WO2023125276A1 - 一种有机化合物及其应用 - Google Patents

一种有机化合物及其应用 Download PDF

Info

Publication number
WO2023125276A1
WO2023125276A1 PCT/CN2022/141366 CN2022141366W WO2023125276A1 WO 2023125276 A1 WO2023125276 A1 WO 2023125276A1 CN 2022141366 W CN2022141366 W CN 2022141366W WO 2023125276 A1 WO2023125276 A1 WO 2023125276A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
substituted
unsubstituted
ring
organic
Prior art date
Application number
PCT/CN2022/141366
Other languages
English (en)
French (fr)
Inventor
高文正
孙恩涛
王志鹏
刘叔尧
李之洋
马腾
陈继荣
Original Assignee
北京鼎材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京鼎材科技有限公司 filed Critical 北京鼎材科技有限公司
Publication of WO2023125276A1 publication Critical patent/WO2023125276A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/78Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 2
    • C07D239/84Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms

Definitions

  • the invention belongs to the technical field of organic electroluminescent materials, and in particular relates to an organic compound and its application.
  • OLEDs organic light-emitting diodes
  • OLEDs organic field effect transistors
  • organic photovoltaic cells organic sensors, etc.
  • OLEDs have the advantages of self-illumination, high contrast, wide color gamut, flexibility, and low power consumption. Especially fast, it has achieved commercial success and is widely used in flexible display, flat panel display and solid-state lighting and other fields.
  • An OLED device includes a cathode, an anode, and an organic thin film structure arranged between the two electrodes. Its core is a thin film structure containing a variety of organic functional materials. Common organic functional materials include: hole injection materials, hole transport materials, Hole blocking material, electron injection material, electron transport material, electron blocking material, luminescent host material and luminescent guest (dye), etc. When electricity is applied, electrons and holes are respectively injected, transported to the light-emitting region, and recombined there, thereby generating excitons and emitting light. In OLED devices, organic functional materials will directly affect the light-emitting performance of the device.
  • Hole-transport materials as general-purpose layer materials for OLED devices, affect core indicators such as voltage, efficiency, and lifetime of the device by adjusting the hole injection and transport properties.
  • the hole transport materials for commercial mass production are mainly aromatic amine materials. Due to the different materials used in devices, the currently used materials and device structures cannot completely solve the problems of OLED product efficiency, lifespan, and cost.
  • the object of the present invention is to provide an organic compound and its application.
  • the organic compound has good photoelectric properties, which can be used in organic electroluminescent devices, and is especially suitable as a hole transport material and/or Or electron blocking materials, which can effectively reduce the driving voltage and improve the efficiency and life of the device.
  • One of the objects of the present invention is to provide an organic compound having a structure as shown in formula I:
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted C1-C30 linear or branched chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or Any one of unsubstituted C6-C30 aryl, substituted or unsubstituted C3-C30 heteroaryl; said R 1 and R 2 are not connected or connected to form a ring by a chemical bond, and said R 3 and R 4 are not linked or joined by chemical bonds to form a ring.
  • R 5 and R 6 are each independently selected from substituted or unsubstituted C1-C30 straight chain or branched chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C6-C30 Any of aryl, substituted or unsubstituted C3-C30 heteroaryl.
  • L 1 and L 2 are each independently selected from single bond, substituted or unsubstituted C6-C30 arylene, substituted or unsubstituted C3-C30 heteroarylene; when said When L 1 and L 2 are single bonds, it means that the fluorene structure is directly connected to the N atom through a single bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , L 1 , and L 2 are each independently selected from C1-C20 straight chain or branched chain alkyl, C3-C20 ring At least one of alkyl, C6-C30 arylamino, C3-C30 heteroarylamino, C6-C30 aryl or C3-C30 heteroaryl.
  • Cy is selected from any one of substituted or unsubstituted C6-C30 aryl and substituted or unsubstituted C3-C30 heteroaryl.
  • the substituted substituents described in Cy are each independently selected from at least one of C3-C20 cycloalkyl, C6-C30 arylamino, C3-C30 heteroarylamino, C6-C30 aryl or C3-C30 heteroaryl A sort of.
  • n 1 and n 2 are each independently selected from an integer of 0-4, such as 0, 1, 2, 3 or 4.
  • the organic compound provided by the present invention has the structure shown in formula I, and is a triarylamine compound containing at least two fluorene structures.
  • the triarylamine group in the mother nucleus can effectively regulate the three-dimensional structure of the molecule and improve the packing density of the molecule
  • the triarylamine structure and the fluorene structure work together to endow the organic compound with better hole transport performance and hole injection performance, and effectively regulate and improve the HOMO energy level of the compound, making it more compatible with the anode material.
  • the hole injection and transport ability of the material is improved, which is beneficial to the acquisition of low voltage, and the stability of carrier transport in the electric field environment is significantly improved.
  • the special tetrahedral structure of the organic compound can prepare a good amorphous thin film, so when used as an organic electroluminescent device material, it shows good film-forming properties.
  • the organic compound when applied to an organic electroluminescent device, especially as a hole transport layer material and/or an electron blocking layer material, it can effectively improve the efficiency and stability of the device, prolong the life, reduce the voltage, and achieve a better glow effect.
  • the "adjacent R 5 are not connected” means that R 5 is connected to the adjacent aryl group through a single bond, and does not form a condensed ring with the adjacent aryl group;
  • the "adjacent R No connection between 6” means that R 6 is connected to the adjacent aryl group through a single bond, and does not form a condensed ring with the adjacent aryl group.
  • the two fluorene ring structures in the present invention can well achieve a suitable HOMO energy level. If the fluorene ring is further fused with other aromatic rings, the HOMO energy level of the entire molecule will be greatly changed. If the fluorene ring The benzene ring on the fluorene ring is further connected to other non-aromatic ring structures. Although the HOMO theoretical calculation value is acceptable at this time, it is found that the lifetime characteristics are poor in actual use.
  • the reason may be that the non-aromatic ring connected to the fluorene ring may affect the fluorene ring due to steric hindrance
  • the stretching orientation of the two fluorene rings in the triaryl group changes the stacking behavior during film formation, resulting in an unsatisfactory effect, so it is not preferred.
  • the "substituted or unsubstituted” group may be substituted with one substituent, or may be substituted with multiple substituents.
  • substituents at least 2
  • they may be the same or different Substituents; when the same expressions are mentioned below, they all have the same meaning, and the selection range of the substituents is as shown above, and will not be repeated one by one.
  • the expression of chemical elements includes the concept of isotopes with the same chemical properties, for example, hydrogen (H) includes 1 H (protium), 2 H (deuterium, D), 3 H ( tritium, T), etc.; carbon (C) includes 12 C, 13 C, etc.
  • the heteroatoms of the heteroaryl group are selected from atoms or atomic groups in N, O, S, P, B, Si or Se, preferably N, O and S.
  • the expression of the ring structure crossed by "—” or "------" indicates that the connection site is at any position on the ring structure that can form a bond.
  • the expression of Ca-Cb means that the number of carbon atoms of the group is a-b, and unless otherwise specified, generally speaking, the number of carbon atoms does not include the number of carbon atoms of the substituent.
  • each independently means that when there are plural subjects, they may be the same or different from each other.
  • the C1-C30 straight chain or branched chain alkyl group can be C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17 , C18, C19, C20, C22, C24, C26 or C28, etc.
  • straight or branched chain alkyl preferably C1-C20 straight or branched chain alkyl, preferably C1-C16 straight or branched chain alkyl; further C1-C10 straight or branched chain alkyl is preferred; examples include but are not limited to: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, Isopentyl, neopentyl, n-hexyl, n-octyl, n-heptyl, n-nonyl or n-decyl, etc.
  • the C3-C20 cycloalkyl group can be C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17 or C18, etc.; Examples include but are not limited to: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl and the like.
  • the C6-C30 aryl groups can all be C6, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26 or C28, etc., preferably C6-C20 aryl groups, including Single ring aryl or condensed ring aryl.
  • the monocyclic aryl group means that the group contains at least 1 phenyl group, and when it contains at least 2 phenyl groups, the phenyl groups are connected by a single bond, examples include but are not limited to: phenyl, biphenyl , terphenyl, etc.; the condensed ring aryl group means that the group contains at least 2 aromatic rings, and the aromatic rings share two adjacent carbon atoms that are fused to each other, exemplarily including but not Limited to: naphthyl, anthracenyl, phenanthrenyl, indenyl, fluorenyl and their derivatives (9,9-diphenylfluorenyl, 9,9-dinaphthylfluorenyl, spirobifluorenyl, benzofluorenyl etc.), fluoranthenyl, triphenylene, pyrenyl, perylene, group or naphthacene, etc.; the aforementioned groups include all possible connection methods
  • the C3-C30 heteroaryl groups can all be heteroaryl groups such as C3, C4, C5, C6, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26 or C28, It is preferably a C4-C20 heteroaryl group, more preferably a C4-C12 heteroaryl group, including a monocyclic heteroaryl group or a condensed ring heteroaryl group.
  • the monocyclic heteroaryl group means that the molecule contains at least one heteroaryl group.
  • the heteroaryl group and other groups are connected by a single bond, exemplarily including but not limited to: furyl, thienyl, pyrrolyl, pyridyl and the like.
  • the condensed ring heteroaryl group means that the molecule contains at least one aromatic heterocycle and one aromatic ring (aromatic heterocycle or aromatic ring), and the two share two adjacent atoms that are fused to each other, Examples include but are not limited to: benzofuryl, benzothienyl, isobenzofuryl, isobenzothienyl, indolyl, dibenzofuryl, dibenzothienyl, carbazolyl and Its derivatives (N-phenylcarbazolyl, N-naphthylcarbazolyl, benzocarbazolyl, dibenzocarbazolyl, indolocarbazolyl, azacarbazolyl, etc.), acridine group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, hydrogenated acridinyl group, etc.; the groups listed above include all possible connection methods.
  • C6-C30 such as C6, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26, or C28, etc.
  • arylene groups described in the present invention include examples of the above-mentioned aryl groups A divalent group obtained by removing a hydrogen atom.
  • C3-C30 such as C3, C4, C5, C6, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26 or C28, etc.
  • heteroarylene in the present invention can be cited A divalent group obtained by removing one hydrogen atom from the above-mentioned examples of the heteroaryl group.
  • arylamino groups described in the present invention include but are not limited to: phenylamino, Methylphenylamino, naphthylamino, anthracenylamino, phenanthrenylamino, biphenylamino, etc.
  • the C3-C30 (such as C3, C4, C5, C6, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26 or C28, etc.) heteroarylamino described in the present invention exemplarily includes but Not limited to: pyridylamino, pyrimidinylamino, dibenzofurylamino, etc.
  • the R 1 , R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted C1-C30 straight chain or branched chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted Or any of the unsubstituted C6-C30 aryl groups.
  • the R 1 and R 2 are not connected or connected through a chemical bond to form a ring A 1
  • the R 3 and R 4 are not connected or are connected through a chemical bond to form a ring A 2 ;
  • the ring A 1 and the ring A 2 are each independently selected from any one of a C3-C20 alicyclic ring or a C6-C30 aromatic ring,
  • the C3-C20 alicyclic ring can be an alicyclic ring such as C3, C4, C5, C6, C9, C10, C12, C14, C16 or C18, more preferably a C3-C12 alicyclic ring, and more preferably Preference is given to saturated alicyclic rings such as adamantane rings,
  • the C6-C30 aromatic ring can be an aromatic ring of C6, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26 or C28, etc., more preferably C10-
  • the C20 aromatic ring exemplarily includes but not limited to: fluorene ring, benzofluorene ring, dibenzofluorene ring and the like.
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted C1-C6 straight chain or branched chain alkyl, substituted or unsubstituted C3-C10 cycloalkyl, Any of substituted or unsubstituted C6-C20 aryl groups.
