科技有限公司,3HB(3-羟基丁酸酯单元)的含量94%,重均分子量≥50万。
聚(3-羟基丁酸酯-共-3-羟基己酸酯)(PHBH),产品编号:BP350,北京蓝晶微生物科技有限公司,3HB(3-羟基丁酸酯单元)的含量89%,重均分子量≥50万。
聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(PHBV),重均分子量≥50万,北京蓝晶微生物科技有限公司。
聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(P34HB),重均分子量≥50万,北京蓝晶微生物科技有限公司。
聚(3-羟基丁酸酯-共-3-羟基辛酸酯)(PHBO),重均分子量≥50万,北京蓝晶微生物科技有限公司。
聚(3-羟基丁酸酯-共-3-羟基戊酸酯-共-3-羟基己酸酯(P3HB3HV3HH),重均分子量≥50万,北京蓝晶微生物科技有限公司。
采用设备:
混料设备:采用高速混料机中在室温下共混。
造粒设备:可使用不同长径比的平行同向双螺杆挤出机、平行异向双螺杆挤出机、锥形双螺杆挤出机,以及单螺杆机等本领域常用挤出造粒设备;将组合物置于双螺杆挤出机的下料斗或失重秤中;挤出造粒设备的温度设定在50℃-180℃(第一温度)的范围内,主机转速为50r/min-500r/min,喂料量或产能根据实际生产状态进行调整;后续可使风冷拉条切粒、水浴拉条切粒、磨面热切、水环切和水下切粒等切粒方式进行制 粒,并在生产加工的过程中保持40℃-65℃(第二温度)的水浴条件;制备的粒子使用鼓风干燥箱,烘干,排除水分对粒子性能的影响,同时使粒子结晶完全。
薄膜制作设备:采用单层或多层吹膜机等本领域常用制膜或制管设备,螺杆与模头温度设定温度50℃-180℃(第一温度);制备的薄膜在收卷前使用烘道在40℃-65℃(第二温度)的条件下进行在线结晶。
聚羟基烷酸酯成型体的性能评价方式:
重均分子量:
使用了氯仿溶液的凝胶渗透色谱仪(岛津制作所株式会社制HPLCGPCsystem)并通过聚苯乙烯换算来测定。作为该凝胶渗透色谱仪中的色谱柱,使用适于测定重均分子量的色谱柱即可。
熔体流动速率:
按ISO1133-1:2011,在190℃、2.16kg的条件下测定熔体流动速率;熔体流动速率的单位为g/10min。
拉伸强度与断裂伸长率:
按ISO527-2:2012,将聚羟基烷酸酯成型体通过注塑机制得相应标准要求的测试件,在测试速度为5mm/min的条件下测定拉伸强度和断裂伸长率;拉伸强度单位为MPa,断裂伸长率单位为%。
缺口冲击强度:
按ISO 179-1:2010,将聚羟基烷酸酯成型体通过注塑机制得相应标准要求的测试件,在简支梁冲击强度测定仪进行测试缺口冲击强度;单位为kJ/m2
聚羟基烷酸酯薄膜成型体的性能评价方式:
薄膜的纵向拉伸强度与纵向断裂伸长率:
薄膜成型体的测试按ISO527-2-2012,在测试速度为500mm/min条件下测定其纵向拉伸强度和纵向断裂伸长率;薄膜的纵向拉伸强度单位为MPa,薄膜的纵向断裂伸长率单位为%。
薄膜的纵向直角撕裂强度:
薄膜成型体的测试按QB/T 1130-1991,在测试速度为200mm/min条件下测定其 纵向直角撕裂强度;薄膜的纵向直角撕裂强度单位为kN/m。
聚羟基烷酸酯粒子成型体
制作粒子成型体,采用双螺杆挤出造粒;聚羟基烷酸酯组合物分别采用表中实施例1-22及对比例1-4。
聚羟基烷酸酯粒子成型体的制备方法包括如下步骤:
步骤1、混料:将聚羟基烷酸酯粉末与多元酸类化合物置于高速混料机中,在室温下混料,混料转速为200r/min,混料时间为5min;混料后,将混料置于双螺杆挤出机的下料斗中。
步骤2、挤出:设定挤出造粒设备的条件,在熔体温度165℃左右的条件下,进行挤出。
步骤3、造粒冷却:采用水浴拉条切粒的方式进行造粒,水浴加热温度为50℃。
各聚羟基烷酸酯粒子成型体的性能参数如表1-2所示。
表1

