WO2023221849A1 - 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体 - Google Patents

聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体 Download PDF

Info

Publication number
WO2023221849A1
WO2023221849A1 PCT/CN2023/093470 CN2023093470W WO2023221849A1 WO 2023221849 A1 WO2023221849 A1 WO 2023221849A1 CN 2023093470 W CN2023093470 W CN 2023093470W WO 2023221849 A1 WO2023221849 A1 WO 2023221849A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyhydroxyalkanoate
acid
nucleating agent
temperature
composition
Prior art date
Application number
PCT/CN2023/093470
Other languages
English (en)
French (fr)
Inventor
马一鸣
李腾
张浩千
Original Assignee
北京蓝晶微生物科技有限公司
江苏蓝素生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝晶微生物科技有限公司, 江苏蓝素生物材料有限公司 filed Critical 北京蓝晶微生物科技有限公司
Publication of WO2023221849A1 publication Critical patent/WO2023221849A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention belongs to the field of biodegradable materials and relates to acid nucleating agents of polyhydroxyalkanoates and polyhydroxyalkanoate molded bodies.
  • PHAs Polyhydroxyalkanoates
  • Polyhydroxyalkanoates have different monomer structures and are of various types; most of the monomers are 3-hydroxy fatty acids with a chain length of 3 to 14 carbon atoms, and their side chain R is highly variable saturated or unsaturated, straight Chain or branched, aliphatic or aromatic groups, the diversity of composition structures brings diversification of their properties, which in turn gives them obvious advantages in applications.
  • polyhydroxyalkanoate is a polymer of bio-based origin and biodegradable in the marine environment, which can solve the environmental problems caused by waste plastics; moreover, polyhydroxyalkanoate has excellent biocompatibility and mechanical properties performance, so it can be processed into various types of molded objects, such as films, straws, tableware, etc.
  • patent document [1] Chinese invention patent application with publication number CN1503824A discloses a polyhydroxyalkanoate-processed composition using a nucleating agent and a plasticizer.
  • the nucleating agent is a nucleating agent. Specifically, Selected from the group consisting of talc, micronized mica, calcium carbonate, boron nitride, ammonium chloride, sodium salts, and carboxylates of metals from Groups I and II of the Periodic Table of Elements. At the same time, the crystallization is maintained at a certain temperature after extrusion, such as 30-40°C for the wire and 30-45°C for the film.
  • Patent Document [2] a Chinese invention patent application with publication number CN102906193A, which discloses toughened polylactic acid containing polyhydroxyalkanoates. It specifically discloses that the nucleating agent contained is selected from carbon black, cyanuric acid, uracil, Thymine, mica talc, silicon dioxide, boron nitride, barium nitride, clay, calcium carbonate, synthetic silicic acid and salts, metal salts of organophosphates, and kaolin, or combinations thereof.
  • nucleating agents are mainly inorganic substances or metal salts. Although they can improve the crystallization speed and crystallinity of molded bodies prepared by traditional polyhydroxyalkanoates to a certain extent, the degree of improvement is limited; more importantly, this Nucleating agents will affect the proportion of biocarbon in the polyhydroxyalkanoate molded body, making it difficult to completely degrade in the ocean. It will also cause the molded body to be colored, reduce its transparency, and affect its application.
  • the present invention provides an acid nucleating agent for polyhydroxyalkanoate and a polyhydroxyalkanoate molded body.
  • the present invention provides a composition comprising a polyhydroxyalkanoate and a nucleating agent; the nucleating agent is a fatty acid.
  • fatty acids are a type of compound composed of three elements: carbon, hydrogen, and oxygen. According to the length of the carbon chain, fatty acids are divided into: short-chain fatty acids, which have less than 6 carbon atoms in the carbon chain, also called volatile fatty acids; medium-chain fatty acids, which refer to fatty acids with 6-12 carbon atoms in the carbon chain. , the main ingredients are caprylic acid (C8) and capric acid (C10); long-chain fatty acids with more than 12 carbon atoms in the carbon chain.
  • saturated and unsaturated hydrocarbon chains According to the difference between saturated and unsaturated hydrocarbon chains, they can be divided into three categories: saturated fatty acids, which have no unsaturated bonds on the hydrocarbons; monounsaturated fatty acids, which have one unsaturated bond on their hydrocarbon chains; polyunsaturated fatty acids, which have one unsaturated bond on the hydrocarbon chain. Its hydrocarbon chain has two or more unsaturated bonds.
  • fatty acids are usually used as emulsifiers and other surfactants, lubricants, and gloss agents in the production of styrene-butadiene rubber; they can also be used as intermediates in the production of high-grade soaps, transparent soaps, stearic acid, and various surfactants.
  • fatty acids can be used as nucleating agents in the preparation of polyhydroxyalkanoate molded bodies; and compared with existing nucleating agents, fatty acids or compound A with the chemical formula R-COOH do not significantly reduce the mechanics of the molded bodies. Under the premise of improving performance, it can significantly improve the crystallization speed and crystallinity of polyhydroxyalkanoates when preparing molded bodies. It has the advantages of high nucleation efficiency and simpler processing methods. It can also make the prepared polyhydroxyalkanoates The molded body has the advantage of high transparency and therefore has a wider range of application scenarios.
  • the fatty acid is a compound with the chemical formula R-COOH (R is a C5-C30 alkyl) structure or a combination thereof;
  • the nucleating agent is lauric acid (dodecanoic acid), myristic acid (tetradecanoic acid), palmitic acid (hexadecanoic acid), stearic acid (octadecanoic acid), arachidic acid (eicosanoic acid), behenic acid (behenic acid), wood tar acid (tetracosanoic acid), ceric acid (hexacosanoic acid), montanic acid (octacosanoic acid) or belic acid (triaconanoic acid) one or more. More preferably, the nucleating agent is behenic acid (behenic acid).
  • the added amount of the nucleating agent is 0.01%-20% of the mass of the polyhydroxyalkanoate; preferably 0.1%-10%; more preferably 0.3%-5%. Studies have shown that by controlling the addition ratio of the nucleating agent within this preferred range, the crystallization effect can be better, and the prepared molded body can have better processability. During the research process, it was found that within the above preferred range, typical non-limiting examples include 1%, 2%, 2.5%, 3%, and 4%.
  • the polyhydroxyalkanoate of the present invention can be a single polymer or a combination of two or more polymers.
  • polyhydroxyalkanoate can be selected from raw materials commonly used in the art, such as polymers containing 3-hydroxyalkanoate structural units and/or 4-hydroxyalkanoate structural units. Specifically, it is a polymer containing a structural unit represented by the following general formula (1):
  • R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15; preferably an integer of 1 to 10, and more preferably an integer of 1 to 8.
  • R represents a C1-C6 linear or branched alkyl group.
  • R represents a C1-C6 linear or branched alkyl group.
  • methyl ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, etc.
  • the polyhydroxyalkanoate includes at least one poly(3-hydroxyalkanoate); the poly(3-hydroxyalkanoate) includes 3-hydroxybutyrate structural units (hereinafter sometimes referred to as 3HB) and at least one of other hydroxyalkanoate structural units (for example, 4-hydroxyalkanoate structural units, etc.).
  • 3HB 3-hydroxybutyrate structural units
  • other hydroxyalkanoate structural units for example, 4-hydroxyalkanoate structural units, etc.
  • polyhydroxyalkanoate examples include poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), and poly(3-hydroxybutyrate).
  • Ester-co-3-hydroxyvalerate) abbreviation: P3HB3HV
  • poly(3-hydroxybutyrate) Acid ester-co-3-hydroxyhexanoate) (abbreviation: P3HB3HH), poly(3-hydroxybutyrate-co-3-hydroxyheptanoate), poly(3-hydroxybutyrate-co-3- Hydroxyoctanoate), Poly(3-hydroxybutyrate-co-3-hydroxynonanoate), poly(3-hydroxybutyrate-co-3-hydroxydecanoate), poly(3-hydroxybutyrate-co-3 -Hydroxyundecanoate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (abbreviation:
  • the polyhydroxyalkanoate of the present invention is particularly preferably a polyhydroxyalkanoate produced by microorganisms.
  • all 3-hydroxyalkanoate structural units are (R) 3-hydroxyalkanoates. Contains acid ester structural units.
  • the poly(3-hydroxyalkanoate) includes a copolymer of 3-hydroxybutyrate structural unit and other structural units, and in the poly(3-hydroxyalkanoate),
  • the average content ratio of the 3-hydroxybutyrate structural unit and other structural units is 50/50 ⁇ 99/1 (mol%/mol%); preferably 80/20 ⁇ 94/6 (mol%/mol%) ;
  • the average content ratio refers to the molar ratio of each monomer contained in the entire mixture.
  • the other structural units include: 3-hydroxypropionate, 3-hydroxyvalerate, 3-hydroxycaproate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxynonanoic acid
  • 3-hydroxypropionate, 3-hydroxyvalerate, 3-hydroxycaproate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxynonanoic acid One or more of ester, 3-hydroxydecanoate, 3-hydroxyundecanoate or 4-hydroxybutyrate, preferably 3-hydroxycaproate structural unit; research shows that it is consistent with the above 3- The hydroxybutyrate structural unit has a better match.
  • the weight average molecular weight of the polyhydroxyalkanoate is 100,000 to 1,000,000; preferably 200,000 to 900,000; further preferably 300,000 to 800,000.
  • the weight average molecular weight is less than 100,000, the mechanical properties of the obtained polyhydroxyalkanoate resin molded article tend to be reduced.
  • the weight average molecular weight exceeds 1 million, the load on machinery during melt processing tends to increase and productivity tends to decrease.
  • the present invention provides a polyhydroxyalkanoate molded body prepared from the raw materials of the above composition.
  • the polyhydroxyalkanoate molded body obtained by the present invention has the advantages of high transparency and good mechanical properties, and therefore has a wider range of application scenarios.
  • additives and other auxiliaries can also be added to the composition according to the production needs of the molded body.
  • the additives may include plasticizers, cross-linking agents, chain extenders, lubricants and other organic or inorganic materials.
  • Organic or inorganic materials may be used alone or in combination of two or more.
  • the addition amount of the additive can also be adjusted according to production needs, and the present invention has no particular limitation on this.
  • the polyhydroxyalkanoate molded body of the present invention can include various forms, such as pellets, films, straws, bottles, etc.
  • the present invention also provides a method for preparing a polyhydroxyalkanoate molded body, which includes: heating and melting the above composition at a temperature higher than the melting temperature of the molded body (first temperature); Cooling and molding are performed at a temperature between the transition temperature and the melting point temperature (second temperature).
  • the system temperature is controlled to be 10°C to 60°C higher than the melting point of polyhydroxyalkanoate.
  • the present invention also found that the second-stage temperature affects the length of time required for the polyhydroxyalkanoate molded body to reach a non-adhesive state; through a large number of experiments, the second-stage system temperature is between the glass transition temperature and the melting point of the obtained molded body.
  • the temperature is preferably 30°C or more higher than the glass transition temperature of the obtained molded article and 20°C or less lower than the melting point temperature of the obtained molded article.