  • the R 1 and R 2 are not connected or connected through a chemical bond to form a ring A 1
  • the R 3 and R 4 are not connected or are connected through a chemical bond to form a ring A 2 ;
  • the ring A 1 and the ring A 2 are each independently selected from any one of a C3-C12 alicyclic ring or a C10-C20 aromatic ring,
  • the ring A 1 and the ring A 2 are each independently selected from any one of an adamantane ring, a fluorene ring or a benzofluorene ring.
  • the R 5 and R 6 are each independently selected from substituted or unsubstituted C1-C6 straight chain or branched chain alkyl, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C6- Any of the C20 aryl groups.
  • the R 5 and R 6 are each independently selected from phenyl, biphenyl or naphthyl.
  • n 1 and n 2 are 0 or 1 independently.
  • said L 1 and L 2 are each independently selected from any one of a single bond, a substituted or unsubstituted C6-C20 arylene group, and a substituted or unsubstituted C3-C20 heteroarylene group.
  • neither of said L 1 and L 2 is Wherein, the dotted line represents the linking site of the group.
  • each of said L 1 and L 2 is independently selected from any one of single bond, substituted or unsubstituted following groups:
  • the dotted line represents the linking site of the group.
  • the Cy is selected from any one of substituted or unsubstituted C6-C20 aryl groups.
  • the Cy is not dimethylfluorenyl.
  • the Cy is selected from any of the substituted or unsubstituted following groups:
  • the dotted line represents the linking site of the group.
  • the substituted ones described in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , L 1 , and L 2 are each independently selected from C1-C10 (such as C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) straight or branched chain alkyl, C3-C10 (such as C3, C4, C5 , C6, C7, C8, C9, C10) cycloalkyl, C6-C30 (such as C6, C9, C10, C12, C14, C15, C16, C18, C20, C22, C24, C26 or C28, etc.) arylamino , C3-C30 (such as C3, C4, C5, C6, C9, C10, C12, C14, C15, C16, C18, C20, C22, C24, C
  • the substituted groups described in Cy are each independently selected from C3-C10 (such as C3, C4, C5, C6, C7, C8, C9, C10) cycloalkyl, C6-C30 (such as C6, C9, C10, C12 , C14, C15, C16, C18, C20, C22, C24, C26 or C28, etc.) arylamino, C3-C30 (such as C3, C4, C5, C6, C9, C10, C12, C14, C15, C16, C18 , C20, C22, C24, C26 or C28, etc.) heteroarylamino, C6-C30 (such as C6, C9, C10, C12, C14, C15, C16, C18, C20, C22, C24, C26 or C28, etc.) aromatic C3-C30 (such as C3, C4, C5, C6, C9, C10, C12, C14, C15, C16, C18, C20, C
  • the organic compound has any one of the following C1-C318 structures:
  • the second object of the present invention is to provide an application of the organic compound according to the first object, and the organic compound is applied to an organic electroluminescent device.
  • the organic compound is used as an electron blocking layer material and/or a hole transport layer material in an organic electroluminescent device.
  • the organic compound is used as a hole injection layer material in an organic electroluminescence device.
  • organic compound of the present invention can also be applied to other types of organic electronic devices, including lighting elements, organic thin film transistors, organic field effect transistors, organic thin film solar cells, information labels, electronic artificial skin sheets, Sheet-type scanners or electronic paper.
  • the third object of the present invention is to provide an aromatic amine organic compound, the orbital overlap integral between HOMO and LUMO in the ground state structure of the aromatic amine organic compound optimized at the calculation level of B3LYP/6-31G(d) Greater than 0.6, for example, it can be 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72 or 0.73.
  • Ar 1 , Ar 2 , and Ar 3 are each independently selected from any one of substituted or unsubstituted C6-C60 aryl groups and substituted or unsubstituted C3-C60 heteroaryl groups.
  • the orbital with the highest electron energy is called the highest occupied molecular orbital (HOMO); conversely, among all the unfilled electron orbitals, the orbital with the lowest electron energy is called the lowest unoccupied molecular orbital (LUMO) .
  • the transport of charges in the material is the process of electrons constantly escaping from HOMO and adding electrons to LUMO, which involves the constant change of the molecular configuration of the compound between HOMO and LUMO.
  • the HOMO and LUMO orbitals of organic materials overlap in space, the geometric configuration of the compound changes less during the charge transport process, which is conducive to maintaining its stability and thus improving the device lifetime.
  • the degree of spatial overlap between HOMO and LUMO orbitals can be expressed by the orbital overlap integral, which ranges from 0 to 1 and is defined as follows:
  • a is the modulus of the HOMO orbital wave function
  • LUMO orbital wave function is the modulus of the LUMO orbital wave function
  • r is a vector representing the position.
  • Gaussian 09 software was used to optimize the structure of the aromatic amine organic compound based on B3LYP/6-31G(d), and the orbital wave functions of its HOMO and LUMO were obtained, so as to calculate the orbital overlap integral of its HOMO and LUMO.
  • the present invention finds through a large number of studies that when the HOMO and LUMO orbital overlap integral of the ground state structure of the arylamine compound is greater than 0.6, it can exhibit better stability in the carrier transport process.
  • the aromatic amine organic compound includes the organic compound described in one of the objectives.
  • the fourth object of the present invention is to provide an application of the aromatic amine organic compound according to the third object, and the aromatic amine organic compound is applied to an organic electroluminescence device.
  • the aromatic amine organic compound is used as an electron blocking layer material and/or a hole transporting layer material in an organic electroluminescence device.
  • the aromatic amine organic compound is used as a hole injection layer material in an organic electroluminescent device.
  • the fifth object of the present invention is to provide an organic electroluminescence device, which comprises a first electrode, a second electrode and at least one organic layer arranged between the first electrode and the second electrode ;
  • the organic layer includes at least one organic compound as described in one of the objectives and/or the aromatic amine organic compound as described in the third objective.
  • the organic layer includes at least one organic compound with a structure represented by C1-C318 as described in one of the objectives.
  • the organic layer includes a hole transport layer
  • the hole transport layer includes at least one organic compound as described in the first objective and/or the aromatic amine organic compound as described in the third objective.
  • the organic layer includes an electron blocking layer
  • the electron blocking layer includes at least one organic compound as described in the first objective and/or the aromatic amine organic compound as described in the third objective.
  • the organic compound and/or aromatic amine organic compound provided by the present invention is used as an electron blocking layer material and/or a hole transporting layer material, which can significantly improve the luminous efficiency of an organic electroluminescent device, reduce driving voltage, and reduce energy consumption. Make the device stability achieve the best effect.
  • the organic layer includes a hole injection layer, and the hole injection layer includes at least one organic compound as described in one of the purposes.
  • the organic electroluminescent device includes a substrate, and a first electrode, an organic layer, and a second electrode sequentially arranged on the substrate; the organic layer includes a hole injection layer, a hole transport layer, and a hole transport layer. layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer or electron injection layer any one or a combination of at least two; wherein the organic layer (such as hole injection layer, hole transport layer , any one or at least two of the electron blocking layer) includes at least one organic compound having the structure shown in formula I, and further preferably includes at least one organic compound having the structure shown in C1-C318.
  • a substrate may be used either below the first electrode or above the second electrode.
  • the substrates are all glass or polymer materials with excellent mechanical strength, thermal stability, water resistance and transparency.
  • thin film transistors TFTs may be provided on the substrate as a display.
  • the first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate.
  • oxide transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO) and any combination thereof can be used.
  • magnesium (Mg) silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), ytterbium (Yb), magnesium-indium (Mg-In ), magnesium-silver (Mg-Ag) and other metals or alloys and any combination thereof.
  • the organic layer can be formed on the electrode by vacuum thermal evaporation, spin coating, printing and other methods.
  • Compounds used as organic layers can be small organic molecules, organic macromolecules or polymers, and combinations thereof.
  • the hole transport region is located between the anode and the light emitting layer.
  • the hole transport region may be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole-transport layer containing only one compound and a single-layer hole-transport layer containing multiple compounds.
  • HTL hole transport layer
  • the hole transport region can also be a multilayer structure comprising at least one of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL); wherein the HIL is positioned between the anode and the HTL, and the EBL Located between the HTL and the light-emitting layer; the hole transport layer (HTL) and/or the electron blocking layer (EBL) contains at least one organic compound with a structure of formula I, and further preferably contains a structure such as C1-C318 at least one of organic compounds.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the hole injection layer contains at least one organic compound with the structure of formula I, more preferably at least one of the organic compounds with the structure shown in C1-C318.
  • the material of the hole transport region can also be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid ( Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly (4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives; wherein the aromatic amine derivatives include the compounds shown in the following HT-1 to HT-51; or any combination thereof.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid
  • a hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer can be a single compound material, or a combination of multiple compounds.
  • the hole injection layer can use one or more compounds of the above-mentioned HT-1 to HT-34, or use an organic compound as described in one of the purposes (preferably an organic compound with a structure shown in C1-C318), or use One or more compounds in following HI-1 to HI-3; Also can adopt one or more compounds of HT-1 to HT-34 and/or organic compound (preferably C1 -organic compound with the structure shown in C318) doped with one or more compounds in the following HI-1 to HI-3.
  • the luminescent layer includes luminescent dyes (that is, dopant) that can emit different wavelength spectra, and can also include a host material (Host) at the same time.
  • the light-emitting layer may be a monochromatic light-emitting layer that emits a single color such as red, green, or blue.
  • a plurality of monochromatic light-emitting layers of different colors can be arranged planarly according to the pixel pattern, and can also be stacked together to form a colored light-emitting layer. When the light-emitting layers of different colors are stacked together, they can be separated from each other or connected to each other.
  • the light-emitting layer can also be a single color light-emitting layer capable of simultaneously emitting different colors such as red, green, and blue.
  • different materials such as fluorescent electroluminescent materials, phosphorescent electroluminescent materials, and heat-activated delayed fluorescent luminescent materials can be used as materials for the light-emitting layer.
  • a single light-emitting technology can be used, or a combination of multiple different light-emitting technologies can be used.
  • These different luminescent materials classified by technology can emit light of the same color or of different colors.
  • the light-emitting layer adopts the technology of fluorescence electroluminescence.
  • the fluorescent host material of the light-emitting layer can be selected from, but not limited to, one or more combinations of BFH-1 to BFH-17 listed below.
  • the light-emitting layer adopts the technology of fluorescence electroluminescence.
  • the fluorescent dopant in the light-emitting layer can be selected from, but not limited to, one or more combinations of BFD-1 to BFD-24 listed below.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the host material of the light-emitting layer is selected from, but not limited to, one or more combinations of PH-1 to PH-85.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant in the light-emitting layer can be selected from, but not limited to, one or more combinations of GPD-1 to GPD-47 listed below.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant in the light-emitting layer can be selected from, but not limited to, one or more combinations of RPD-1 to RPD-28 listed below.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant in the light-emitting layer can be selected from, but not limited to, one or more combinations of YPD-1 to YPD-11 listed below.