表2
参照表1和表2,由对比例1与实施例1-13的实验数据可以看出,相比于没有添加多元酸的聚羟基烷酸酯组合物,已添加多元酸类化合物组合制备成型体,能够显著提高成型体的重均分子量,熔体流动速率下降幅度明显,同时还能够显著提高成型体的拉伸强度、断裂伸长率和缺口冲击强度,有利于成型体力学性能的提升,更利于扩大粒子成型体的使用范围。
进一步地,由实施例4、6与对比例1-2的实验结果可以看出,与常用的扩链剂相 比,虽然,采用扩链剂ADR-4468的对比例2的重均分子量比未添加的对比例1的稍大一些,但如实施例4、6本申请中将聚羟基烷酸酯和多元酸类化合物组合制备成型体具有更高的重均分子量,这也证实了多元酸与扩链剂虽然都能增大聚羟基烷酸酯类树脂的重均分子量,但是添加了扩链剂ADR-4468的对比例2的熔体流动速率没有显著降低,断裂伸长率也没有显著增大,可见已知的扩链剂达不到本申请中多元酸的作用效果。
本研究发现,多元酸与已知的扩链剂作用效果之所以不同,主要是因为两类物质与聚羟基烷酸酯的反应性不同。已知的扩链剂是具有多高活性基团的物质,通过多活性基团与其他树脂材料反应来扩充链长(多活性基团能直接与低分子质量齐聚物反应,在两聚合物链间形成“架桥”,显著增加分子质量);但是经过对多个已知扩链剂进行研究,发现对于聚羟基烷酸酯来说,由于聚羟基烷酸酯的分子量相比于其他聚酯材料较大,同时已知扩链剂(如ADR)也是具有一定分子量的聚合物,在热塑加工的过程中,两者的热运动均较弱,扩链剂的活性基团很难抵达两个聚羟基烷酸酯分子链之间形成扩链。
进一步研究发现,多元酸类化合物分子量较小,分子热运动较强,更易于两个聚羟基烷酸酯分子链之间反应形成扩链,因而可以提高成型体的分子量,从而抵消加工过程中的热降解程度大导致聚羟基烷酸酯分子量下降的问题,使得制备的成形体具有更低的熔体流动速率。
此外,本研究还发现,通过添加多元酸类化合物使得制备的成形体具有更高拉伸强度、断裂伸长率和缺口冲击强度,这种表现为成形体的韧性增大,而这种增韧的功效与常用的增塑剂并不相同,也就是多元酸类化合物具有增加聚羟基烷酸酯树脂的重均分子量的同时还可以大幅增大树脂的韧性。已知常用的增韧剂常常仅能增加树脂的韧性,这也从侧面说明了本发明采用多元酸类化合物既能降低聚羟基烷酸酯树脂的热降解,也能起到了有效的增韧作用,使得聚羟基烷酸酯成型体具有加工稳定性好、力学性 能好的优点。
由实施例5、7-9、11-12与对比例3的实验结果可以看出,与一元酸类化合物相比,采用多元酸类化合物组合制备的聚羟基烷酸酯成型体,才能有效的提高重均分子量,降低熔体流动速率,还具有更高的拉伸强度、断裂伸长率和缺口冲击强度。这可能是由于多元酸类化合物比一元酸具有更多的羧基基团端,更有利于明显的提高重均分子量的作用,也从测面验证了多元酸类化合物的多羧基基团于聚羟基烷酸酯在机理上的反应性相连扩链。
进一步的,为了进一步研究无机酸是否也具有相类似的作用,如对比例4采用了硼酸作为对比,与本发明实施例的实验结果可以看出,虽然无机硼酸与聚羟基烷酸酯组合制备成型体,能够提高成型体的重均分子量,但是对成型体的熔体流动速率的降低不明显,且拉伸强度、断裂伸长率和缺口冲击强度均比较低,明显无机酸并不具有与有机多元酸相类似的作用。另外,考虑到由于硼酸本身对人体有害,不常用于制备可接触性的成形体制品。
本研究发现当聚羟基烷酸酯组合物中多元酸类化合物的添加量在0.01%-20%这个范围之间时,制备的成形体的重均分子量高于不添加多元酸类化合物的制备的成形体。添加量过低或过高时,作用不明显。进一步研究之后可以将多元酸类化合物的添加量控制在0.05%~5%。再如实施例13添加己二酸的量是聚羟基烷酸酯的2.5%,其重均分子量开始小于实施例1-3,即对于成型体的重均分子量没有进一步地提升作用,导致熔体流动速率有所升高,从而会影响成型体的加工性能,这可能是由于,添加量增大反而使得抵消热降解的作用减弱,但是相比于不添加的对比例1以及其他类型多元酸化合物,其抵消热降解的作用还是比较明显的。因此,作为优选,可以将多元酸类化合物的添加量控制在0.05%~2.5%。
进一步地,由实施例9与实施例5、7、8、11、12的实验结果可以看出,相比于采用有机三元酸作为多元酸类化合物与聚羟基烷酸酯组合制备成型体,采用有机二元 酸作为多元酸类化合物能够更有效提高成型体的重均分子量,更有效地提升成型体的断裂伸长率和缺口冲击强度等力学性能,进而能更有效地提升成型体的整体性能。
由实施例7与实施例5、8、11、12的实验结果可以看出,相比采用不饱和二元酸作为多元酸类化合物与采用有机饱和二元酸作为多元酸类化合物制备的成型体,虽然实施例7中成形体的重均分子量较大,但是熔融流动速率较大,且断裂伸长率较低,可见饱和二元酸类化合物更能够兼顾有效地降低成型体的熔体流动速率及有效地提升成型体的断裂伸长率,进而能更有效地提升成型体的整体性能。
进一步研究发现,采用有机多元酸作为多元酸类化合物与聚羟基烷酸酯组合制备成型体时,虽然整体上都可以抵消热降解带来的分子量降低的问题,但不同碳链长度的有机酸起到的效果略有差距,如实施例8采用丁二酸与实施例5采用戊二酸相比,实施例8的重均分子量显然低于实施例5。同样的,实施例5与实施例11、12(分别采用了十二烷二酸、十六烷二酸)相比,实施例5的重均分子量明显低于实施例11、12。
表3

