WO2020034714A1 - 一种聚乳酸复合材料及其制备方法 - Google Patents

一种聚乳酸复合材料及其制备方法 Download PDF

Info

Publication number
WO2020034714A1
WO2020034714A1 PCT/CN2019/088761 CN2019088761W WO2020034714A1 WO 2020034714 A1 WO2020034714 A1 WO 2020034714A1 CN 2019088761 W CN2019088761 W CN 2019088761W WO 2020034714 A1 WO2020034714 A1 WO 2020034714A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
composite material
crystalline
acid composite
parts
Prior art date
Application number
PCT/CN2019/088761
Other languages
English (en)
French (fr)
Inventor
卢昌利
蔡彤旻
黄险波
曾祥斌
焦建
熊凯
杨晖
麦开锦
董学腾
欧阳春平
区伟达
Original Assignee
金发科技股份有限公司
珠海万通化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 珠海万通化工有限公司 filed Critical 金发科技股份有限公司
Priority to AU2019100618A priority Critical patent/AU2019100618A4/en
Publication of WO2020034714A1 publication Critical patent/WO2020034714A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention relates to a polylactic acid composite material and a preparation method thereof, and belongs to the technical field of polymer modified materials.
  • Polylactic acid resin is a polymer material obtained by chemical synthesis or biosynthesis using lactic acid as a monomer, and its raw materials are mainly corn, potato, etc. Polylactic acid resin is inexpensive, and because its raw materials are natural crops, carbon emissions are very low. From a safety point of view, polylactic acid is non-toxic and non-irritating, has excellent transparency and biodegradability, and is easily catabolized by a variety of microorganisms or enzymes in plants and animals in the natural world, eventually forming carbon dioxide and water, to a certain extent Reduces white pollution and is an ideal green polymer material.
  • polylactic acid has the disadvantages of brittleness, poor impact resistance, low mechanical strength of amorphous polymers, and high cost, which limits its application.
  • thermal stability of polylactic acid is poor. Even under the conditions of melting temperature and thermal decomposition temperature, due to degradation reasons, the molecular weight during processing is greatly reduced, resulting in polymer mechanical properties.
  • a method of toughening the polylactic acid may be adopted, which mainly includes blending, compounding, copolymerization, plasticizing and the like. Cohn et al. Used a "two-step method" to prepare a polycaprolactone-PLA multi-block copolymer.
  • the mechanical properties of the copolymer increase with the relative molecular weight of the PLA segment, and the elongation at break can reach 600% (Cohn D, designing (biodegradable, multi-block, PCL / PLA, thermoplastic, elastomers, Biomaterials, 2005: 2297 ⁇ 2305).
  • Zhang Wei blended hyperbranched polyamide ester (HBP) and polylactic acid to prepare a high-toughness polylactic acid composite Zhang Wei et al. Study on Toughening Modification of Polylactic Acid by Hyperbranched Polyamide Ester, Synthetic Fiber, 2008: 9 ⁇ 11).
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a polylactic acid composite material with high notched impact strength and high thermal deformation temperature, and a preparation method thereof.
  • the technical solution adopted by the present invention is: a polylactic acid composite material, which includes the following parts by weight of raw materials for preparation: 55 to 80 parts of polylactic acid, 10 to 35 parts of talc, and 0 to 5 parts of calcium carbonate. 0-10 parts of toughening agent and 0-4 parts of processing aid; wherein the polylactic acid is composed of (a) non-crystalline polylactic acid and (b) crystalline or semi-crystalline polylactic acid; the polylactic acid The composite material uses amorphous polylactic acid as a continuous phase, and crystalline or semi-crystalline polylactic acid as a crystalline phase, and the average size of the crystalline phase in the polylactic acid composite material is not greater than 1 ⁇ m.
  • Pure crystalline or semi-crystalline polylactic acid can form larger spherulites at a suitable crystallization temperature and a sufficient crystallization time.
  • Polylactic acid composites with large spherulites have a large The spherulites of size cannot absorb external energy well and are prone to brittle fracture, and the toughness of the material is poor.
  • the dispersed polylactic acid crystals are liable to form voids or debonds when subjected to an impact.
  • the voids in the crystalline phase of polylactic acid correspond to stress concentration, which results in yield of the matrix.
  • the formation of cavities and voids in particles creates a new type of stress distribution that promotes the onset of plastic deformation of the matrix.
  • Plastic deformation energy effectively dissipates fracture energy, causing a high increase in impact strength.
  • the crystalline or semi-crystalline polylactic acid has a glass transition temperature Tg of about 55 ° C. Due to the large steric hindrance of the molecular chain structure of the polylactic acid, the polylactic acid is difficult to crystallize under normal temperature or conventional processing conditions, so its thermal deformation temperature is usually only Around 55 ° C. For amorphous polylactic acid, due to its amorphous structure, the thermal deformation temperature is lower, and agglomeration usually occurs at about 55 ° C, which is difficult to apply.
  • crystalline or semi-crystalline polylactic acid is used as the crystalline phase (the crystalline phase is the dispersed phase), and non-crystalline polylactic acid is used as the continuous phase.
  • the average size of the crystalline phase in the polylactic acid composite material is limited to not more than 1 ⁇ m, which is not only beneficial When polylactic acid crystallizes, it forms fine spherical grains that are more uniformly distributed, preventing brittle fracture of the material when it is impacted; and the uniformly distributed crystals are more conducive to absorbing external impact energy and improve the impact strength of the material.
