WO2023103044A1 - 显示面板、显示装置以及显示面板的制作方法 - Google Patents

显示面板、显示装置以及显示面板的制作方法 Download PDF

Info

Publication number
WO2023103044A1
WO2023103044A1 PCT/CN2021/139221 CN2021139221W WO2023103044A1 WO 2023103044 A1 WO2023103044 A1 WO 2023103044A1 CN 2021139221 W CN2021139221 W CN 2021139221W WO 2023103044 A1 WO2023103044 A1 WO 2023103044A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
metal layer
layer
display panel
passivation layer
Prior art date
Application number
PCT/CN2021/139221
Other languages
English (en)
French (fr)
Inventor
刘方梅
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/622,270 priority Critical patent/US20240032348A1/en
Priority to JP2021576403A priority patent/JP2024502686A/ja
Publication of WO2023103044A1 publication Critical patent/WO2023103044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present application relates to the technical field of display panels, and in particular to a display panel, a display device, and a manufacturing method of the display panel.
  • Copper metal is used for the metal of the peripheral pad area of the large-size display panel in order to reduce the impedance. But copper is easily oxidized or corroded in the air. In order to solve this problem, a layer of protective metal is generally used to cover the copper pad. But this solution needs to increase the photomask. Another solution is to deposit multiple layers of metal when depositing the metal layer of the entire display panel, depositing molybdenum-titanium alloy (MoTi) on copper metal, which does not require additional photomasks.
  • MoTi molybdenum-titanium alloy
  • Embodiments of the present application provide a display panel, a display device, and a manufacturing method of the display panel, so as to solve the problems of simplifying the manufacturing process of the display panel, avoiding oxidation of the pads, and avoiding cracks in the passivation layer in the prior art.
  • An embodiment of the present application provides a display panel, the display panel includes a display area and a frame area, and the display panel includes:
  • the passivation layer disposed on the metal layer includes a laminated first sub-passivation layer and a second sub-passivation layer, and the first sub-passivation layer is disposed between the metal layer and the second sub-passivation layer , wherein the metal layer includes a source-drain pattern in the display area, the metal layer includes a pad pattern in the frame area, and the material of the first sub-passivation layer includes silicon nitride.
  • the first sub-passivation layer covers the metal layer
  • the second sub-passivation layer covers the first sub-passivation layer
  • the The material of the second sub-passivation layer includes silicon oxide
  • the first sub-passivation layer has a thickness of 100 nm to 300 nm
  • the second sub-passivation layer has a thickness of 100 nm to 300 nm.
  • the multi-layer sub-metal layer includes a first sub-metal layer, a second sub-metal layer, and a third sub-metal layer, wherein the second sub-metal layer covers the The first sub-metal layer, the third sub-metal layer covers the second sub-metal layer, and the material of the third sub-metal layer includes molybdenum-titanium alloy.
  • the material of the first sub-metal layer includes molybdenum-titanium alloy
  • the material of the second sub-metal layer includes copper
  • the thickness of the first sub-metal layer is greater than zero and less than 100 nm
  • the thickness of the second sub-metal layer is 400 nm to 800 nm
  • the thickness of the third sub-metal layer Greater than zero and less than 100nm.
  • the display panel further includes a planarization layer disposed on the passivation layer; a light emitting component is disposed on the planarization layer.
  • the present application provides a display device, including a display panel, and a drive assembly connected to the display panel through a flexible circuit board, wherein the display panel includes a display area and a frame area, and the display panel also include:
  • the passivation layer disposed on the metal layer includes a laminated first sub-passivation layer and a second sub-passivation layer, and the first sub-passivation layer is disposed between the metal layer and the second sub-passivation layer , wherein the metal layer includes a source-drain pattern in the display area, the metal layer includes a pad pattern in the frame area, the material of the first sub-passivation layer includes silicon nitride, and the flexible
  • the circuit board is connected to the pad pattern of the display panel.
  • the first sub-passivation layer covers the metal layer
  • the second sub-passivation layer covers the first sub-passivation layer
  • the The material of the second sub-passivation layer includes silicon oxide
  • the thickness of the first sub-passivation layer is 100 nm to 300 nm
  • the thickness of the second sub-passivation layer is 100 nm to 300 nm
  • the multi-layer sub-metal layer includes a first sub-metal layer, a second sub-metal layer, and a third sub-metal layer, wherein the second sub-metal layer covers the The first sub-metal layer, the third sub-metal layer covers the second sub-metal layer, and the material of the third sub-metal layer includes molybdenum-titanium alloy.
  • the material of the first sub-metal layer includes molybdenum-titanium alloy
  • the material of the second sub-metal layer includes copper
  • the thickness of the first sub-metal layer is greater than zero and less than 100 nm
  • the thickness of the second sub-metal layer is 400 nm to 800 nm
  • the thickness of the third sub-metal layer Greater than zero and less than 100nm.
  • the display panel further includes:
  • planarization layer disposed on the passivation layer
  • the light emitting component is arranged on the planarization layer.
  • the present application provides a method for manufacturing a display panel, comprising the steps of:
  • the metal layer comprising stacked multiple sub-metal layers
  • a second sub-passivation layer is deposited on the first sub-passivation layer, wherein the material of the first sub-passivation layer includes silicon nitride.