由表3的实验数据可以进一步地说明相比于其他类型的助剂,本发明的有机二元酸作为多元酸类化合物在成型体的加工过程中更加稳定。本发明的聚羟基烷酸酯组合物中聚羟基烷酸酯可以选用一种或多种聚合物,多元酸类化合物可以选用一种或多种多元酸类化合物。如实施例14-22将丁二酸、己二酸、戊二酸、对苯二甲酸、DL-酒石酸一种或组合后作为多元酸类化合物添加到不同单体的聚羟基烷酸酯中制备成型体,包括PHBH、PHBV、P34HB、PHBO、P3HB3HV3HH。虽然实施例14-22中制备的成形体的重均分子量略有差别,但总体上能看出,本发明的组合物A对于不同的聚羟基烷酸酯或其组合物都可以起到抵消热降解的作用。
除了对二元酸、三元酸的具体实施内容,本申请人在实际的研究中,还对其他几种典型的多元酸做了实践研究,如四元酸、六元酸,具体如下表4:
表4

上表中,乙二胺四乙酸、均苯四甲酸为四元酸,1,2,3,4,5,6-六(4″-羧基联苯基)苯为六元酸。可以看出在上表中,实施例23-25的重均分子量的数值比实施例9(1,3,5-三羧基戊烷,重均分子量380865)的差,比对比例1(未加入助剂,重均分子量318704),也比对比例3(丁酸,重均分子量333451)好;但拉伸强度略低于对比例2(加入增塑剂ADR-4468)。可见,作为其他多元酸的代表四元酸、六元酸同样也可以提高成型体的分子量从而抵消因热降解程度大导致聚羟基烷酸酯分子量下降的问题,提高成型体的韧性。
制备聚羟基烷酸酯薄膜
进一步的,选择上述实施例1、实施例2、实施例3、实施例6、实施例8、实施例16、实施例17、实施例18、对比例1、对比例2、对比例3和对比例4中制备的聚羟基烷酸酯粒子成型体置于单层或多层吹膜机中制备聚羟基烷酸酯薄膜,螺杆与模头温度设定温度从50℃-160℃(第一温度);所制备的薄膜在收卷前使用烘道在55℃(第二温度)的条件下进行在线结晶。其中,在制备薄膜前,先将制备的聚羟基烷酸酯粒子成型体使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。具体实施方式如下表5所示。
表5