  • the OLED organic material layer may also include an electron transport region between the light emitting layer and the cathode.
  • the electron transport region may be a single-layer electron transport layer (ETL), including a single-layer electron-transport layer containing only one compound and a single-layer electron-transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport layer material can be selected from, but not limited to, one or more combinations of ET-1 to ET-73 listed below.
  • the device may also include an electron injection layer located between the electron transport layer and the cathode, and the material of the electron injection layer includes but is not limited to a combination of one or more of the following: LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Yb, Li or Ca.
  • the present invention has the following beneficial effects:
  • the organic compound provided by the present invention has a structure shown in formula I, and the triarylamine group of the mother nucleus can effectively regulate the three-dimensional structure of the molecule and improve the packing density of the molecule; at the same time, the triarylamine structure and the fluorene structure work together to make the organic compound It has excellent hole transport performance, and regulates and improves the HOMO energy level of the compound, making it more compatible with the energy level of the anode material, improving the hole injection and transport capabilities of the compound, which is conducive to the acquisition of low voltage, and makes it The stability of transporting carriers in an electric field environment is significantly improved. Moreover, the special tetrahedral structure of the organic compound makes it possible to prepare a good amorphous thin film, so when used as an organic electroluminescent device material, it has good film-forming properties.
  • the orbital overlap integral between HOMO and LUMO of the aromatic amine organic compound provided by the invention is large, and the carrier transport stability is high in an electric field environment.
  • the organic compound and/or aromatic amine organic compound is used in organic electroluminescent devices, especially suitable for use as hole transport layer material and/or electron blocking layer material, which can effectively improve the luminous efficiency and stability of the device, prolong The life of the device is reduced, and the voltage is reduced to achieve a better luminous effect.
  • the preparation process of the organic compound provided by the invention is simple and easy, and the raw materials are readily available, which is suitable for mass production and scale-up.
  • Fig. 1 is the molecular orbital distribution figure of organic compound C1 provided by the present invention.
  • Fig. 2 is the molecular orbital distribution figure of organic compound C2 provided by the present invention.
  • Fig. 3 is the molecular orbital distribution figure of organic compound C5 provided by the present invention.
  • Fig. 4 is the molecular orbital distribution figure of organic compound C7 provided by the present invention.
  • Fig. 5 is the molecular orbital distribution diagram of the organic compound C9 provided by the present invention.
  • Fig. 6 is the molecular orbital distribution diagram of the organic compound C12 provided by the present invention.
  • Fig. 7 is the molecular orbital distribution diagram of the organic compound C13 provided by the present invention.
  • Figure 8 is a molecular orbital distribution diagram of compound R1;
  • Fig. 9 is the molecular orbital distribution diagram of comparative compound R2;
  • Figure 10 is a molecular orbital distribution diagram of comparative compound R3.
  • the organic compound can be prepared through the following representative synthetic route:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , L 1 , L 2 , Cy, n 1 , and n 2 have the same limits as in formula I;
  • Pd 2 (dba) 3 represents Tris(dibenzylacetone)dipalladium(0)
  • IPr.HCl represents 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride
  • NaOBu-t represents sodium tert-butoxide
  • P represents tri-tert-butylphosphine; It can be prepared by the following representative synthetic route:
  • the acquisition of the organic compound is not limited to the synthetic methods and raw materials used in the present invention, those skilled in the art can also choose other known methods or routes to obtain the organic compound provided by the present invention.
  • Compounds not mentioned in the present invention are all raw material products obtained through commercial channels, or are self-made according to known methods through these raw material products.
  • the mass spectrum characterization data (m/z) of the intermediates and organic compounds in the present invention are obtained by testing with a ZAB-HS mass spectrometer (manufactured by Micromass, UK).
  • Organic compound C1 m/z theoretical value: 629.85; found value: 630.83.
  • Synthetic example 3-14 replaces the acquisition of other compounds of the present invention of different raw materials
  • the orbital with the highest energy is called the highest occupied molecular orbital (HOMO).
  • the orbital with the lowest electron energy is called the lowest unoccupied molecular orbital (LUMO).
  • the transport of electrons in materials is the process of electrons constantly escaping from HOMO and adding electrons to LUMO.
  • the degree of overlap between HOMO and LUMO can be expressed by the orbital overlap integral, which is the full-space integral of the modulus product of the two orbital wave functions, which ranges from 0 to 1 and is defined as follows:
  • a is the modulus of the HOMO orbital wave function
  • LUMO orbital wave function is the modulus of the LUMO orbital wave function
  • r is a vector representing the position.
  • Quantitative calculations have been carried out for the organic compounds provided by the present invention, using Gaussian 09 software, based on DFT/B3LYP/6-31G(d), the ground state HOMO/LUMO orbital wave functions of organic compounds have been calculated, and their HOMO and LUMO orbital wave functions have been calculated respectively.
  • the orbital overlap integration of LUMO obtained the HOMO/LUMO energy level at the same time.
  • quantitative calculations are performed on organic compounds C1, C2, C5, C7, C9, C12, C13, R1, R2, and R3.
  • the HOMO/LUMO energy levels and orbital overlap integrals of the compounds are shown in Table 2.
  • the organic compound C1 , C2, C5, C7, C9, C12, C13, R1, R2, and R3 molecular orbital distribution diagrams are shown in Figures 1 to 10, respectively.
  • the organic compound provided by the present invention is controlled by the group connection site, so that the HOMO and LUMO of the compound can be effectively overlapped on the fluorenyl group, which is different from that of the compounds R1 and R2 , R3, compounds C1, C2, C5, C7, C9, C12, and C13 have larger orbital overlap integrals between HOMO and LUMO, which can improve the stability of such organic compounds when transporting carriers in an electric field environment , which is applied to organic electroluminescent devices, can effectively improve the stability of the device and prolong the working life of the device; while the distribution of HOMO and LUMO orbitals of the comparative compound presents an obvious separation state, which may lead to its Reduced stability.
  • an organic electroluminescent device as follows, which includes an anode (ITO), a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer and Negative electrode (Al); Its preparation method is as follows:
  • the glass plate coated with the ITO transparent conductive layer is ultrasonically treated in a commercial cleaning agent, it is rinsed in deionized water, ultrasonically degreased in acetone/ethanol mixed solvent, and baked in a clean environment until Water is completely removed, cleaned with UV light and ozone, and the surface is bombarded with a beam of low-energy cations;
  • the organic compound C2 provided by the present invention is vacuum-evaporated 5nm on the hole transport layer as an electron blocking layer;
  • the light-emitting layer includes a host material and a dye material.
  • the evaporation rate of the host material BFH-4 is adjusted to 0.1nm/s, and the dye
  • the BFD-16 evaporation rate is set at a ratio of 3% of the main material, and the total evaporation film thickness is 20nm;
  • LiF of 0.5nm is vacuum-evaporated on the electron transport layer as the electron injection layer, and the metal aluminum with a thickness of 150nm is used as the cathode to obtain the organic electroluminescent device; the total evaporation rate of all organic layers and LiF is controlled at 0.1nm/s, the evaporation rate of the metal electrode is controlled at 1nm/s.
  • the following organic electroluminescent device was prepared, which differs from Example 1 only in that the organic compound C2, the material of the electron blocking layer in step (4), was replaced by the organic compound in Table 3.
  • the structure of the electron blocking layer material of comparative example 1-4 is as follows:
  • the life test of LT97 is as follows: use 40mA/cm 2 , keep a constant current, measure the time when the brightness of the organic electroluminescent device drops to 97%, and the unit is hour (h);
  • Example 1 C2 3.77 9.46 89.08
  • Example 2 C6 3.76 9.49 88.17
  • Example 3 C7 3.73 9.71 89.55
  • Example 4 C13 3.76 9.82 89.92
  • Example 5 C21 3.76 9.5 82.92
  • Example 6 C25 3.75 9.52 80.59
  • Example 7 C39 3.78 9.42 79.36
  • Example 8 C149 3.79 9.17 70.00
  • Example 9 C152 3.81 9.22 69.75
  • Example 10 C199 3.75 9.33 71.56
  • Example 11 C218 3.76 9.27 72.14
  • Example 12 C254 3.79 9.29 75.11
  • Example 13 C260 3.74 9.65 76.75
  • Example 14 C291 3.79 9.34 76.21
  • Example 15 C292 3.73 9.57 78.33
  • Example 16 C299 3.77 9.23 79.56
  • Example 17 C303 3.72 9.41 81.42
  • Example 18 C311 3.75 9.27 79.21
  • the reason may be that the material of the present invention has better The hole mobility makes the exciton recombination region of the device farther away from the interface, which can effectively improve the device life; at the same time, the orbital overlap integral between the material HOMO and LUMO is larger, so that the stability in the charge transport process is better; Among them, the organic compound C13 exhibits the best efficiency, which can reach 9.82cd/A.
  • the reason may be that its adamantane group further improves the exciton blocking efficiency, which makes the exciton utilization rate higher, thereby improving the device efficiency. .
  • the following organic electroluminescent device was prepared, including an anode (ITO), a hole injection layer, a hole transport layer, an electron blocking layer, an emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer and a cathode (Al ); Its preparation method is as follows:
  • the glass plate coated with the ITO transparent conductive layer is ultrasonically treated in a commercial cleaning agent, it is rinsed in deionized water, ultrasonically degreased in acetone/ethanol mixed solvent, and baked in a clean environment until Water is completely removed, cleaned with UV light and ozone, and the surface is bombarded with a beam of low-energy cations;
  • the light-emitting layer includes a host material and a dye material.
  • the evaporation rate of the host material BFH-4 is adjusted to 0.1nm/s, and the dye
  • the BFD-16 evaporation rate is set at a ratio of 3% of the main material, and the total evaporation film thickness is 20nm;
  • LiF of 0.5nm is vacuum-evaporated on the electron transport layer as the electron injection layer, and the metal aluminum with a thickness of 150nm is used as the cathode to obtain the organic electroluminescent device; the total evaporation rate of all organic layers and LiF is controlled at 0.1nm/s, the evaporation rate of the metal electrode is controlled at 1nm/s.
  • the following organic electroluminescent device was prepared, which differs from Example 21 only in that the material organic compound C1 of the hole transport layer in step (5) was replaced with the organic compound in Table 4.
  • the LT97 lifetime measured under 40mA/cm can reach More than 100h, the reason may be that the material of the present invention has better hole mobility, which makes the exciton recombination region of the device farther away from the interface, which can effectively improve the lifetime of the device; at the same time, the orbital overlap integral between the material HOMO and LUMO is more Large, and thus better stability in the charge transport process, the device lifetime shows a clear advantage.
  • the organic compound of the present invention has suitable comprehensive performance through the specific design of molecular structure, especially the outstanding advantage of stability, and is expected to be well applied in actual production.
  • the present invention illustrates the detailed methods of the present invention through the above examples, but the present invention is not limited to the above detailed methods, that is, it does not mean that the present invention must rely on the above detailed methods to be implemented.
  • Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种有机化合物及其应用,通过分子结构的设计,提高分子的堆积致密度,具有优异的空穴传输性能,还能调控和改善化合物的HOMO能级,与阳极材料更好匹配,提升化合物的空穴注入和传输能力,有利于低电压的获取,并使其在电场环境下传输载流子的稳定性得到明显提升。所述有机化合物用作有机电致发光器件材料时,具有良好的成膜性;所述有机化合物应用于有机电致发光器件中,尤其适用于作为空穴传输层材料和/或电子阻挡层材料,可以有效提高器件的发光效率和稳定性,延长寿命,降低电压,达到更佳的发光效果。