  • the molding methods described in the present invention are divided into thermal processing molding methods and non-thermal processing molding methods;
  • the thermal processing molding methods include extrusion molding, injection molding, calendering molding, tape casting, blow molding, and bidirectional stretching. Molding, etc.;
  • the non-thermal processing molding methods include solution pouring, etc. Thermal forming method is preferred.
  • the main advantages of the present invention include:
  • the nucleating agent provided by the present invention for polyhydroxyalkanoate molded bodies has the advantages of high nucleation efficiency and simpler processing methods, and can improve the performance of polyhydroxyalkanoate in thermoplastic processing to prepare various molded bodies. There are shortcomings in the process such as slow crystallization speed and low processing efficiency.
  • the nucleating agent provided by the present invention has a wide range of sources and the product price is low, which can reduce the raw material cost of various polyhydroxyalkanoate molded bodies; at the same time, the nucleating agent provided by the present invention is of biological origin and does not affect the production of polyhydroxyalkanoates.
  • the proportion of biocarbon in the acid ester molded body can still reach 100% biological origin.
  • PHBH-330 poly(3-hydroxybutyrate-co-3-hydroxycaproate), Beijing Blue Crystal Microbiology Technology Co., Ltd.
  • PHBH-350 poly(3-hydroxybutyrate-co-3-hydroxycaproate), Beijing Blue Crystal Microbiology Technology Co., Ltd.
  • Mixing equipment Use high-speed mixer to blend at room temperature.
  • Granulation equipment Parallel co-rotating twin-screw extruders with different aspect ratios, parallel counter-rotating twin-screw extruders, conical twin-screw extruders, and single-screw machines are commonly used in this field. ; Place the composition in the lower hopper of the twin-screw extruder or the weight loss scale; the temperature of the extrusion granulation equipment is set in the range of 50-180°C (first temperature), and the main engine speed is 50-500r/min.
  • the feeding amount or production capacity is adjusted according to the actual production status; subsequent granulation methods such as air-cooled strand cutting, water bath strand cutting, surface cutting, water ring cutting and underwater pelletizing can be used for granulation, and the granulation process can be carried out during production.
  • subsequent granulation methods such as air-cooled strand cutting, water bath strand cutting, surface cutting, water ring cutting and underwater pelletizing can be used for granulation, and the granulation process can be carried out during production.
  • the water bath condition of 40-65°C (second temperature) is maintained; the prepared particles are dried in a blast drying oven to eliminate the influence of moisture on the particle properties and at the same time, the particles are completely crystallized.
  • Film production equipment Use single-layer or multi-layer film blowing machines and other common film-making or tube-making equipment in this field.
  • the temperature of the screw and die is set at 50-180°C (first temperature); the prepared film is used before winding
  • the drying tunnel performs online crystallization under the conditions of 40-65°C (second temperature).
  • This embodiment provides a composition including polyhydroxyalkanoate and a nucleating agent
  • polyhydroxyalkanoates include: poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter referred to as PHBH-330), poly(3-hydroxybutyrate-co-3-hydroxy caproate) (hereinafter referred to as PHBH-350), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (hereinafter referred to as PHBV), poly(3-hydroxybutyrate-co-3 -Hydroxyoctanoate) (hereinafter referred to as PHBO), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxycaproate (hereinafter referred to as P3HB3HV3HH), poly(3-hydroxy Butyrate-co-4-hydroxybutyrate) (hereinafter referred to as P34HB), and combinations thereof;
  • the nucleating agent is a fatty acid, specifically including: behenic acid, stearic acid, wood tar acid, melisic acid, lauric acid, ceric acid, montanic acid, palmitic acid, arachidic acid, myristic acid, and combinations thereof ;
  • composition selected in this example please refer to Table 1 below.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-BP350 and the nucleating agent behenic acid (behenic acid) in a high-speed mixer at room temperature, using a mixing speed of 200 (r/min), mixing time 5 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-160°C and the host speed of 350r/min;
  • Step 3 Granulation and cooling: Use a water bath to stretch and cut into granules, and set the granulation water bath temperature to 45 (°C); use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours. Eliminate the influence of moisture on particle properties while making the particles completely crystallized.
  • the production steps are:
  • Step 1 Mixing: Place the mixture of PHBH-BP350 powder and particles and the nucleating agent behenic acid (behenic acid) in a high-speed mixer at room temperature, using a mixing speed of 100 (r/min) ), the mixing time is 10 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 60-170°C and the host speed of 400r/min;
  • Step 3 Granulation and cooling: Use air-cooling to stretch and cut into granules; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the properties of the particles and at the same time completely crystallize the particles. .
  • the production steps are:
  • Step 1 Mixing: Place other molded bodies of PHBH-BP350 (waste produced by injection molding) and nucleating agents stearic acid and wood tar acid in a high-speed mixer at room temperature, using a mixing speed of 400 (r/ min), the mixing time is 10 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-150°C and the host speed of 50r/min;
  • Step 3 Granulation and cooling: Use underwater granulation with a water temperature of 60°C; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the performance of the particles and crystallize the particles at the same time. completely.
  • the production steps are:
  • Step 1 Mixing: Place the particles of PHBH-BP350 and the nucleating agents stearic acid and belic acid in a high-speed mixer at room temperature, use a mixing speed of 600 (r/min), and a mixing time of 7 ( min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 100-180°C and the host speed of 450r/min;
  • Step 3 Granulation and cooling: Pelletize using air-cooling strip cutting; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the particle properties. The particles are completely crystallized.
  • the production steps are:
  • Step 1 Mixing: Place the mixture of PHBH-BP350 powder, granules or other molded bodies (wastes generated by injection molding) and the nucleating agents lauric acid and wax acid in a high-speed mixer at room temperature, and mix using Rotation speed 250 (r/min), mixing time 6 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-180°C and the host speed of 500r/min;
  • Step 3 Granulation and cooling: adopt water ring granulation method, water temperature is 65°C; the prepared particles are dried in a blast drying oven at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the performance of the particles and at the same time make the particles Complete crystallization.
  • the production steps are:
  • Step 1 Mixing: Place the combination of PHBH-BP350 powder and particles and the nucleating agent montanic acid in a high-speed mixer at room temperature, using a mixing speed of 350 (r/min) and a mixing time of 3 ( min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 70-140°C and the host speed of 150r/min;
  • Step 3 Granulation and cooling: Use underwater granulation with a water temperature of 60°C; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the performance of the particles and crystallize the particles at the same time. completely.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-BP350 and the nucleating agents palmitic acid, arachidic acid and melic acid in a high-speed mixer at room temperature, using a mixing speed of 200 (r/min), mixing time 10 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 80-180°C and the host speed of 100r/min;
  • Step 3 Granulation and cooling: use surface grinding and hot-heating method; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the properties of the particles and ensure complete crystallization of the particles.
  • the production steps are:
  • Step 1 Mixing: Place the powders of PHBH-BP350 and PHBH-BP330 and the nucleating agents myristic acid and montanic acid in a high-speed mixer at room temperature, using a mixing speed of 200 (r/min), and mix Time 5 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-160°C and the host speed of 350r/min;
  • Step 3 Granulation and cooling: Use water bath to stretch and cut into granules, the water temperature is 45°C; the prepared particles are dried in a blast drying oven at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the particle properties. The particles are completely crystallized.
  • the production steps are:
  • Step 1 Mixing: Place the mixture of powders and particles of PHBH-BP350 and PHBH-BP330 with the nucleating agents lauric acid and ceric acid in a high-speed mixer at room temperature, using a mixing speed of 200 (r/min) , mixing time 5 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 60-145°C and the host speed of 300r/min;
  • Step 3 Granulation and cooling: Use water bath to stretch and cut into granules, the water temperature is 55°C; the prepared particles are dried in a blast drying oven at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the particle properties, and at the same time The particles are completely crystallized.
  • composition 10 in Table 1 To prepare particle moldings, twin-screw extrusion and granulation are used; the raw material is composition 10 in Table 1.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-BP330 and the nucleating agents lauric acid and ceric acid in a high-speed mixer at room temperature, use a mixing speed of 450 (r/min), and a mixing time of 5 (min) ;After mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 80-160°C and the host speed of 250r/min;
  • Step 3 Granulation and cooling: Use underwater granulation with a water temperature of 50°C; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the performance of the particles and crystallize the particles at the same time. completely.
  • the production steps are:
  • Step 1 Mixing: Place the particles of PHBV and the nucleating agent behenic acid (behenic acid) in a high-speed mixer at room temperature, use a mixing speed of 200 (r/min), and a mixing time of 5 ( min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-160°C and the host speed of 350r/min;
  • Step 3 Granulation and cooling: Use a water bath to stretch and cut into granules, and set the granulation water bath temperature to 45 (°C); use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours. Eliminate the influence of moisture on particle properties while making the particles completely crystallized.
  • composition 12 in Table 1 To prepare particle moldings, twin-screw extrusion and granulation are used; the raw material is composition 12 in Table 1.
  • the production steps are:
  • Step 1 Mixing: Place the particles of PHBV and P34HB and the nucleating agent behenic acid (behenic acid) in a high-speed mixer at room temperature, using a mixing speed of 100 (r/min), mixing time 10 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 60-170°C and the host speed of 400r/min;
  • Step 3 Granulation and cooling: Use air-cooling to stretch and cut into granules; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the properties of the particles and at the same time completely crystallize the particles. .
  • the production steps are:
  • Step 1 Mixing: Place the composition powder of PHBH-BP350 and PHBV and the nucleating agents stearic acid and wood tar acid in a high-speed mixer at room temperature, using a mixing speed of 400 (r/min), and mix.
  • the feeding time is 10 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-150°C and the host speed of 50r/min;
  • Step 3 Granulation and cooling: Use underwater granulation with a water temperature of 60°C; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the performance of the particles and crystallize the particles at the same time. completely.