  • the multi-layer sub-metal layer includes a first sub-metal layer, a second sub-metal layer, and a third sub-metal layer, wherein the second sub-metal layer Covering on the first sub-metal layer, the third sub-metal layer covering on the second sub-metal layer, the material of the third sub-metal layer includes molybdenum-titanium alloy.
  • the beneficial effects of the present application are: the display panel, the display device, and the manufacturing method of the display panel provided by the present application, through the stacked multi-layer sub-metal layers and the stacked first sub-passivation layer and the second sub-passivation layer A passivation layer, the first sub-passivation layer is disposed between the metal layer and the second sub-passivation layer, wherein the material of the first sub-passivation layer includes silicon nitride, and the end of the molybdenum-titanium alloy thin layer is not covered.
  • the flat area avoids cracks in the passivation layer, and at the same time solves the problems of simplification of the display panel manufacturing process and pad oxidation.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a display panel provided in an embodiment of the present application
  • FIG. 4 is a schematic structural view of a substrate provided in an embodiment of the present application.
  • Fig. 5a is a schematic structural diagram of a display panel under fabrication provided by an embodiment of the present application.
  • Fig. 5b is a schematic structural diagram of another display panel under fabrication provided by the embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another display panel under production provided by the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another display panel under fabrication provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another display panel under fabrication provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of another display panel under manufacture provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a support connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • An embodiment of the present application provides a display panel 100, the display panel includes a display area AA and a frame area BA, and the display panel 100 includes:
  • the metal layer ML disposed on the substrate SB includes stacked multi-layer sub-metal layers
  • the passivation layer PV disposed on the metal layer ML includes stacked first sub-passivation layer PV1 and second sub-passivation layer PV2, and the first sub-passivation layer PV1 is disposed between the metal layer and the second sub-passivation layer of ML. between the sub-passivation layers PV2, wherein the metal layer ML includes a source-drain pattern SDP in the display area AA, the metal layer ML includes a pad pattern BP in the frame area BA, and the first sub-passivation layer
  • the material of the passivation layer PV1 includes silicon nitride.
  • the material of the substrate SB includes glass, a printed circuit board (Printed Circuit Board, PCB) or a BT resin board (Bismaleimide Triazine, BT).
  • PCB printed Circuit Board
  • BT resin board Bismaleimide Triazine
  • the material of the first sub-passivation layer PV1 includes silicon nitride, it has better step coverage (Step Coverage), so even if the end of the metal layer ML under the first sub-passivation layer PV1 has The uneven (Tip) area can also be well covered, avoiding gaps or cracks between the passivation layer and the metal layer ML, and at the same time, since the present embodiment adopts stacked multi-layer sub-metal layers, a mask can be used to The source-drain pattern SDP and the pad pattern BP are formed to simplify the manufacturing process of the display panel.
  • Step Coverage is the surface area covered by sediment divided by the total surface area to be covered.
  • the first sub-passivation layer PV1 covers the metal layer ML
  • the second sub-passivation layer PV2 covers the first sub-passivation layer.
  • the material of the second sub-passivation layer PV2 includes silicon oxide.
  • the thickness of the first sub-passivation layer PV1 is 100 nm to 300 nm
  • the thickness of the second sub-passivation layer PV2 is 100 nm to 300 nm.
  • the multiple sub-metal layers include a first sub-metal layer ML1, a second sub-metal layer ML2, and a third sub-metal layer ML3, wherein the second sub-metal layer
  • the layer ML2 covers the first sub-metal layer ML1
  • the third sub-metal layer ML3 covers the second sub-metal layer ML2
  • the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy (MoTi ).
  • the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy, it is easy to generate unevenness at the end or edge of the third sub-metal layer ML3 during the process of etching and forming the source-drain pattern SDP and the pad pattern BP. area. Therefore, the material of the first sub-passivation layer PV1 is silicon nitride, which has better step coverage. Even if the end of the third sub-metal layer ML3 under the first sub-passivation layer PV1 has an uneven area, it can be well covered. Gaps or cracks between the passivation layer and the metal layer ML are avoided. At the same time, since the present embodiment adopts multiple stacked sub-metal layers, one mask can be used to form the source-drain pattern SDP and the pad pattern BP, which simplifies the manufacturing process of the display panel.
  • the material of the first sub-metal layer ML1 includes molybdenum-titanium alloy (MoTi), and the material of the second sub-metal layer ML2 includes copper.
  • MoTi molybdenum-titanium alloy
  • copper has better conductivity. If a molybdenum-titanium alloy is used as the wiring in a large display panel, it will cause extremely high line impedance. Therefore, it is still necessary to use a metal with better conductivity, such as copper, as the material of the wiring. However, if copper is exposed to the air, it is easily oxidized, resulting in poor electrical properties. If a mask is used to etch the metal layer ML to form the source-drain pattern SDP and the pad pattern BP, the pad pattern BP will be exposed to the air and oxidized while waiting to be pressed or soldered to the flexible circuit board.
  • this embodiment adopts multiple sub-metal layers, wherein the second sub-metal layer ML2 covers the first sub-metal layer ML1.
  • the third sub-metal layer ML3 covers the second sub-metal layer ML2.