这里需要注意的是,薄膜成形体也可以直接由本发明所述的聚羟基烷酸酯组合物的混合原粉料直接制备,不局限于上述中造粒得到的粒料为原料制备薄膜。在实际应用中也可以采用,与上述中的原材料相同或相近组成的成型体,如加工的废弃边角料,或者废弃边角料与原粉料的混合物作为原料用于制备薄膜成型体。
由表5的实验结果可以看出,相比于常用的扩链剂、无机酸、有机一元酸,本发明采用有机二元酸作为多元酸类化合物与聚羟基烷酸酯组合制得的成型体薄膜,可连续稳定加工成膜,薄膜的纵向拉伸强度和纵向断裂伸长率较好,直角撕裂强度较高,具有较为广泛的使用场景。
最后应说明的是:以上仅用以说明本发明的技术方案,而非对其限制;尽管参照前述对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各技术方案的精神和范围。

Claims (10)

  1. 一种含多元酸的聚羟基烷酸酯组合物,其特征在于,包括聚羟基烷酸酯和多元酸类化合物。
  2. 根据权利要求1所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物为由通式R'(COOH)n表示的有机多元酸化合物;
    其中,R'表示为:含碳原子数为2-30的烃基,或,由芳基、环氧基、醚键、羟基、含碳原子数为2-30的烃基的一种或多种的组合的基团;
    n为大于等于2的整数。
  3. 根据权利要求2所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物的添加量为所述聚羟基烷酸酯质量的0.01%-20%。
  4. 根据权利要求3所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物的添加量为所述聚羟基烷酸酯质量的0.05%-5%。
  5. 根据权利要求1-4任一项所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物为结构为R'(COOH)n的有机二元酸和/或有机三元酸,其中,n为2或3。
  6. 根据权利要求5所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物为有机饱和二元酸和/或有机饱和三元酸。
  7. 根据权利要求5所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物为有机二元酸。
  8. 根据权利要求7所述的聚羟基烷酸酯组合物,其特征在于,所述多元酸类化合物选自丁二酸、酒石酸、戊二酸、己二酸、十二烷二酸、十六烷二酸中的一种或多种。
  9. 一种聚羟基烷酸酯成型体,其特征在于,包括权利要求1至8任一项所述的聚羟基烷酸酯组合物。
  10. 一种制备权利要求9所述的聚羟基烷酸酯成型体的方法。
PCT/CN2023/096517 2022-10-28 2023-05-26 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体 WO2024087609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211330523.3A CN115386211B (zh) 2022-10-28 2022-10-28 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
CN202211330523.3 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024087609A1 true WO2024087609A1 (zh) 2024-05-02

Family

ID=84114980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096517 WO2024087609A1 (zh) 2022-10-28 2023-05-26 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体

Country Status (3)

