WO2024045338A1 - 一种可降解材料的造粒加工方法及其制备的成型体 - Google Patents

一种可降解材料的造粒加工方法及其制备的成型体 Download PDF

Info

Publication number
WO2024045338A1
WO2024045338A1 PCT/CN2022/130884 CN2022130884W WO2024045338A1 WO 2024045338 A1 WO2024045338 A1 WO 2024045338A1 CN 2022130884 W CN2022130884 W CN 2022130884W WO 2024045338 A1 WO2024045338 A1 WO 2024045338A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
crystallization
hydroxybutyrate
polyhydroxyalkanoate
temperature
Prior art date
Application number
PCT/CN2022/130884
Other languages
English (en)
French (fr)
Inventor
徐勇
马志宇
马一鸣
李腾
张浩千
Original Assignee
北京蓝晶微生物科技有限公司
江苏蓝素生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝晶微生物科技有限公司, 江苏蓝素生物材料有限公司 filed Critical 北京蓝晶微生物科技有限公司
Priority to JP2024501178A priority Critical patent/JP2024535173A/ja
Publication of WO2024045338A1 publication Critical patent/WO2024045338A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/165Crystallizing granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters

Definitions

  • the present invention relates to the technical field of processing degradable materials, and specifically relates to a granulation processing method of degradable materials and a molded body prepared therefrom.
  • PHA Polyhydroxyalkanoate
  • Bio-based PHA is produced by bacteria through processes such as fermentation, extraction, centrifugation, drying and grinding to produce powder. Powder is not easy to transport and process, so it needs to be further made into granules.
  • the existing granulation methods include: agglomeration method, extrusion granulation method, spray granulation method and other methods. Among them, the most common extrusion granulation method is twin-screw granulation, which is also the mainstream granulation method on the market. Craftsmanship.
  • the commonly used technical route of the extrusion granulation process is a process of melt extrusion in a twin-screw extruder, and then extruding the melt for cooling and granulation.
  • the current common twin-screw granulation process follows the traditional granulation logic in setting process parameters. Using the previous granulation process parameters, the extruded melt cannot crystallize quickly, which will cause the particles to adhere to each other and fail to form. Good pure particle state.
  • the present invention explores and provides a granulation processing method of degradable materials and the molded body produced therefrom.
  • the present invention first provides a granulation processing method of degradable materials, including:
  • pre-crystallization is performed at 20°C to 60°C below the Tm (melting temperature) of the polyhydroxyalkanoate, and then extrusion crystallization is performed.
  • the present invention found that pre-crystallization in the above manner is beneficial to accelerating the crystallization speed online during extrusion through screw granulation equipment and rapidly cooling to obtain pellets, thereby greatly improving the particle state and reducing processing energy consumption. Moreover, no additional additives are required to achieve the above effects, which is also conducive to controlling processing costs.
  • the present invention also found that when the pre-crystallization temperature is lower than 60°C below Tm, the morphological characteristics of the prepared particles are uneven. Therefore, the pre-crystallization temperature is selected to be between 20°C below Tm and 60°C below Tm.
  • the pre-crystallization is performed at 20°C to 55°C below the Tm of the polyhydroxyalkanoate.
  • the pre-crystallization is performed at 20°C to 50°C below the Tm of the polyhydroxyalkanoate.
  • the pre-crystallization is performed at 20°C to 40°C below the Tm of the polyhydroxyalkanoate.
  • pre-crystallization is performed at 20°C-40°C below Tm.
  • pre-crystallization can be carried out at 100°C-140°C.
  • it can be 20°C or 25°C below Tm.
  • pre-crystallization is carried out under the conditions of 40°C-60°C below Tm.
  • the pre-crystallization temperature is 40°C-50°C below Tm.
  • it can be 40°C, 45°C, 50°C below Tm temperature, etc.
  • pre-crystallization is carried out under the conditions of 35°C-55°C below Tm.
  • the pre-crystallization temperature is 35°C-50°C below Tm.
  • it can be 35°C, 45°C, 50°C below Tm temperature, etc.
  • the polyhydroxyalkanoate may be one polymer or a mixture of two or more polymers.
  • pre-crystallization is performed under the conditions of 100°C-120°C.
  • Preferable pre-crystallization temperatures may be 100°C, 110°C, 115°C, or 120°C.
  • pre-crystallization is performed under conditions of 110°C to 130°C.
  • Preferable pre-crystallization temperatures may be 110°C, 120°C, or 130°C.
  • Preferable pre-crystallization is performed under the conditions of 120°C to 140°C.
  • Preferable pre-crystallization temperatures may be 120°C, 125°C, 130°C, 135°C, or 140°C.
  • the polyhydroxyalkanoate is a polyhydroxyalkanoate series material, which can be a single polymer or a combination of two or more polymers.
  • polyhydroxyalkanoate can be selected from raw materials commonly used in the art, such as polymers containing 3-hydroxyalkanoate structural units and/or 4-hydroxyalkanoate structural units. Specifically, it is a polymer containing a structural unit represented by the following general formula (1):
  • R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1-15; preferably an integer of 1-10, more preferably an integer of 1-8.
  • R represents a C1-C6 linear or branched alkyl group.
  • R represents a C1-C6 linear or branched alkyl group.
  • methyl ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, etc.
  • the polyhydroxyalkanoate includes at least one poly(3-hydroxyalkanoate).
  • the polyhydroxyalkanoate is a polymer containing 3-hydroxybutyrate structural units
  • the polymer containing 3-hydroxybutyrate structural units is a homopolymer containing only 3-hydroxybutyrate structural units, or contains 3-hydroxybutyrate structural units and other alkanoic acid ester structural units. copolymer;
  • the other alkanoic acid ester structural units are selected from 3-hydroxypropionate, 3-hydroxyvalerate, 3-hydroxycaproate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, and 3-hydroxynonanate. At least one of acid ester, 3-hydroxydecanoate, 3-hydroxyundecanoate and 4-hydroxybutyrate.
  • the polyhydroxyalkanoate is selected from poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxybutyrate) Ester-co-3-hydroxyvalerate) (abbreviation: P3HB3HV, PHBV), poly(3-hydroxybutyrate co-3-hydroxyvalerate-co-3-hydroxycaproate), poly(3- Hydroxybutyrate-co-3-hydroxyhexanoate) (abbreviation: P3HB3HH, PHBH), poly(3-hydroxybutyrate-co-3-hydroxyheptanoate), poly(3-hydroxybutyrate- Co-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3-hydroxynonanoate), poly(3-hydroxybutyrate-co-3-hydroxydecanoate), poly(3-hydroxybutyrate-co-3-hydroxynonanoate), At least one of 3-hydroxybutyrate-co-3-hydroxyundecanoate) and poly(
  • the polyhydroxyalkanoate is poly(3-hydroxybutyrate-co-3-hydroxycaproate).
  • the pre-crystallization is preferably performed at 100°C to 120°C.
  • the polyhydroxyalkanoate contains a 3-hydroxybutyrate structural unit, and the average content of the 3-hydroxybutyrate structural unit is more than 50 mol%.
  • the poly(3-hydroxyalkanoate) includes a copolymer of 3-hydroxybutyrate structural unit and other structural units, and in the poly(3-hydroxyalkanoate) (alkanoate), the average content ratio of the 3-hydroxybutyrate structural unit to other structural units is 50/50 ⁇ 99/1 (mol%/mol%); preferably 80/20 ⁇ 94/6 (mol%/mol%); when the polyhydroxyalkanoate raw material is a mixture of two or more polyhydroxyalkanoates, the average content ratio refers to the molar ratio of each monomer contained in the entire mixture.
  • the average content ratio of (3-hydroxybutyrate) and (3-hydroxycaproate) is 80:20-99:1, preferably 75:25-96:4.
  • the polyhydroxyalkanoates are particularly preferably polyhydroxyalkanoates produced by microorganisms.
  • all 3-hydroxyalkanoate structural units are contained in the form of (R)3-hydroxyalkanoate structural units.
  • the weight average molecular weight of the polyhydroxyalkanoate is: the weight average molecular weight is 100,000-1,000,000; preferably 200,000-900,000; further preferably 300,000-800,000.
  • the granulation processing method of degradable materials specifically includes:
  • the powder is heated, melted, pre-crystallized, and the melt is extruded from the machine head;
  • the extruded melt is cut into pellets to obtain particles
  • the heating and melting temperature is set at 40°C-180°C; the die extrusion temperature is set at 140°C-200°C; and the post-processing temperature is controlled at 30°C-80°C.
  • the granulation equipment is a screw extruder, which can be a twin-screw extruder, a three-screw extruder, a planetary screw extruder, etc., and is preferably a twin-screw extruder.
  • cutting into pellets is carried out by using a drawbar cutting method.
  • the pre-crystallization is performed in a temperature setting section in front of the die of the die extruder screw machine.
  • the pre-crystallization is performed in 2-3 temperature zones in front of the screw machine head.
  • the temperature can be set in sections according to the screw thread design; wherein the melting is carried out in the zone where the material is melted and plasticized, which is generally the entire temperature control zone before the pre-crystallization temperature zone. .
  • the melting temperature and perform melting in zones one to nine.