  • the production steps are:
  • Step 1 Mixing: Place the powder of P3HB3HV3HH and PHBO and the nucleating agents stearic acid and melic acid in a high-speed mixer at room temperature, using a mixing speed of 600 (r/min) and a mixing time of 7 ( min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 100-180°C and the host speed of 450r/min;
  • Step 3 Granulation and cooling: Pelletize using air-cooling strip cutting; use a blast drying oven to dry the prepared particles at a temperature of 60°C for more than 4 hours to eliminate the impact of moisture on the particle properties. The particles are completely crystallized.
  • the raw material is composition 15 in Table 1.
  • the production steps are:
  • Step 1 Mixing: Place the powder of the PHBH-BP350, PHBV and P34HB compositions and the nucleating agents lauric acid and ceric acid in a high-speed mixer at room temperature, using a mixing speed of 250 (r/min), and mix. Feeding time 6 (min); after mixing, place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment. In the range of 50-180°C, the host speed is Extrusion granulation is carried out at 500r/min;
  • Step 3 Granulation and cooling: adopt water ring granulation method, water temperature is 65°C; the prepared particles are dried in a blast drying oven at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the performance of the particles and at the same time make the particles Complete crystallization.
  • the particle molding body was also produced and granulated by twin-screw extrusion; the raw material was PHBH-BP350 100 parts by weight.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-BP350 in a high-speed mixer at room temperature, use a mixing speed of 200 (r/min), and a mixing time of 5 (min); after mixing, place the mixture In the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-160°C and the host speed of 350r/min;
  • Step 3 Granulation cooling: Use water bath to stretch and cut into granules, and set the granulation water bath temperature to 45 (°C); however, during the actual operation, the extruder was unstable during extrusion, and the molded body adhered and Cannot be separated.
  • the added nucleating agent behenic acid was replaced by behenic acid amide, and the particle molding body was also produced and granulated by twin-screw extrusion; the raw material was PHBH-BP350 100 parts by weight. , 1 part by weight of behenic acid amide.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-BP350 and behenic acid amide in a high-speed mixer at room temperature, use a mixing speed of 200 (r/min), and a mixing time of 5 (min); after mixing , place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-160°C and the host speed of 350r/min;
  • Step 3 Granulation and cooling: Use water bath to stretch and cut into granules, and set the granulation water bath temperature to 45 (°C); however, in actual operation, the extruder is unstable during extrusion and the molded body will stick. After a period of time, they can be roughly separated by vibration.
  • the added nucleating agent behenic acid was replaced by calcium behenate, and the particle molding was produced in the same way, using twin-screw extrusion granulation; the raw material was PHBH-BP350 100 parts by weight. , 1 part by weight of calcium behenate.
  • the production steps are:
  • Step 1 Mixing: Place the powder of PHBH-BP350 and calcium behenate in a high-speed mixer at room temperature, use a mixing speed of 200 (r/min), and a mixing time of 5 (min); after mixing , place the mixture in the lower hopper of the twin-screw extruder or the weight loss scale;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion granulation in the range of 50-160°C and the host speed of 350r/min;
  • Step 3 Granulation cooling: Use water bath to stretch and cut into granules, and set the granulation water bath temperature to 45 (°C); however, in actual operation, the extruder is unstable during extrusion, and the molded body sticks and cannot separation.
  • the molded bodies obtained in the above Experimental Examples 1-15 and Comparative Experimental Examples 1-3 were subjected to the following performance evaluation method of the polyhydroxyalkanoate molded body, and the polyhydroxyalkanoate molded body was passed through an injection molding machine to obtain the corresponding standard requirements. Test pieces are evaluated after measurement.
  • compositions 1-15 in the above-mentioned Experimental Examples 1-15 can also be directly used to prepare other molded bodies, such as pipe making, film making, injection molding, etc.; in addition, as long as the effect of the present invention is not inhibited, Additives and other auxiliaries can also be added to the composition according to the production needs of the molded body.
  • the additives may include plasticizers, cross-linking agents, chain extenders, lubricants and other organic or inorganic materials. Organic or inorganic materials may be used alone or in combination of two or more.
  • the addition amount of the additive can also be adjusted according to production needs, and the present invention has no particular limitation on this.
  • a differential scanning calorimeter (DSC25 model manufactured by TA Instruments) was used to measure 2-10 mg of the polyhydroxyalkanoate molded body, and the DSC curve was obtained when the temperature was raised from -50°C to 180°C at a temperature rise rate of 10°C/min. .
  • Crystallinity (%) 100% ⁇ (melting enthalpy - cold crystallization enthalpy) / 100% crystallization melting enthalpy
  • the 100% crystallization melting enthalpy is 147.4J/g.
  • a gel permeation chromatograph (HPLC GPC system manufactured by Shimadzu Corporation) using a chloroform solution was used and measured in terms of polystyrene.
  • a column suitable for measuring the weight average molecular weight may be used.
  • the melt flow rate is measured under the conditions of 190°C and 2.16kg; the unit of melt flow rate is g/10min;
  • the tensile strength and elongation at break are measured at a test speed of 5mm/min; the unit of tensile strength is MPa and the unit of elongation at break is %;
  • the notched impact strength is measured; the unit of notched impact strength is J/m 2 ;
  • Tg is the glass transition temperature
  • Tm melting point
  • Can be processed continuously and stably, and the granulation is stable
  • Basically stable during thermoplastic processing, and the pelletizing state is average.
  • the extruder is unstable during extrusion and cannot be continuously pelletized.
  • thermoplastic processing difficulty of the molded body particles prepared by using the nucleating agent of the present invention is relatively lower, can be processed continuously and stably, and the quality of the pellet molded body is good.
  • the crystallinity of the polyhydroxyalkanoate resin composition is relatively larger, indicating that the crystallinity of the molded body is higher and is more conducive to subsequent processing. forming.
  • the secondary heating cold crystallization half-peak width data of the polyhydroxyalkanoate resin composition is relatively smaller, indicating that the molded body is easier to crystallize and harden during processing, which is more conducive to processing and molding. .
  • the particles prepared in the above Experimental Example 1, Experimental Example 3, Experimental Example 9, Experimental Example 11, and Experimental Example 13 place them in a single-layer or multi-layer film blowing machine to prepare a film, and set the screw and die temperatures. 50-180°C (first temperature); the prepared film is processed online using a drying tunnel at 40-65°C (second temperature) before winding. crystallization. Among them, before preparing the film, the prepared particles are first dried in a blast drying oven at a temperature of 60°C for more than 4 hours to eliminate the influence of moisture on the properties of the particles and at the same time complete the crystallization of the particles.
  • the specific implementation process is as follows:
  • the particles prepared in Experimental Example 1 are placed in a single-layer or multi-layer film blowing machine, and the screw and die temperatures are set at 50-160°C (first temperature); the prepared film is dried in a drying tunnel at 45 before winding. °C (second temperature) for online crystallization; the prepared particles are dried in a blast drying oven at a temperature of 60 °C for more than 4 hours to eliminate the influence of moisture on the particle properties and to completely crystallize the particles.
  • the particles prepared in Experimental Example 3 are placed in a single-layer or multi-layer film blowing machine, and the screw and die temperatures are set at 70-140°C (first temperature); the prepared film is dried in a drying tunnel at 50 before winding. °C (second temperature) for online crystallization; the prepared particles are dried in a blast drying oven at a temperature of 60 °C for more than 4 hours to eliminate the influence of moisture on the particle properties and to completely crystallize the particles.
  • the particles prepared in Experimental Example 9 are placed in a single-layer or multi-layer film blowing machine, and the screw and die temperatures are set at 80-180°C (first temperature); the prepared film is dried in a drying tunnel at 55 before winding. °C (second temperature) for online crystallization; the prepared particles are dried in a blast drying oven at a temperature of 60 °C for more than 4 hours to eliminate the influence of moisture on the particle properties and to completely crystallize the particles.
  • the particles prepared in Experimental Example 11 are placed in a single-layer or multi-layer film blowing machine, and the screw and die temperatures are set at 80-180°C (first temperature); the prepared film is dried in a drying tunnel at 55 before winding. °C (second temperature) for online crystallization; the prepared particles are dried in a blast drying oven at a temperature of 60 °C for more than 4 hours to eliminate the influence of moisture on the particle properties and to completely crystallize the particles.
  • the particles prepared in Experimental Example 13 are placed in a single-layer or multi-layer film blowing machine, and the screw and die temperatures are set at 80-180°C (first temperature); the prepared film is dried in a drying tunnel at 55 before winding. °C (second temperature) for online crystallization; the prepared particles are dried in a blast drying oven at a temperature of 60 °C for more than 4 hours to eliminate the influence of moisture on the particle properties and to completely crystallize the particles.
  • the film formed body can also be directly prepared from the mixed raw powder of the composition of the present invention, and is not limited to the pellets obtained by granulation in the above embodiments as raw materials for preparing films.
  • molded bodies having the same or similar composition as the raw materials in the above embodiments, such as processed waste scraps, or a mixture of waste scraps and raw powder materials, can be used as raw materials to prepare film molded bodies.
  • the film molded body is tested according to ISO527-2-2012, and its longitudinal tensile strength and longitudinal elongation at break are measured at a test speed of 500 mm/min; the unit of longitudinal tensile strength of the film is MPa, and the unit of longitudinal break elongation of the film is MPa.
  • the unit of rate is %.
  • Basically stable during thermoplastic processing, but there may be problems such as film bubble shaking.
  • the extruder is unstable during extrusion and cannot continuously form a film.
  • the above-mentioned covering uses pure PHA/mixed materials and different nucleating agent compositions to prepare film molded bodies. It can be seen that the composition of the nucleating agent and polyhydroxyalkanoate according to the present invention is used to prepare The thermoplastic processing difficulty of the obtained molded body film is relatively lower, it can be continuously and stably processed into a film, and the quality of the molded body is better. Moreover, the film has good longitudinal tensile strength and longitudinal elongation at break, which meets the requirements for subsequent product processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

