WO2023206886A1 - 超低介电损耗球形二氧化硅微粉的制备方法 - Google Patents

超低介电损耗球形二氧化硅微粉的制备方法 Download PDF

Info

Publication number
WO2023206886A1
WO2023206886A1 PCT/CN2022/115380 CN2022115380W WO2023206886A1 WO 2023206886 A1 WO2023206886 A1 WO 2023206886A1 CN 2022115380 W CN2022115380 W CN 2022115380W WO 2023206886 A1 WO2023206886 A1 WO 2023206886A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
spherical silica
oxygen
preparation
dielectric loss
Prior art date
Application number
PCT/CN2022/115380
Other languages
English (en)
French (fr)
Inventor
张建平
曹家凯
李晓冬
姜兵
冯宝琦
朱刚
Original Assignee
江苏联瑞新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏联瑞新材料股份有限公司 filed Critical 江苏联瑞新材料股份有限公司
Priority to DE112022000095.3T priority Critical patent/DE112022000095T5/de
Priority to KR1020237025831A priority patent/KR20230153999A/ko
Priority to JP2022574483A priority patent/JP2024519512A/ja
Publication of WO2023206886A1 publication Critical patent/WO2023206886A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention belongs to the technical field of preparation of high-performance fillers and relates to a preparation method of ultra-low dielectric loss spherical silica powder.
  • the fifth generation mobile communication system not only greatly improves the mobile Internet business experience, but also fully supports the Internet of Things business and realizes massive intelligent interconnection between people, people and things, and things and things. This requires higher data transmission rates, lower data transmission delays and better high-speed communication capabilities.
  • dielectric loss, Df dielectric loss
  • silicon oxide needs to meet the following requirements: first, it can achieve high filler filling; second, it can reduce the Df value of silicon oxide itself.
  • the Df value of silicon oxide itself is affected by its purity, such as the content of impurity elements, including Fe/C, etc., and also by polar molecules/functional groups, including water/hydroxyl groups, etc. How to further reduce the Df value of silicon oxide has become a current research hotspot.
  • Chinese patent application CN 113614036 A achieves the reduction of the dielectric loss tangent of spherical silica powder by heating the spherical silica powder at 500-1100°C, controlling the roundness to be above 0.85, performing surface treatment and storing it in moisture-proof bags .
  • Chinese patent application CN1123996A uses polyorganosiloxane compounds to surface treat metal oxide particle materials to reduce their Df value.
  • Chinese patent application CN 110938238 A uses silica particle materials to remove moisture at 200°C, and then uses silane compounds for surface treatment to reduce its Df value. The above methods all first remove the moisture in the material, and then use silane compounds for surface treatment to reduce the dielectric loss tangent value of the material.
  • Chinese patent application CN 113666380A adds a blocking agent to the mixed solution of nano-aqueous silica sol solution and crystal seeds, obtains silica powder with blocking agent attached by a hydrothermal reaction method, and then prepares spherical silica powder through a calcination process. Silica powder can effectively increase the yield while ensuring the balling rate. The prepared spherical silica has low dielectric loss and narrow particle size distribution.
  • Chinese patent application CN 112745529 A also uses a narrow specific surface area control method to improve dielectric properties.
  • the above method mainly reduces the dielectric loss tangent value by controlling the narrow particle size distribution of the powder, but has the following shortcomings: the range of reduction of the dielectric loss tangent value is limited, and the narrow particle size distribution is unfavorable for high filling applications, thus increasing the number of applications. The difficulty of time grading limits its application in the field of electronic packaging.
  • the present invention provides a method for preparing ultra-low dielectric loss spherical silica powder.
  • This method treats spherical silica powder at high temperature in an oxidant atmosphere to remove impurities such as moisture, carbon, and metals, then directly enters a non-polar gas atmosphere to cool to room temperature, and is finally packed with inert gas to effectively reduce its dielectric Loss, product quality is stable and controllable.
  • the preparation method of ultra-low dielectric loss spherical silica powder includes the following steps:
  • Step 1 In the atmosphere of dry oxidant, spherical silica powder is first treated at 150-300°C for 3-24h, and then at 800-1200°C for 24-90h.