  • the pre-crystallization is carried out in 2-3 temperature zones in front of the screw machine head. For example, for a screw machine with eleven zones, it is preferable to set the pre-crystallization temperature and perform pre-crystallization in zones ten to eleven.
  • the extrusion takes place through the die section.
  • the granulation processing method is completed by a twin-screw extruder with an aspect ratio ⁇ 44.
  • the threads are designed with low shear force, which is more conducive to reducing the shear force and thereby reducing the melt index.
  • constant temperature crystallization is performed at 30°C to 80°C. This can further speed up the crystallization rate of the material.
  • the pellets can be obtained by extrusion through strip cutting.
  • the temperature during constant temperature crystallization can be controlled through a temperature-controlled water tank or a hot air box.
  • the present invention further provides a molded body prepared through the aforementioned granulation processing method of degradable materials.
  • the molded body of the present invention contains pure granular polyhydroxyalkanoate without additives, so it can take into account the expandability and appearance of the material itself, and it is also beneficial to control processing costs.
  • the processing and granulation method of the present invention performs pre-crystallization at 20°C-60°C below the Tm of the polyhydroxyalkanoate and then extrudes it, which can accelerate the crystallization speed online without adding additives and quickly obtain non-adhesive particles. , greatly shortening the crystallization time and facilitating transportation and subsequent processing.
  • the above method does not require changes to the current extrusion granulation equipment, so there will be no additional equipment costs. Moreover, due to the lower processing temperature, the electric heating power and heat exchange power are reduced, resulting in lower energy consumption, which is beneficial to actual production. promotion and application.
  • the present invention also has certain guiding reference significance for the subsequent processing and molding of complex items, including pipes, tableware, various plates, sheets, films, various bottles, non-woven fabrics, fabrics, and various foam plastics. Molded products, etc.
  • Figure 1 is a schematic diagram of the temperature zone of a granulator used in the granulation process in Embodiment 1.
  • 1-11 represents different temperature sections, and the connecting body is the die extrusion section.
  • Mixing equipment Use high-speed mixer to blend at room temperature.
  • Granulation equipment Parallel co-rotating twin-screw extruders with different aspect ratios, parallel counter-rotating twin-screw extruders, conical twin-screw extruders, and single-screw machines are commonly used in this field.
  • PHBV Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), hereinafter referred to as PHBV, is commercially available.
  • PHB Poly(3-hydroxybutyrate), hereinafter referred to as PHB, is commercially available.
  • the granulation processing method includes:
  • the first step add the polyhydroxyalkanoate powder into the hopper of the twin-screw extruder (Nanjing Mianya Machinery JSH-65) (see above the section marked 1 in Figure 1), and conduct each temperature section setting.
  • structures such as powder stirring and forced feeding can be added to the hopper.
  • the powder is heated and melted at 40°C-180°C, pre-crystallized (Tm-20°C to Tm-60°C), the die is extruded at 140°C-200°C, and the melt is extruded from the die.
  • the pre-crystallization section is a temperature setting section in front of the die head of the extrusion screw machine.
  • 2-3 temperature zones in front of the die head of the screw machine are used.
  • temperatures of the following processes are controlled respectively: heating and melting section, pre-crystallization section, and machine head section.
  • the heating and melting section is the partition where the material is melted and plasticized, and all temperature control areas before the pre-crystallization area;
  • the pre-crystallization section is preferably 2-3 temperature zone settings in front of the screw machine head, that is, zones 10 to 11 (the corresponding heating and melting sections are zones 1 to 9), or zones 9 to 11 (the corresponding heating and melting sections are The melting section is the setting range from zone 1 to zone 8);
  • the die extrusion section is the die section (that is, the subsequent section of the connector).
  • the extruded melt is cut into pellets after post-processing to obtain particles. Specifically, granulation is achieved after a post-processing step in a constant temperature crystallization stage.
  • the temperature of the two is maintained at a constant temperature of 30°C-80°C through temperature control, including a temperature-controlled water tank or a hot air box (i.e., the water bath time in Table 1 , the same below) to carry out constant temperature crystallization.
  • temperature control including a temperature-controlled water tank or a hot air box (i.e., the water bath time in Table 1 , the same below) to carry out constant temperature crystallization.
  • the shorter the water bath time the shorter the particle crystallization molding time.
  • the above post-treatment process helps the melt to further accelerate its crystallization rate.
  • DSC Differential scanning calorimetry
  • DSC25 model manufactured by TA Instrument Company Use a differential scanning calorimeter (DSC25 model manufactured by TA Instrument Company) to measure 2-10 mg of the raw material, and heat it from -50°C to 180°C at a heating rate of 10°C/min.
  • Tm the temperature at the endothermic peak of the second temperature rise
  • Tm values of the polyhydroxyalkanoates in the examples are:
  • Example 1 and Example 6 are about 140°C
  • Example 2 is about 130°C-140°C
  • Example 3 is about 170°C
  • Example 4 and Example 7 are about 175°C
  • Example 5 and Example 8 About 130°C-140°C.
  • PHBH BP330 powder and add it to a twin-screw extruder with a screw length-to-diameter ratio of 44 and forced feeding.
  • the main feeding speed is 15r/min and the main engine speed is 400r/min.
  • temperatures of the following processes are controlled respectively: heating and melting section, pre-crystallization section, and die extrusion section.
  • the heating and melting section is a zone where materials are melted and plasticized. All temperature control zones before the pre-crystallization zone are set in the range from Zone 1 to Zone 9;
  • the pre-crystallization section is the two temperature zone setting sections in front of the screw machine head, that is, the setting range from zone 10 to zone 11;
  • the die extrusion section is the die section.
  • zone one 40°C zone two 80°C
  • zone three 120°C zone four 140°C
  • zone five 160°C zone six 160°C
  • zone seven 150°C zone eight 140°C °C
  • the ninth zone is 140°C
  • the tenth zone is 110°C
  • the eleventh zone is 110°C
  • the machine head is 140°C.
  • the post-treatment in the constant temperature crystallization section is performed at 55°C, and finally granulation is performed to obtain pure PHBH particles.
  • the pre-crystallization temperature is 110°C.
  • PHBH with grades BP330 and BP350 were used for blending, with a weight ratio of 6:4. It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding speed is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 120°C in zone four, 140°C in zone five, 160°C in zone six, 165°C in zone seven, 160°C in zone eight, 140°C in zone nine,
  • the tenth zone is 110°C
  • the eleventh zone is 110°C
  • the machine head temperature is 145°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C. The pure material particles are obtained through the granulator.
  • the pre-crystallization temperature is 110°C.
  • the main feeding speed is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 140°C in zone four, 160°C in zone five, 180°C in zone six, 175°C in zone seven, 160°C in zone eight, 140°C in zone nine,
  • the tenth zone is 120°C
  • the eleventh zone is 120°C
  • the machine head temperature is 160°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C.
  • the pure material particles are obtained through the granulator.
  • the pre-crystallization temperature is 120°C.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 60°C in zone one, 80°C in zone two, 120°C in zone three, 140°C in zone four, 160°C in zone five, 180°C in zone six, 175°C in zone seven, 160°C in zone eight, 140°C in zone nine,
  • the tenth zone is 120°C
  • the eleventh zone is 120°C
  • the machine head temperature is 160°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C.
  • the pure material particles are obtained through the granulator.
  • the pre-crystallization temperature is 120°C.
  • PHBH with the brand name BP350 (HH content 11%) was used for granulation. It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 120°C in zone four, 140°C in zone five, 160°C in zone six, 165°C in zone seven, 160°C in zone eight, 140°C in zone nine,
  • the tenth zone is 110°C
  • the eleventh zone is 110°C
  • the machine head temperature is 145°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C. The pure material particles are obtained through the granulator.
  • the pre-crystallization temperature is 110°C.
  • PHBH BP330 powder and add it to a twin-screw extruder with a screw length-to-diameter ratio of 44 and forced feeding.
  • the main feeding speed is 15r/min and the main engine speed is 400r/min.