Description

[根据细则37.2由ISA制定的发明名称] 一种有机化合物及其应用 技术领域
本发明属于有机电致发光材料技术领域,具体涉及一种有机化合物及其应用。
背景技术
近年来,基于有机材料的光电子器件越来越受欢迎,与无机材料相比,有机材料固有的柔性使其适用于柔性基板上的制造,可根据需求设计、生产出多种光电子产品。目前已知的有机光电子器件包括有机发光二极管(OLED)、有机场效应管、有机光伏电池、有机传感器等;其中OLED具有自发光、对比度高、色域广、柔性、功耗低等优势,发展尤其迅速,已在商业上取得成功,被广泛应用于柔性显示、平板显示和固态照明等多个领域。
OLED器件包括阴极、阳极以及设置于两个电极之间的有机薄膜结构,其核心即为含有多种有机功能材料的薄膜结构,常见的有机功能材料有:空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、发光主体材料和发光客体(染料)等。通电时,电子和空穴被分别注入、传输到发光区域并在此复合,从而产生激子并发光。在OLED器件中,有机功能材料会直接影响器件的发光性能。
空穴传输材料作为OLED器件的通用层材料,通过对空穴的注入与传输性能的调整,影响器件的电压、效率、寿命等核心指标。目前,商业量产用空穴传输材料主要为芳胺类材料,由于器件所用材料搭配的不同,当前使用的材料和器件结构无法完全解决OLED产品效率、寿命、成本等各方面的问题。
因此,本领域亟待开发能够提高器件发光效率、降低驱动电压、延长使用寿命的有机电致发光材料。
发明内容
针对现有技术的不足,本发明的目的在于提供一种有机化合物及其应用,所述有机化合物具有良好的光电性质,其应用于有机电致发光器件,尤其适于作为空穴传输材料和/或电子阻挡材料,能够有效降低驱动电压,提升器件的效率和寿命。
为达到此发明目的,本发明采用以下技术方案:
本发明的目的之一在于提供一种有机化合物,所述有机化合物具有如式I所示结构:
Figure PCTCN2022141366-appb-000001
式I中,R 1、R 2、R 3、R 4各自独立地选自取代或未取代的C1-C30直链或支链烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;所述R 1和R 2不连接或通过化学键连接成环,所述R 3 和R 4不连接或通过化学键连接成环。
式I中,R 5、R 6各自独立地选自取代或未取代的C1-C30直链或支链烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种。
式I中,L 1、L 2各自独立地选自单键、取代或未取代的C6-C30亚芳基、取代或未取代的C3-C30亚杂芳基中的任意一种;当所述L 1、L 2为单键时,代表芴结构与N原子通过单键直接相连。
R 1、R 2、R 3、R 4、R 5、R 6、L 1、L 2中所述取代的取代基各自独立地选自C1-C20直链或支链烷基、C3-C20环烷基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30芳基或C3-C30杂芳基中的至少一种。
式I中,Cy选自取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种。
Cy中所述取代的取代基各自独立地选自C3-C20环烷基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30芳基或C3-C30杂芳基中的至少一种。
式I中,n 1、n 2各自独立地选自0-4的整数,例如可以为0、1、2、3或4。
当n 1≥2时,多个(至少2个)R 5相同或不同,且相邻的R 5之间不连接;当n 2≥2时,多个(至少2个)R 6相同或不同,且相邻的R 6之间不连接。
本发明提供的有机化合物具有式I所示结构,是一种包含至少2个芴结构的三芳胺类化合物,母核中的三芳胺基团能够有效调控分子的立体结构,提高分子的堆积致密度;同时,三芳胺结构与芴结构共同作用,赋予所述有机化合物更好的空穴传输性能和空穴注入性能,并有效调控和改善了化合物的HOMO能级,使其与阳极材料更匹配,提升了材料的空穴注入和传输能力,有利于低电压的获取,并使其在电场环境下传输载流子的稳定性得到明显提升。而且,所述有机化合物特殊的四面体结构能制备良好的无定型薄膜,因此用作有机电致发光器件材料时,显示了良好的成膜性。所述有机化合物应用于有机电致发光器件中,特别是作为空穴传输层材料和/或电子阻挡层材料时,可以有效提高器件的效率和稳定性,延长寿命,降低电压,达到更佳的发光效果。
本发明中,所述“相邻的R 5之间不连接”意指R 5与相邻的芳基通过单键相连,与相邻的芳基不形成稠环;所述“相邻的R 6之间不连接”意指R 6与相邻的芳基通过单键相连,与相邻的芳基不形成稠环。
原因可能为:本发明中两个芴结构环结构可以很好的实现合适的HOMO能级,如果芴环进一步稠合其他的芳香环,会极大的改变整个分子的HOMO能级,如果芴环上的苯环进一步连接其他非芳香环结构,此时虽然HOMO理论计算值尚可,然而实际使用时发现寿命特性很差,原因可能是与芴环连接的非芳环可能由于空间位阻会影响三芳基中两个芴环的伸展朝向,改变成膜时的堆积行为,导致效果不理想,因此不优选。
需要说明的是,本发明中为了便于说明对各个基团/特征可能的作用分别进行了描述,但这并不表示这些基团/特征是孤立地起作用的。实际上,获得良好性能的原因本质上是整个分子的优化组合,是各个基团之间协同作用的结果,而不是单一基团的效果。
本发明中,所述“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个(至少2个)时,可以为相同或不同的取代基;下文涉及到相同的表达方式时,均具有同样的含义,且取代基的选择范围均如上所示,不再一一赘述。
本发明中,对于化学元素的表述,若无特别说明,则包含化学性质相同的同位素的概念,例如,氢(H)则包括 1H(氕)、 2H(氘,D)、 3H(氚,T)等;碳(C)则 包括 12C、 13C等。
本发明中,杂芳基的杂原子选自N、O、S、P、B、Si或Se中的原子或原子团,优选N、O、S。
本发明中,“—”或“------”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
在本发明中,Ca-Cb的表达方式代表该基团具有的碳原子数为a-b,除非特殊说明,一般而言该碳原子数不包括取代基的碳原子数。
在本说明书中,“各自独立地”表示其主语具有多个时,彼此之间可以相同也可以不同。
本发明中,所述C1-C30直链或支链烷基均可以为C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C22、C24、C26或C28等的直链或支链烷基;优选C1-C20直链或支链烷基,优选C1-C16直链或支链烷基;更进一步优选C1-C10直链或支链烷基;示例性地包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正辛基、正庚基、正壬基或正癸基等。
本发明中,所述C3-C20环烷基均可以为C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17或C18等的环烷基;示例性地包括但不限于:环丙基、环丁基、环戊基、环己基、金刚烷基等。
本发明中,所述C6-C30芳基均可以为C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等的芳基,优选C6-C20芳基,包括单环芳基或稠环芳基。所述单环芳基意指基团中含有至少1个苯基,当含有至少2个苯基时,苯基之间通过单键相连,示例性地包括但不限于:苯基、联苯基、三联苯基等;所述稠环芳基意指基团中含有至少2个芳环,且芳环之间共用两个相邻的碳原子互相稠合的基团,示例性地包括但不限于:萘基、蒽基、菲基、茚基、芴基及其衍生物(9,9-二苯基芴基、9,9-二萘基芴基、螺二芴基、苯并芴基等)、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2022141366-appb-000002
基或并四苯基等;前述列举的基团包括其所有可行的连接方式。
本发明中,所述C3-C30杂芳基均可以为C3、C4、C5、C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等的杂芳基,优选为C4-C20杂芳基,更进一步优选为C4-C12杂芳基,包括单环杂芳基或稠环杂芳基。所述单环杂芳基意指分子中含有至少一个杂芳基,当分子中含有一个杂芳基和其他基团(如芳基、杂芳基、烷基等)时,杂芳基和其他基团之间通过单键进行连接,示例性地包括但不限于:呋喃基、噻吩基、吡咯基、吡啶基等。所述稠环杂芳基意指分子中至少含有一个芳杂环和一个芳香性环(芳杂环或芳环),且二者之间共用两个相邻的原子互相稠合的基团,示例性地包括但不限于:苯并呋喃基、苯并噻吩基、异苯并呋喃基、异苯并噻吩基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物(N-苯基咔唑基、N-萘基咔唑基、苯并咔唑基、二苯并咔唑基、吲哚并咔唑基、氮杂咔唑基等)、吖啶基、吩嗪基、吩噻嗪基、吩恶嗪基、氢化吖啶基等;前述列举的基团包括其所有可行的连接方式。
本发明所述C6-C30(例如C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等)亚芳基的具体例,可以举出上述芳基的例子中去掉一个氢原子而得到的二价基团。本发明中C3-C30(例如C3、C4、C5、C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等)亚杂芳基的具体例,可以举出上述杂芳基的例子中去掉一个氢原子而得到的二价基团。
本发明所述C6-C30(例如C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等)芳基氨基,示例性地包括但不限于:苯基氨基、甲基苯基氨基、 萘基氨基、蒽基氨基、菲基氨基、联苯基氨基等。
本发明所述C3-C30(例如C3、C4、C5、C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等)杂芳基氨基,示例性地包括但不限于:吡啶基氨基、嘧啶基氨基、二苯并呋喃基氨基等。
优选地,所述R 1、R 2、R 3、R 4各自独立地选自取代或未取代的C1-C30直链或支链烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基中的任意一种。
作为本发明的优选技术方案,所述R 1和R 2不连接或通过化学键连接成环A 1,所述R 3和R 4不连接或通过化学键连接成环A 2
所述环A 1、环A 2各自独立地选自C3-C20脂环或C6-C30芳香环中的任意一种,
作为本发明的优选技术方案,所述C3-C20脂环可以为C3、C4、C5、C6、C9、C10、C12、C14、C16或C18等的脂环,进一步优选C3-C12脂环,更优选饱和脂环,例如金刚烷环,
作为本发明的进一步优选技术方案,所述C6-C30芳香环可以为C6、C9、C10、C12、C14、C16、C18、C20、C22、C24、C26或C28等的芳香环,进一步优选C10-C20芳香环,示例性地包括但不限于:芴环、苯并芴环、二苯并芴环等。
进一步优选地,所述R 1、R 2、R 3、R 4各自独立地选自取代或未取代的C1-C6直链或支链烷基、取代或未取代的C3-C10环烷基、取代或未取代的C6-C20芳基中的任意一种。
作为本发明的另一优选技术方案,所述R 1和R 2不连接或通过化学键连接成环A 1,所述R 3和R 4不连接或通过化学键连接成环A 2
所述环A 1、环A 2各自独立地选自C3-C12脂环或C10-C20芳香环中的任意一种,
优选地,所述环A 1、环A 2各自独立地选自金刚烷环、芴环或苯并芴环中的任意一种。
优选地,所述R 5、R 6各自独立地选自取代或未取代的C1-C6直链或支链烷基、取代或未取代的C3-C10环烷基、取代或未取代的C6-C20芳基中的任意一种。
优选地,所述R 5、R 6各自独立地选自苯基、联苯基或萘基。
优选地,所述n 1、n 2各自独立地为0或1。
优选地,所述L 1、L 2各自独立地选自单键、取代或未取代的C6-C20亚芳基、取代或未取代的C3-C20亚杂芳基中的任意一种。
优选地,所述L 1和L 2均不为
Figure PCTCN2022141366-appb-000003
其中,虚线代表基团的连接位点。
优选地,所述L 1、L 2各自独立地选自单键、取代或未取代的如下基团中的任意一种:
Figure PCTCN2022141366-appb-000004
Figure PCTCN2022141366-appb-000005
Figure PCTCN2022141366-appb-000006
其中,虚线代表基团的连接位点。
优选地,所述Cy选自取代或未取代的C6-C20芳基中的任意一种。
本发明中,所述Cy不为二甲基芴基。
为二甲基芴基时,技术效果不理想,原因可能是由于芴基作为强供电子基团,会影响材料的能级分布。
优选地,所述Cy选自取代或未取代的如下基团中的任意一种:
Figure PCTCN2022141366-appb-000007
其中,虚线代表基团的连接位点。
优选地,本发明前述提及的“取代或未取代”中存在取代基团时,R 1、R 2、R 3、R 4、R 5、R 6、L 1、L 2中所述取代的基团各自独立地选自C1-C10(例如C1、C2、C3、C4、C5、C6、C7、C8、C9、C10)直链或支链烷基、C3-C10(例如C3、C4、C5、C6、C7、C8、C9、C10)环烷基、C6-C30(例如C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)芳基氨基、C3-C30(例如C3、C4、C5、C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)杂芳基氨基、C6-C30(例如C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)芳基或C3-C30(例如C3、C4、C5、C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)杂芳基中的至少一种。Cy中所述取代的基团各自独立地选自C3-C10(例如C3、C4、C5、C6、C7、C8、C9、C10)环烷基、C6-C30(例如C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)芳基氨基、C3-C30(例如C3、C4、C5、C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)杂芳基氨基、C6-C30(例如C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)芳基或C3-C30 (例如C3、C4、C5、C6、C9、C10、C12、C14、C15、C16、C18、C20、C22、C24、C26或C28等)杂芳基中的至少一种。