  • the oxidant is selected from oxygen, rich Oxygen air or ozone;
  • Step 2 Cool the spherical silica powder processed in Step 1 to room temperature in a non-polar gas atmosphere;
  • Step 3 Fill the cooled silica powder with inert gas and pack it.
  • step 1 the median particle size D50 of the spherical silica powder is 0.1 to 150 ⁇ m, and the sphericity is >0.99.
  • step 1 spherical silica powder is prepared using existing methods, which include flame spheroidization.
  • the specific steps for preparing spherical silica powder using the flame spheroidization method are as follows:
  • silica powder or silica sol with a purity of more than 99.9% and a total metal oxide content of less than 100ppm as raw materials, oxygen as a carrier gas, 1 to 5 carbon alkanes or H 2 as a combustible gas, and oxygen as a combustion accelerant. They are introduced into reaction vessels respectively and ignited. Under the flame temperature of 2400-3200°C, the powder or silica sol is melted and cooled into balls at high temperature to form spherical silica powder.
  • the spherical silica powder is first treated at 250-300°C for 10-24 hours, and then at 1100-1200°C for 48-90 hours.
  • the non-polar gas is selected from argon, helium, neon, nitrogen, oxygen or carbon dioxide.
  • step 2 the room temperature is 10 to 30°C.
  • the inert gas is selected from nitrogen, argon, helium or neon.
  • the present invention starts from two perspectives to achieve ultra-low dielectric loss of silica powder.
  • the first is to remove inorganic carbon and metals in the micropowder. Since inorganic carbon and metals will affect the Df of the silica micropowder, the present invention first removes the inorganic carbon of the conductive material through the reaction with carbon under high temperature conditions in an oxidant atmosphere; At the same time, it reacts with the metal (such as Fe) introduced by the micron powder to generate metal oxide, removing part of the metal.
  • the metal such as Fe
  • the second is to remove polar molecules such as bound water in the micropowder, using a segmented heating method to first remove the bound water of the micropowder at a lower temperature to avoid agglomeration between the micropowders caused by directly rising to high temperatures.
  • the present invention has the following advantages:
  • the present invention selects ultra-high-purity raw materials, prepares spherical silica powder with a relatively small specific surface area and high sphericity through flame method, processes it at high temperature in an oxidant atmosphere to remove moisture, metal and inorganic carbon, and directly enters it into a non-polar gas atmosphere. Cool to room temperature, fill with inert gas and package, and the relevant processes are carried out under the protection of inert gas.
  • the quality of the product prepared by the invention is stable, and the dielectric loss reduction rate is more than 30%, and can reach up to 67%.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A was treated at 200°C for 3 hours and 1100°C for 48 hours to prepare spherical silica powder B. Cool to room temperature for 10 h in an atmosphere of non-polar argon gas 2. After being sealed and packaged with nitrogen, spherical silica powder C was obtained, with an average particle size of 2.5 ⁇ m, a specific surface area of 3.6 m 2 /g, and a sphericity of 0.993.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A was treated at 150°C for 10 hours and 800°C for 60 hours to prepare spherical silica powder B. Cool to room temperature for 10 hours in an atmosphere of non-polar nitrogen gas 2, and seal and package with nitrogen to obtain spherical silica powder C with an average particle size of 2.2 ⁇ m, a specific surface area of 3.8 m 2 /g, and a sphericity of 0.995.
  • angular silica powder with an average particle size of 8 ⁇ m and a purity of 99.95% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A was treated at 300°C for 24 hours and 1200°C for 90 hours to prepare spherical silica powder B. Cool to room temperature for 10 hours in an atmosphere of non-polar argon gas 2, and seal and package with nitrogen to obtain spherical silica powder C with an average particle size of 9.2 ⁇ m, a specific surface area of 0.86 m 2 /g, and a sphericity of 0.991.
  • angular silica powder with an average particle size of 35 ⁇ m and a purity of 99.90% as the raw material, using oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant, they are introduced into the reaction vessel respectively, ignited, and melted at a high temperature of 2400 to 3200°C. Form into balls to obtain spherical silica powder A.