  • the pre-crystallization temperature is 115°C.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the setting temperature of each section is: zone one is 60°C, zone two is 80°C, zone three is 120°C, zone four is 140°C, zone five is 140°C, zone six is 160°C, zone seven is 160°C, zone eight is 165°C, zone nine is 140°C, The tenth zone is 140°C, the eleventh zone is 140°C, and the machine head temperature is 160°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C. The pure material particles are obtained through the granulator.
  • the pre-crystallization temperature is 140°C.
  • PHBH with the brand name BP350 (HH content 11%) was used for granulation. It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the setting temperature of each section is: 40°C in zone one, 80°C in zone two, 120°C in zone three, 120°C in zone four, 140°C in zone five, 160°C in zone six, 165°C in zone seven, 160°C in zone eight, 140°C in zone nine,
  • the tenth zone is 100°C
  • the eleventh zone is 100°C
  • the machine head temperature is 140°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C. The pure material particles are obtained through the granulator.
  • the pre-crystallization temperature is 100°C.
  • Comparative Examples 1-5 do not add additives; Comparative Examples 6-8 add additives.
  • the preparation method used is:
  • the material is added to the hopper of the twin-screw extruder for granulation processing, and each temperature section is set;
  • the powder is heated and melted at a temperature of 40°C-200°C; it is extruded through a machine head at 150°C-220°C, and the melt is extruded from the machine head to obtain pellets;
  • the particles are obtained through post-processing at 30°C-80°C.
  • the commonly used temperature can be 40°C-60°C.
  • PHBH with the brand name BP330 is used for granulation processing, using a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 100°C in zone three, 120°C in zone four, 120°C in zone five, 140°C in zone six, 160°C in zone seven, 160°C in zone eight, 165°C in zone nine,
  • the tenth zone is 165°C
  • the eleventh zone is 170°C
  • the machine head temperature is 170°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C.
  • the pure material particles are obtained through the granulator.
  • the processing temperature of this comparative example cannot be pelletized normally, which will cause unstable melt extrusion and roll sticking.
  • PHBH with grades BP330 and BP350 were used for blending, with a weight ratio of 6:4. It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 120°C in zone four, 140°C in zone five, 160°C in zone six, 165°C in zone seven, 165°C in zone eight, 160°C in zone nine,
  • the tenth zone is 160°C
  • the eleventh zone is 160°C
  • the machine head temperature is 170°C.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 140°C in zone four, 160°C in zone five, 160°C in zone six, 175°C in zone seven, 175°C in zone eight, 180°C in zone nine,
  • the tenth zone is 180°C
  • the eleventh zone is 200°C
  • the machine head temperature is 200°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C.
  • the pure material particles are obtained through the granulator.
  • the isothermal crystallization time of this comparative example is significantly longer than that of the embodiment of the present invention.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 60°C in zone one, 80°C in zone two, 120°C in zone three, 140°C in zone four, 140°C in zone five, 160°C in zone six, 160°C in zone seven, 165°C in zone eight, 165°C in zone nine,
  • the tenth zone is 180°C
  • the eleventh zone is 180°C
  • the machine head temperature is 180°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C.
  • the pure material particles are obtained through the granulator.
  • the isothermal crystallization time of this comparative example is significantly longer than that of the embodiment of the present invention.
  • PHBH with the brand name BP350 (HH content 11%) was used for granulation.
  • Twin-screw model, aspect ratio is 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 120°C in zone four, 140°C in zone five, 160°C in zone six, 165°C in zone seven, 160°C in zone eight, 160°C in zone nine,
  • the tenth zone is 170°C
  • the eleventh zone is 170°C
  • the machine head temperature is 165°C.
  • a further constant temperature crystallization process is carried out through a water tank at 55°C.
  • the pure material particles are obtained through the granulator.
  • the isothermal crystallization time of this comparative example is significantly longer than that of the embodiment of the present invention.
  • Additives behenic acid amide (1%), antioxidant 168 (0.2%), antioxidant 1076 (0.2%), pentaerythritol (0.5%) ). It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 60°C in zone two, 100°C in zone three, 120°C in zone four, 120°C in zone five, 140°C in zone six, 160°C in zone seven, 160°C in zone eight, 165°C in zone nine,
  • the tenth zone is 165°C
  • the eleventh zone is 170°C
  • the machine head temperature is 170°C.
  • PHBV pure powder is used and additives are added for granulation processing.
  • the additives are: behenic acid amide (1%), antioxidant 168 (0.2%), antioxidant 1076 (0.2%), and pentaerythritol (0.5%). It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 60°C in zone one, 80°C in zone two, 120°C in zone three, 140°C in zone four, 140°C in zone five, 160°C in zone six, 160°C in zone seven, 165°C in zone eight, 165°C in zone nine,
  • the tenth zone is 180°C
  • the eleventh zone is 180°C
  • the machine head temperature is 180°C.
  • auxiliaries are: behenic acid amide (1%), antioxidant 168 (0.2%), antioxidant 1076 (0.2%) ), pentaerythritol (0.5%). It adopts a twin-screw model with an aspect ratio of 44.
  • the main feeding is 15r/min, and the main engine speed is 400r/min.
  • the set temperatures of each section are 40°C in zone one, 80°C in zone two, 120°C in zone three, 120°C in zone four, 140°C in zone five, 160°C in zone six, 165°C in zone seven, 160°C in zone eight, 160°C in zone nine,
  • the tenth zone is 170°C
  • the eleventh zone is 170°C
  • the machine head temperature is 165°C.
  • the extruder is stable during extrusion and is not easy to break; the crystallization rate of the extruded bars is slow and the particles will stick together, but they can be roughly separated by vibration after a period of time.
  • the extruder is unstable and breaks during extrusion; the extrusion bar cools down slowly and cannot be cut into pellets; the particles stick together and cannot be separated.
  • Examples 1-8 of the present invention start pre-crystallization (cooling) from zone nine, and the prepared particles have good molding effect, short water bath time, and faster crystallization speed.
  • Comparative Examples 1-5 use the existing process. Zones 1 to 11 are a gradual temperature rise process, and no pre-crystallization is performed (the temperatures from zones 9 to 11 are above Tm+10). The main reason is that Relying on water bath crystallization, processing and granulation is more difficult and the crystallization time is longer.
  • Comparative Examples 6-8 are methods used in the prior art to prepare polyhydroxyalkanoates by adding additives. Although they have faster crystallization speed and better processing effects, they require the addition of additives to achieve this.
  • the preparation method of the present invention does not require the addition of additives, and achieves crystallization speed and processing effects that are comparable to or even better than those of Comparative Examples 6-8.
  • the pre-crystallization temperature is different, and the pre-crystallization temperature is between 20°C and 60°C below the Tm of the polyhydroxyalkanoate.
  • Pre-crystallization can achieve better processing results. For example, for PHBH, when the pre-crystallization temperature is 100°C-140°C, the processing effect is better. More preferably, when the pre-crystallization temperature is 100°C-120°C, the processing effect can be further improved.
  • the invention provides a granulation processing method of degradable materials and a molded body produced therefrom.
  • the granulation processing method of the degradable material includes: after the polyhydroxyalkanoate powder is melted, pre-crystallization is carried out at 20°C below the Tm of the polyhydroxyalkanoate ester to 60°C below, and then extrusion crystallization Granulation.
  • the processing and granulation method of the present invention performs pre-crystallization at 20°C to 60°C below the Tm of the polyhydroxyalkanoate and then extrudes it, which can accelerate the crystallization speed online without adding additives and quickly obtain non-adhesive particles. , greatly shortening the crystallization time and facilitating transportation and subsequent processing.
  • the method of the present invention does not require changes to the current extrusion granulation equipment, so there is no additional equipment cost. Moreover, because the processing temperature is lower, the electric heating power and heat exchange power are reduced, resulting in lower energy consumption, which is beneficial to the production process. If promoted and applied in actual production, it has good economic value and application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及可降解料材的加工技术领域,具体涉及一种可降解材料的造粒加工方法及其制备的成型体。其包括:待聚羟基烷酸酯粉料熔融后,在所述聚羟基烷酸酯的Tm之下20℃到之下60℃进行预结晶,而后挤出结晶造粒。本发明的加工造粒方法通过在聚羟基烷酸酯的Tm以下20℃-60℃进行预结晶后挤出,能够在不添加助剂的情况下,在线加快结晶速度,快速得到不粘连的粒子,极大地缩短了结晶时间,且有利于运输与后续的加工。同时,本发明的方法不需要改变目前挤出造粒设备,因此不会额外增加设备费用,而且由于加工温度更低,降低了电加热功率与热交换功率,使得能耗更低,有利于在实际生产中进行推广应用。