  • the material of the second sub-metal layer ML2 includes copper and the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy.
  • the second sub-metal layer ML2 made of copper is covered by using molybdenum-titanium alloy which is less likely to be oxidized as the third sub-metal layer ML to avoid the problem of pad oxidation.
  • the thickness of the first sub-metal layer ML1 is greater than zero and less than 100 nm
  • the thickness of the second sub-metal layer ML2 is 400 nm to 800 nm
  • the thickness of layer ML3 is greater than zero and less than 100 nm.
  • the material of the second sub-metal layer ML2 is copper, and using a thicker second sub-metal layer ML2 can ensure lower impedance of the wiring, and avoid affecting the brightness uniformity of the large display panel.
  • the display panel 100 further includes a planarization layer PLN disposed on the passivation layer PV; a light emitting device LD disposed on the planarization layer PLN.
  • the light emitting component LD is, for example, an organic light emitting diode (Organic Light Emitting Diode, OLED), a micro light emitting diode (Micro Light Emitting Diode, micro LED) or a sub-micron light emitting diode (Mini Light Emitting Diode, mini LED).
  • OLED Organic Light Emitting Diode
  • micro LED Micro Light Emitting Diode
  • mini LED sub-micron light emitting diode
  • the light-emitting component LD of the present application takes an organic light-emitting diode as an example, and includes a stacked anode AN, an organic light-emitting layer EL, and a cathode CA, but the present application is not limited thereto.
  • the display panel 100 further includes a driving transistor TR disposed in the display area AA, wherein the source-drain pattern SDP forms the driving transistor TR.
  • the drain DE is connected through a conductive layer formed of indium tin oxide (Indium Tin Oxide, ITO), and the other end of the conductive layer forms an organic light emitting diode.
  • ITO Indium Tin Oxide
  • the display panel 100 of some embodiments of the present application includes a substrate SB, a light-shielding metal layer SL disposed on the substrate SB, a buffer layer BF covering the light-shielding metal layer SL, and a buffer layer BF disposed on the buffer
  • the active layer on the layer BF wherein the active layer includes a semiconductor channel pattern CP and ohmic contact layers OL on both sides of the channel pattern CP, the channel pattern CP is covered with a gate insulating layer GI, and the gate A gate GE is arranged on the insulating layer GI, an interlayer insulating layer ILD covers the gate GE, the gate insulating layer GI and the active layer, and the drain DE and the source SE pass through the interlayer insulating layer
  • the ILD is in contact with the ohmic contact layer OL
  • the pad pattern BP and the source-drain pattern SDP are the metal layer ML formed in the same manufacturing process, including the stacked first sub-metal layer ML1, the second
  • the organic light-emitting layer EL is disposed in the opening of the pixel definition layer PDL and above the anode AN, the cathode CA covers the organic light-emitting layer EL, and the protective layer COV covers the cathode CA and the pixel definition layer PDL.
  • FIG. 2 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the present application provides a display device DD, the display device DD includes any one of the display panels 100 described above, and the pads BP connected to the display panel 100 through a flexible circuit board 200 drive assembly 300 .
  • the flexible circuit board 200 is connected to the pad BP by soldering.
  • the flexible circuit board 200 may also be connected to the pads BP through anisotropic conductive film (ACF), and the application is not limited thereto.
  • ACF anisotropic conductive film
  • FIG. 3 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • the present application provides a method for manufacturing a display panel, comprising the steps of:
  • S200 Depositing a metal layer on the substrate, the metal layer comprising stacked multiple sub-metal layers;
  • S400 Depositing a first sub-passivation layer on the source-drain pattern and the pad pattern;
  • S500 Deposit a second sub-passivation layer on the first sub-passivation layer.
  • the material of the first sub-passivation layer includes silicon nitride.
  • the substrate SB provided in step S100 further includes: a light-shielding metal layer SL disposed on the substrate SB, a buffer covering the light-shielding metal layer SL Layer BF, an active layer disposed on the buffer layer BF, wherein the active layer includes a semiconductor channel pattern CP and Ohmic contact layers OL on both sides of the channel pattern CP, and the channel pattern CP covers the gate
  • the insulating layer GI, the gate GE is disposed on the gate insulating layer GI, and the interlayer insulating layer ILD covers the gate GE, the gate insulating layer GI and the active layer.
  • FIG. 5a is a schematic structural diagram of a display panel under fabrication provided by an embodiment of the present application.
  • Fig. 5b is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • step S200 depositing the metal layer ML on the substrate, specifically includes first etching the openings for the source SE and the drain DE in the interlayer insulating layer ILD, such as Figure 5a shows.
  • a metal layer ML is deposited, as shown in FIG. 5b.
  • the multiple sub-metal layers include a first sub-metal layer ML1, a second sub-metal layer ML2, and a third sub-metal layer ML3, wherein the second sub-metal layer
  • the sub-metal layer ML2 covers the first sub-metal layer ML1
  • the third sub-metal layer ML3 covers the second sub-metal layer ML2
  • the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy .
  • the step of depositing the metal layer ML in step S200 specifically includes sequentially depositing the first sub-metal layer ML1 , the second sub-metal layer ML2 and the third sub-metal layer ML3 , as shown in FIG. 5 b .