  • spherical silica fine powder A was sequentially treated at 250°C for 24 hours and 900°C for 24 hours to prepare spherical silica powder B. Cool to room temperature for 10 hours in an atmosphere of non-polar nitrogen gas 2, then seal and package with nitrogen to obtain spherical silica powder C with an average particle size of 39 ⁇ m, a specific surface area of 0.36 m 2 /g, and a sphericity of 0.992.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A. Spherical silica powder A is directly combined with polyethylene resin to form a cured product without treatment, and the dielectric loss is tested.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A was treated at 200°C for 3 hours and 1100°C for 48 hours to prepare spherical silica powder B. Cool to room temperature for 10 hours under open conditions, then seal and package with nitrogen to obtain spherical silica powder C with an average particle size of 2.4 ⁇ m, a specific surface area of 3.7 m 2 /g, and a sphericity of 0.994.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A was treated at 200°C for 3 hours and 400°C for 48 hours to prepare spherical silica powder B. Cool to room temperature for 10 hours in an atmosphere of non-polar argon gas 2, and seal and package with nitrogen to obtain spherical silica powder C with an average particle size of 2.4 ⁇ m, a specific surface area of 3.8 m 2 /g, and a sphericity of 0.993.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A was treated at 200°C for 3 hours and 1500°C for 96 hours to obtain spherical silica powder B.
  • the powder was agglomerated into lumps. Because the temperature in the high-temperature section was too high, the temperature exceeded The melting point of the powder, the powder melts into blocks.
  • angular silica powder with an average particle size of 8 ⁇ m and a purity of 99.95% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica powder A is directly treated at 1200°C for 90 hours to prepare spherical silica powder B. Cool to room temperature for 10 hours in an atmosphere of non-polar argon gas 2, then seal and package with nitrogen to obtain spherical silica powder C.
  • the average particle size is 15.6 ⁇ m, and the particle size distribution has a tail, indicating that directly rising to high temperatures can easily cause Reunion among micro-powders.
  • angular silica powder with an average particle size of 2 ⁇ m and a purity of 99.92% as the raw material, oxygen as the carrier gas, H 2 as the combustible gas, and oxygen as the combustion accelerant. They are introduced into the reaction vessel respectively, ignited, and heated at 2400 to 3200°C. Melt into balls at high temperature to prepare spherical silica powder A.
  • spherical silica fine powder A was sequentially treated at 200°C for 3 hours and then at 1100°C for 48 hours in a dry argon atmosphere to prepare spherical silica powder B. Cool to room temperature for 10 hours in an atmosphere of non-polar argon gas 2, and seal and package with nitrogen to obtain spherical silica powder C with an average particle size of 2.6 ⁇ m, a specific surface area of 3.5 m 2 /g, and a sphericity of 0.993.
  • Examples 1 to 4 reduced the polar molecules and foreign matter in the spherical silica powder through two-step heat treatment, different particle sizes, and different atmospheres (such as C and Fe), thus reducing Df.
  • the temperature of heat treatment 2 is higher (1200°C) and the treatment time is longer, and the atmosphere 1 is oxygen, the metal foreign matter and carbon content are the lowest, and the corresponding Df is also the lowest, with a reduction of 67%.
  • Comparative Example 2 does not require atmosphere protection and directly performs heat treatment under open conditions. The number of metals is too large and moisture is absorbed during the cooling process, resulting in a reduction of Df of only 22%.
  • Comparative Example 3 and Comparative Example 6 respectively controlled the temperature of heat treatment 2 to be too low and the atmosphere 1 to be adjusted to argon. The degree of reduction of foreign matter was not enough, so the decrease in Df was not obvious. Comparative Examples 4 and 5 respectively control the temperature of heat treatment 2 to be too high (1500°C) and remove heat treatment 1. Direct high temperature will cause the powder to agglomerate into large particles or lumps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种超低介电损耗球形二氧化硅微粉的制备方法。所述方法通过将球形二氧化硅微粉在氧化剂的氛围中高温处理,除去水分和碳以及金属等杂质,然后直接进入非极性气体气氛下冷却至室温,最后充惰性气体包装。本发明方法能够有效降低球形二氧化硅微粉的介电损耗,介电损耗降低率达30%以上,最高可达67%,且产品质量稳定可控。