Description

一种可降解材料的造粒加工方法及其制备的成型体
交叉引用
本申请要求2022年9月2日提交的专利名称为“一种可降解材料的造粒加工方法及其制备的成型体”的第2022110684312号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及可降解料材的加工技术领域,具体涉及一种可降解材料的造粒加工方法及其制备的成型体。
背景技术
聚羟基烷酸酯(以下简称PHA)是一种生物基来源且在海洋环境中可生物降解的聚合物,能够解决废弃塑料引起的环境问题,且具有优异的生物相容性和机械性能,因此在包装领域和生物医药领域具有广阔的应用前景。生物基来源的PHA,由细菌通过发酵提取离心干燥粉碎等工艺产出粉料。粉料不便于运输与加工,因此,需要进一步将其制作为粒料。现有技术的造粒手段有:团聚法、挤压造粒法、喷射造粒法及其他方法,其中挤压造粒法,最常见的就是双螺杆造粒,也是目前市场上主流的造粒工艺。
目前,常采用的挤压造粒工艺的技术路线,是在双螺杆挤出机中,熔融挤压,然后挤出熔体进行冷却切粒的过程。
然而,在使用传统参数对PHA粉料进行的挤压造粒工艺中,熔体挤出时无法快速冷却,会增加较大能耗的后续热处理设备,增加厂房面积以及能耗。
此外,目前常见的双螺杆造粒工艺在工艺参数设置上按照传统的造粒逻辑,使用以往的造粒工艺参数,所挤出的熔体无法快速结晶,会导致粒子之间相互粘连,不能形成良好的纯料粒子状态。也有现有技术在造粒时加入助剂来改善上述问题,但添加助剂后,将无法获得纯粒料的聚羟基烷 酸酯,且聚羟基烷酸酯树脂相比于未添加的纯料的应用的拓展性会降低,尤其是很多助剂会影响树脂的外观颜色及透明度,同时,也会增加加工成本。
发明内容
为了解决了上述技术问题,本发明探究并提供了一种可降解材料的造粒加工方法及其制备的成型体。
具体而言,本发明首先提供一种可降解材料的造粒加工方法,包括:
将聚羟基烷酸酯熔融后,在所述聚羟基烷酸酯的Tm(熔融温度)之下20℃到之下60℃进行预结晶,而后挤出结晶造粒。
本发明发现,通过按上述方式进行预结晶,有利于在通过螺杆机造粒设备挤出时在线加快结晶速度,快速冷却得到粒料,进而能大幅改善粒子状态,并降低加工能耗。而且,达到上述效果并不需要额外添加助剂,因而也有利于把控加工成本。本发明还发现,当预结晶温度低于Tm之下60℃时,制备的粒子的形态特征不均匀,因此,选择预结晶温度在Tm之下20℃到Tm之下60℃。
优选地,所述预结晶在所述聚羟基烷酸酯的Tm以下20℃-55℃进行。
更优选地,所述预结晶在所述聚羟基烷酸酯的Tm以下20℃-50℃进行。
进一步优选地,所述预结晶在所述聚羟基烷酸酯的Tm以下20℃-40℃进行。
具体非限制性地,对于PHBH,在Tm以下20℃-40℃的条件下进行预结晶,比如预结晶可以是在100℃-140℃下进行,再比如可以是Tm温度之下20℃、25℃、30℃、40℃等。对于PHB,在Tm以下40℃-60℃的条件下进行预结晶,比如预结晶温度为Tm以下40℃-50℃,再比如可以是Tm温度之下40℃、45℃、50℃等。对于PHBV,在Tm以下35℃-55℃的条件下进行预结晶,比如预结晶温度为Tm以下35℃-50℃,再比如可以是Tm温度之下35℃、45℃、50℃等。
在本发明中,所述聚羟基烷酸酯可以为一种聚合物或两种以上聚合物的混合物。
在具体实施时,本领域人员可以根据不同的单体以及不同单体比例的聚羟基烷酸酯材料对预结晶的温度进行调控。
非限制性的,对于PHBH,在100℃-120℃的条件下进行预结晶,优选预结晶的温度可以是100℃、110℃、115℃、120℃。对于PHB,在110℃-130℃的条件下进行预结晶,优选预结晶的温度可以是110℃、120℃、130℃。对于PHBV,在120℃-140℃的条件下进行预结晶,优选预结晶的温度可以是120℃、125℃、130℃、135℃、140℃。
在本发明中,所述的聚羟基烷酸酯为聚羟基烷酸酯系列材料,可以为单独的聚合物,也可以为两种以上聚合物的组合物。
进一步地,所述聚羟基烷酸酯可选自本领域常用的原料,例如含有3-羟基烷酸酯结构单元和/或含有4-羟基烷酸酯结构单元的聚合物。具体而言,其为含有下述通式(1)表示的结构单元的聚合物:
[CHRCH 2COO]    (1)
在通式(1)中,R表示C pH 2p+1所示的烷基,p表示1-15的整数;优选为1-10的整数,更优选为1-8的整数。
R表示C1-C6的直链或支链状的烷基。例如,甲基、乙基、丙基、丁基、异丁基、叔丁基、戊基、己基等。
在所述组合物中,所述聚羟基烷酸酯包括至少一种聚(3-羟基链烷酸酯)。
作为优选,所述聚羟基烷酸酯为含有3-羟基丁酸酯结构单元的聚合物;
其中,所述含有3-羟基丁酸酯结构单元的聚合物为仅含有3-羟基丁酸酯结构单元的均聚物,或,含有3-羟基丁酸酯结构单元与其他烷酸酯结构单元的共聚物;
所述其他烷酸酯结构单元为选自3-羟基丙酸酯、3-羟基戊酸酯、3- 羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯和4-羟基丁酸酯中的至少一种。
更优选地,所述聚羟基烷酸酯为选自聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(简称:P3HB3HV、PHBV)、聚(3-羟基丁酸酯共-3-羟基戊酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)(简称:P3HB3HH、PHBH)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(简称:P3HB4HB、P34HB)中的至少一种。
进一步优选地,所述聚羟基烷酸酯为聚(3-羟基丁酸酯-共-3-羟基己酸酯)。
当所述聚羟基烷酸酯为聚(3-羟基丁酸酯-共-3-羟基己酸酯)时,所述预结晶优选在100℃到120℃进行。
作为优选方案,所述聚羟基烷酸酯中含有3-羟基丁酸酯结构单元,且所述3-羟基丁酸酯结构单元的平均含量占比为50摩尔%以上。
作为聚羟基烷酸酯的具体例,所述聚(3-羟基链烷酸酯)中包括3-羟基丁酸酯结构单元与其它结构单元的共聚聚合物,且在所述聚(3-羟基链烷酸酯)中,所述3-羟基丁酸酯结构单元与其它结构单元的平均含量比为50/50~99/1(摩尔%/摩尔%);优选为80/20~94/6(摩尔%/摩尔%);在聚羟基烷酸酯原料为两种以上聚羟基烷酸酯的混合物的情况下,平均含量比是指混合物整体中所含的各单体的摩尔比。其中(3-羟基丁酸酯)与(3-羟基己酸酯)的平均含量比为80:20-99:1,优选为75:25-96:4。
所述聚羟基烷酸酯特别优选由微生物产生的聚羟基烷酸酯。在由微生物产生的聚羟基烷酸酯中,3-羟基烷酸酯结构单元全部以(R)3-羟基烷酸酯结构单元的形式含有。
进一步地,所述聚羟基烷酸酯的重均分子量为:重均分子量为10万 -100万;优选为20万-90万;进一步优选为30万-80万。
作为优选方案,所述的可降解材料的造粒加工方法具体包括:
第一步,将所述聚羟基烷酸酯加入造粒设备的料斗中,并进行各温度段的设置;