  • FIG. 6 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • step 300 patterning the metal layer ML to form a source-drain pattern SDP and a pad pattern BP.
  • an uneven area may be generated at the end or edge of the third sub-metal layer ML3.
  • the occurrence of the uneven area is related to the thickness and material of the third sub-metal layer ML3.
  • the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy.
  • the thickness of the first sub-metal layer ML1 is greater than zero and less than 100 nm
  • the thickness of the second sub-metal layer ML2 is 400 nm to 800 nm
  • the thickness of the third sub-metal layer ML3 is greater than zero and less than 100 nm.
  • the material of the second sub-metal layer ML2 is copper, and using a thicker second sub-metal layer ML2 can ensure lower impedance of the wiring, and avoid affecting the brightness uniformity of the large display panel.
  • copper has better conductivity. If a molybdenum-titanium alloy is used as the wiring in a large display panel, it will cause extremely high line impedance. Therefore, it is still necessary to use a metal with better conductivity, such as copper, as the material of the wiring. However, if copper is exposed to the air, it is easily oxidized, resulting in poor electrical properties. If a mask is used to etch the metal layer ML to form the source-drain pattern SDP and the pad pattern BP, the pad pattern BP will be exposed to the air and oxidized while waiting to be pressed or soldered to the flexible circuit board.
  • this embodiment adopts multiple sub-metal layers, wherein the second sub-metal layer ML2 covers the first sub-metal layer ML1.
  • the third sub-metal layer ML3 covers the second sub-metal layer ML2.
  • the material of the second sub-metal layer ML2 includes copper and the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy. Using molybdenum-titanium alloy which is not easy to be oxidized as the third sub-metal layer ML covering the second sub-metal layer ML2 made of copper can avoid the problem of pad oxidation.
  • FIG. 7 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • step 400 depositing a first sub-passivation layer PV1 on the source-drain pattern SDP and the pad pattern BP.
  • step 500 depositing a second sub-passivation layer PV2 on the first sub-passivation layer PV1, wherein the material of the first sub-passivation layer includes silicon nitride.
  • the material of the third sub-metal layer ML3 includes molybdenum-titanium alloy, it is easy to generate unevenness at the end or edge of the third sub-metal layer ML3 during the process of etching and forming the source-drain pattern SDP and the pad pattern BP. area. Therefore, the material of the first sub-passivation layer PV1 is silicon nitride, which has better step coverage. Even if the end of the third sub-metal layer ML3 under the first sub-passivation layer PV1 has an uneven area, it can be well covered. Gaps or cracks between the passivation layer and the metal layer ML are avoided. At the same time, since the present embodiment adopts multiple stacked sub-metal layers, one mask can be used to form the source-drain pattern SDP and the pad pattern BP, which simplifies the manufacturing process of the display panel.
  • FIG. 8 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • the manufacturing method of the display panel in some embodiments of the present application further includes etching the second sub-passivation layer PV2 and the first sub-passivation layer PV1 to form an opening connected to the drain DE.
  • FIG. 9 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • the manufacturing method of the display panel in some embodiments of the present application further includes depositing a planarization layer PLN on the second sub-passivation layer PV2.
  • FIG. 10 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • the manufacturing method of the display panel in some embodiments of the present application further includes etching the planarization layer PLN to form an opening connected to the drain DE, depositing and patterning a conductive layer, and forming an anode AN connected to the drain DE.
  • the conductive layer material includes indium tin oxide (Indium Tin Oxide, ITO).
  • FIG. 11 is a schematic structural diagram of another display panel under fabrication provided by an embodiment of the present application.
  • the manufacturing method of the display panel in some embodiments of the present application further includes setting a pixel definition layer PDL, and etching the planarization layer PLN, the second sub-passivation layer PV2 and the first sub-passivation layer PV1 to expose The pad pattern BP is exposed, wherein the pixel definition layer PDL exposes a part of the anode AN.
  • the pad pattern BP is exposed for subsequent connection with the flexible circuit board, because the pad pattern BP includes the stacked first sub-metal layer ML1, the second sub-metal layer ML2 and the third sub-metal layer ML3
  • the outermost third sub-metal layer ML3 is made of molybdenum-titanium alloy, which can protect the lower second sub-metal layer ML2 made of copper from being oxidized.