优选地,所述有机化合物具有如下C1-C318所示结构中的任意一种:
Figure PCTCN2022141366-appb-000008
Figure PCTCN2022141366-appb-000009
Figure PCTCN2022141366-appb-000010
Figure PCTCN2022141366-appb-000011
Figure PCTCN2022141366-appb-000012
Figure PCTCN2022141366-appb-000013
Figure PCTCN2022141366-appb-000014
Figure PCTCN2022141366-appb-000015
Figure PCTCN2022141366-appb-000016
Figure PCTCN2022141366-appb-000017
Figure PCTCN2022141366-appb-000018
Figure PCTCN2022141366-appb-000019
Figure PCTCN2022141366-appb-000020
Figure PCTCN2022141366-appb-000021
Figure PCTCN2022141366-appb-000022
Figure PCTCN2022141366-appb-000023
本发明的目的之二在于提供一种如目的之一所述的有机化合物的应用,所述有机化合物应用于有机电致发光器件。
优选地,所述有机化合物在有机电致发光器件中作为电子阻挡层材料和/或空穴传输层材料。
优选地,所述有机化合物在有机电致发光器件中作为空穴注入层材料。
除了有机电致发光器件,本发明的有机化合物还可以应用于其他类型的有机电子器件,包括照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸。
本发明的目的之三在于提供一种芳胺类有机化合物,所述芳胺类有机化合物在B3LYP/6-31G(d)计算水平下优化得到的基态结构中,HOMO和LUMO间的轨道重叠积分大于0.6,例如可以为0.61、0.62、0.63、0.64、0.65、0.66、0.67、0.68、0.69、0.70、0.71、0.72或0.73等。
所述芳胺类有机化合物的结构式为
Figure PCTCN2022141366-appb-000024
其中,Ar 1、Ar 2、Ar 3各自独立地选自取代或未取代的C6-C60芳基、取代或未取代的C3-C60杂芳基中的任意一种。
在化合物所有电子填充轨道中,电子拥有最高能量的轨道称为最高占据分子轨道(HOMO);相反,在所有未填充电子轨道中,拥有最低电子能量的轨道称为最低未占据分子轨道(LUMO)。电荷在材料中的传输为电子不断从HOMO逃逸和向LUMO增添电子的过程,这涉及化合物分子构型不断在HOMO和LUMO之间变化。当有机材料的HOMO和LUMO轨道在空间上重叠时,电荷传输过程中化合物几何构型变化更小,有利于保持其稳定性,从而提升器件寿命。在量子化学中,HOMO和LUMO轨道的空间重叠程度可以用轨道重叠积分来表示,其范围为0-1,定义如下:
Figure PCTCN2022141366-appb-000025
式a中,
Figure PCTCN2022141366-appb-000026
为HOMO轨道波函数的模,
Figure PCTCN2022141366-appb-000027
为LUMO轨道波函数的模,r为表示位置矢量。其数值越大,表明HOMO和LUMO轨道的空间重叠程度越好。采用Gaussian 09软件,基于B3LYP/6-31G(d)对所述芳胺类有机化合物的结构进行优化,并得到其HOMO和LUMO的轨道波函数,从而计算出其HOMO和LUMO的轨道重叠积分。本发明通过大量的研究发现,当芳胺类化合物基态结构的HOMO和LUMO轨道重叠积分大于0.6时,可以在载流子传输过程中展现出更好的稳定性。
优选地,所述芳胺类有机化合物包括如目的之一所述的有机化合物。
本发明的目的之四在于提供一种如目的之三所述的芳胺类有机化合物的应用,所述芳胺类有机化合物应用于有机电致发光器件。
优选地,所述芳胺类有机化合物在有机电致发光器件中作为电子阻挡层材料和/或空穴传输层材料。
优选地,所述芳胺类有机化合物在有机电致发光器件中作为空穴注入层材料。
本发明的目的之五在于提供一种有机电致发光器件,所述有机电致发光器件包括第一电极、第二电极以及设置于所述第一电极与第二电极之间的至少一个有机层;所述有机层中包括至少一种如目的之一所述的有机化合物和/或如目的之三所述的芳胺类有机化合物。
优选地,所述有机层中包括至少一种如目的之一所述的C1-C318所示结构的有机化合物。
优选地,所述有机层包括空穴传输层,所述空穴传输层中包括至少一种如目的之一所述的有机化合物和/或如目的之三所述的芳胺类有机化合物。
优选地,所述有机层包括电子阻挡层,所述电子阻挡层中包括至少一种如目的之一所述的有机化合物和/或如目的之三所述的芳胺类有机化合物。
本发明提供的有机化合物和/或芳胺类有机化合物作为电子阻挡层材料和/或空穴传输层材料,显著提高了有机电致发光器件的发光效率,并降低驱动电压,减小能耗,使器件稳定性达到最佳的效果。
优选地,所述有机层包括空穴注入层,所述空穴注入层中包括至少一种如目的之一所述的有机化合物。
在一个具体实施方案中,所述有机电致发光器件包括基板,以及依次设置于所述基板上的第一电极、有机层和第二电极;所述有机层包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层或电子注入层中的任意一种或至少两种的组合;其中,所述有机层(例如空穴注入层、空穴传输层、电子阻挡层中的任意一种或至少两种)中包括至少一种具有式I所示结构的有机化合物,进一步优选包括至少一种C1-C318所示结构的有机化合物。
在具体实施方式中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镱(Yb)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
有机层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机层的化合物可以为有机小分子、有机大分子或聚合物,以及它们的组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构;其中HIL位于阳极和HTL之间,EBL位于HTL与发光层之间;所述空穴传输层(HTL)和/或电子阻挡层(EBL)中含有至少一种具有式I结构的有机化合物,进一步优选含有如C1-C318所示结构的有机化合物中的至少一种。
优选地,所述空穴注入层(HIL)中含有至少一种具有式I结构的有机化合物,进一步优选含有如C1-C318所示结构的有机化合物中的至少一种。
空穴传输区的材料还可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物;其中,芳香胺衍生物包括如下面HT-1至HT-51所示的化合物;或者其任意组合。
Figure PCTCN2022141366-appb-000028
Figure PCTCN2022141366-appb-000029
Figure PCTCN2022141366-appb-000030
Figure PCTCN2022141366-appb-000031
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用上述HT-1至HT-34的一种或多种化合物,或者采用如目的之一所述的有机化合物(优选C1-C318所示结构的有机化合物),或者采用下述HI-1至HI-3中的一种或多种化合物;也可以采用HT-1至HT-34的一种或多种化合物和/或如目的之一所述的有机化合物(优选C1-C318所示结构的有机化合物)掺杂下述HI-1至HI-3中的一种或多种化合物。
Figure PCTCN2022141366-appb-000032
发光层包括可以发射不同波长光谱的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
根据不同的技术,发光层材料可以采用荧光电致发光材料、磷光电致发光材料、热活化延迟荧光发光材料等不同的材料。在一个OLED器件中,可以采用单一的发光技术,也可以采用多种不同的发光技术的组合。这些按技术分类的不同发光材料可以发射同种颜色的光,也可以发射不同种颜色的光。
在本发明的一方面,发光层采用荧光电致发光的技术。其发光层荧光主体材料可以选自、但不限于以下所罗列的BFH-1至BFH-17的一种或多种的组合。
Figure PCTCN2022141366-appb-000033
Figure PCTCN2022141366-appb-000034
在本发明的一方面,发光层采用荧光电致发光的技术。其发光层荧光掺杂剂可以选自、但不限于以下所罗列的BFD-1至BFD-24的一种或多种的组合。
Figure PCTCN2022141366-appb-000035
Figure PCTCN2022141366-appb-000036
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层主体材料选自、但不限于PH-1至PH-85中的一种或多种的组合。
Figure PCTCN2022141366-appb-000037
Figure PCTCN2022141366-appb-000038
Figure PCTCN2022141366-appb-000039
Figure PCTCN2022141366-appb-000040
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的GPD-1至GPD-47的一种或多种的组合。
Figure PCTCN2022141366-appb-000041
Figure PCTCN2022141366-appb-000042
Figure PCTCN2022141366-appb-000043
Figure PCTCN2022141366-appb-000044
其中D为氘。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的RPD-1至RPD-28的一种或多种的组合。
Figure PCTCN2022141366-appb-000045
Figure PCTCN2022141366-appb-000046
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的YPD-1至YPD-11的一种或多种的组合。
Figure PCTCN2022141366-appb-000047
OLED有机材料层还可以包括发光层与阴极之间的电子传输区。电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
本发明的一方面,电子传输层材料可以选自、但不限于以下所罗列的ET-1至ET-73的一种或多种的组合。
Figure PCTCN2022141366-appb-000048
Figure PCTCN2022141366-appb-000049
Figure PCTCN2022141366-appb-000050
Figure PCTCN2022141366-appb-000051
器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:LiQ、LiF、NaCl、CsF、Li 2O、Cs 2CO 3、BaO、Na、Yb、Li或Ca。
相对于现有技术,本发明具有以下有益效果:
本发明提供的有机化合物具有式I所示结构,母核三芳胺基团能够有效调控分子的立体结构,提高分子的堆积致密度;同时,三芳胺结构与芴结构共同作用,使所述有机化合物具有优异的空穴传输性能,并调控和改善了化合物的HOMO能级,使其与阳极材料的能级更加匹配,提升化合物的空穴注入和传输能力,有利于低电压的获取,并使其在电场环境下传输载流子的稳定性得到明显提升。而且,所述有机化合物特殊的四面体结构使其能够制备良好的无定型薄膜,因此用作有机电致发光器件材料时,具有良好的成膜性。
本发明提供的芳胺类有机化合物的HOMO和LUMO间的轨道重叠积分较大,在电场环境下的载流子传输稳定性高。
所述有机化合物和/或芳胺类有机化合物应用于有机电致发光器件中,尤其适用于作为空穴传输层材料和/或电子阻挡层材料,可以有效提高器件的发光效率和稳定性,延长器件寿命,降低电压,达到更佳的发光效果。
此外,本发明提供的有机化合物的制备工艺简单易行,原料易得,适合于量产放大。
附图说明
图1为本发明提供的有机化合物C1的分子轨道分布图;
图2为本发明提供的有机化合物C2的分子轨道分布图;
图3为本发明提供的有机化合物C5的分子轨道分布图;
图4为本发明提供的有机化合物C7的分子轨道分布图;
图5为本发明提供的有机化合物C9的分子轨道分布图;
图6为本发明提供的有机化合物C12的分子轨道分布图;
图7为本发明提供的有机化合物C13的分子轨道分布图;
图8为化合物R1的分子轨道分布图;
图9为对比化合物R2的分子轨道分布图;
图10为对比化合物R3的分子轨道分布图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
本发明化合物的合成一般方法:
在一个具体实施方式中,所述有机化合物可以通过如下代表性的合成路径制备得到:
Figure PCTCN2022141366-appb-000052
Figure PCTCN2022141366-appb-000053
其中,R 1、R 2、R 3、R 4、R 5、R 6、L 1、L 2、Cy、n 1、n 2具有与式I中相同的限定范围;Pd 2(dba) 3代表三(二苄基丙酮)二钯(0),IPr.HCl代表1,3-双(2,6-二异丙基苯基)氯化咪唑鎓,NaOBu-t代表叔丁醇钠,(t-Bu) 3P代表三叔丁基膦;
Figure PCTCN2022141366-appb-000054
可以通过如下代表性的合成路径制备得到:
Figure PCTCN2022141366-appb-000055
需要说明的是,获取所述有机化合物并不限于本发明中所用到的合成方法和原料,本领域技术人员也可以选取其他公知的方法或路线得到本发明提供的有机化合物。本发明中未提到合成方法的化合物都是通过商业途径获得的原料产品,或者通过这些原料产品依据公知的方法来进行自制。
具体地,以下将以多个合成例为例来详述本发明所述有机化合物的具体制备方法,但本发明的制备方法并不限于这些合成例。
本发明中的中间体和有机化合物的质谱表征数据(m/z)通过ZAB-HS型质谱仪(英国Micromass公司制造)测试得到。
合成例1:有机化合物C1的获得
Figure PCTCN2022141366-appb-000056
Figure PCTCN2022141366-appb-000057
(1)中间体C1-1的合成