提供聚羟基烷酸酯组合物,包括聚羟基烷酸酯和成核剂,所述成核剂为脂肪酸。选用脂肪酸作为制备聚羟基烷酸酯成型体的成核剂,能够在确保所得成型体具有良好力学性能的同时,显著提高聚羟基烷酸酯制备成型体时的结晶速度及结晶度,具有成核效率高、加工方式更加简便的优点;同时所制得的聚羟基烷酸酯成型体具有透明度高的优点,因而具有广泛的应用场景。

Description

聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
相关申请的引用
本发明要求于2022年05月20日提交的标题为“聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体”的中国专利申请第202210557302.3号的优先权。上述申请的全部内容通过引用全部并入本申请。
技术领域
本发明属于生物降解材料领域,涉及聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体。
背景技术
聚羟基烷酸酯(PHAs)是由微生物通过各种碳源发酵而合成的不同结构的脂肪族共聚聚酯,属于天然的高分子生物材料。
聚羟基烷酸酯具有不同的单体结构,种类繁多;其中大多数单体是链长3~14个碳原子的3-羟基脂肪酸,其侧链R是高度可变的饱和或不饱和、直链或支链、脂肪族或芳香族的基团,组成结构的多样性带来其性能的多样化,进而使其在应用中具有明显的优势。
同时,聚羟基烷酸酯是一种生物基来源且在海洋环境中可生物降解的聚合物,能够解决废弃塑料引起的环境问题;而且,聚羟基脂肪酸酯具有优异的生物相容性和机械性能,因此可以被加工成各类的成型体,如薄膜、吸管、餐具等。
结晶速率的控制是影响聚羟基烷酸酯加工速率的重要因素,但现有聚羟基烷酸酯的热加工制备各类成型体的过程中,存在结晶速度慢、结晶度低、加工效率低等缺点。
目前,有研究表明,可通过添加成核剂以提高聚羟基烷酸酯的结晶速度及结晶度,进而提高加工效率。
如专利文献【1】公开号为CN1503824A的中国发明专利申请中公开了一种使用成核剂与增塑剂的聚羟基链烷酸酯加工的组合物,其成核剂为核化剂,具体选自自滑石、微米化云母、碳酸钙、氮化硼、氯化铵、钠盐、以及元素周期表第I族和第II族金属的羧酸盐组成的一组。同时在挤出后在一定温度下保温结晶,如线材是在30-40℃、薄膜是在30-45℃。
再如专利文献【2】公开号为CN102906193A的中国发明专利申请中公开了含有聚羟基烷酸酯的增韧聚乳酸,具体公开了包含的成核剂选自炭黑、氰尿酸、尿嘧啶、胸腺嘧啶、云母滑石、二氧化硅、氮化硼、氮化钡、粘土、碳酸钙、合成硅酸及盐、有机磷酸的金属盐、和高岭土或其组合。
然而,上述成核剂均以无机物或金属盐为主,其虽能够一定程度提高传统聚羟基烷酸酯制备成型体的结晶速度及结晶度,但改善程度有限;更为重要的是,这类成核剂会影响聚羟基烷酸酯成型体中生物碳占比,难以在海洋中全部降解,同时还会导致成型体带有颜色,降低其透明度,影响其应用。
发明内容
针对上述技术问题,本发明提供一种聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体。
第一方面,本发明提供一种组合物,其包括聚羟基烷酸酯和成核剂;所述成核剂为脂肪酸。
众所周知,脂肪酸是由碳、氢、氧三种元素组成的一类化合物。根据碳链长度的不同,脂肪酸分为:短链脂肪酸,其碳链上的碳原子数小于6,也称作挥发性脂肪酸;中链脂肪酸,指碳链上碳原子数为6-12的脂肪酸,主要成分是辛酸(C8)和癸酸(C10);长链脂肪酸,其碳链上碳原子数大于12。而根据碳氢链饱和与不饱和的不同可分为3类,即:饱和脂肪酸,碳氢上没有不饱和键;单不饱和脂肪酸,其碳氢链有一个不饱和键;多不饱和脂肪酸,其碳氢链有二个或二个以上不饱和键。
工业上脂肪酸通常用于丁苯橡胶生产中的乳化剂和其它表面活性剂、润滑剂、光泽剂;还可用于生产高级香皂、透明皂、硬脂酸及各种表面活性剂的中间体。
然而,本发明研究发现,脂肪酸可作为制备聚羟基烷酸酯成型体中的成核剂;并且相比现有成核剂,脂肪酸或化学式为R-COOH的化合物A在不显著降低成型体力学性能的前提下,可显著提高聚羟基烷酸酯制备成型体时的结晶速度及结晶度,具有成核效率高、加工方式更加简便的优点,同时还能够使所制得的聚羟基烷酸酯成型体具有透明度高的优点,因而具有更广泛的应用场景。
试验表明,在采用本发明所述成核剂制备聚羟基烷酸酯成型体的过程中,聚羟基烷酸酯系树脂组合物的结晶度相对更大,说明成型体的结晶性更高,更利于后续加工 成型;并且在具有冷结晶峰的情况下,聚羟基烷酸酯系树脂组合物的二次升温冷结晶半峰宽数据相对更小,说明在加工过程中成型体越易结晶变硬,更利于加工成型。
优选地,所述脂肪酸为具有化学式R-COOH(R为C5-C30烷基)结构的化合物或它们的组合物;
进一步优选地,所述成核剂为月桂酸(十二烷酸)、肉豆蔻酸(十四烷酸)、棕榈酸(十六烷酸)、硬脂酸(十八烷酸)、花生酸(二十烷酸)、山嵛酸(二十二烷酸)、木焦油酸(二十四烷酸)、蜡酸(二十六酸)、褐煤酸(二十八酸)或蜂花酸(三十烷酸)中的一种或多种。更进一步优选地,所述成核剂为山嵛酸(二十二烷酸)。
进一步地,所述成核剂的添加量为所述聚羟基烷酸酯质量的0.01%-20%;优选为0.1%-10%;更优选为0.3%-5%。研究表明,通过控制成核剂的添加比例在此优选范围内,可使得结晶效果更好,且制备的成型体可加工性能也更好。在研究过程中,发现在上述优选范围中,典型非限制性地,例如可以是1%、2%、2.5%、3%、4%。
本发明所述聚羟基烷酸酯可以为单独的聚合物,也可以为两种以上聚合物的组合物。
进一步地,所述聚羟基烷酸酯可选自本领域常用的原料,例如含有3羟基烷酸酯结构单元和/或含有4羟基烷酸酯结构单元的聚合物。具体而言,其为含有下述通式(1)表示的结构单元的聚合物:
[CHRCH2COO](1)
在通式(1)中,R表示CpH2p+1所示的烷基,p表示1~15的整数;优选为1~10的整数,更优选为1~8的整数。
R表示C1-C6的直链或支链状的烷基。例如,甲基、乙基、丙基、丁基、异丁基、叔丁基、戊基、己基等。
在所述组合物中,所述聚羟基烷酸酯包括至少一种聚(3-羟基链烷酸酯);所述聚(3-羟基链烷酸酯)包含3-羟基丁酸酯结构单元(以下有时称为3HB)和其他羟基链烷酸酯结构单元(例如,4羟基烷酸酯结构单元等)的至少一种。
作为聚羟基烷酸酯的具体例,可列举例如:聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(简称:P3HB3HV)、聚(3-羟基丁酸酯共-3-羟基戊酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)(简称:P3HB3HH)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、 聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(简称:P3HB4HB)等。特别是从加工性及机械特性等观点考虑,优选聚(3-羟基丁酸酯-共-3-羟基己酸酯)。