Description

超低介电损耗球形二氧化硅微粉的制备方法
本申请要求于2022年04月25日提交中国专利局、申请号为CN202210442307.1、发明名称为“超低介电损耗球形二氧化硅微粉的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于高性能填料的制备技术领域,涉及一种超低介电损耗球形二氧化硅微粉的制备方法。
背景技术
第五代移动通信系统(5G)作为4G的延伸技术,在大幅提升移动互联网业务体验的同时,全面支持物联网业务,实现人与人、人与物、物与物之间的海量智能互联。这需要更高的数据传输速率、更低的数据传输延时以及更好的高速通信能力。材料的损耗角正切值(以下称为介电损耗,Df)越低,功率损耗就越低。因此低介电损耗Df印制电路板才能满足5G传输时更低的讯号损失。氧化硅作为印制电路板中的重要填料,需要满足以下要求:一是可实现填料高填充;二是降低氧化硅本身的Df值。氧化硅本身的Df值受到其纯度的影响,如杂质元素的含量,杂质元素包括Fe/C等,也受到极性分子/官能团的影响,极性分子/官能团包括水/羟基等。如何进一步降低氧化硅的Df值,成为了当前的研究热点。
中国专利申请CN 113614036 A采用将球状二氧化硅粉末在500~1100℃下加热,控制圆度在0.85以上以及进行表面处理和防潮袋保存的方式实现球状二氧化硅粉末介电损耗角正切的降低。中国专利申请CN1123996A利用聚有机硅氧烷化合物对金属氧化物粒子材料进行表面处理,降低其Df值。中国专利申请CN 110938238 A采用对二氧化硅粒子材料在200℃除去水分后,利用硅烷化合物进行表面处理,降低其Df值。上述方法均是先除去材料中的水分,然后使用硅烷化合物进行表面处理,降低材料的介电损耗正切值,但是仍存在如下不足:如果表面改性剂类型选择不当,工艺处理不当,会导致后续存储和使用过程中材料重新吸附水分;或者表面处理过程中吸附部分水分会造成介电损耗降低波动大, 质量不稳定,达不到预期效果。
中国专利申请CN 113666380A通过向纳米水性二氧化硅溶胶溶液与晶种的混合溶液中添加阻隔剂,以水热反应的方法获取附着有阻隔剂的二氧化硅粉体,然后通过煅烧工艺制备球形二氧化硅粉体,在保证成球率的同时有效提升产量,制备得到的球形二氧化硅在介电损耗低的同时粒度分布窄。中国专利申请CN 112745529 A也采用控制比表面积范围窄的方式来改善介电性能。上述方法主要是通过控制窄的粉体的粒度分布,从而降低介电损耗正切值,但存在以下不足:介电损耗正切值降低的幅度有限,粒度分布窄对高填充应用不利,从而增加了应用时级配难度,限制其在电子封装领域的应用。
发明内容
鉴于上述问题,本发明提供一种超低介电损耗球形二氧化硅微粉的制备方法。该方法通过将球形二氧化硅微粉在氧化剂的氛围中高温处理,除去水分和碳以及金属等杂质,然后直接进入非极性气体气氛下冷却至室温,最后充惰性气体包装,有效降低其介电损耗,产品质量稳定可控。
本发明的技术方案如下:
超低介电损耗球形二氧化硅微粉的制备方法,包括以下步骤:
步骤1,在干燥的氧化剂的气氛下,将球形二氧化硅微粉先在150~300℃下处理3~24h,再在800~1200℃下处理24~90h,所述的氧化剂选自氧气、富氧空气或臭氧;
步骤2,将步骤1处理后的球形二氧化硅微粉在非极性气体氛围下冷却至室温;
步骤3,将冷却后的二氧化硅微粉充惰性气体包装。
步骤1中,球形二氧化硅微粉的中位粒径D50为0.1~150μm,球形度>0.99。
步骤1中,球形二氧化硅微粉采用现有方法制备,所述现有方法包括火焰成球法,采用火焰成球法制备球形二氧化硅微粉的具体步骤如下:
以纯度99.9%以上、金属氧化物总含量在100ppm以下的二氧化硅粉末或硅溶胶为原料,以氧气作为载气,1~5个碳的烷烃或H 2作为可燃气 体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃的火焰高温下,粉末或硅溶胶经过高温融化、冷却成球,形成球形二氧化硅微粉。
优选地,步骤1中,球形二氧化硅微粉先在250~300℃下处理10~24h,再在1100~1200℃下处理48~90h。
步骤2中,非极性气体选自氩气、氦气、氖气、氮气、氧气或二氧化碳。
步骤2中,室温为10~30℃。
步骤3中,惰性气体选自氮气、氩气、氦气或氖气。
本发明从两个角度出发,实现二氧化硅微粉超低介电损耗。一是去除微粉中的无机碳和金属,由于无机碳和金属都会影响二氧化硅微粉的Df,本发明先是在氧化剂的气氛下,通过高温条件下与碳的反应,去除导电材质的无机碳;同时与微粉引入的金属(如Fe)反应生成金属氧化物,去除一部分的金属。二是去除微粉中的极性分子如结合水等,采用分段加热的方法,先在较低温度下去除微粉结合水,避免直接升至高温造成微粉间的团聚。
与现有技术相比,本发明具有以下优点:
本发明选择超高纯原料,通过火焰法制备比表面积相对小、球形度高的球形二氧化硅微粉,在氧化剂的氛围中高温处理除去水分、金属和无机碳,直接进入非极性气体气氛下冷却至室温,充惰性气体包装,相关工序在惰性气体保护下进行。本发明制备的产品质量稳定,介电损耗降低率30%以上,最高可达67%。
具体实施方式
下面结合具体实施例对本发明作进一步详述。下述实施例中采用的原料或试剂均可商业购买获得。
实施例1
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的氧气气氛1下,球形二氧化硅微粉A依次在200℃处理3h、1100℃处理48h,制得球形二氧化硅微粉B。在非极性气体氩气的气氛2下冷却10h至室温。充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为2.5μm,比表面积为3.6m 2/g,球形度为0.993。
实施例2
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的氧气气氛1下,球形二氧化硅微粉A依次在150℃处理10h、800℃处理60h,制得球形二氧化硅微粉B。在非极性气体氮气的气氛2下冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为2.2μm,比表面积为3.8m 2/g,球形度为0.995。
实施例3
以平均粒径为8μm、纯度为99.95%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的氧气气氛1下,球形二氧化硅微粉A依次在300℃处理24h、1200℃处理90h,制得球形二氧化硅微粉B。在非极性气体氩气的气氛2下冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为9.2μm,比表面积为0.86m 2/g,球形度为0.991。
实施例4
以平均粒径35μm、纯度99.90%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的富氧空气气氛1下,球形二氧化硅微粉A依次在250℃处理24h、900℃处理24h,制得球形二氧化硅微粉B。在非极性气体氮气的气氛2下冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为39μm,比表面积为0.36m 2/g,球形度为0.992。
对比例1
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。球形二氧化硅微粉A不经过处理,直接与聚乙烯树脂形成固化物,测试介电损耗。
对比例2
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
敞口条件下,球形二氧化硅微粉A依次在200℃处理3h、1100℃处理48h,制得球形二氧化硅微粉B。在敞口条件下冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为2.4μm,比表面积为3.7m 2/g,球形度为0.994。
对比例3
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的氧气气氛1下,球形二氧化硅微粉A依次在200℃处理3h、400℃处理48h,制得球形二氧化硅微粉B。在非极性气体氩气的气氛2冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度2.4为μm,比表面积为3.8m 2/g,球形度为0.993。
对比例4
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的氧气气氛下,球形二氧化硅微粉A依次在200℃处理3h、1500℃处理96h,制得球形二氧化硅微粉B,粉体团聚为块料,由于高温段温度过高,温度超过粉体熔点,粉体融化成块。
对比例5
以平均粒径为8μm、纯度为99.95%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥的氧气气氛1下,球形二氧化硅微粉A直接在1200℃下处理90h,制得球形二氧化硅微粉B。在非极性气体氩气的气氛2下冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为15.6μm,粒度分布有拖尾,说明直接升至高温,容易造成微粉间的团聚。
对比例6
以平均粒径为2μm、纯度为99.92%的角形二氧化硅微粉为原料,以氧气作为载气,H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃高温熔融成球,制得球形二氧化硅微粉A。