  • the thermal deformation temperature of the material has also been increased. Therefore, the polylactic acid composite material of the present invention has significantly improved notched impact strength and higher heat distortion temperature.
  • the polylactic acid composite material of the present invention can be processed by injection molding, blistering, and extrusion to obtain products such as injection molding, blister molding, and wire.
  • the average size of the crystalline polylactic acid crystal phase as a crystalline phase in the polylactic acid composite material is measured on a cross section with respect to the direction of the extrusion flow or, in general, the direction of material output.
  • the average size of the crystalline polylactic acid crystal phase as a dispersed phase was measured on the two-dimensional shape obtained from the cross section.
  • the average size of the crystalline polylactic acid crystal phase described above as the dispersed phase is calculated as a numerical average of the particle size of the dispersed phase.
  • the particle size corresponds to the diameter of a circle.
  • d 1 is the small diameter of the ellipse in which the particle can be inscribed or approached
  • d 2 is the large diameter
  • THF trifluoride etching
  • the average size of the crystal phase in the polylactic acid composite material is not greater than 0.8 ⁇ m. More preferably, the average size of the crystalline phase in the polylactic acid composite material is not more than 0.5 ⁇ m. Studies have shown that when the average size of the crystalline phase in the polylactic acid composite is not greater than 0.8 ⁇ m, the notched impact strength and thermal deformation temperature performance of the obtained polylactic acid composite are better; when the average size of the crystalline phase in the polylactic acid composite is When not more than 0.5 ⁇ m, the notched impact strength and thermal deformation temperature performance of the obtained polylactic acid composite material are the best.
  • the crystalline or semi-crystalline polylactic acid contains 95% by weight or more of L-lactic acid; and the non-crystalline polylactic acid contains 12% or more by weight.
  • D-lactic acid Polylactic acid obtained by ring-opening condensation polymerization of lactide is usually a mixture of polylactic acid polymers containing L-lactic acid and D-lactic acid.
  • the polylactic acid is usually amorphous polylactic acid, and the material is soft; and when the content of D-lactic acid in polylactic acid is less than 5%, the polylactic acid has good crystallinity. Effect, easy to form uniformly dispersed spherulite particles.
  • the weight percentage of the crystalline or semi-crystalline polylactic acid is 65% to 95%, and the weight percentage of the non-crystalline polylactic acid is 5% to 35%.
  • the weight percentage of the crystalline or semi-crystalline polylactic acid is 75% to 85%, and the weight percentage of the non-crystalline polylactic acid is 15%. ⁇ 25%.
  • polylactic acid composite material of the present invention at least one of the following (a) to (d):
  • the average particle diameter D 50 of the calcium carbonate is 1 to 7 ⁇ m
  • the toughening agent is an aliphatic polyester or an aliphatic-aromatic copolyester
  • the processing aid is at least one of a release agent, a surfactant, a wax, an antistatic agent, a dye, a nucleating agent, and an antioxidant.
  • Talc powder as a filling material can improve the mechanical properties of polylactic acid composite materials.
  • the particle size of talc powder is too large and the nucleation effect is weak.
  • the crystallinity of polylactic acid composite materials is low and the heat resistance temperature is not high.
  • the particle size of talc powder is too small.
  • During the processing it is not easy to disperse in the polymer, resulting in powder agglomeration, which affects the nucleation effect of talc and the impact properties of polylactic acid composites.
  • the smaller the particle size of talc the higher the price and the lower the cost performance of the product.
  • the average particle diameter D 50 of the talc is selected to be 5 to 13 ⁇ m.
  • Calcium carbonate particles are spherical particles.
  • the presence of spherical particles can play a certain role in lubrication.
  • the sliding of spherical particles can weaken the impact energy of external force to a certain extent.
  • the particle size of calcium carbonate is too large, the lubricating effect is weak; the particle size of calcium carbonate is too small, it is not easy to disperse in the polymer during processing, resulting in powder agglomeration.
  • the inventors chose an average particle diameter D 50 of calcium carbonate of 1 to 7 ⁇ m.
  • Different processing aids will have different effects on the properties of polylactic acid composite materials, for example: dyes will change the color of polylactic acid composite materials, and antioxidants can enhance the antioxidant properties of polylactic acid composite materials.
  • specific processing aids or combinations of processing aids, and specific amounts of processing aids can be selected according to actual performance needs.
  • the mold release agent is: silicone masterbatch, montan wax, erucamide or oleic acid amide; and the surfactant is polysorbate, palm At least one of esters and laurates; the wax is at least one of erucamide, stearamide, behenic acid amide, beeswax, beeswax ester; the antistatic agent is a permanent antistatic agent , Preferably at least one of PELESTAT-230, PELESTAT-6500, SUNNICO and ASA-2500; the dye is at least one of carbon black, black species, titanium dioxide, zinc sulfide, phthalocyanine blue, and fluorescent orange; The antioxidant is at least one of a main antioxidant and an auxiliary antioxidant; the nucleating agent is sodium carbonate, sodium bicarbonate, a metal salt of a monocarboxylic acid, a metal salt of benzoic acid, or an organic phosphorus compound. At least one of a
  • the polylactic acid composite material further includes a plasticizer, and the plasticizer is 0.5 to 5 parts by weight.
  • Plasticizer added to polylactic acid can help promote the movement of the polylactic acid segment, thereby improving the toughness of the polylactic acid composite to a certain extent.