第二步,粉料依次通过加热熔融,预结晶,从机头处挤出熔体;
第三步,将挤出熔体通过后处理后,切为粒料,得到粒子;
其中,所述加热熔融的温度设定在40℃-180℃;所述机头挤出的温度设定在140℃-200℃;所述后处理的温度控制在30℃-80℃。
在所述第一步中,所述造粒设备为螺杆挤出机,可以采用双螺杆挤出机、三螺杆挤出机或者行星螺杆挤出机等,优选为双螺杆挤出机。
作为优选,在所述第三步中,将切为粒料是通过使用拉条切粒的方式进行切粒。
作为优选,所述预结晶在机头挤出螺杆机的机头前的温度设置区段进行。
更优选地,所述预结晶在螺杆机的机头前的2-3个温区进行。
在本发明中,对于不同的螺杆机,可根据螺杆螺纹设计,进行温度分段设置;其中,所述熔融在将物料熔融塑化的分区进行,一般为预结晶温区前的全部温控区。如对于有十一区的螺杆机,优选在一区至九区设定熔融温度并进行熔融。
所述预结晶在螺杆机的机头前的2-3个温区进行。如对于有十一区的螺杆机,优选在十区至十一区设定预结晶温度并进行预结晶。
所述挤出通过机头段进行。
作为优选方案,所述造粒加工方法通过长径比≥44的双螺杆挤出机完成。
更优选地,在所述双螺杆机中,螺纹设计为低剪切力的设计,这样更有利于降低剪切力,从而降低熔指。
作为优选方案,通过所述挤出得到粒料后,在30℃-80℃下进行恒温 结晶。这样能进一步加快材料的结晶速率。
在具体实施时,可以通过拉条切粒的方式挤出得到粒料。
在具体实施时,可以通过控温水槽或热风箱来控制恒温结晶时的温度。
本领域人员可结合常识对上述的方案进行组合,得到本发明所述的可降解材料的造粒加工方法的较优实施例。
本发明进一步提供一种成型体,经过前述的可降解材料的造粒加工方法制备而成。
本发明的成型体中不含助剂的纯粒料的聚羟基烷酸酯,因而可以兼顾材料本身的拓展性及外观,同时也有利于把控加工成本。
本发明的有益效果如下:
本发明的加工造粒方法通过在聚羟基烷酸酯的Tm以下20℃-60℃进行预结晶后挤出,能够在不添加助剂的情况下,在线加快结晶速度,快速得到不粘连的粒子,极大地缩短了结晶时间,且有利于运输与后续的加工。
同时,上述方法不需要改变目前挤出造粒设备,因此不会额外增加设备费用,而且由于加工温度更低,降低了电加热功率与热交换功率,使得能耗更低,有利于在实际生产中进行推广应用。
本发明对于复杂物品的后续加工成型也具有一定的指导参考意义,所述的复杂物品包括管材、餐具、各种板、片、膜、各种瓶、无纺布、织物、各种发泡塑模制品等。
附图说明
图1为实施例1中造粒加工的一种造粒机的温区示意图。
图中:1-11表示不同的温度区段,连接体为机头挤出段。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者, 均为可通过正规渠道商购买得到的常规产品。
实施例与对比例中使用的设备以及原料如下:
1)设备
混料设备:采用高速混料机中在室温下共混。
造粒设备:可使用不同长径比的平行同向双螺杆挤出机、平行异向双螺杆挤出机、锥形双螺杆挤出机,以及单螺杆机等本领域常用挤出造粒设备;将组合物置于双螺杆挤出机的下料斗或失重秤中;挤出造粒设备的温度根据加热熔融、预结晶、机头挤出过程分别设置对应的温度,主机转速为50-500r/min,喂料量或产能根据实际生产状态进行调整;后续通过恒温结晶采用拉条切方式进行制粒;制备的粒子使用鼓风干燥箱,烘干,排除水分对粒子性能的影响,同时使粒子结晶完全。
2)原料
<聚羟基烷酸酯粉料>
聚(3-羟基丁酸酯-共-3-羟基己酸酯),以下简称PHBH牌号:BP330,参数:3HB(3-羟基丁酸酯单元)的含量94%;北京蓝晶微生物科技有限公司。
聚(3-羟基丁酸酯-共-3-羟基己酸酯),以下简称PHBH,牌号:BP350,参数:3HB(3-羟基丁酸酯单元)含量89%;北京蓝晶微生物科技有限公司。
聚(3-羟基丁酸酯-共-3-羟基戊酸酯),以下简称PHBV,市购。
聚(3-羟基丁酸酯),以下简称PHB,市购。
以下结合图1对本发明中可降解材料的造粒加工方法进行说明,通过调控在机头挤出前的预结晶温度段,使得聚羟基烷酸酯材料在线预结晶,从而快速冷却制备得到粒料。
具体的,所述造粒加工方法包括:
第一步,将聚羟基烷酸酯的粉料加入双螺杆挤出机(南京棉亚机械JSH-65)的料斗(见图1中标记为1的区段上方)中,并进行各温度段的设置。
在具体实施中,可以在料斗中添加粉料搅拌、强制喂料等结构。
第二步,粉料依次通过加热熔融40℃-180℃,预结晶(Tm-20℃到Tm-60℃),机头挤出140℃-200℃,从机头处挤出熔体。
其中,所述预结晶段为机头挤出螺杆机的机头前的温度设置区段,在本实施例中采用螺杆机的机头前的2-3个温区。
具体的,在温度控制上,分别控制以下几段工艺的温度:加热熔融段,预结晶段,机头段。
加热熔融段为将物料熔融塑化的分区,预结晶区前全部温控区;
预结晶段优选为螺杆机机头前的2-3个温区设置段,即10区至11区(对应的加热熔融段为1区至9区)、或者9区到11区(对应的加热熔融段为1区至8区)的设定范围;
机头挤出段为机头段(即连接体后续段)。
第三步,将挤出熔体通过后处理后,切为粒料,得到粒子。具体是经过恒温结晶阶段的后处理步骤后实现造粒。
在通过使用拉条切粒的方式,挤出粒料后,通过温度控制,包括控温水槽或热风箱,两者的温度保持在30℃-80℃的恒定温度(即表1中的水浴时间,下同),以进行恒温结晶,水浴时间越短代表粒子结晶成型时间越短。上述后处理过程有助于熔体进一步加快其结晶速率。
Tm测试方法:
采用差示扫描量热法(DSC),通过国家标准GB/T 19466.3-2004进行熔融和结晶温度及热焓的测定。
使用差示扫描量热计(TA Instrument公司制DSC25型),计量原材料2-10mg,以10℃/min的升温速度从-50℃升温至180℃。
一次升温消除热历史后,二次升温吸热峰处温度作为Tm。
实施例中的聚羟基烷酸酯的Tm数值分别为:
实施例1和实施例6约为140℃,实施例2约为130℃-140℃,实施例3约为170℃,实施例4和实施例7约为175℃,实施例5和实施例8 约为130℃-140℃。
实施例1
采用PHBH(BP330)粉料,加入到螺杆长径比为44,带有强制喂料的双螺杆挤出机中,主喂料速度为15r/min,主机转速为400r/min。
在温度控制上,分别控制以下几段工艺的温度:加热熔融段,预结晶段,机头挤出段。
加热熔融段为将物料熔融塑化的分区,预结晶区前全部温控区,为一区至九区的设定范围;
预结晶段为螺杆机机头前的2个温区设置段,即十区至十一区的设定范围;
机头挤出段为机头段。
具体设置如下:
设置双螺杆挤出机各区温度为分别是:一区40℃、二区80℃、三区120℃、四区140℃、五区160℃、六区160℃、七区150℃、八区140℃、九区140℃、十区110℃、十一区110℃,机头140℃。
经熔融挤出后,恒温结晶段的后处理采用55℃,最后得到造粒得到PHBH纯料颗粒。
其中,预结晶温度是110℃。
实施例2