在干燥氩气气氛下,球形二氧化硅微粉A依次在200℃处理3h、在干燥的氩气气氛1下1100℃处理48h,制得球形二氧化硅微粉B。在非极性气体氩气的气氛2下冷却10h至室温,充氮气密封包装,制得球形二氧化硅微粉C,平均粒度为2.6μm,比表面积为3.5m 2/g,球形度为0.993。
根据表1可以看出,相对于对比例1(未处理),实施例1~4分别通过两步热处理、不同粒径、不同气氛,降低了球形二氧化硅微粉中的极性分子和异物(如C和Fe),从而降低了Df。当热处理2的温度较高(1200℃)时和处理时间较长,气氛1为氧气的前提下,金属异物和碳含量最低,相应的Df也是最低的,降低幅度67%。对比例2不用气氛保护,直接在敞口条件下进行热处理,金属个数偏多,同时在冷却的过程吸附水分,造成Df降低幅度只有22%。对比例3和对比例6分别控制热处理2的温度过低和气氛1调整为氩气,对异物的减少程度不够,因此Df下降不明显。对比例4和对比例5分别控制热处理2的温度过高(1500℃)和去掉热处理1,直接高温,都会造成粉体团聚成大颗粒或块料。
表1各实施例和对比例的实验条件以及制得的球形二氧化硅微粉C的性能
Figure PCTCN2022115380-appb-000001
Figure PCTCN2022115380-appb-000002
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 超低介电损耗球形二氧化硅微粉的制备方法,其特征在于,包括以下步骤:
    步骤1,在干燥的氧化剂的气氛下,将球形二氧化硅微粉先在150~300℃下处理3~24h,再在800~1200℃下处理24~90h,所述的氧化剂选自氧气、富氧空气或臭氧;
    步骤2,将步骤1处理后的球形二氧化硅微粉在非极性气体氛围下冷却至室温;
    步骤3,将冷却后的二氧化硅微粉充惰性气体包装。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤1中,球形二氧化硅微粉的中位粒径D50为0.1~150μm,球形度>0.99。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤1中,球形二氧化硅微粉采用火焰成球法制备,具体步骤如下:
    以纯度99.9%以上、金属氧化物总含量在100ppm以下的二氧化硅粉末或硅溶胶为原料,以氧气作为载气,1~5个碳的烷烃或H 2作为可燃气体,氧气为助燃剂,分别导入反应容器中,点燃,在2400~3200℃的火焰高温下,粉末或硅溶胶经过高温融化、冷却成球,形成球形二氧化硅微粉。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤1中,球形二氧化硅微粉先在250~300℃下处理10~24h,再在1100~1200℃下处理48~90h。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤2中,非极性气体选自氩气、氦气、氖气、氮气、氧气或二氧化碳。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤2中,室温为10~30℃。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤3中,惰性气体选自氮气、氩气、氦气或氖气。
PCT/CN2022/115380 2022-04-25 2022-08-29 超低介电损耗球形二氧化硅微粉的制备方法 WO2023206886A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022000095.3T DE112022000095T5 (de) 2022-04-25 2022-08-29 Zubereitungsverfahren für sphärisches Siliziumoxid-Mikropulver mit ultra-niedrigem dielektrischem Verlust
KR1020237025831A KR20230153999A (ko) 2022-04-25 2022-08-29 초저 유전 손실 구형 실리카 미분말의 제조 방법
JP2022574483A JP2024519512A (ja) 2022-04-25 2022-08-29 超低誘電損失球状シリカ微粉末の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210442307.1A CN114702038B (zh) 2022-04-25 2022-04-25 超低介电损耗球形二氧化硅微粉的制备方法
CN202210442307.1 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023206886A1 true WO2023206886A1 (zh) 2023-11-02