  • the plasticizer is glycerin, polyglycerin, ethylene glycol, PEG-400, PEG-600, PEG-800, epoxy soybean oil, citrate At least one of acetyl citrate, triacetyl glyceride, and dioctyl adipate.
  • the plasticizers are all low molecular weight compounds, and they are liquid at room temperature. The low molecular weight plasticizer can more effectively promote the crystallization of polylactic acid and increase the heat-resistant temperature of polylactic acid to a certain extent.
  • the present invention also provides a method for preparing the polylactic acid composite material, which includes the following steps:
  • step (2) The master batch obtained in step (1) is fed into the twin-screw extruder in a main feeding manner, and talc is fed into the twin-screw extruder in a side feeding manner, and extruded and pelletized to obtain polylactic acid.
  • Composite material
  • the present invention Compared with the prior art, the present invention has the following beneficial effects: the present invention uses crystalline or semi-crystalline polylactic acid as the continuous phase, amorphous polylactic acid as the dispersed phase, and mean particle size of the non-crystalline polylactic acid particles used at the same time.
  • the diameter is not more than 1 ⁇ m, and the polylactic acid composite material thus obtained has significantly improved notched impact strength and a high heat distortion temperature.
  • polylactic acid composite material of the present invention uses amorphous polylactic acid as a continuous phase and crystalline or semi-crystalline polylactic acid as a crystalline phase. 1 is shown.
  • twin-screw extrusion The diameter of the screw exiting the machine is 26mm, the aspect ratio is 40, and the extrusion temperature is 130-210 ° C;
  • step (2) Add the masterbatch obtained in step (1) into the twin-screw extruder in a main feeding manner (from the 0th area of the twin-screw extruder), and simultaneously feed the talc powder in a side-feeding manner (extrusion from the twin-screw extruder).
  • the 4th area of the machine is added to the twin-screw extruder, and dispersed in the 5th and 6th areas of the twin-screw extruder.
  • the volatiles are removed in the 7th and 8th areas, and in the 9th area Extrusion granulation was performed to obtain a polylactic acid composite material.
  • test the notched impact strength according to ASTM D256 and use an injection molding machine to make the polylactic acid composite material into a spline required for measuring the heat distortion temperature (the injection temperature during preparation is 170-230 ° C, the mold Temperature 90 ⁇ 120 °C, cooling time 60 ⁇ 90s), heat distortion temperature HDT (test conditions: 0.45MPa, 6.4mm, side-mounted) of the spline produced according to ASTM D648 test.
  • the test results are shown in Table 1.
  • composition and properties of the polylactic acid composite material described in Examples 2 to 5 are shown in Table 1.
  • the preparation method and performance test method of the polylactic acid composite material described in Examples 2 to 5 are the same as those in Example 1.
  • the heat distortion temperature (HDT) of the polylactic acid composite material of the present invention is not lower than 85 ° C, or even greater than or equal to 95 ° C. Under certain conditions, the heat distortion temperature (HDT) of the polylactic acid composite material of the present invention It can also be not lower than 106 ° C; and the notched impact strength of the polylactic acid composite material of the present invention is greater than 54 J / m, and even higher than 70 J / m.
  • the average size of the crystalline phase in the polylactic acid composite material of the present invention affects the performance of the polylactic acid composite material.
  • the applicant prepared a test group and a control according to the method of Example 1.
  • the polylactic acid composite material was assembled and the properties of the polylactic acid composite material of the test group and the control group of this example were tested according to the method for testing the properties of the polylactic acid composite material described in Example 1 above.
  • composition and properties of the polylactic acid composite material of the test group and the control group are shown in Table 2.
  • amorphous polylactic acid PLA4060D, D-lactic acid is 12%, purchased from NatureWorks; the content of crystalline or semi-crystalline polylactic acid PLA4032D, L-lactic acid is 98.5%, purchased from NatureWorks; talc It is TYT-8875B, with an average particle size of 7-9 ⁇ m, purchased from Haicheng Tianyuan Chemical Co., Ltd .; calcium carbonate is 1T-CU, with an average particle diameter D 50 of 1.8 ⁇ m, purchased from Omya International AG; plasticizer is PEG 600, purchased At Hai'an Petrochemical Plant in Jiangsuzhou.
  • the obtained polylactic acid composite material when the average particle diameter of the crystalline phase is not greater than 1.0 ⁇ m, the obtained polylactic acid composite material has significantly improved notched impact strength and a higher thermal deformation temperature; When the particle size is not greater than 0.8 ⁇ m, the notched impact strength and thermal deformation temperature of the obtained polylactic acid composite material are more excellent; when the average particle size of the crystalline phase is not greater than 0.5 ⁇ m, the notched impact strength and The heat distortion temperature performance is the best.
  • the content of amorphous polylactic acid, crystalline or semi-crystalline polylactic acid in the polylactic acid composite material of the present invention affects the performance of the polylactic acid composite material.
  • the effect of the content of lactic acid on the properties of the polylactic acid composite material The applicant prepared the polylactic acid composite material of the test group and the control group according to the method of Example 1, and tested the performance of the polylactic acid composite material according to the method described in Example 1. The performances of the polylactic acid composite material of the experimental group and the control group of this example are described.
  • composition and properties of the polylactic acid composite material of the test group and the control group are shown in Table 3.