  • the display panel, the display device, and the manufacturing method of the display panel provided in the embodiments of the present application have been introduced in detail above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(100)、显示装置(DD)以及显示面板(100)的制作方法。通过层叠的多层子金属层(ML1, ML2, ML3)以及层叠的第一子钝化层(PV1)及第二子钝化层(PV2),第一子钝化层(PV1)设置在金属层(ML)与第二子钝化层(PV1)之间,其中,第一子钝化层(PV1)的材料包括氮化硅,覆盖钼钛合金薄层末端的不平整区域,避免钝化层(PV)出现裂缝,同时解决显示面板(100)制程简化以及接垫氧化等问题。

Description

显示面板、显示装置以及显示面板的制作方法 技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示面板、显示装置以及显示面板的制作方法。
背景技术
大尺寸显示面板外围接垫区域金属为了降低阻抗采用铜金属。但铜在空气中易被氧化或腐蚀。为了解决这个问题,一般采用一层保护金属覆盖在铜接垫上面。但这种方案需增加光罩。另一种解决方案是在沉积整个显示面板的金属层时,改为沉积多层金属,在铜金属上沉积钼钛合金(MoTi),这种方案无需增加光罩。
但在显示面板的内部线路使用在铜金属上沉积钼钛合金的方案中,为了降低阻抗,不能采用太厚的钼钛合金。在刻蚀较薄的钼钛合金时,钼钛合金薄层末端会出现不平整(Tip)的问题。不平整的问题会导致钼钛合金薄层与后续氧化硅钝化层的搭接出现裂缝。
因此,目前急需能够同时解决上述显示面板制程简化、避免接垫氧化以及避免钝化层裂缝等问题。
技术问题
本申请实施例提供一种显示面板、显示装置以及显示面板的制作方法,以解决现有技术的显示面板制程简化、避免接垫氧化以及避免钝化层裂缝等问题。
技术解决方案
本申请实施例提供一种显示面板,所述显示面板包括显示区和边框区,所述显示面板包括:
基板;
设置于所述基板上的金属层,包括层叠的多层子金属层;以及
设置于所述金属层上的钝化层,包括层叠的第一子钝化层及第二子钝化层,所述第一子钝化层设置在金属层与第二子钝化层之间,其中,所述金属层在所述显示区包括源漏极图案,所述金属层在所述边框区包括接垫图案,所述第一子钝化层的材料包括氮化硅。
在本申请的一些实施例的显示面板中,所述第一子钝化层覆盖于所述金属层上,所述第二子钝化层覆盖于所述第一子钝化层上,所述第二子钝化层的材料包括氧化硅。
在本申请的一些实施例的显示面板中,所述第一子钝化层的厚度为100nm至300nm,所述第二子钝化层的厚度为100nm至300nm。
在本申请的一些实施例的显示面板中,所述多层子金属层包括第一子金属层、第二子金属层以及第三子金属层,其中,所述第二子金属层覆盖于所述第一子金属层上,所述第三子金属层覆盖于所述第二子金属层上,所述第三子金属层的材料包括钼钛合金。
在本申请的一些实施例的显示面板中,所述第一子金属层的材料包括钼钛合金,所述第二子金属层的材料包括铜。
在本申请的一些实施例的显示面板中,所述第一子金属层的厚度大于零且小于100nm,所述第二子金属层的厚度为400nm至800nm,所述第三子金属层的厚度大于零且小于100nm。
在本申请的一些实施例的显示面板中,所述显示面板还包括平坦化层,设置于所述钝化层上;发光组件,设置于所述平坦化层上。
在另一方面,本申请提供一种显示装置,包括显示面板,以及通过柔性电路板连接于所述显示面板的驱动组件,其中,所述显示面板包括显示区和边框 区,所述显示面板还包括:
基板;
设置于所述基板上的金属层,包括层叠的多层子金属层;以及
设置于所述金属层上的钝化层,包括层叠的第一子钝化层及第二子钝化层,所述第一子钝化层设置在金属层与第二子钝化层之间,其中,所述金属层在所述显示区包括源漏极图案,所述金属层在所述边框区包括接垫图案,所述第一子钝化层的材料包括氮化硅,所述柔性电路板连接于所述显示面板的所述接垫图案。
在本申请的一些实施例的显示装置中,所述第一子钝化层覆盖于所述金属层上,所述第二子钝化层覆盖于所述第一子钝化层上,所述第二子钝化层的材料包括氧化硅。
在本申请的一些实施例的显示装置中,所述第一子钝化层的厚度为100nm至300nm,所述第二子钝化层的厚度为100nm至300nm。
在本申请的一些实施例的显示装置中,所述多层子金属层包括第一子金属层、第二子金属层以及第三子金属层,其中,所述第二子金属层覆盖于所述第一子金属层上,所述第三子金属层覆盖于所述第二子金属层上,所述第三子金属层的材料包括钼钛合金。
在本申请的一些实施例的显示装置中,所述第一子金属层的材料包括钼钛合金,所述第二子金属层的材料包括铜。
在本申请的一些实施例的显示装置中,所述第一子金属层的厚度大于零且小于100nm,所述第二子金属层的厚度为400nm至800nm,所述第三子金属层的厚度大于零且小于100nm。
在本申请的一些实施例的显示装置中,所述显示面板还包括:
平坦化层,设置于所述钝化层上;
发光组件,设置于所述平坦化层上。