Family

ID=82174195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115380 WO2023206886A1 (zh) 2022-04-25 2022-08-29 超低介电损耗球形二氧化硅微粉的制备方法

Country Status (6)

Country Link
JP (1) JP2024519512A (zh)
KR (1) KR20230153999A (zh)
CN (1) CN114702038B (zh)
DE (1) DE112022000095T5 (zh)
TW (1) TWI825956B (zh)
WO (1) WO2023206886A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702038B (zh) * 2022-04-25 2023-09-29 江苏联瑞新材料股份有限公司 超低介电损耗球形二氧化硅微粉的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351617A (ja) * 1999-06-14 2000-12-19 Mitsui Chemicals Inc 球状シリカ粒子の製造方法
JP2001089168A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 高純度合成石英ガラス粉の製造方法
CN101125655A (zh) * 2007-07-06 2008-02-20 青岛大学 一种纳米二氧化硅的制备方法
CN102947223A (zh) * 2010-04-30 2013-02-27 韩国科学技术研究院 用于减少球形氧化物颗粒排列中的缺陷的方法
CN103101918A (zh) * 2011-11-10 2013-05-15 常州英中纳米科技有限公司 一种碳包覆制备单分散晶体二氧化硅球形颗粒的方法
CN110386608A (zh) * 2019-08-15 2019-10-29 安徽壹石通材料科技股份有限公司 一种轻质球形二氧化硅的制备方法
CN112978740A (zh) * 2021-03-23 2021-06-18 江苏联瑞新材料股份有限公司 亚微米球形二氧化硅微粉的制备方法
CN114702038A (zh) * 2022-04-25 2022-07-05 江苏联瑞新材料股份有限公司 超低介电损耗球形二氧化硅微粉的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2157623C (en) 1994-09-20 1999-12-21 Lars Stig Sorensen Method and apparatus for dynamic radio communication menu
JP2003165718A (ja) * 2001-11-27 2003-06-10 Fuso Chemical Co Ltd 無孔質球状シリカ及びその製造方法
JP4533994B2 (ja) * 2004-05-26 2010-09-01 独立行政法人産業技術総合研究所 プラズマ耐食材料、その製造方法及びその部材
CN101651203B (zh) * 2009-09-22 2011-06-01 西安交通大学 一种制备掺镁的锰镍酸锂正极材料的固相合成法
CN105384177B (zh) * 2015-11-27 2018-04-13 江苏联瑞新材料股份有限公司 亚微米级球形二氧化硅微粉的制备方法
JP6564517B1 (ja) 2018-12-17 2019-08-21 株式会社アドマテックス 電子材料用フィラー及びその製造方法、電子材料用樹脂組成物の製造方法、高周波用基板、並びに電子材料用スラリー
JP6595137B1 (ja) * 2019-02-27 2019-10-23 株式会社アドマテックス 金属酸化物粒子材料の製造方法
CN113614036A (zh) * 2019-03-26 2021-11-05 电化株式会社 球状二氧化硅粉末
JP2021070592A (ja) 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 シリカ粒子、樹脂組成物、樹脂フィルム及び金属張積層板
WO2021163847A1 (zh) * 2020-02-17 2021-08-26 浙江三时纪新材科技有限公司 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
CN111232993B (zh) * 2020-03-06 2021-09-14 山东国瓷功能材料股份有限公司 一种5g高频用超低介电常数中空二氧化硅及其制备方法
JP7478031B2 (ja) * 2020-06-02 2024-05-02 信越化学工業株式会社 低誘電シリカ粉体の製造方法
CN112479595B (zh) * 2020-11-26 2022-09-06 浙江华正新材料股份有限公司 中空玻璃微球及其制备方法和应用
CN112592192B (zh) * 2020-12-15 2022-12-06 江西科技学院 一种高介电常数低介电损耗钛酸铜钙陶瓷的烧结方法
CN113666380B (zh) 2021-08-30 2023-06-30 苏州锦艺新材料科技股份有限公司 一种球形二氧化硅的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351617A (ja) * 1999-06-14 2000-12-19 Mitsui Chemicals Inc 球状シリカ粒子の製造方法
JP2001089168A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 高純度合成石英ガラス粉の製造方法
CN101125655A (zh) * 2007-07-06 2008-02-20 青岛大学 一种纳米二氧化硅的制备方法
CN102947223A (zh) * 2010-04-30 2013-02-27 韩国科学技术研究院 用于减少球形氧化物颗粒排列中的缺陷的方法
CN103101918A (zh) * 2011-11-10 2013-05-15 常州英中纳米科技有限公司 一种碳包覆制备单分散晶体二氧化硅球形颗粒的方法
CN110386608A (zh) * 2019-08-15 2019-10-29 安徽壹石通材料科技股份有限公司 一种轻质球形二氧化硅的制备方法
CN112978740A (zh) * 2021-03-23 2021-06-18 江苏联瑞新材料股份有限公司 亚微米球形二氧化硅微粉的制备方法
CN114702038A (zh) * 2022-04-25 2022-07-05 江苏联瑞新材料股份有限公司 超低介电损耗球形二氧化硅微粉的制备方法