  • polylactic acid talc
  • calcium carbonate talc
  • plasticizers plasticizers
  • purchasers the types of polylactic acid, talc, calcium carbonate, plasticizers, and purchasers are the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明涉及一种聚乳酸复合材料及其制备方法,属于高分子改性材料技术领域。本发明的聚乳酸复合材料包括下述重量份的制备原料:聚乳酸55~80份,滑石粉10~35份,碳酸钙0~5份,增韧剂0~10份,加工助剂0~10份;其中,所述聚乳酸由(a)非结晶型聚乳酸和(b)结晶型或半结晶型聚乳酸组成;所述聚乳酸复合材料以非结晶型聚乳酸作为连续相,以结晶型或半结晶型聚乳酸作为结晶相,且所述聚乳酸复合材料中结晶相的平均尺寸不大于1μm。本发明以非结晶型聚乳酸作为连续相,结晶型或半结晶型聚乳酸作为结晶相,同时控制聚乳酸复合材料中结晶相平均尺寸不大于1μm,由此得到的聚乳酸复合材料具有显著提升的缺口冲击强度和较高的热变形温度。

Description

一种聚乳酸复合材料及其制备方法 技术领域
本发明涉及一种聚乳酸复合材料及其制备方法,属于高分子改性材料技术领域。
背景技术
聚乳酸树脂是一种以乳酸为单体,经化学合成或生物合成得到的高分子材料,其原料主要是玉米、马铃薯等。聚乳酸树脂价格低廉,同时由于其原料为自然农作物,碳排放极少。从安全性来看,聚乳酸无毒无刺激性,具有优异的透明性和生物降解性能,易被自然界多种微生物或动植物体内的酶分解代谢,最终形成二氧化碳和水,从而在一定程度上降低了白色污染,是理想的绿色高分子材料。
然而,聚乳酸存在性脆、抗冲击性能差、非晶型的高分子力学强度低以及成本较高等缺点,限制了其应用范围。此外,聚乳酸的热稳定性差,即使在低于熔融温度和热分解温度的条件下,也会由于降解的原因,加工时分子量大幅度下降,造成聚合物机械性能下降。为了克服上述缺点,尤其为了改善聚乳酸材料的韧性,可以采用对聚乳酸增韧的方法,主要包括共混、复合、共聚、增塑等方式。Cohn等采用“两步法”制得聚已内酯-PLA多嵌段共聚物,所述共聚物的力学性能随着PLA段相对分子量的提高,断裂伸长率可达到600%(Cohn D,designing biodegradable multi-block PCL/PLA thermoplastic elastomers,Biomaterials,2005:2297~2305)。张伟将超支化聚酰胺酯(HBP)和聚乳酸共混制备出高韧性的聚乳酸复合材料(张伟等,超支化聚酰胺酯对聚乳酸增韧改性的研究,合成纤维,2008:9~11)。
发明内容
本发明的目的在于克服现有技术的不足之处而提供一种缺口冲击强度和热变形温度均较高的聚乳酸复合材料及其制备方法。
为实现上述目的,本发明采取的技术方案为:一种聚乳酸复合材料,其包括下述重量份的制备原料:聚乳酸55~80份,滑石粉10~35份,碳酸钙0~5份,增韧剂0~10份,加工助剂0~4份;其中,所述聚乳酸由(a)非结晶型聚乳酸和(b)结晶型或半结晶型聚乳酸组成;所述聚乳酸复合材料以非结晶型聚乳酸作为连续相,以结晶型或半结晶型聚乳酸作为结晶相,且所述聚乳酸复合材料中结晶相的平均尺寸不大于1μm。
纯的结晶型或半结晶型聚乳酸在合适的结晶温度和足够长的结晶时间下,可以形成尺寸较大的球晶,具有大尺寸球晶的聚乳酸复合材料在受到冲击作用时,由于大尺寸的球晶无法很好地吸收外部能量而易发生脆性断裂,材料韧性较差。
聚乳酸复合材料中结晶相尺寸大小合适且分布均匀时,分散的聚乳酸晶体在受到冲击作用时,容易形成空洞或脱粘。结晶相聚乳酸的空洞相当于应力集中,导致了基质的屈服。粒子成穴和空洞形成产生了一种新的应力分布,这种应力分布促进基质塑性形变的开始。塑性形变能有效地驱散断裂能,引起冲击强度高度提升。
结晶型或半结晶型聚乳酸玻璃化转变温度Tg约55℃左右,由于聚乳酸分子链结构位阻较大,导致聚乳酸在常温或常规的加工条件下难以结晶,所以其热变形温度通常只有55℃左右。而对于非结晶聚乳酸,由于其本身的无定形结构,导致其热变形温度更低,通常在55℃左右即发生结块,难以应用。
本发明以结晶型或半结晶型聚乳酸作为结晶相(结晶相应为分散相),非结晶型聚乳酸作为连续相,同时限定聚乳酸复合材料中结晶相的平均尺寸不大于1μm,不仅有利于聚乳酸结晶时形成分布更为均匀的细小球晶粒子,防止材料受到冲击时发生脆性断裂;而且均匀分布的晶体更有利于吸收外部的冲击能,提升材料的抗冲击强度。此外,由于结晶能力的提升,材料的热变形温度也得到了提升。因此,本发明的聚乳酸复合材料具有显著提升的缺口冲击强度和较高的热变形温度。
本发明的聚乳酸复合材料可通过注塑、吸塑、挤出的方式加工得到注塑件、 吸塑件和线材等制品。
需说明的是,本发明在相对于挤出流的方向、或者总之相对于材料输出的方向的横断面上测量聚乳酸复合材料中作为结晶相的结晶型聚乳酸晶相的平均尺寸。由此,在由横断面得到的二维形状上测量作为分散相的结晶型聚乳酸晶相的平均尺寸。
上述作为分散相的结晶型聚乳酸晶相的平均尺寸以分散相颗粒尺寸的数字平均值来计算。在球形颗粒的情况下,颗粒尺寸对应于圆直径。