在另一方面,本申请提供一种显示面板的制作方法,包括步骤:
提供一基板;
在基板上沉积金属层,所述金属层包括层叠的多层子金属层;
对所述金属层进行图案化处理,形成源漏极图案及接垫图案;
在所述源漏极图案及所述接垫图案上沉积第一子钝化层;
在所述第一子钝化层上沉积第二子钝化层,其中,所述第一子钝化层的材料包括氮化硅。
在本申请的一些实施例的显示面板的制作方法中,所述多层子金属层包括第一子金属层、第二子金属层以及第三子金属层,其中,所述第二子金属层覆盖于所述第一子金属层上,所述第三子金属层覆盖于所述第二子金属层上,所述第三子金属层的材料包括钼钛合金。
有益效果
本申请的有益效果为:本申请提供的所述显示面板、所述显示装置以及所述显示面板的制作方法,通过层叠的多层子金属层以及层叠的第一子钝化层及第二子钝化层,所述第一子钝化层设置在金属层与第二子钝化层之间,其中,第一子钝化层的材料包括氮化硅,覆盖钼钛合金薄层末端的不平整区域,避免 钝化层出现裂缝,同时解决显示面板制程简化以及接垫氧化等问题。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1是本申请实施例提供的显示面板的结构示意图;
图2是本申请实施例提供的显示装置的结构示意图;
图3是本申请实施例提供的显示面板的制作方法的流程示意图;
图4是本申请实施例提供的基板的结构示意图;
图5a是本申请实施例提供的制作中的显示面板结构示意图;
图5b是本申请实施例提供的另一制作中的显示面板结构示意图;
图6是本申请实施例提供的又一制作中的显示面板结构示意图;
图7是本申请实施例提供的再一制作中的显示面板结构示意图;
图8是本申请实施例提供的另一制作中的显示面板结构示意图;
图9是本申请实施例提供的另一制作中的显示面板结构示意图;
图10是本申请实施例提供的另一制作中的显示面板结构示意图;以及
图11是本申请实施例提供的另一制作中的显示面板结构示意图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的 含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是支撑连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
请参照图1,图1是本申请实施例提供的显示面板的结构示意图。本申请实施例提供一种显示面板100,所述显示面板包括显示区AA和边框区BA,所述显示面板100包括:
基板SB;
设置于所述基板SB上的金属层ML,包括层叠的多层子金属层;以及
设置于所述金属层ML上的钝化层PV,包括层叠的第一子钝化层PV1及第二子钝化层PV2,所述第一子钝化层PV1设置在金属层与ML第二子钝化层PV2之间,其中,所述金属层ML在所述显示区AA包括源漏极图案SDP,所述金属层ML在所述边框区BA包括接垫图案BP,所述第一子钝化层PV1的材料包括氮化硅。
具体的,所述基板SB的材料包括玻璃、印刷电路板(Printed Circuit Board,PCB)或BT树脂板(Bismaleimide Triazine,BT)。
具体的,由于所述第一子钝化层PV1的材料包括氮化硅,具有较佳的台阶覆盖率(Step Coverage),因此即使所述第一子钝化层PV1下方的金属层ML末端具有不平整(Tip)区域也能覆盖的很好,避免钝化层与金属层ML之间出现间隙或裂缝,同时,由于本实施例采用层叠的多层子金属层,因此可以使用一 个掩模来形成源漏极图案SDP与接垫图案BP,简化显示面板的制程。
具体的,台阶覆盖率(Step Coverage)一般的算法为被沉积物覆盖到的表面积除以预备覆盖的总表面积。
在本申请的一些实施例的显示面板100中,所述第一子钝化层PV1覆盖于所述金属层ML上,所述第二子钝化层PV2覆盖于所述第一子钝化层PV1上,所述第二子钝化层PV2的材料包括氧化硅。
在本申请的一些实施例的显示面板100中,所述第一子钝化层PV1的厚度为100nm至300nm,所述第二子钝化层PV2的厚度为100nm至300nm。
在本申请的一些实施例的显示面板100中,所述多层子金属层包括第一子金属层ML1、第二子金属层ML2以及第三子金属层ML3,其中,所述第二子金属层ML2覆盖于所述第一子金属层ML1上,所述第三子金属层ML3覆盖于所述第二子金属层ML2上,所述第三子金属层ML3的材料包括钼钛合金(MoTi)。
具体的,由于所述第三子金属层ML3的材料包括钼钛合金,容易在蚀刻形成源漏极图案SDP与接垫图案BP的过程,在第三子金属层ML3的末端或边缘产生不平整区域。因此,所述第一子钝化层PV1的材料采用氮化硅,具有较佳的台阶覆盖率(Step Coverage)。即使所述第一子钝化层PV1下方的第三子金属层ML3末端具有不平整区域也能覆盖的很好。避免钝化层与金属层ML之间出现间隙或裂缝。同时,由于本实施例采用层叠的多层子金属层,因此可以使用一个掩模来形成源漏极图案SDP与接垫图案BP,简化显示面板的制程。
在本申请的一些实施例的显示面板100中,所述第一子金属层ML1的材料包括钼钛合金(MoTi),所述第二子金属层ML2的材料包括铜。