采用牌号为BP330与BP350的PHBH进行共混,重量比为6:4。采用双螺杆机型,长径比为44。主喂料速度为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区120℃、五区140℃、六区160℃、七区165℃、八区160℃、九区140℃、十区110℃、十一区110℃、机头温度145℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
其中,预结晶温度是110℃。
实施例3
采用PHB纯粉料,双螺杆机型,长径比为44。主喂料速度为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区140℃、五区160℃、六区180℃、七区175℃、八区160℃、九区140℃、十区120℃、十一区120℃、机头温度160℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
其中,预结晶温度是120℃。
实施例4
采用PHBV纯粉料,双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区60℃、二区80℃、三区120℃、四区140℃、五区160℃、六区180℃、七区175℃、八区160℃、九区140℃、十区120℃、十一区120℃、机头温度160℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
其中,预结晶温度是120℃。
实施例5
采用牌号为BP350的PHBH(HH含量为11%)进行造粒。采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区120℃、五区140℃、六区160℃、七区165℃、八区160℃、九区140℃、十区110℃、十一区110℃、机头温度145℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
预结晶温度是110℃。
实施例6
采用PHBH(BP330)粉料,加入到螺杆长径比为44,带有强制喂料的双螺杆挤出机中,主喂料速度为15r/min,主机转速为400r/min。
各区温度设置,一区40℃、二区60℃、三区100℃、四区120℃、 五区120℃、六区140℃、七区160℃、八区160℃、九区140℃、十区115℃、十一区115℃、机头温度140℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
其中,预结晶温度是115℃。
实施例7
采用PHBV纯粉料,双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度,一区60℃、二区80℃、三区120℃、四区140℃、五区140℃、六区160℃、七区160℃、八区165℃、九区140℃、十区140℃、十一区140℃、机头温度160℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
其中,预结晶温度是140℃。
实施例8
采用牌号为BP350的PHBH(HH含量为11%)进行造粒。采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度,一区40℃、二区80℃、三区120℃、四区120℃、五区140℃、六区160℃、七区165℃、八区160℃、九区140℃、十区100℃、十一区100℃、机头温度140℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。
其中,预结晶温度是100℃。
以下对比例采用现有技术中的造粒制备方法,其中对比例1-5为不添加助剂;对比例6-8添加了助剂。采用的制备方法为:
第一步,将物料加入双螺杆挤出机的料斗中进行造粒加工,并进行各温度段的设置;
第二步,粉料依次通过40℃-200℃的温度下加热熔融;150℃-220℃机头挤出,从机头处挤出熔体得到粒料;
第三步,通过使用拉条切粒的方式,挤出粒料后,通过30℃-80℃后处理得到粒子,常用温度可选择40℃-60℃。
对比例1
采用牌号为BP330的PHBH进行造粒加工,采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区100℃、四区120℃、五区120℃、六区140℃、七区160℃、八区160℃、九区165℃、十区165℃、十一区170℃、机头温度170℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的加工温度无法正常切粒,会造成熔体挤出不稳定以及出现粘辊现象。
对比例2
采用牌号为BP330与BP350的PHBH进行共混,重量比为6:4。采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区120℃、五区140℃、六区160℃、七区165℃、八区165℃、九区160℃、十区160℃、十一区160℃、机头温度170℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
对比例3
采用PHB纯粉料,双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区140℃、五区160℃、六区160℃、七区175℃、八区175℃、九区180℃、十区180℃、十一区200℃、机头温度200℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
对比例4
采用PHBV纯粉料,双螺杆机型,长径比为44。主喂料为15r/min, 主机转速为400r/min。各段设置温度为一区60℃、二区80℃、三区120℃、四区140℃、五区140℃、六区160℃、七区160℃、八区165℃、九区165℃、十区180℃、十一区180℃、机头温度180℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
对比例5
采用牌号为BP350的PHBH(HH含量为11%)进行造粒。双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区120℃、五区140℃、六区160℃、七区165℃、八区160℃、九区160℃、十区170℃、十一区170℃、机头温度165℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
对比例6
采用牌号为BP330的PHBH,并加入助剂进行造粒加工,助剂:山嵛酸酰胺(1%),抗氧剂168(0.2%),抗氧剂1076(0.2%),季戊四醇(0.5%)。采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区60℃、三区100℃、四区120℃、五区120℃、六区140℃、七区160℃、八区160℃、九区165℃、十区165℃、十一区170℃、机头温度170℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