在非球形颗粒的情况下,依据下式计算颗粒尺寸(d):
d=(d 1·d 2) 1/2
其中d 1为所述颗粒可内接或逼近于其的椭圆的小直径,且d 2为大直径。
可以有利地用THF作为刻蚀剂在25℃刻蚀温度下,以30分钟刻蚀时间进行非结晶型聚乳酸连续相的选择性刻蚀,未被刻蚀的部分即为结晶相的结晶型聚乳酸。
作为本发明所述聚乳酸复合材料的优选实施方式,所述聚乳酸复合材料中结晶相的平均尺寸不大于0.8μm。更优选地,所述聚乳酸复合材料中结晶相的平均尺寸不大于0.5μm。研究表明,所述聚乳酸复合材料中结晶相的平均尺寸不大于0.8μm时,得到的聚乳酸复合材料的缺口冲击强度和热变形温度性能更优异;当聚乳酸复合材料中结晶相的平均尺寸不大于0.5μm时,得到的聚乳酸复合材料的缺口冲击强度和热变形温度性能最优异。
作为本发明所述聚乳酸复合材料的优选实施方式,所述结晶型或半结晶型聚乳酸含有重量百分比为95%以上的L-乳酸;所述非结晶型聚乳酸含有重量百分比为12%以上的D-乳酸。以丙交酯开环缩聚合成得到的聚乳酸,通常为含有L-乳酸和D-乳酸的聚乳酸聚合物的混合物。当聚乳酸中D-乳酸含量超过10%时,所述聚乳酸通常为无定型聚乳酸,材料偏软;而当聚乳酸中D-乳酸含量低于5%时,聚乳酸具有较好的结晶效果,易于形成分散均匀的球晶颗粒。
作为本发明所述聚乳酸复合材料的优选实施方式,所述聚乳酸中,结晶型或半结晶型聚乳酸的重量百分比为65%~95%,非结晶型聚乳酸的重量百分比为 5%~35%。
作为本发明所述聚乳酸复合材料的更优选实施方式,所述聚乳酸中,结晶型或半结晶型聚乳酸的重量百分比为75%~85%,非结晶型聚乳酸的重量百分比为15%~25%。
作为本发明所述聚乳酸复合材料的优选实施方式,如下(a)~(d)中的至少一项:
(a)所述滑石粉的平均粒径D 50为5~13μm;
(b)所述碳酸钙的平均粒径D 50为1~7μm;
(c)所述增韧剂为脂肪族聚酯或脂肪族-芳香族共聚酯;
(d)所述加工助剂为脱模剂、表面活性剂、蜡、防静电剂、染料、成核剂、抗氧剂中的至少一种。
滑石粉作为填充材料可以提高聚乳酸复合材料的机械性能,滑石粉的粒径过大,成核作用偏弱,聚乳酸复合材料结晶度较低,耐热温度不高;滑石粉粒径过小,在加工过程中不易在聚合物中分散,造成粉体团聚,影响了滑石粉的成核效果和聚乳酸复合材料冲击性能,并且滑石粉粒径越小,价格越高,产品性价比越低。综合考虑滑石粉的成核作用、聚乳酸复合材料的耐热温度与冲击性能,选择滑石粉的的平均粒径D 50为5~13μm。
碳酸钙粒子为球形颗粒,球形颗粒的存在可以起到一定的润滑作用。材料受到外力冲击时,球形粒子的滑移可以在一定程度上减弱外力的冲击能。与滑石粉类似,碳酸钙粒径粒径过大,润滑作用偏弱;碳酸钙粒径过小,在加工过程中不易在聚合物中分散,造成粉体团聚。为了使碳酸钙的润滑作用较佳,且在聚合物中易于分散,发明人选择碳酸钙的平均粒径D 50为1~7μm。
不同加工助剂会给聚乳酸复合材料的性能产生不同的影响,例如:染料会改变聚乳酸复合材料的颜色,抗氧剂能增强聚乳酸复合材料的抗氧化性能。实际应用中,可根据实际性能需要选择具体的加工助剂或加工助剂组合,以及具体的加工助剂用量。作为本发明所述聚乳酸复合材料的优选实施方式,所述脱模剂为:硅酮母粒、蒙坦蜡、芥酸酰胺或油酸酰胺;所述表面活性剂为聚山梨 醇酯、棕榈酸酯、月桂酸酯中的至少一种;所述蜡为芥酸酰胺、硬脂酰胺、山嵛酸酰胺、蜂蜡、蜂蜡酯中的至少一种;所述防静电剂为永久性抗静电剂,优选为PELESTAT-230、PELESTAT-6500、SUNNICO ASA-2500中的至少一种;所述染料为炭黑、黑种、钛白粉、硫化锌、酞青蓝、荧光橙中的至少一种;所述抗氧剂为主抗氧剂、辅助抗氧剂中的至少一种;所述成核剂为碳酸钠、碳酸氢钠、一元羧酸的金属盐、安息香酸的金属盐、有机磷化合物的金属盐、聚酯齐聚物的碱金属盐中的至少一种。
作为本发明所述聚乳酸复合材料的优选实施方式,所述聚乳酸复合材料还包括增塑剂,所述增塑剂为0.5~5重量份。增塑剂加入聚乳酸中,有助于促进聚乳酸链段的运动,从而在一定程度上提高聚乳酸复合材料的韧性。作为本发明所述聚乳酸复合材料的更优选实施方式,所述增塑剂为甘油、聚甘油、乙二醇、PEG-400、PEG-600、PEG-800、环氧大豆油、柠檬酸酯、乙酰柠檬酸酯、三乙酰甘油酯、己二酸二辛酯中的至少一种。所述增塑剂均是低分子量化合物,它们在室温下呈液态,低分子量增塑剂能够更有效促进聚乳酸的结晶,在一定程度上提高聚乳酸的耐热温度。
另外,本发明还提供了上述聚乳酸复合材料的制备方法,其包括以下步骤:
(1)称取聚乳酸复合材料中除滑石粉以外的各组分,混合均匀后投入双螺旋挤出机中,挤出、造粒,得到母粒;
(2)将步骤(1)所得母粒以主喂的方式加入双螺旋挤出机中,同时将滑石粉以侧喂的方式加入双螺旋挤出机中,挤出、造粒,得到聚乳酸复合材料。
与现有技术相比,本发明的有益效果为:本发明以结晶型或半结晶型聚乳酸作为连续相,非结晶型聚乳酸作为分散相,同时采用的非结晶型聚乳酸颗粒的平均粒径不大于1μm,由此得到的聚乳酸复合材料具有显著提升的缺口冲击强度和较高的热变形温度。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明聚乳酸复合材料的一种实施例,本实施例所述聚乳酸复合材料以非结晶型聚乳酸作为连续相,以结晶型或半结晶型聚乳酸作为结晶相,其组成组分如表1所示。