具体的,铜的导电性较佳。如果在大型显示面板使用钼钛合金做为走线,会导致极高的线路阻抗。因此,仍需要使用导电性较好的金属,例如铜,作为走线的材料。但是铜若曝露在空气中,容易被氧化而导致电性不佳。若以一个掩模来蚀刻金属层ML形成源漏极图案SDP与接垫图案BP,则接垫图案BP在等待与柔性电路板压接或焊接的过程中,会曝露在空气中而被氧化。因此本实施例采用多层子金属层,其中所述第二子金属层ML2覆盖于所述第一子金属层ML1上。所述第三子金属层ML3覆盖于所述第二子金属层ML2上。所述第二子金属层ML2的材料包括铜而所述第三子金属层ML3的材料包括钼钛合金。使用 较不易被氧化的钼钛合金作为第三子金属层ML覆盖于以铜为材料的第二子金属层ML2,可以避免接垫氧化的问题。
在本申请的一些实施例的显示面板100中,所述第一子金属层ML1的厚度大于零且小于100nm,所述第二子金属层ML2的厚度为400nm至800nm,所述第三子金属层ML3的厚度大于零且小于100nm。
具体的,所述第二子金属层ML2的材料为铜,使用较厚的所述第二子金属层ML2可以保证走线较低的阻抗,避免影响大型显示面板的亮度均匀性。
在本申请的一些实施例的显示面板100中,所述显示面板100还包括平坦化层PLN,设置于所述钝化层PV上;发光组件LD,设置于所述平坦化层PLN上。
具体的,所述发光组件LD,例如为有机发光二极管(Organic Light Emitting Diode,OLED)、微发光二极管(Micro Light Emitting Diode,micro LED)或次微米发光二极管(Mini Light Emitting Diode,mini LED)。本申请的所述发光组件LD以有机发光二极管为例,包括层叠的阳极AN、有机发光层EL及阴极CA,但本申请不限于此。
在本申请的一些实施例的显示面板100中,所述显示面板100还包括设置于所述显示区AA的驱动晶体管TR,其中,所述源漏极图案SDP形成所述驱动晶体管TR的所述源极SE、漏极DE。
具体的,以本申请的图式以有机发光二极管为例,所述漏极DE通过以氧化铟锡(Indium Tin Oxide,ITO)为材料形成的导电层连接,导电层的另一端形成有机发光二极管的阳极AN。
具体的,本申请的一些实施例的显示面板100,包括基板SB,设置于所述基板SB上的遮光金属层SL,覆盖于所述遮光金属层SL上的缓冲层BF,设置于所述缓冲层BF上的主动层,其中,所述主动层包括半导体信道图案CP及所述信道图案CP两侧的奥姆接触层OL,所述信道图案CP上方覆盖栅极绝缘层GI,所述栅极绝缘层GI上设置栅极GE,层间绝缘层ILD覆盖于所述栅极GE、所述栅极绝缘层GI及所述主动层,漏极DE、源极SE穿过所述层间绝缘层ILD接触所述奥姆接触层OL,接垫图案BP与源漏极图案SDP为在同一制程中形成的金属层ML,包括层叠的第一子金属层ML1、第二子金属层ML2及第三子金属 层ML3,第一子钝化层PV1覆盖所述金属层ML,第二子钝化层PV2覆盖所述第一子钝化层PV1,平坦化层PLN设置于所述第二子钝化层PV2上,阳极AN穿过所述平坦化层PLN、所述第二子钝化层PV2及所述第一子钝化层PV1接触所述漏极DE,像素定义层PDL设置于所述平坦化层PLN及部分所述阳极AN上。有机发光层EL设置于所述像素定义层PDL的开孔内,位于所述阳极AN上方,阴极CA覆盖所述有机发光层EL,保护层COV覆盖所述阴极CA及所述像素定义层PDL。
请参照图2,图2是本申请实施例提供的显示装置的结构示意图。在另一方面,本申请提供一种显示装置DD,所述显示装置DD包括上述任一所述的显示面板100,以及通过柔性电路板200连接于所述显示面板100的所述接垫BP的驱动组件300。
具体的,所述柔性电路板200通过焊锡与所述接垫BP连接。所述柔性电路板200也可以通过异方性导电胶(Anisotropic Conductive Film,ACF)与所述接垫BP连接,本申请不限于此。
请参照图3,图3是本申请实施例提供的显示面板的制作方法的流程示意图。在另一方面,本申请提供一种显示面板的制作方法,包括步骤:
S100:提供一基板;
S200:在基板上沉积金属层,所述金属层包括层叠的多层子金属层;
S300:对所述金属层进行图案化处理,形成源漏极图案及接垫图案;
S400:在所述源漏极图案及所述接垫图案上沉积第一子钝化层;
S500:在所述第一子钝化层上沉积第二子钝化层。
其中,所述第一子钝化层的材料包括氮化硅。
具体的,请参照图4,图4是本申请实施例提供的基板的结构示意图。本申请的一些实施例的显示面板的制作方法中,步骤S100提供的所述基板SB上还包括:设置于所述基板SB上的遮光金属层SL,覆盖于所述遮光金属层SL上的缓冲层BF,设置于所述缓冲层BF上的主动层,其中,所述主动层包括半导体信道图案CP及所述信道图案CP两侧的奥姆接触层OL,所述信道图案CP上方覆盖栅极绝缘层GI,所述栅极绝缘层GI上设置栅极GE,层间绝缘层ILD覆盖于所述栅极GE、所述栅极绝缘层GI及所述主动层。
具体的,请参照图5a及图5b,图5a是本申请实施例提供的制作中的显示面板结构示意图。图5b是本申请实施例提供的另一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法中,步骤S200:在基板上沉积金属层ML,具体包括先在层间绝缘层ILD蚀刻出供源极SE、漏极DE设置的开孔,如图5a所示。接着再沉积金属层ML,如图5b所示。在本申请的一些实施例的显示面板的制作方法中,所述多层子金属层包括第一子金属层ML1、第二子金属层ML2以及第三子金属层ML3,其中,所述第二子金属层ML2覆盖于所述第一子金属层ML1上,所述第三子金属层ML3覆盖于所述第二子金属层ML2上,所述第三子金属层ML3的材料包括钼钛合金。