研究表明,采用本发明所述的组合物中的成核剂时,总的来说都可以实现加快结晶,与组合物中的聚羟基烷酸酯中的结构单体的占比没有关系。本发明所述聚羟基烷酸酯特别优选由微生物产生的聚羟基烷酸酯,在由微生物产生的聚羟基烷酸酯中,3-羟基烷酸酯结构单元全部以(R)3-羟基烷酸酯结构单元的形式含有。其中,所述聚(3-羟基链烷酸酯)中,包括3-羟基丁酸酯结构单元与其它结构单元的共聚聚合物,且在所述聚(3-羟基链烷酸酯)中,所述3-羟基丁酸酯结构单元与其它结构单元的平均含有比率为50/50~99/1(摩尔%/摩尔%);优选为80/20~94/6(摩尔%/摩尔%);在聚羟基烷酸酯原料为两种以上聚羟基烷酸酯的混合物的情况下,平均含有比率是指混合物整体中所含的各单体的摩尔比。
进一步地,所述其它结构单元包括:3-羟基丙酸酯、3-羟基戊酸酯、3-羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯或4-羟基丁酸酯的一种或多种,优选为3-羟基己酸酯结构单元;研究表明,其与上述3-羟基丁酸酯结构单元的匹配性更好。
进一步地,所述聚羟基烷酸酯的重均分子量为10万~100万;优选为20万~90万;进一步优选为30万~80万。重均分子量小于10万时,存在得到的聚羟基烷酸酯系树脂成型体的机械特性变低的倾向。另一方面,重均分子量超过100万时,存在熔融加工时对机械的负荷变高、生产性变低的倾向。
第二方面,本发明提供一种聚羟基烷酸酯成型体,其包括由上述组合物的原料制备而成。本发明所得聚羟基烷酸酯成型体具有透明度高、力学性能较好的优点,因而具有更广泛的应用场景。
此外在不抑制本发明的效果的前提下,还可根据成型体的生产需要,添加添加剂等助剂与组合物复配。所述添加剂可包括增塑剂、交联剂、扩链剂、润滑剂等有机或无机材料。有机或无机材料可以单独使用,也可以两种以上组合使用。
而且,还可以根据生产需要,调整添加剂的添加量,本发明对此没有特别限制。
本发明所述的聚羟基烷酸酯成型体可包括多种形式,如粒料、薄膜、吸管、瓶、等。
第三方面,本发明还提供一种制备聚羟基烷酸酯成型体的方法,包括:将包括上述组合物在高于所述成型体的熔融温度下(第一温度)加热后熔融;在玻璃转变温度与熔点温度之间的温度(第二温度)下冷却成型。
本发明研究发现,第一阶段温度越低,成型体在第二阶段下不发生粘连的所需时间越短;但第一阶段温度越高,羟基烷酸酯的流动性会增加,更有利于成型。综合考虑,第一阶段中,控制体系温度高于聚羟基烷酸酯熔点10℃~60℃。
同时本发明还发现,第二阶段温度影响聚羟基烷酸酯成型体达到不发生粘连状态的所需时间的长短;通过大量试验验证,第二阶段体系温度在所得成型体的玻璃转变温度与熔点温度之间,优选在高于所得成型体的玻璃化转变温度30℃以上、且低于所得成型体的熔点温度20℃以下之间。
同时,本发明所述的成型方式分为热加工成型方式和非热加工成型方式;所述热加工成型方式包括挤出成型、注塑成型、压延成型、流延成型、吹塑成型、双向拉伸成型等;所述非热加工成型方式包括溶液浇筑等。优选热加工成型方式。
与现有技术相比,本发明的主要优点包括:
1、本发明提供的用于聚羟基烷酸酯成型体的成核剂,具有成核效率高、加工方式更加简便的优点,可改善聚羟基烷酸酯在热塑加工制备各类成型体的过程中存在的结晶速度慢、加工效率低等缺点。
2、本发明提供的成核剂来源广泛且产品价格较低,可降低各类聚羟基烷酸酯成型体的原料成本;同时,本发明提供的成核剂为生物来源,不影响聚羟基烷酸酯成型体的生物碳占比,其仍可达到100%生物来源。
3、相比于现有无机成核剂或金属盐成核剂,本发明提供的用于聚羟基烷酸酯成型体的成核剂所制备的各类聚羟基烷酸酯成型体具有较高的透明度,不会影响各类成型体的颜色。
4、本发明提供的成核剂所制备的各类聚羟基烷酸酯成型体还具有较好的力学性能,具有更广泛的应用场景。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。以下将通过实施例对本发 明进行详细描述。以下实施例中,如无特别说明,所用的各材料均可通过商购获得,如无特别说明,所用的方法为本领域的常规方法。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
通过以下实施例对本发明做更详细的描述,但所述实施例均不构成对本发明的限制。以下各实施例、对比例中用到的所有原料除特殊说明外,均为市购。
采用原材料:
PHBH-330:聚(3-羟基丁酸酯-共-3-羟基己酸酯),北京蓝晶微生物科技有限公司。
PHBH-350:聚(3-羟基丁酸酯-共-3-羟基己酸酯),北京蓝晶微生物科技有限公司。
聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(PHBV),自制。
聚(3-羟基丁酸酯-共-3-羟基辛酸酯)(PHBO),自制。
聚(3-羟基丁酸酯共-3-羟基戊酸酯-共-3-羟基己酸酯(P3HB3HV3HH),自制。
聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(P34HB),自制。
采用设备:
混料设备:采用高速混料机中在室温下共混。
造粒设备:可使用不同长径比的平行同向双螺杆挤出机、平行异向双螺杆挤出机、锥形双螺杆挤出机,以及单螺杆机等本领域常用挤出造粒设备;将组合物置于双螺杆挤出机的下料斗或失重秤中;挤出造粒设备的温度设定在50-180℃(第一温度)的范围内,主机转速为50-500r/min,喂料量或产能根据实际生产状态进行调整;后续可使风冷拉条切粒、水浴拉条切粒、磨面热切、水环切和水下切粒等切粒方式进行制粒,并在生产加工的过程中保持40-65℃(第二温度)的水浴条件;制备的粒子使用鼓风干燥箱,烘干,排除水分对粒子性能的影响,同时使粒子结晶完全。
薄膜制作设备:采用单层或多层吹膜机等本领域常用制膜或制管设备,螺杆与模头温度设定温度50-180℃(第一温度);制备的薄膜在收卷前使用烘道在40-65℃(第二温度)的条件下进行在线结晶。
实施例一
本实施例提供一种组合物,包括聚羟基烷酸酯和成核剂,
其中,聚羟基烷酸酯包括:聚(3-羟基丁酸酯-共-3-羟基己酸酯)(下面简称为PHBH-330)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)(下面简称为PHBH-350)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(下面简称为PHBV)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)(下面简称为PHBO)、聚(3-羟基丁酸酯共-3-羟基戊酸酯-共-3-羟基己酸酯(下面简称为P3HB3HV3HH)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(下面简称为P34HB),以及其组合;
其中,成核剂为脂肪酸,具体包括:二十二酸、硬脂酸、木焦油酸、蜂花酸、月桂酸、蜡酸、褐煤酸、棕榈酸、花生酸、肉豆蔻酸,以及其组合;
本实施例中选择的组合物,具体参照下表1。
表1本实施例采用的组合物