Country Link
CN (1) CN115386211B (zh)
TW (1) TW202407020A (zh)
WO (1) WO2024087609A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386211B (zh) * 2022-10-28 2023-03-24 北京蓝晶微生物科技有限公司 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
CN115890962B (zh) * 2023-03-09 2023-05-23 北京蓝晶微生物科技有限公司 一种低熔指可降解材料的造粒加工方法及其制备的成型体
CN116277593B (zh) * 2023-05-23 2023-10-20 北京微构工场生物技术有限公司 一种聚羟基脂肪酸酯制粒成型的方法及其成型体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784467A (zh) * 2003-05-08 2006-06-07 宝洁公司 包含聚羟基链烷酸酯共聚物和环境可降解热塑性聚合物的模制或压制制品
CN101870805A (zh) * 2009-04-22 2010-10-27 深圳市意可曼生物科技有限公司 聚羟基烷酸酯微交联聚合物及其制备方法
WO2014009176A1 (de) * 2012-07-10 2014-01-16 Basf Se Verfahren zum vollständigen anaeroben abbau von polymermischungen
US20150291788A1 (en) * 2012-02-21 2015-10-15 So.F.Ter.Spa Durable polyhydroxyalkanoate compositions
CN105440616A (zh) * 2015-12-16 2016-03-30 安徽瑞研新材料技术研究院有限公司 一种便于降解塑料
JP2019119840A (ja) * 2018-01-11 2019-07-22 株式会社カネカ 脂肪族ポリエステル樹脂組成物
US20220033649A1 (en) * 2020-07-30 2022-02-03 Danimer Bioplastics, Inc. Biobased material for consumer goods packaging
CN114989583A (zh) * 2022-05-20 2022-09-02 北京蓝晶微生物科技有限公司 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN115232456A (zh) * 2022-09-22 2022-10-25 北京蓝晶微生物科技有限公司 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115386211A (zh) * 2022-10-28 2022-11-25 北京蓝晶微生物科技有限公司 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610764B1 (en) * 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
ITTO20010057A1 (it) * 2001-01-25 2002-07-25 Novamont Spa Miscele ternarie di poliesteri biodegradabili e prodotti da queste ottenuti.
CN114989586A (zh) * 2022-06-02 2022-09-02 北京蓝晶微生物科技有限公司 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784467A (zh) * 2003-05-08 2006-06-07 宝洁公司 包含聚羟基链烷酸酯共聚物和环境可降解热塑性聚合物的模制或压制制品
CN101870805A (zh) * 2009-04-22 2010-10-27 深圳市意可曼生物科技有限公司 聚羟基烷酸酯微交联聚合物及其制备方法
US20150291788A1 (en) * 2012-02-21 2015-10-15 So.F.Ter.Spa Durable polyhydroxyalkanoate compositions
WO2014009176A1 (de) * 2012-07-10 2014-01-16 Basf Se Verfahren zum vollständigen anaeroben abbau von polymermischungen
CN105440616A (zh) * 2015-12-16 2016-03-30 安徽瑞研新材料技术研究院有限公司 一种便于降解塑料
JP2019119840A (ja) * 2018-01-11 2019-07-22 株式会社カネカ 脂肪族ポリエステル樹脂組成物
US20220033649A1 (en) * 2020-07-30 2022-02-03 Danimer Bioplastics, Inc. Biobased material for consumer goods packaging
CN114989583A (zh) * 2022-05-20 2022-09-02 北京蓝晶微生物科技有限公司 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN115232456A (zh) * 2022-09-22 2022-10-25 北京蓝晶微生物科技有限公司 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115386211A (zh) * 2022-10-28 2022-11-25 北京蓝晶微生物科技有限公司 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体

Also Published As

Publication number Publication date
TW202407020A (zh) 2024-02-16
CN115386211B (zh) 2023-03-24
CN115386211A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024087609A1 (zh) 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
JPS59191756A (ja) ポリエステル樹脂組成物
JPS62275153A (ja) ポリエステル組成物
US4020122A (en) Process for the preparation of polyester compositions having increased melt elasticity
WO2023221849A1 (zh) 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN114851528B (zh) 一种聚羟基烷酸酯成型体及其制备方法
CN115232456B (zh) 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
TW202348722A (zh) 含醇類成核劑的聚羥基烷酸酯組合物、聚羥基烷酸酯成型體及其製備方法
JP2019536851A (ja) ポリエステル組成物およびその調製方法
WO2023245997A1 (zh) 可海洋降解的聚羟基烷酸酯组合物、成型体及其制备方法
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
JPH0379612A (ja) 分岐状共ポリエステルの製法
WO2024060636A1 (zh) 含酯类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
JPH0625519A (ja) ポリエチレンテレフタレート組成物、その成形品の製造方法およびその使用方法
CN112724378B (zh) 一种快结晶改性pet共聚酯及制备方法
CN113429762A (zh) 一种淀粉/聚乳酸/pbat纳米复合材料及其制备方法
CN107163523B (zh) 一种熔融沉积成型用聚羟基脂肪酸酯材料及其制备方法
CN117209980B (zh) 一种聚羟基脂肪酸酯组合物、聚羟基脂肪酸酯成型体及其制备方法
JPH0578584B2 (zh)
JPS5842644A (ja) 成形用変性ポリエステル組成物
CN112940245B (zh) 一种生物降解收缩膜及其制备方法
WO2015186653A1 (ja) 末端変性ポリエチレンテレフタレート樹脂、その製造方法および成形品
JP2006335931A (ja) ポリエステル樹脂組成物
JP4160230B2 (ja) 樹脂ペレット混合物およびこれを用いる成形品の製造方法
JPS59204655A (ja) ポリエチレンテレフタレ−ト樹脂組成物