Also Published As

Publication number Publication date
TW202342371A (zh) 2023-11-01
CN114702038B (zh) 2023-09-29
JP2024519512A (ja) 2024-05-15
CN114702038A (zh) 2022-07-05
KR20230153999A (ko) 2023-11-07
TWI825956B (zh) 2023-12-11
DE112022000095T5 (de) 2024-04-25

Similar Documents

Publication Publication Date Title
CN108251076B (zh) 碳纳米管-石墨烯复合散热膜、其制备方法与应用
CN106216705B (zh) 一种3d打印用细颗粒单质球形金属粉末的制备方法
CN107971501B (zh) 二次气氛还原制备超细铜粉的方法
WO2023206886A1 (zh) 超低介电损耗球形二氧化硅微粉的制备方法
CN105624445A (zh) 一种石墨烯增强铜基复合材料的制备方法
CN114074943B (zh) 一种高密度的电子封装用球形硅微粉的制备方法
CN111992726A (zh) 一种增材制造用真空气雾化CuCrZr粉末的熔炼工艺
CN115724434A (zh) 一种高纯超细硅微粉的制备方法
CN113117603B (zh) 一种制备In2Se3的装置及方法
CN114192795A (zh) 一种复合形态银粉的制备方法
CN112897482A (zh) 以铝合金为原料制备氮化铝的方法
CN109763202B (zh) 一种氮化铝纤维的制备方法
CN112643020B (zh) 一种金属粉末球化整形装置及其使用方法
CN109825744B (zh) 原位生成纳米三碳化四铝增强铝基复合材料及其制备方法
JP4274728B2 (ja) 金属の精製方法
CN115367717B (zh) 一种低团聚氮化铝粉体的制备方法
JP7406444B2 (ja) 球状粒子材料の製造方法
CN111910102B (zh) 一种铜银复合材料导线及其制备方法
CN115846672A (zh) 一种用于引线框架的高强高导铜基复合材料的制备方法
CN115109961A (zh) 铝合金稀土精炼剂及其制备方法
CN113929122A (zh) 多峰分布高导热α相球形氧化铝的制备方法
CN113073242A (zh) 一种导电性能良好的铝合金材料及其生产方法
JP2022054358A (ja) 球状粒子材料の製造方法
JP2004084069A (ja) 無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法
KR102625963B1 (ko) 구상 산화알루미늄 분말의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022574483

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022000095

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939712

Country of ref document: EP

Kind code of ref document: A1