对比例7
采用PHBV纯粉料并加入助剂进行造粒加工,助剂:山嵛酸酰胺(1%),抗氧剂168(0.2%),抗氧剂1076(0.2%),季戊四醇(0.5%)。采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区60℃、二区80℃、三区120℃、四区140℃、五区 140℃、六区160℃、七区160℃、八区165℃、九区165℃、十区180℃、十一区180℃、机头温度180℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
对比例8
采用牌号为BP350的PHBH(HH含量为11%)并加入助剂进行造粒加工,助剂:山嵛酸酰胺(1%),抗氧剂168(0.2%),抗氧剂1076(0.2%),季戊四醇(0.5%)。采用双螺杆机型,长径比为44。主喂料为15r/min,主机转速为400r/min。各段设置温度为一区40℃、二区80℃、三区120℃、四区120℃、五区140℃、六区160℃、七区165℃、八区160℃、九区160℃、十区170℃、十一区170℃、机头温度165℃。最后经熔融挤出,通过水槽在55℃下进行进一步恒温结晶过程。经过切粒机得到其纯料颗粒。该对比例的恒温结晶的时长明显大于本发明实施例。
各实施例及对比例的加工情况见下表1。
表1
Figure PCTCN2022130884-appb-000001
表中,关于造粒加工难度:
○:可连续稳定造粒,粒子可稳定切粒,不黏连。
△:挤出机挤出时稳定,不易断条;挤出条结晶速率较慢,粒子会黏连,但一段时间后可通过震动大致分离。
×:挤出机挤出时不稳定、断条;挤出条降温速率慢,无法切粒;粒子黏连,无法分离。
根据表1结果可知:
(1)本发明实施例1-8从九区开始预结晶(降温),制备得到的粒子成型效果好,且水浴时间短,结晶速度更快。而对比例1-5则是采用的现有的工艺,一区到十一区都是逐渐升温的过程,并未进行预结晶(九区到十一区的温度在Tm+10以上),主要依靠水浴结晶,加工造粒难度更大,且结晶时间更长。
(2)对比例6-8为现有技术采用的加入助剂制备聚羟基烷酸酯的方法,其虽然具有较快的结晶速度及较优的加工效果,但需要加入助剂才能实现。而本发明的制备方法则无需加入助剂,并实现与对比例6-8相当甚至更优的结晶速度及加工效果。
(3)在实施例1-8中,当聚羟基烷酸酯的单体原料不同时,其预结晶温度存在差异,在该聚羟基烷酸酯的Tm之下20℃到之下60℃进行预结晶,均可实现较优的加工效果。如,对于PHBH,其预结晶温度为100℃-140℃时,加工效果较优,更优选地,在预结晶温度为100℃-120℃时,加工效果可以得到进一步改善。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明提供一种可降解材料的造粒加工方法及其制备的成型体。所述 可降解材料的造粒加工方法包括:待聚羟基烷酸酯粉料熔融后,在所述聚羟基烷酸酯的Tm之下20℃到之下60℃进行预结晶,而后挤出结晶造粒。本发明的加工造粒方法通过在聚羟基烷酸酯的Tm以下20℃-60℃进行预结晶后挤出,能够在不添加助剂的情况下,在线加快结晶速度,快速得到不粘连的粒子,极大地缩短了结晶时间,且有利于运输与后续的加工。同时,本发明的方法不需要改变目前挤出造粒设备,因此不会额外增加设备费用,而且由于加工温度更低,降低了电加热功率与热交换功率,使得能耗更低,有利于在实际生产中进行推广应用,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种可降解材料的造粒加工方法,其特征在于,包括:
    将聚羟基烷酸酯熔融后,在所述聚羟基烷酸酯的Tm之下20℃到之下60℃进行预结晶,而后挤出结晶造粒。
  2. 根据权利要求1所述的可降解材料的造粒加工方法,其特征在于,所述预结晶在所述聚羟基烷酸酯的Tm之下20℃到之下40℃进行。
  3. 根据权利要求1所述的可降解材料的造粒加工方法,其特征在于,所述聚羟基烷酸酯为含有3-羟基烷酸酯结构单元和/或4-羟基烷酸酯结构单元的聚合物。
  4. 根据权利要求3所述的可降解材料的造粒加工方法,其特征在于,所述聚羟基烷酸酯为含有3-羟基丁酸酯结构单元的聚合物;
    其中,所述含有3-羟基丁酸酯结构单元的聚合物为仅含有3-羟基丁酸酯结构单元的均聚物,或,含有3-羟基丁酸酯结构单元与其他烷酸酯结构单元的共聚物,所述其他烷酸酯结构单元为选自3-羟基丙酸酯、3-羟基戊酸酯、3-羟基己酸酯、3-羟基庚酸酯、3-羟基辛酸酯、3-羟基壬酸酯、3-羟基癸酸酯、3-羟基十一烷酸酯和4-羟基丁酸酯中的至少一种。
  5. 根据权利要求4所述的可降解材料的造粒加工方法,其特征在于,所述聚羟基烷酸酯为选自聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)中的至少一种。
  6. 根据权利要求5所述的可降解材料的造粒加工方法,其特征在于,所述聚羟基烷酸酯为聚(3-羟基丁酸酯-共-3-羟基己酸酯)。
  7. 根据权利要求6所述的可降解材料的造粒加工方法,其特征在于, 所述预结晶在100℃到140℃进行。
  8. 根据权利要求1-7中任一项所述的可降解材料的造粒加工方法,其特征在于,具体包括:
    第一步,将聚羟基烷酸酯加入造粒设备的料斗中,并在螺杆机中进行加热熔融、预结晶及机头挤出温度段的设置;
    第二步,粉料依次通过加热熔融,预结晶,从机头处挤出熔体;
    第三步,将挤出熔体通过后处理后,切为粒料,得到粒子;
    其中,所述加热熔融的温度设定在40℃-180℃;所述预结晶的温度在所述聚羟基烷酸酯的Tm之下20℃到之下60℃;所述机头挤出的温度设定在140℃-200℃;所述后处理的温度控制在30℃-80℃。
  9. 根据权利要求8所述的可降解材料的造粒加工方法,其特征在于,在所述第一步中,所述造粒设备为螺杆挤出机。
  10. 一种成型体,其特征在于,经过权利要求1-9中任一项所述的可降解材料的造粒加工方法制备而成。
PCT/CN2022/130884 2022-09-02 2022-11-09 一种可降解材料的造粒加工方法及其制备的成型体 WO2024045338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501178A JP2024535173A (ja) 2022-09-02 2022-11-09 分解性材料の造粒加工方法及びそれによって製造される成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211068431.2A CN115157478B (zh) 2022-09-02 2022-09-02 一种可降解材料的造粒加工方法及其制备的成型体
CN202211068431.2 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024045338A1 true WO2024045338A1 (zh) 2024-03-07