本实施例所述聚乳酸复合材料的制备方法为:
(1)称取聚乳酸复合材料中除滑石粉以外的各组分,混合均匀后,通过同向双螺旋挤出机(Coperion公司)挤出、造粒,得到母粒;其中,双螺旋挤出机的螺杆直径为26mm,长径比为40,挤出温度为130~210℃;
(2)将步骤(1)所得母粒以主喂的方式(从双螺旋挤出机的第0区域)加入双螺旋挤出机中,同时将滑石粉以侧喂的方式(从双螺旋挤出机的第4区域)加入双螺旋挤出机中,并在双螺旋挤出机的第5区域和第6区域进行分散,在第7区域和第8区域脱除挥发分,在第9区域进行挤出造粒,得到聚乳酸复合材料。
得到上述聚乳酸复合材料后,按照ASTM D256测试其缺口冲击强度,并采用注塑机将聚乳酸复合材料制成测定热变形温度所需的样条(制备时,注塑温度为170~230℃,模温90~120℃,冷却时间60~90s),按照ASTM D648测试制得的样条的热变形温度HDT(测试条件:0.45MPa,6.4mm,侧放)。测试结果如表1所示。
实施例2~5
实施例2~5所述聚乳酸复合材料的组成组分及性能均如表1所示,实施例2~5所述聚乳酸复合材料的制备方法及性能测试方法均同实施例1。
表1
Figure PCTCN2019088761-appb-000001
Figure PCTCN2019088761-appb-000002
由表1可见,本发明聚乳酸复合材料的热变形温度(HDT)不低于85℃,甚至大于或等于95℃,在一定的条件下,本发明聚乳酸复合材料的热变形温度(HDT)还可以不低于106℃;并且,本发明聚乳酸复合材料的缺口冲击强度大于54J/m,甚至还可高于70J/m。
实施例6
本发明聚乳酸复合材料中结晶相的平均尺寸影响聚乳酸复合材料的性能,为考察结晶相的平均尺寸对聚乳酸复合材料性能的影响,申请人按照实施例1的方法制备了试验组和对照组聚乳酸复合材料,并按照上述实施例1所述聚乳酸复合材料性能的测试方法,测试了本实施例试验组和对照组聚乳酸复合材料的性能。
本实施例中,试验组和对照组聚乳酸复合材料的组成组分及性能如表2所示。
表2
Figure PCTCN2019088761-appb-000003
Figure PCTCN2019088761-appb-000004
上述表2中,非结晶型聚乳酸PLA4060D,D-乳酸的含量为12%,购买于NatureWorks;结晶型或半结晶型聚乳酸PLA4032D,L-乳酸的含量为98.5%,购买于NatureWorks;滑石粉为TYT-8875B,平均粒径为7~9μm,购买于海城添源化工有限公司;碳酸钙为1T-CU平均粒径D 50为1.8μm,购买于Omya InternationalAG;增塑剂为PEG 600,购买于江苏省海安石油化工厂。
由表2可见,本发明聚乳酸复合材料中,结晶相的平均粒径不大于1.0μm时,得到的聚乳酸复合材料具有显著提升的缺口冲击强度和较高的热变形温度;结晶相的平均粒径不大于0.8μm时,得到的聚乳酸复合材料的缺口冲击强度和热变形温度性能更优异;当结晶相的平均粒径不大于0.5μm时,得到的聚乳酸复合材料的缺口冲击强度和热变形温度性能最优异。
同时,申请人还按照上述方法考察了聚乳酸、滑石粉、碳酸钙、增塑剂为本发明所述其他物质和其他重量份时,非结晶型聚乳酸的平均粒径对聚乳酸复合材料性能的影响,均得出与表2相一致的结果,在此不一一赘述。
实施例7
本发明聚乳酸复合材料中非结晶型聚乳酸、结晶型或半结晶型聚乳酸在聚乳酸中的含量影响聚乳酸复合材料的性能,为考察非结晶型聚乳酸、结晶型或半结晶型聚乳酸的含量对聚乳酸复合材料性能的影响,申请人按照实施例1的方法制备了试验组和对照组聚乳酸复合材料,并按照上述实施例1所述聚乳酸复合材料性能的测试方法,测试了本实施例试验组和对照组聚乳酸复合材料的性能。
本实施例中,试验组和对照组聚乳酸复合材料的组成组分和性能如表3所示。
表3
Figure PCTCN2019088761-appb-000005
Figure PCTCN2019088761-appb-000006
本实施例中,聚乳酸、滑石粉、碳酸钙、增塑剂的类型以及购买厂家均同
实施例6。
将表3中对照组2和4与试验组1~5进行比较,发现,只有当结晶型或半结晶型聚乳酸与非结晶型聚乳酸同时存在时,得到的聚乳酸复合材料才具有优异的缺口冲击强度和热变形温度性能。进一步比较各试验组与对照组,发现:聚乳酸中,结晶型或半结晶型聚乳酸的重量百分比为65%~95%,非结晶型聚乳酸的重量百分比为5%~35%时,得到的聚乳酸复合材料的缺口冲击强度和热变形温度性能更优异;当聚乳酸中结晶型或半结晶型聚乳酸的重量百分比为75%~85%,非结晶型聚乳酸的重量百分比为15%~25%时,得到的聚乳酸复合材料的缺口冲击强度和热变形温度性能最优异。
同时,申请人还按照上述方法考察了聚乳酸、滑石粉、碳酸钙、增塑剂为本发明所述其他物质和其他重量份时,非结晶型聚乳酸、结晶型或半结晶型聚乳酸在聚乳酸中的含量对聚乳酸复合材料性能的影响,均得出与表3相一致的结果,在此不一一赘述。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种聚乳酸复合材料,其特征在于,包括下述重量份的制备原料:聚乳酸55~80份,滑石粉10~35份,碳酸钙0~5份,增韧剂0~10份,加工助剂0~4份;其中,所述聚乳酸由(a)非结晶型聚乳酸和(b)结晶型或半结晶型聚乳酸组成;所述聚乳酸复合材料以非结晶型聚乳酸作为连续相,以结晶型或半结晶型聚乳酸作为结晶相,且所述聚乳酸复合材料中结晶相的平均尺寸不大于1μm。