室温下在一个装有磁力搅拌的1000mL单口烧瓶中加入2,3-二氯硝基苯(30g,156.25mmol),苯硼酸(47.63g,390.64mmol),三(二苄基丙酮)二钯(0)Pd 2(dba) 3(2.86g,3.13mmol),2-双环己基膦-2',6'-二甲氧基联苯s-Phos(2.57g,6.25mmol),磷酸钾(66.33g,312.51mmol),加入二氧六环500mL,水50mL,开启搅拌,置换氮气3次,升温至100℃,反应过夜。薄层色谱法(TLC)监测,原料反应完全。将反应液降至室温,用乙酸乙酯萃取,取上层澄清液,旋干,石油醚(PE):二氯甲烷(DCM)=10:1过100-200目硅胶柱,得油状液体40.56g。
(2)中间体C1-2的合成
室温下在一个装有磁力搅拌的2000mL单口烧瓶中加入中间体C1-1(40.56g,147.33mmol),甲酸铵(92.90g,1.47mol),Pd/C(20g),加入乙醇(EtOH)600mL,开启搅拌,置换氮气3次,升温至80℃,反应2h。TLC监测,原料反应完全。硅藻土过滤后,旋除溶剂;PE:DCM=10:1过100-200目硅胶柱,得油状液体31.85g,质谱m/z:245。
(3)有机化合物C1的合成
将中间体C1-2(6.85g,27.92mmol),2-溴-9,9-二甲基芴(17.54g,64.22mmol),Pd 2(dba) 3(1.28g,1.40mmol),三叔丁基膦(t-Bu) 3P(0.56g,2.79mmol),叔丁醇钠NaOBu-t(8.05g,83.77mmol)加入到500mL甲苯之中,搅拌均匀,在氮气保护下,升温到110℃反应过夜。TLC监测,原料反应完全。降温后,过硅胶短柱,甲苯淋洗,浓缩和棕色油状物。加入甲醇300mL,回流搅拌过夜,过滤得白色固体。乙酸乙酯200mL煮洗4h,过滤得白色固体。甲苯/乙醇重结晶得白色固体产品C1,7.4g。
有机化合物C1:m/z理论值:629.85;实测值:630.83。
合成例2:有机化合物C2的获得
Figure PCTCN2022141366-appb-000058
(1)中间体C2-2的合成
将中间体C1-2(15g,61.14mmol),2-溴-9,9-二甲基芴(16.70g,61.14mmol),Pd 2(dba) 3(0.56g,0.61mmol),1,3-双(2,6-二异丙基苯基)氯化咪唑鎓IPr.HCl(0.52g,1.22mmol),NaOBu-t(11.75g,122.29mmol)加入到500mL甲苯之中,搅拌均匀,在氮气保护下加热到110℃反应过夜。TLC监测,原料反应完全。降温后,快速硅胶柱,选除溶剂后100mL甲醇,析出固体。收集固体,过柱分离,PE:DCM=20:1,甲醇煮洗得中间体C2-2 12.85g。
(2)有机化合物C2的合成
将中间体C2-2(12.85g,29.37mmol),2-溴-9,9-二苯基芴(14g,35.24mmol),Pd 2(dba) 3(0.54g,0.59mmol),(t-Bu) 3P(0.24g,1.17mmol),NaOBu-t(5.64g,58.73mmol)加入到500mL甲苯之中,搅拌均匀,在氮气保护下,升温到110℃反应过夜。TLC监测,原料反应完全。降温后,过硅胶短柱,甲苯淋洗,浓缩和棕色油状物。石油醚200mL煮洗后过滤得白色固体,N,N-二甲基甲酰胺(DMF)重结晶,得白色固体C2,8.8g。
有机化合物C2:m/z理论值:753.99;实测值:754.33。
合成例3-14替换不同原料的本发明其他化合物的获得
合成例3-14的工艺路线与合成例1-2相同,区别在于所使用的原料不同,原料、目标产物及结果表征数据如表1所示;表1中,原料A表示
Figure PCTCN2022141366-appb-000059
原料B表示
Figure PCTCN2022141366-appb-000060
原料C表示
Figure PCTCN2022141366-appb-000061
表1
Figure PCTCN2022141366-appb-000062
Figure PCTCN2022141366-appb-000063
Figure PCTCN2022141366-appb-000064
Figure PCTCN2022141366-appb-000065
化合物的量子化学计算:
在化合物所有电子填充轨道中,电子拥有最高能量的轨道称为最高占据分子轨道(HOMO)。相反,在所有未填充电子轨道中,拥有最低电子能量的轨道称为最低未占据分子轨道(LUMO)。电子在材料中的传输,即为电子不断从HOMO逃逸和向LUMO增添电子的过程。在量子化学中,HOMO和LUMO间的重叠程度可以用轨道重叠积分来表示,重叠积分是两个轨道波函数的模乘积的全空间积分,其范围为0-1,定义如下:
Figure PCTCN2022141366-appb-000066
式a中,
Figure PCTCN2022141366-appb-000067
为HOMO轨道波函数的模,
Figure PCTCN2022141366-appb-000068
为LUMO轨道波函数的模,r为表示位置矢量。针对本发明提供的有机化合物进行了量化计算,采用Gaussian 09软件,基于DFT/B3LYP/6-31G(d)对有机化合物的基态HOMO/LUMO轨道波函数进行了计算,并分别计算了其HOMO和LUMO的轨道重叠积分,同时得到了HOMO/LUMO能级。示例性地,对有机化合物C1、C2、C5、C7、C9、C12、C13、R1、R2、R3进行量化计算,化合物的HOMO/LUMO能级和轨道重叠积分如表2所示,有机化合物C1、C2、C5、C7、C9、C12、C13、R1、R2、R3的分子轨道分布图分别如图1至图10所示。
Figure PCTCN2022141366-appb-000069
表2
化合物 HOMO(eV) LUMO(eV) 轨道重叠积分
C1 -4.72 -0.88 0.686
C2 -4.74 -0.91 0.702
C5 -4.77 -1.03 0.658
C7 -4.74 -1.03 0.681
C9 -4.77 -0.96 0.696
C12 -4.75 -0.93 0.705
C13 -4.72 -0.87 0.7
R1 -4.83 -0.80 0.606
R2 -5.05 -0.80 0.495
R3 -4.72 -1.01 0.540
由表2、图1至图10的分子轨道分布图可知,本发明提供的有机化合物通过基团连接位点的控制,使得化合物的HOMO和LUMO在芴基上得到有效重叠,与化合物R1、R2、R3相比,化合物C1、C2、C5、C7、C9、C12、C13的HOMO和LUMO间的轨道重叠积分更大,从而可以提升此类有机化合物在电场环境下传输载流子时的稳定性,其应用于有机电致发光器件中,能够有效改善器件的稳定性,延长器件的工作寿命;而对比化合物的HOMO和LUMO轨道分布呈现明显的分离状态,这或许将导致其在电荷传输过程中稳定性降低。
实施例1
按照如下方法制备有机电致发光器件,其包括依次设置的阳极(ITO)、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层和阴极(Al);其制备方法如下:
(1)将涂布了ITO透明导电层(阳极)的玻璃板在商用清洗剂中超声处理后,在去离子水中冲洗,在丙酮/乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
(2)将上述带有阳极的玻璃基片置于真空腔内,抽真空至小于<1×10 -5Pa,在上述阳极层膜上依次真空蒸镀10nm的HT-4:HI-3(97/3,w/w)混合物作为空穴注入层;
(3)在空穴注入层上真空蒸镀60nm的化合物HT-4作为空穴传输层;
(4)在空穴传输层之上真空蒸镀5nm的本发明提供的有机化合物C2作为电子阻挡层;
(5)在电子阻挡层之上真空蒸镀器件的发光层,发光层包括主体材料和染料材料,利用多源共蒸的方法,调节主体材料BFH-4蒸镀速率为0.1nm/s,染料BFD-16蒸镀速率为主体材料的3%进行比例设定,蒸镀总膜厚为20nm;
(6)在发光层上真空蒸镀5nm的ET-23作为空穴阻挡层;
(7)在空穴阻挡层上真空蒸镀25nm的化合物ET-69:ET-57(50/50,w/w)混合物作为电子传输层;
(8)在电子传输层上真空蒸镀0.5nm的LiF作为电子注入层,厚度为150nm的金属铝作为阴极,得到所述有机电致发光器件;所有有机层和LiF的蒸镀总速率控制在0.1nm/s,金属电极的蒸镀速率控制在1nm/s。
实施例2-20、对比例1-4
制备以下有机电致发光器件,其与实施例1的区别仅在于,将步骤(4)中电子阻挡层的材料有机化合物C2替换为表3中的有机化合物。其中对比例1-4的电子阻挡层材料的结构如下:
Figure PCTCN2022141366-appb-000070
针对上述实施例1-20和对比例1-4提供的有机电致发光器件进行如下性能测试:
(1)在同样亮度下,测定有机电致发光器件的驱动电压、电流效率以及器件的寿命。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到1000cd/m 2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率;
(2)LT97的寿命测试如下:使用40mA/cm 2,保持恒定的电流,测量有机电致发光器件的亮度降为97%的时间,单位为小时(h);
测试结果如表3所示。
表3
  电子阻挡层 电压(V) 电流效率(cd/A) LT97(h)
实施例1 C2 3.77 9.46 89.08
实施例2 C6 3.76 9.49 88.17
实施例3 C7 3.73 9.71 89.55
实施例4 C13 3.76 9.82 89.92
实施例5 C21 3.76 9.5 82.92
实施例6 C25 3.75 9.52 80.59
实施例7 C39 3.78 9.42 79.36
实施例8 C149 3.79 9.17 70.00
实施例9 C152 3.81 9.22 69.75
实施例10 C199 3.75 9.33 71.56
实施例11 C218 3.76 9.27 72.14
实施例12 C254 3.79 9.29 75.11
实施例13 C260 3.74 9.65 76.75
实施例14 C291 3.79 9.34 76.21
实施例15 C292 3.73 9.57 78.33
实施例16 C299 3.77 9.23 79.56
实施例17 C303 3.72 9.41 81.42
实施例18 C311 3.75 9.27 79.21
实施例19 C315 3.72 9.35 74.86
实施例20 C169 3.99 9.13 67.58
对比例1 R1 4.01 8.56 61.89
对比例2 R2 4.05 8.63 60.21
对比例3 R3 3.88 8.11 45.22
对比例4 R4 3.91 7.96 51.17
由表3中的数据可知,本发明提供的有机化合物用于有机电致发光器件的电子阻 挡层材料时,器件亮度达到1000cd/m 2时,电流效率可达9.1cd/A以上,40mA/cm 2下的LT97寿命达到67h以上,更优的LT97寿命>72h,甚至>89h,相较于对比例1-4,可以有效提高电流效率,提升器件寿命,其原因可能是本发明材料具备更优的空穴迁移率,使得器件的激子复合区域更远离界面,能有效提升器件寿命;与此同时,材料HOMO和LUMO间的轨道重叠积分更大,从而在电荷传输过程中稳定性更好;其中,所述有机化合物C13体现最优的效率,能达到9.82cd/A,原因可能是由于其金刚烷基团进一步提升了激子阻挡效率,使得激子利用率更高,从而提升了器件效率。
实施例21
制备以下有机电致发光器件,包括依次设置的阳极(ITO)、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层和阴极(Al);其制备方法如下:
(1)将涂布了ITO透明导电层(阳极)的玻璃板在商用清洗剂中超声处理后,在去离子水中冲洗,在丙酮/乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
(2)将上述带有阳极的玻璃基片置于真空腔内,抽真空至小于<1×10 -5Pa,在上述阳极层膜上依次真空蒸镀10nm的本发明提供的有机化合物C1:HI-3(97/3,w/w)混合物作为空穴注入层;
(3)在空穴注入层上真空蒸镀60nm的所述有机化合物C1作为空穴传输层;
(4)在空穴传输层之上真空蒸镀5nm的化合物HT18作为电子阻挡层;
(5)在电子阻挡层之上真空蒸镀器件的发光层,发光层包括主体材料和染料材料,利用多源共蒸的方法,调节主体材料BFH-4蒸镀速率为0.1nm/s,染料BFD-16蒸镀速率为主体材料的3%进行比例设定,蒸镀总膜厚为20nm;
(6)在发光层上真空蒸镀5nm的ET-23作为空穴阻挡层;
(7)在空穴阻挡层上真空蒸镀25nm的化合物ET-69:ET-57(50/50,w/w)混合物作为电子传输层;
(8)在电子传输层上真空蒸镀0.5nm的LiF作为电子注入层,厚度为150nm的金属铝作为阴极,得到所述有机电致发光器件;所有有机层和LiF的蒸镀总速率控制在0.1nm/s,金属电极的蒸镀速率控制在1nm/s。
实施例22-32、对比例5-8
制备以下有机电致发光器件,其与实施例21的区别仅在于,将步骤(5)中空穴传输层的材料有机化合物C1替换为表4中的有机化合物。
对比例5-8的空穴传输层材料的结构如下:
Figure PCTCN2022141366-appb-000071
针对上述实施例21-32和对比例5-8提供的有机电致发光器件进行性能测试,测试方法与实施例1相同,得到的测试结果如表4所示。
表4
  空穴传输层 电压(V) 电流效率(cd/A) LT97(h)
实施例21 C1 3.71 9.48 109.34
实施例22 C2 3.66 9.49 106.11
实施例23 C5 3.65 9.52 112.75
实施例24 C7 3.62 9.53 109.75
实施例25 C8 3.66 9.51 110.17
实施例26 C99 3.64 9.55 111.29
实施例27 C81 3.64 9.57 105.84
实施例28 C199 3.68 9.49 98.83
实施例29 C259 3.66 9.52 104.92
实施例30 C291 3.67 9.94 105.67
实施例31 C299 3.61 9.66 103.55
实施例32 C311 3.63 9.57 102.37
对比例5 R1 3.75 9.47 72.75
对比例6 R3 3.71 9.34 87.09
对比例7 R4 3.73 9.41 88.13
对比例8 R5 3.72 9.38 79.24
由表4的性能数据可知,与对比例5-8相比,本发明提供的有机化合物用于有机电致发光器件的空穴传输层材料时,40mA/cm 2下测得的LT97寿命可达到100h以上,其原因可能是本发明材料具备更优的空穴迁移率,使得器件的激子复合区域更远离界面,能有效提升器件寿命;与此同时,材料HOMO和LUMO间的轨道重叠积分更大,从而在电荷传输过程中稳定性更好的原因,器件寿命显示明显优势。
综上所述,本发明的有机化合物经过分子结构的特定设计,具备合适的综合性能,尤其稳定性优势突出,在实际生产中有望得到良好应用。
本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (15)