Family

ID=83480715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130884 WO2024045338A1 (zh) 2022-09-02 2022-11-09 一种可降解材料的造粒加工方法及其制备的成型体

Country Status (4)

Country Link
JP (1) JP2024535173A (zh)
CN (1) CN115157478B (zh)
TW (1) TW202404773A (zh)
WO (1) WO2024045338A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115157478B (zh) * 2022-09-02 2022-12-06 北京蓝晶微生物科技有限公司 一种可降解材料的造粒加工方法及其制备的成型体
CN115890962B (zh) 2023-03-09 2023-05-23 北京蓝晶微生物科技有限公司 一种低熔指可降解材料的造粒加工方法及其制备的成型体
CN116277593B (zh) * 2023-05-23 2023-10-20 北京微构工场生物技术有限公司 一种聚羟基脂肪酸酯制粒成型的方法及其成型体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB194663A (zh) 1922-03-08 1923-06-21 Anton Hambloch
JP2005179386A (ja) * 2003-12-16 2005-07-07 Tosoh Corp ポリ3−ヒドロキシブチレート系重合体の溶融造粒物およびその製造方法
CN1772791A (zh) * 2005-11-04 2006-05-17 东华大学 由固相聚合制备聚对苯二甲酸乙二酯和芳香族二元胺的共聚物的方法
US20090278279A1 (en) * 2008-05-08 2009-11-12 E. I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles
CN102492274A (zh) * 2011-12-14 2012-06-13 王长青 可降解聚羟基烷酸酯(pha)压延膜制造工艺
CN103224697A (zh) * 2013-05-21 2013-07-31 上海交通大学 一种可完全生物降解的pha/pcl共混物及其制备方法
CN103443339A (zh) * 2011-03-25 2013-12-11 国立大学法人东京大学 热稳定性和强度优异的生物分解性聚酯系纤维及其制造方法
WO2021246434A1 (ja) * 2020-06-02 2021-12-09 三菱瓦斯化学株式会社 加熱による前処理を伴う高分子成形物の製造方法
CN114851528A (zh) * 2022-07-06 2022-08-05 北京蓝晶微生物科技有限公司 一种聚羟基烷酸酯成型体及其制备方法
CN115157478A (zh) * 2022-09-02 2022-10-11 北京蓝晶微生物科技有限公司 一种可降解材料的造粒加工方法及其制备的成型体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519480B2 (ja) * 1995-02-16 2004-04-12 ユニチカ株式会社 微生物分解性モノフィラメントの製造法
JP2004161802A (ja) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd 生分解性ポリエステル系樹脂組成物およびその製造方法
US6706942B1 (en) * 2003-05-08 2004-03-16 The Procter & Gamble Company Molded or extruded articles comprising polyhydroxyalkanoate copolymer compositions having short annealing cycle times
CN102108562B (zh) * 2010-11-16 2013-02-13 清华大学 一种聚羟基脂肪酸酯纤维的制备方法
JP2016169374A (ja) * 2015-03-06 2016-09-23 株式会社カネカ ポリエステル樹脂成形体、およびその製造方法
CN113278268B (zh) * 2021-04-15 2022-08-09 江南大学 一种强韧性聚酯复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB194663A (zh) 1922-03-08 1923-06-21 Anton Hambloch
JP2005179386A (ja) * 2003-12-16 2005-07-07 Tosoh Corp ポリ3−ヒドロキシブチレート系重合体の溶融造粒物およびその製造方法
CN1772791A (zh) * 2005-11-04 2006-05-17 东华大学 由固相聚合制备聚对苯二甲酸乙二酯和芳香族二元胺的共聚物的方法
US20090278279A1 (en) * 2008-05-08 2009-11-12 E. I. Du Pont De Nemours And Company Poly(hydroxyalkanoic acid) and thermoformed articles
CN103443339A (zh) * 2011-03-25 2013-12-11 国立大学法人东京大学 热稳定性和强度优异的生物分解性聚酯系纤维及其制造方法
CN102492274A (zh) * 2011-12-14 2012-06-13 王长青 可降解聚羟基烷酸酯(pha)压延膜制造工艺
CN103224697A (zh) * 2013-05-21 2013-07-31 上海交通大学 一种可完全生物降解的pha/pcl共混物及其制备方法
WO2021246434A1 (ja) * 2020-06-02 2021-12-09 三菱瓦斯化学株式会社 加熱による前処理を伴う高分子成形物の製造方法
CN114851528A (zh) * 2022-07-06 2022-08-05 北京蓝晶微生物科技有限公司 一种聚羟基烷酸酯成型体及其制备方法
CN115157478A (zh) * 2022-09-02 2022-10-11 北京蓝晶微生物科技有限公司 一种可降解材料的造粒加工方法及其制备的成型体

Also Published As

Publication number Publication date
JP2024535173A (ja) 2024-09-30
TW202404773A (zh) 2024-02-01
CN115157478B (zh) 2022-12-06
CN115157478A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024045338A1 (zh) 一种可降解材料的造粒加工方法及其制备的成型体
US11926711B2 (en) TPS/PLA/PBAT blend modified biodegradable resin prepared by using chain extender and preparation method thereof
WO2024007494A1 (zh) 一种聚羟基烷酸酯成型体及其制备方法
WO2008028344A1 (fr) Composition contenant un copolymère de polyhydroxyalcanoate et de l&#39;acide polylactique, utilisée en tant que mousse
CN115232456B (zh) 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
WO2023221849A1 (zh) 聚羟基烷酸酯的酸类成核剂及聚羟基烷酸酯成型体
CN108192304B (zh) 一种聚乳酸薄膜和一种聚乳酸薄膜的制备方法
JP2005187626A (ja) ポリ乳酸ステレオコンプレックス体の製造方法
WO2023245997A1 (zh) 可海洋降解的聚羟基烷酸酯组合物、成型体及其制备方法
TW202348722A (zh) 含醇類成核劑的聚羥基烷酸酯組合物、聚羥基烷酸酯成型體及其製備方法
CN115044180B (zh) 包含结晶促进剂的聚羟基烷酸酯组合物和成型体
WO2020034714A1 (zh) 一种聚乳酸复合材料及其制备方法
TW202407020A (zh) 含多元酸的聚羥基烷酸酯組合物及聚羥基烷酸酯成型體
CN113583407B (zh) 一种含羧酸盐成核剂的聚乳酸组合物及其制备方法
CN114479021A (zh) 一种高性能聚羟基脂肪酸酯及其制备方法和其应用
CN115232455B (zh) 含酯类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
JP4326832B2 (ja) 生分解性ポリエステル系樹脂組成物の製造方法
CN115890962B (zh) 一种低熔指可降解材料的造粒加工方法及其制备的成型体
CN108384200B (zh) 一种快速结晶的pbat材料及其制备方法
CN115449202A (zh) 一种高耐热变形性聚乳酸复合材料及其制备方法
CN111087766A (zh) 热塑性共混物材料及共混物热塑性薄膜及其制备方法
CN113563700A (zh) 一种含酰肼型成核剂的聚乳酸组合物及其制备方法
CN117209980B (zh) 一种聚羟基脂肪酸酯组合物、聚羟基脂肪酸酯成型体及其制备方法
TW202339921A (zh) 分散在無定形或半結晶聚合物中的高負載無定形pha母料及其製造方法
CN117247663A (zh) 一种聚羟基脂肪酸酯改性粒料和制备方法及薄壁注塑制品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024501178

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022957150

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022957150

Country of ref document: EP

Effective date: 20240927