实施例二造粒
实验例1
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中的组合物1。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末与成核剂二十二酸(山嵛酸)置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-160℃的范围内,主机转速为350r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,并将造粒水浴温度设定为45(℃);制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例2
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中的组合物2。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末以及粒子的混合品与成核剂二十二酸(山嵛酸)置于高速混料机中在室温下,使用混料转速100(r/min),混料时间10(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在60-170℃的范围内,主机转速为400r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用风冷拉条切粒的方式;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例3
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物3。
制作步骤为:
步骤1.混料:将PHBH-BP350的其他成型体(注塑产生的废料)与成核剂硬脂酸以及木焦油酸置于高速混料机中在室温下,使用混料转速400(r/min),混料时间10(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-150℃的范围内,主机转速为50r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水下切粒的方式,水温60℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例4
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物4。
制作步骤为:
步骤1.混料:将PHBH-BP350的粒子与成核剂硬脂酸以及蜂花酸置于高速混料机中在室温下,使用混料转速600(r/min),混料时间7(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在100-180℃的范围内,主机转速为450r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用风冷拉条切粒的方式进行切粒;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例5
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物5。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末、粒子或其他成型体(注塑产生的废料)的混合品与成核剂月桂酸以及蜡酸置于高速混料机中在室温下,使用混料转速250(r/min),混料时间6(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-180℃的范围内,主机转速为500r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水环切粒的方式,水温65℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例6
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物6。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末及粒子的组合品与成核剂褐煤酸置于高速混料机中在室温下,使用混料转速350(r/min),混料时间3(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在70-140℃的范围内,主机转速为150r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水下切粒的方式,水温60℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例7
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物7。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末与成核剂棕榈酸、花生酸以及蜂花酸置于高速混料机中在室温下,使用混料转速200(r/min),混料时间10(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在80-180℃的范围内,主机转速为100r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用磨面热切的方式;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例8
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物8。
制作步骤为:
步骤1.混料:将PHBH-BP350以及PHBH-BP330的粉末与成核剂肉豆蔻酸以及褐煤酸置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-160℃的范围内,主机转速为350r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,水温45℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例9
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物9。
制作步骤为:
步骤1.混料:将PHBH-BP350以及PHBH-BP330的粉末与粒子的混合物与成核剂月桂酸以及蜡酸置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在60-145℃的范围内,主机转速为300r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,水温55℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例10
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物10。
制作步骤为:
步骤1.混料:将PHBH-BP330的粉末与成核剂月桂酸以及蜡酸置于高速混料机中在室温下,使用混料转速450(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在80-160℃的范围内,主机转速为250r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水下切粒的方式,水温50℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例11
制作粒子成型体,采用双螺杆挤出造粒;原料)采用表1中组合物11。
制作步骤为:
步骤1.混料:将PHBV的粒子与成核剂二十二酸(山嵛酸)置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-160℃的范围内,主机转速为350r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,并将造粒水浴温度设定为45(℃);制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例12
制作粒子成型体,采用双螺杆挤出造粒;原料采用)表1中组合物12。
制作步骤为:
步骤1.混料:将PHBV以及P34HB的粒子与成核剂二十二酸(山嵛酸)置于高速混料机中在室温下,使用混料转速100(r/min),混料时间10(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在60-170℃的范围内,主机转速为400r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用风冷拉条切粒的方式;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例13
制作粒子成型体,采用双螺杆挤出造粒;原料采用)表1中组合物13。
制作步骤为:
步骤1.混料:将PHBH-BP350以及PHBV的组合物粉末与成核剂硬脂酸以及木焦油酸置于高速混料机中在室温下,使用混料转速400(r/min),混料时间10(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-150℃的范围内,主机转速为50r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水下切粒的方式,水温60℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例14
制作粒子成型体,采用双螺杆挤出造粒;原料采用表1中组合物14。
制作步骤为:
步骤1.混料:将P3HB3HV3HH以及PHBO的粉末与成核剂硬脂酸以及蜂花酸置于高速混料机中在室温下,使用混料转速600(r/min),混料时间7(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在100-180℃的范围内,主机转速为450r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用风冷拉条切粒的方式进行切粒;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例15
制作粒子成型体,采用双螺杆挤出造粒;原料采用)表1中组合物15。
制作步骤为:
步骤1.混料:将PHBH-BP350、PHBV以及P34HB组合物的粉末与成核剂月桂酸以及蜡酸置于高速混料机中在室温下,使用混料转速250(r/min),混料时间6(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-180℃的范围内,主机转速为 500r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水环切粒的方式,水温65℃;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
对比实验例1:
与实验例1中的组合物1相对比,不添加成核剂二十二酸,同样制作粒子成型体,采用双螺杆挤出造粒;原料采用PHBH-BP350 100重量份。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-160℃的范围内,主机转速为350r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,并将造粒水浴温度设定为45(℃);但是实际操作过程中,挤出机挤出时不稳定,成型体黏连且无法分离。
对比实验例2:
与实验例1中的组合物1相对比,将添加的成核剂山嵛酸替换为山嵛酸酰胺,同样制作粒子成型体,采用双螺杆挤出造粒;原料采用PHBH-BP350 100重量份,山嵛酸酰胺1重量份。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末与山嵛酸酰胺置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-160℃的范围内,主机转速为350r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,并将造粒水浴温度设定为45(℃);但是实际操作时,挤出机挤出时不稳定,成型体会黏连,但一段时间后可通过震动大致分离。
对比实验例3:
与实验例1中的组合物1相对比,将添加的成核剂山嵛酸替换为山嵛酸钙,同样制作粒子成型体,采用双螺杆挤出造粒;原料采用PHBH-BP350 100重量份,山嵛酸钙1重量份。
制作步骤为:
步骤1.混料:将PHBH-BP350的粉末与山嵛酸钙置于高速混料机中在室温下,使用混料转速200(r/min),混料时间5(min);混料后,将混料置于双螺杆挤出机的下料斗或失重秤中;
步骤2.挤出:设定挤出造粒设备的条件,在50-160℃的范围内,主机转速为350r/min的条件下,进行挤出造粒;
步骤3.造粒冷却:采用水浴拉条切粒的方式,并将造粒水浴温度设定为45(℃);但是实际操作时,挤出机挤出时不稳定,成型体黏连且无法分离。
将上述实验例1-15以及对比实验例1-3得到的成型体,通过下面的聚羟基烷酸酯成型体的性能评价方式、将聚羟基烷酸酯成型体通过注塑机制得相应标准要求的测试件,测定后进行评价。
这里需要注意的是,上述实验例1-15中的组合物1-15原材料也可以直接制备其他成型体,如制管、制膜、注塑等;此外在不抑制本发明的效果的前提下,还可根据成型体的生产需要,添加添加剂等助剂与组合物复配。所述添加剂可包括增塑剂、交联剂、扩链剂、润滑剂等有机或无机材料。有机或无机材料可以单独使用,也可以两种以上组合使用。而且,还可以根据生产需要,调整添加剂的添加量,本发明对此没有特别限制。
聚羟基烷酸酯成型体的性能评价方式:
玻璃化转变温度Tg、熔融温度Tm、结晶度:
使用差示扫描量热计(TA Instrument公司制DSC25型),计量聚羟基烷酸酯成型体2-10mg,以10℃/分的升温速度从-50℃一次升温至180℃时得到的DSC曲线。
结晶度(%)=100%×(熔融焓-冷结晶焓)/100%结晶熔融焓
其中100%结晶熔融焓为147.4J/g。
二次升温冷结晶半峰宽:
使用差示扫描量热计(TA Instrument公司制DSC25型),计量聚羟基烷酸酯成型体2-10mg,以10℃/分的升温速度从-50℃一次升温至180℃,在180℃保温3min,以10℃ /分的降温速度从180℃降温至-50℃,以10℃/分的升温速度从-50℃二次升温至180℃得到二次升温的DSC曲线中。
重均分子量:
使用了氯仿溶液的凝胶渗透色谱仪(岛津制作所株式会社制HPLCGPCsystem)并通过聚苯乙烯换算来测定。作为该凝胶渗透色谱仪中的色谱柱,使用适于测定重均分子量的色谱柱即可。
将聚羟基烷酸酯成型体通过注塑机制得相应标准要求的测试件:
按ISO1133-1:2011,在190℃、2.16kg的条件下测定熔体流动速率;熔体流动速率的单位为g/10min;
按ISO527-2-2012,在测试速度为5mm/min的条件下测定拉伸强度和断裂伸长率;拉伸强度单位为MPa,断裂伸长率单位为%;
按ISO179-1:2019,测定缺口冲击强度;缺口冲击强度单位为J/m2
表2采用本发明提供的成核剂制作的成型体颗粒与对照实验例的物性参数对照表