  1. 一种有机化合物,其特征在于,所述有机化合物具有如式I所示结构:
    Figure PCTCN2022141366-appb-100001
    其中,R 1、R 2、R 3、R 4各自独立地选自取代或未取代的C1-C30直链或支链烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
    所述R 1和R 2不连接或通过化学键连接成环,所述R 3和R 4不连接或通过化学键连接成环;
    R 5、R 6各自独立地选自取代或未取代的C1-C30直链或支链烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
    L 1、L 2各自独立地选自单键、取代或未取代的C6-C30亚芳基、取代或未取代的C3-C30亚杂芳基中的任意一种;
    R 1、R 2、R 3、R 4、R 5、R 6、L 1、L 2中所述取代的取代基各自独立地选自C1-C20直链或支链烷基、C3-C20环烷基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30芳基或C3-C30杂芳基中的至少一种;
    Cy选自取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
    Cy中所述取代的取代基各自独立地选自C3-C20环烷基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30芳基或C3-C30杂芳基中的至少一种;
    n 1、n 2各自独立地选自0-4的整数;
    当n 1≥2时,R 5相同或不同,且相邻的R 5之间不连接;当n 2≥2时,R 6相同或不同,且相邻的R 6之间不连接。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述R 1、R 2、R 3、R 4各自独立地选自取代或未取代的C1-C30直链或支链烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基中的任意一种;
    所述R 1和R 2不连接或通过化学键连接成环A 1,所述R 3和R 4不连接或通过化学键连接成环A 2
    所述环A 1、环A 2各自独立地选自C3-C20脂环或C6-C30芳香环中的任意一种。
  3. 根据权利要求1或2所述的有机化合物,其特征在于,所述R 1、R 2、R 3、R 4各自独立地选自取代或未取代的C1-C6直链或支链烷基、取代或未取代的C3-C10环烷基、取代或未取代的C6-C20芳基中的任意一种;
    所述R 1和R 2不连接或通过化学键连接成环A 1,所述R 3和R 4不连接或通过化学键连接成环A 2
    所述环A 1、环A 2各自独立地选自C3-C12脂环或C10-C20芳香环中的任意一种;
    优选地,所述环A 1、环A 2各自独立地选自金刚烷环、芴环或苯并芴环中的任意一种。
  4. 根据权利要求1所述的有机化合物,其特征在于,所述R 5、R 6各自独立地选自取代或未取代的C1-C6直链或支链烷基、取代或未取代的C3-C10环烷基、取代或未取代的C6-C20芳基中的任意一种;
    优选地,所述R 5、R 6各自独立地选自苯基、联苯基或萘基;
    优选地,所述n 1、n 2各自独立地为0或1。
  5. 根据权利要求1所述的有机化合物,其特征在于,所述L 1、L 2各自独立地选自单键、取代或未取代的C6-C20亚芳基、取代或未取代的C3-C20亚杂芳基中的任意一种;
    优选地,所述L 1、L 2各自独立地选自单键、取代或未取代的如下基团中的任意一种:
    Figure PCTCN2022141366-appb-100002
    其中,虚线代表基团的连接位点。
  6. 根据权利要求1所述的有机化合物,其特征在于,所述Cy选自取代或未取代的C6-C20芳基中的任意一种;
    优选地,所述Cy选自取代或未取代的如下基团中的任意一种:
    Figure PCTCN2022141366-appb-100003
    其中,虚线代表基团的连接位点。
  7. 根据权利要求1所述的有机化合物,其特征在于,所述有机化合物具有如下C1-C318所示结构中的任意一种:
    Figure PCTCN2022141366-appb-100004
    Figure PCTCN2022141366-appb-100005
    Figure PCTCN2022141366-appb-100006
    Figure PCTCN2022141366-appb-100007
    Figure PCTCN2022141366-appb-100008
    Figure PCTCN2022141366-appb-100009
    Figure PCTCN2022141366-appb-100010
    Figure PCTCN2022141366-appb-100011
    Figure PCTCN2022141366-appb-100012
    Figure PCTCN2022141366-appb-100013
    Figure PCTCN2022141366-appb-100014
    Figure PCTCN2022141366-appb-100015
    Figure PCTCN2022141366-appb-100016
    Figure PCTCN2022141366-appb-100017
    Figure PCTCN2022141366-appb-100018
    Figure PCTCN2022141366-appb-100019
  8. 一种如权利要求1-7任一项所述的有机化合物的应用,其特征在于,所述有机化合物应用于有机电致发光器件;
    优选地,所述有机化合物在有机电致发光器件中作为电子阻挡层材料和/或空穴传输层材料;
    优选地,所述有机化合物在有机电致发光器件中作为空穴注入层材料。
  9. 一种芳胺类有机化合物,其特征在于,所述芳胺类有机化合物在B3LYP/6-31G(d)计算水平下优化得到的基态结构中,HOMO和LUMO间的轨道重叠积分大于0.6。
  10. 根据权利要求9所述的芳胺类有机化合物,其特征在于,所述芳胺类有机化合物包括如权利要求1-7任一项所述的有机化合物。
  11. 一种如权利要求9或10所述的芳胺类有机化合物的应用,其特征在于,所述芳胺类有机化合物应用于有机电致发光器件;
    优选地,所述芳胺类有机化合物在有机电致发光器件中作为电子阻挡层材料和/或空穴传输层材料;
    优选地,所述芳胺类有机化合物在有机电致发光器件中作为空穴注入层材料。
  12. 一种有机电致发光器件,其特征在于,所述有机电致发光器件包括第一电极、第二电极以及设置于所述第一电极与第二电极之间的至少一个有机层;所述有机层中包括至少一种如权利要求1-7任一项所述的有机化合物和/或如权利要求9或10所述的芳胺类有机化合物。
  13. 根据权利要求12所述的有机电致发光器件,其特征在于,所述有机层包括空穴传输层,所述空穴传输层中包括至少一种如权利要求1-7任一项所述的有机化合物和/或如权利要求9或10所述的芳胺类有机化合物。
  14. 根据权利要求12所述的有机电致发光器件,其特征在于,所述有机层包括电子阻挡层,所述电子阻挡层中包括至少一种如权利要求1-7任一项所述的有机化合物和/或如权利要求9或10所述的芳胺类有机化合物。
  15. 根据权利要求12所述的有机电致发光器件,其特征在于,所述有机层包括空穴注入层,所述空穴注入层中包括至少一种如权利要求1-7任一项所述的有机化合物和/或如权利要求9或10所述的芳胺类有机化合物。
PCT/CN2022/141366 2021-12-28 2022-12-23 一种有机化合物及其应用 WO2023125276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111630334.3A CN114773210B (zh) 2021-12-28 2021-12-28 一种有机化合物及其应用
CN202111630334.3 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023125276A1 true WO2023125276A1 (zh) 2023-07-06