  2. 如权利要求1所述的聚乳酸复合材料,其特征在于,所述聚乳酸复合材料中结晶相的平均尺寸不大于0.8μm。
  3. 如权利要求2所述的聚乳酸复合材料,其特征在于,所述聚乳酸复合材料中结晶相的平均尺寸不大于0.5μm。
  4. 如权利要求1所述的聚乳酸复合材料,其特征在于,所述结晶型或半结晶型聚乳酸含有重量百分比为95%以上的L-乳酸;所述非结晶型聚乳酸含有重量百分比为12%以上的D-乳酸。
  5. 如权利要求1~4任一项所述的聚乳酸复合材料,其特征在于,所述聚乳酸中,结晶型或半结晶型聚乳酸的重量百分比为65%~95%,非结晶型聚乳酸的重量百分比为5%~35%。
  6. 如权利要求5所述的聚乳酸复合材料,其特征在于,所述聚乳酸中,结晶型或半结晶型聚乳酸的重量百分比为75%~85%,非结晶型聚乳酸的重量百分比为15%~25%。
  7. 如权利要求1所述的聚乳酸复合材料,其特征在于,如下(a)~(d)中的至少一项:
    (a)所述滑石粉的平均粒径D 50为5~13μm;
    (b)所述碳酸钙的平均粒径D 50为1~7μm;
    (c)所述增韧剂为脂肪族聚酯或脂肪族-芳香族共聚酯;
    (d)所述加工助剂为脱模剂、表面活性剂、蜡、防静电剂、染料、成核剂、 抗氧剂中的至少一种。
  8. 如权利要求1所述的聚乳酸复合材料,其特征在于,还包括增塑剂,所述增塑剂为0.5~5重量份。
  9. 如权利要求8所述的聚乳酸复合材料,其特征在于,所述增塑剂为甘油、聚甘油、乙二醇、PEG-400、PEG-600、PEG-800、环氧大豆油、柠檬酸酯、乙酰柠檬酸酯、三乙酰甘油酯、己二酸二辛酯中的至少一种。
  10. 如权利要求1~9任一项所述聚乳酸复合材料的制备方法,其特征在于,包括以下步骤:
    (1)称取聚乳酸复合材料中除滑石粉以外的各组分,混合均匀后投入双螺旋挤出机中,挤出、造粒,得到母粒;
    (2)将步骤(1)所得母粒以主喂的方式加入双螺旋挤出机中,同时将滑石粉以侧喂的方式加入双螺旋挤出机中,挤出、造粒,得到聚乳酸复合材料。
PCT/CN2019/088761 2018-08-17 2019-05-28 一种聚乳酸复合材料及其制备方法 WO2020034714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019100618A AU2019100618A4 (en) 2019-05-28 2019-06-08 Polylactic acid composite material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810946952.0 2018-08-17
CN201810946952.0A CN109354842B (zh) 2018-08-17 2018-08-17 一种聚乳酸复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020034714A1 true WO2020034714A1 (zh) 2020-02-20

Family

ID=65350150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088761 WO2020034714A1 (zh) 2018-08-17 2019-05-28 一种聚乳酸复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN109354842B (zh)
WO (1) WO2020034714A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354842B (zh) * 2018-08-17 2020-04-28 金发科技股份有限公司 一种聚乳酸复合材料及其制备方法
TWI714111B (zh) * 2019-06-03 2020-12-21 亞東技術學院 聚乳酸樹脂組成物及其製備方法
CN110980043A (zh) * 2019-11-25 2020-04-10 西安和光明宸科技有限公司 一种垃圾桶
CN110916512A (zh) * 2019-11-25 2020-03-27 西安和光明宸科技有限公司 一种防粘蒸锅
CN112961481A (zh) * 2021-03-16 2021-06-15 深圳金大全科技有限公司 全生物降解耐热超韧高光泽耐低温pla材料配方及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1771281A (zh) * 2003-05-27 2006-05-10 旭化成生活制品株式会社 可生物降解的树脂膜或片及其制造方法
WO2013116763A1 (en) * 2012-02-03 2013-08-08 Ecospan Usa Bioplastic compositions and related methods