说明:Tg为玻璃化转变温度;Tm熔点;
表2中的热塑加工难度的符号表示说明如下:
○:可连续稳定加工,切粒稳定;
△:热塑加工时基本稳定,切粒状态一般。
×:挤出机挤出时不稳定,无法连续切粒。
由表2可知,采用本发明所述成核剂制得的成型体粒子的热塑加工难度相对更低,可连续稳定加工,且粒料成型体品质较好。
在采用本发明所述成核剂制备聚羟基烷酸酯成型体的过程中,聚羟基烷酸酯系树脂组合物的结晶度相对更大,说明成型体的结晶性更高,更利于后续加工成型。并且在具有冷结晶峰的情况下,聚羟基烷酸酯系树脂组合物的二次升温冷结晶半峰宽数据相对更小,说明在加工过程中成型体越易结晶变硬,更利于加工成型。
实施例三制备薄膜
进一步的,选择上述实验例1、实验例3、实验例9、实验例11、实验例13中制备的粒子置于单层或多层吹膜机中制备薄膜,螺杆与模头温度设定温度50-180℃(第一温度);所制备的薄膜在收卷前使用烘道在40-65℃(第二温度)的条件下进行在线 结晶。其中,在制备薄膜前,先将制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。具体实施过程如下:
实验例16:
将实验例1中制备的粒子置于单层或多层吹膜机中,螺杆与模头温度设定温度50-160℃(第一温度);制备的薄膜在收卷前使用烘道在45℃(第二温度)的条件下进行在线结晶;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例17:
将实验例3中制备的粒子置于单层或多层吹膜机中,螺杆与模头温度设定温度70-140℃(第一温度);制备的薄膜在收卷前使用烘道在50℃(第二温度)的条件下进行在线结晶;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例18:
将实验例9中制备的粒子置于单层或多层吹膜机中,螺杆与模头温度设定温度80-180℃(第一温度);制备的薄膜在收卷前使用烘道在55℃(第二温度)的条件下进行在线结晶;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例19:
将实验例11中制备的粒子置于单层或多层吹膜机中,螺杆与模头温度设定温度80-180℃(第一温度);制备的薄膜在收卷前使用烘道在55℃(第二温度)的条件下进行在线结晶;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
实验例20:
将实验例13中制备的粒子置于单层或多层吹膜机中,螺杆与模头温度设定温度80-180℃(第一温度);制备的薄膜在收卷前使用烘道在55℃(第二温度)的条件下进行在线结晶;制备的粒子使用鼓风干燥箱,在60℃的温度下烘干4h以上,排除水分对粒子性能的影响,同时使粒子结晶完全。
对比实验例4:
与实验例16相对比,不添加成核剂二十二酸,即将对比实验例3中制备的粒子 置于单层或多层吹膜机中,螺杆与模头温度设定温度50-160℃(第一温度);制备的薄膜在收卷前使用烘道在45℃(第二温度)的条件下进行在线结晶,由于没有添加成核剂,挤出机挤出时不稳定,成型体黏连且无法分离,无法成膜。
这里需要注意的是,薄膜成形体也可以直接由本发明所述的组合物的混合原粉料直接制备,不局限于上述实施例中造粒得到的粒料为原料制备薄膜。在实际应用中也可以采用,与上述实施例中的原材料相同或相近组成的成型体,如加工的废弃边角料,或者废弃边角料与原粉料的混合物作为原料用于制备薄膜成型体。
薄膜成型体的测试
薄膜成型体的测试按ISO527-2-2012,在测试速度为500mm/min条件下测定其纵向拉伸强度和纵向断裂伸长率;薄膜的纵向拉伸强度单位为MPa,薄膜的纵向断裂伸长率单位为%。
表3采用本发明提供的成核剂制作的薄膜与对照实验例的物性对照表
说明:表3中的热塑加工难度的符号表示说明如下:
○:可连续稳定加工;
△:热塑加工时基本稳定,但会有膜泡晃动等问题。
×:挤出机挤出时不稳定,无法连续成膜。
由表3可知,上述覆盖采用的纯料PHA/混料以及不同的成核剂的组合物来制备薄膜成型体,可知采用本发明所述的成核剂与聚羟基烷酸酯的组合物制得的成型体薄膜的热塑加工难度相对更低,可连续稳定加工成膜,且成型体品质更好。而且薄膜的纵向拉伸强度和纵向断裂伸长率较好,符合后续产品加工要求。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 一种组合物,其特征在于,包括聚羟基烷酸酯和成核剂,所述成核剂为脂肪酸。
  2. 根据权利要求1所述的组合物,其特征在于,所述成核剂为具有化学式R-COOH,R为C5-C30烷基结构的脂肪酸化合物,或它们的组合物。
  3. 根据权利要求2所述的组合物,其特征在于,所述成核剂选自月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、花生酸、山嵛酸、木焦油酸、蜡酸、褐煤酸或蜂花酸中的一种或多种;所述成核剂的添加量为所述聚羟基烷酸酯质量的0.01%-20%;
    优选地,所述成核剂的添加量为所述聚羟基烷酸酯质量的0.1%-10%。
  4. 根据权利要求3所述的组合物,其特征在于,在所述组合物中,所述成核剂为山嵛酸,其添加量为所述聚羟基烷酸酯质量的0.1%-10%。
  5. 根据权利要求4所述的组合物,其特征在于,在所述组合物中,所述成核剂山嵛酸的添加量为所述聚羟基烷酸酯质量的0.3%-5%。
  6. 根据权利要求1-5任一项所述的组合物,其特征在于,在所述组合物中,所述聚羟基烷酸酯包括至少一种聚(3-羟基链烷酸酯);
    其中,所述聚(3-羟基链烷酸酯)仅包含3-羟基丁酸酯结构单元、或包含3-羟基丁酸酯结构单元和其他羟基链烷酸酯结构单元的至少一种。
  7. 根据权利要求6所述的组合物,其特征在于,所述聚羟基烷酸酯中,包括至少一种3羟基丁酸酯结构单元与其它结构单元的共聚聚合物。
  8. 根据权利要求7所述的组合物,其特征在于,所述其它结构单元包括:3-羟基丙酸酯、3-羟基戊酸酯、3-羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯或4-羟基丁酸酯的一种或多种;优选为3-羟基己酸酯。
  9. 一种聚羟基烷酸酯成型体,其特征在于,包括由权利要求1-8任一项所述组合物的原料制备而成;
    所述成型体包括粒料、薄膜、吸管、瓶。
  10. 一种制备聚羟基烷酸酯成型体的方法,其特征在于,将权利要求1-8任一项所述的组合物在高于所述成型体的熔融温度下加热后熔融;在玻璃转变温度与熔点温度之间的温度下冷却成型。
PCT/CN2023/093470 2022-05-20 2023-05-11 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体 WO2023221849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210557302.3 2022-05-20
CN202210557302.3A CN114989583A (zh) 2022-05-20 2022-05-20 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体