Family

ID=82423343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141366 WO2023125276A1 (zh) 2021-12-28 2022-12-23 一种有机化合物及其应用

Country Status (2)

Country Link
CN (1) CN114773210B (zh)
WO (1) WO2023125276A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773210B (zh) * 2021-12-28 2024-04-23 北京鼎材科技有限公司 一种有机化合物及其应用
WO2024114085A1 (zh) * 2022-11-30 2024-06-06 北京鼎材科技有限公司 三芳基胺型有机化合物及其应用、有机电致发光器件
CN117800851A (zh) * 2024-02-29 2024-04-02 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
CN110498765A (zh) * 2018-05-17 2019-11-26 北京鼎材科技有限公司 化合物、有机电致发光材料和有机电致发光器件
CN111244310A (zh) * 2018-11-29 2020-06-05 固安鼎材科技有限公司 一种有机电致发光器件及有机电致发光显示装置
CN112447913A (zh) * 2019-08-27 2021-03-05 固安鼎材科技有限公司 一种有机电致发光器件
CN112778139A (zh) * 2019-11-11 2021-05-11 北京鼎材科技有限公司 一种化合物及其应用
CN112939787A (zh) * 2019-12-10 2021-06-11 北京鼎材科技有限公司 一种化合物及其应用
CN113620817A (zh) * 2020-05-09 2021-11-09 北京鼎材科技有限公司 一种化合物及其应用
CN113773207A (zh) * 2021-06-18 2021-12-10 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置
KR20210152783A (ko) * 2020-06-09 2021-12-16 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN114773210A (zh) * 2021-12-28 2022-07-22 北京鼎材科技有限公司 一种有机化合物及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003038A (zh) * 2017-12-01 2018-05-08 吉林奥来德光电材料股份有限公司 一种茚并菲化合物及其制备方法和有机电致发光器件
KR20210133882A (ko) * 2020-04-29 2021-11-08 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498765A (zh) * 2018-05-17 2019-11-26 北京鼎材科技有限公司 化合物、有机电致发光材料和有机电致发光器件
CN111244310A (zh) * 2018-11-29 2020-06-05 固安鼎材科技有限公司 一种有机电致发光器件及有机电致发光显示装置
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
CN112447913A (zh) * 2019-08-27 2021-03-05 固安鼎材科技有限公司 一种有机电致发光器件
CN112778139A (zh) * 2019-11-11 2021-05-11 北京鼎材科技有限公司 一种化合物及其应用
CN112939787A (zh) * 2019-12-10 2021-06-11 北京鼎材科技有限公司 一种化合物及其应用
CN113620817A (zh) * 2020-05-09 2021-11-09 北京鼎材科技有限公司 一种化合物及其应用
KR20210152783A (ko) * 2020-06-09 2021-12-16 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113773207A (zh) * 2021-06-18 2021-12-10 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置
CN114773210A (zh) * 2021-12-28 2022-07-22 北京鼎材科技有限公司 一种有机化合物及其应用

Also Published As

Publication number Publication date
CN114773210A (zh) 2022-07-22
CN114773210B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2023125276A1 (zh) 一种有机化合物及其应用
JP2023554536A (ja) 縮合環化合物及びその応用、並びに該縮合環化合物を含む有機電界発光素子
WO2023284103A1 (zh) 一种有机化合物及其应用
KR101628438B1 (ko) 함질소 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
CN112142605A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN113511978A (zh) 一种化合物、其应用及采用其的有机电致发光器件
WO2021121230A1 (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN115477587A (zh) 一种有机化合物及其应用、包含其的有机电致发光器件
CN113861041A (zh) 一种化合物及其应用
KR20240026461A (ko) 화합물 및 이의 응용, 유기 전계 발광 소자
WO2022042737A1 (zh) 用于有机电致发光器件的有机化合物及有机电致发光器件
CN111354855A (zh) 一种有机电致发光器件
KR101324150B1 (ko) 유기전계 발광 재료용 아릴아민유도체와 이를 제조하는 방법 및 유기전계 발광 재료용 아릴아민유도체를 포함하는 유기전계 발광 재료
CN113636945A (zh) 一种化合物及其应用
CN113861042A (zh) 一种化合物及其应用
CN113045481A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN114478267A (zh) 用于发光器件的有机化合物及有机电致发光器件
CN115385933A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN115594598A (zh) 一种有机化合物及其应用
CN113929646A (zh) 有机化合物及有机电致发光器件
CN113773303A (zh) 一种化合物及其应用
CN112110917A (zh) 一种化合物及其应用以及采用该化合物的有机电致发光器件
CN112778281A (zh) 一种化合物及其应用
CN110872294A (zh) 一种发光材料及其应用
CN111377904A (zh) 有机电致发光材料及器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914530

Country of ref document: EP

Kind code of ref document: A1