KR20150055266A (ko) * 2013-11-13 2015-05-21 (주)우성케미칼 폴리 락트산을 포함하는 시트 성형용 생분해성 조성물
CN109354842A (zh) * 2018-08-17 2019-02-19 金发科技股份有限公司 一种聚乳酸复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204128A (ja) * 2002-12-26 2004-07-22 Mitsubishi Plastics Ind Ltd 熱成形用ポリ乳酸系重合体組成物、熱成形用ポリ乳酸系重合体シート、及びこれを用いた熱成形体
CN106349667A (zh) * 2016-08-31 2017-01-25 深圳市虹彩新材料科技有限公司 一种高强度高耐热聚乳酸复合材料及其制备方法
CN108102319B (zh) * 2017-11-27 2020-06-23 金发科技股份有限公司 一种聚乳酸复合材料及其制备方法应用
CN108193317A (zh) * 2017-12-28 2018-06-22 上海德福伦化纤有限公司 一种高熔点中空聚乳酸纤维及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1771281A (zh) * 2003-05-27 2006-05-10 旭化成生活制品株式会社 可生物降解的树脂膜或片及其制造方法
WO2013116763A1 (en) * 2012-02-03 2013-08-08 Ecospan Usa Bioplastic compositions and related methods
KR20150055266A (ko) * 2013-11-13 2015-05-21 (주)우성케미칼 폴리 락트산을 포함하는 시트 성형용 생분해성 조성물
CN109354842A (zh) * 2018-08-17 2019-02-19 金发科技股份有限公司 一种聚乳酸复合材料及其制备方法

Also Published As

Publication number Publication date
CN109354842A (zh) 2019-02-19
CN109354842B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2020034714A1 (zh) 一种聚乳酸复合材料及其制备方法
AU2019100618A4 (en) Polylactic acid composite material and preparation method thereof
JP5036539B2 (ja) 生分解性ポリエステル樹脂組成物、その製造方法、同組成物を成形してなる成形体
JP4611214B2 (ja) 生分解性樹脂組成物
RU2605592C2 (ru) Биологически разлагаемая полимерная композиция с высокой деформируемостью
JP6457644B2 (ja) ポリラクチド成形品およびその製造法
CN108192304B (zh) 一种聚乳酸薄膜和一种聚乳酸薄膜的制备方法
CN111205604B (zh) 超薄高强高韧生物降解地膜材料及薄膜和制备方法及应用
WO2024045338A1 (zh) 一种可降解材料的造粒加工方法及其制备的成型体
CN104804388A (zh) 高立构复合物含量的高分子量聚乳酸材料的制备方法
CN113004669A (zh) 一种耐热pla吸管及其制备方法
WO2022134381A1 (zh) 一种高结晶性的改性pga材料及其制备方法
WO2023245997A1 (zh) 可海洋降解的聚羟基烷酸酯组合物、成型体及其制备方法
TW202348722A (zh) 含醇類成核劑的聚羥基烷酸酯組合物、聚羥基烷酸酯成型體及其製備方法
WO2024060635A1 (zh) 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN103421285A (zh) 一种环境友好耐热型聚乳酸及其制备方法
WO2024007494A1 (zh) 一种聚羟基烷酸酯成型体及其制备方法
KR101820247B1 (ko) 투명성 및 내열성이 우수한 폴리유산 스테레오 콤플렉스 수지 조성물
CN106751610A (zh) 一种聚乳酸仿瓷材料及其制备方法
CN113429762A (zh) 一种淀粉/聚乳酸/pbat纳米复合材料及其制备方法
JP2011080035A (ja) ポリ乳酸系成形体の製造方法
JP2013172678A (ja) 生分解性マルチフィルム
CN106893276A (zh) 一种高柔韧性和耐热性聚乳酸改性材料及其制备方法
JP2006143829A (ja) ポリ乳酸系樹脂成形品及びその製造方法
CN103865245A (zh) 一种抗水解聚乳酸树脂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849923

Country of ref document: EP

Kind code of ref document: A1