Publications (1)

Publication Number Publication Date
WO2023221849A1 true WO2023221849A1 (zh) 2023-11-23

Family

ID=83026399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093470 WO2023221849A1 (zh) 2022-05-20 2023-05-11 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体

Country Status (3)

Country Link
CN (1) CN114989583A (zh)
TW (1) TW202346472A (zh)
WO (1) WO2023221849A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989583A (zh) * 2022-05-20 2022-09-02 北京蓝晶微生物科技有限公司 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN115232456B (zh) * 2022-09-22 2023-01-17 北京蓝晶微生物科技有限公司 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115627057B (zh) * 2022-09-26 2023-10-20 北京微构工场生物技术有限公司 一种吸管及其制备方法
CN115386211B (zh) * 2022-10-28 2023-03-24 北京蓝晶微生物科技有限公司 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
CN116277593B (zh) * 2023-05-23 2023-10-20 北京微构工场生物技术有限公司 一种聚羟基脂肪酸酯制粒成型的方法及其成型体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188537A (ja) * 1993-12-27 1995-07-25 Tokuyama Corp 樹脂組成物
US5516565A (en) * 1993-06-10 1996-05-14 Terumo Kabushiki Kaisha Hydroxyalkanoate polymer composition
US20090131566A1 (en) * 2007-11-15 2009-05-21 E. I. Du Pont De Nemours And Company Plasticized poly(hydroxyalkanoic acid) composition
US20100041791A1 (en) * 2006-08-10 2010-02-18 Kaneka Corporation Biodegradable resin composition and molded article of the same
CN114989583A (zh) * 2022-05-20 2022-09-02 北京蓝晶微生物科技有限公司 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586649B2 (en) * 2007-06-11 2013-11-19 E I Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and articles therewith
WO2009048797A1 (en) * 2007-10-10 2009-04-16 E.I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles
JP2011505433A (ja) * 2007-10-31 2011-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリ(ヒドロキシアルカン酸)組成物
US8110138B2 (en) * 2008-05-08 2012-02-07 E. I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516565A (en) * 1993-06-10 1996-05-14 Terumo Kabushiki Kaisha Hydroxyalkanoate polymer composition
JPH07188537A (ja) * 1993-12-27 1995-07-25 Tokuyama Corp 樹脂組成物
US20100041791A1 (en) * 2006-08-10 2010-02-18 Kaneka Corporation Biodegradable resin composition and molded article of the same
US20090131566A1 (en) * 2007-11-15 2009-05-21 E. I. Du Pont De Nemours And Company Plasticized poly(hydroxyalkanoic acid) composition
CN114989583A (zh) * 2022-05-20 2022-09-02 北京蓝晶微生物科技有限公司 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体

Also Published As

Publication number Publication date
TW202346472A (zh) 2023-12-01
CN114989583A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023221849A1 (zh) 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN115232456B (zh) 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
WO2008028344A1 (fr) Composition contenant un copolymère de polyhydroxyalcanoate et de l'acide polylactique, utilisée en tant que mousse
CN115044180B (zh) 包含结晶促进剂的聚羟基烷酸酯组合物和成型体
CN115386211B (zh) 含多元酸的聚羟基烷酸酯组合物及聚羟基烷酸酯成型体
CN115058108B (zh) 可海洋降解的聚羟基烷酸酯组合物、成型体及其制备方法
WO2023231732A1 (zh) 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN114851528B (zh) 一种聚羟基烷酸酯成型体及其制备方法
WO2024045338A1 (zh) 一种可降解材料的造粒加工方法及其制备的成型体
CN115627057B (zh) 一种吸管及其制备方法
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
CA3193674A1 (en) Biodegradable container closure and resin therefor
CN115232455B (zh) 含酯类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN107474495B (zh) 改性pbat树脂组合物及其制备方法
CN117209980B (zh) 一种聚羟基脂肪酸酯组合物、聚羟基脂肪酸酯成型体及其制备方法
CN115890962B (zh) 一种低熔指可降解材料的造粒加工方法及其制备的成型体
CN116855052B (zh) 一种高流动性的聚羟基脂肪酸酯组合物、成型体及其制备方法
WO2023100673A1 (ja) 樹脂チューブ
TW202409173A (zh) 可海洋降解的聚羥基烷酸酯組合物、成型體及其製備方法
TW202408769A (zh) 聚羥基烷酸酯成型體及其製備方法
WO2023157633A1 (ja) 成形用樹脂組成物及び成形体
CN116535835A (zh) 一种可降解复合热封料、热封膜及其制备方法
CN117343505A (zh) 一种可生物降解材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806801

Country of ref document: EP

Kind code of ref document: A1