具体的,步骤S200中沉积金属层ML的步骤,具体包括依序沉积第一子金属层ML1、第二子金属层ML2及第三子金属层ML3,如图5b所示。
具体的,请参照图6,图6是本申请实施例提供的又一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法中,步骤300:对所述金属层ML进行图案化处理,形成源漏极图案SDP及接垫图案BP。
具体的,第三子金属层ML3蚀刻后可能在第三子金属层ML3的末端或边缘产生不平整区域。不平整区域的产生与第三子金属层ML3的厚度及材料相关。
具体的,所述第三子金属层ML3的材料包括钼钛合金。所述第一子金属层ML1的厚度大于零且小于100nm,所述第二子金属层ML2的厚度为400nm至800nm,所述第三子金属层ML3的厚度大于零且小于100nm。
具体的,所述第二子金属层ML2的材料为铜,使用较厚的所述第二子金属层ML2可以保证走线较低的阻抗,避免影响大型显示面板的亮度均匀性。
具体的,铜的导电性较佳。如果在大型显示面板使用钼钛合金做为走线,会导致极高的线路阻抗。因此,仍需要使用导电性较好的金属,例如铜,作为走线的材料。但是铜若曝露在空气中,容易被氧化而导致电性不佳。若以一个掩模来蚀刻金属层ML形成源漏极图案SDP与接垫图案BP,则接垫图案BP在等待与柔性电路板压接或焊接的过程中,会曝露在空气中而被氧化。因此本实施例采用多层子金属层,其中所述第二子金属层ML2覆盖于所述第一子金属层ML1上。所述第三子金属层ML3覆盖于所述第二子金属层ML2上。所述第二子金属层ML2的材料包括铜而所述第三子金属层ML3的材料包括钼钛合金。使用 较不易被氧化的钼钛合金作为第三子金属层ML覆盖于以铜为材料的第二子金属层ML2,可以避免接垫氧化的问题。
具体的,请参照图7,图7是本申请实施例提供的再一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法中,步骤400:在所述源漏极图案SDP及所述接垫图案BP上沉积第一子钝化层PV1。以及步骤500:在所述第一子钝化层PV1上沉积第二子钝化层PV2,其中,所述第一子钝化层的材料包括氮化硅。
具体的,由于所述第三子金属层ML3的材料包括钼钛合金,容易在蚀刻形成源漏极图案SDP与接垫图案BP的过程,在第三子金属层ML3的末端或边缘产生不平整区域。因此,所述第一子钝化层PV1的材料采用氮化硅,具有较佳的台阶覆盖率(Step Coverage)。即使所述第一子钝化层PV1下方的第三子金属层ML3末端具有不平整区域也能覆盖的很好。避免钝化层与金属层ML之间出现间隙或裂缝。同时,由于本实施例采用层叠的多层子金属层,因此可以使用一个掩模来形成源漏极图案SDP与接垫图案BP,简化显示面板的制程。
请参照图8,图8是本申请实施例提供的另一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法还包括蚀刻所述第二子钝化层PV2及所述第一子钝化层PV1,形成连通至漏极DE的开孔。
请参照图9,图9是本申请实施例提供的另一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法还包括在所述第二子钝化层PV2上沉积平坦化层PLN。
请参照图10,图10是本申请实施例提供的另一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法还包括蚀刻平坦化层PLN形成连通至漏极DE的开孔,沉积并图案化导电层,形成连接至漏极DE的阳极AN。具体的,所述导电层材料包括氧化铟锡(Indium Tin Oxide,ITO)。
请参照图11,图11是本申请实施例提供的另一制作中的显示面板结构示意图。本申请的一些实施例的显示面板的制作方法还包括设置像素定义层PDL,并蚀刻所述平坦化层PLN、所述第二子钝化层PV2及所述第一子钝化层PV1以曝露出所述接垫图案BP,其中,所述像素定义层PDL曝露出部分阳极AN。所述接垫图案BP曝露出来以便后续与柔性电路板连接,由于接垫图案BP 包含层叠的所述第一子金属层ML1、所述第二子金属层ML2及所述第三子金属层ML3,最表面的所述第三子金属层ML3采用钼钛合金,可以保护下方以铜为材料的所述第二子金属层ML2不被氧化。
本申请提供的所述显示面板100、所述显示装置DD以及所述显示面板的制作方法,通过层叠的多层子金属层以及层叠的第一子钝化层及第二子钝化层,所述第一子钝化层设置在金属层与第二子钝化层之间,其中,第一子钝化层的材料包括氮化硅,覆盖钼钛合金薄层末端的不平整区域,避免钝化层出现裂缝,同时解决显示面板制程简化以及接垫氧化等问题。
以上对本申请实施例所提供的所述显示面板、所述显示装置以及所述显示面板的制作方法进行了详细介绍。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种显示面板,其中,所述显示面板包括显示区和边框区,所述显示面板包括:
    基板;
    设置于所述基板上的金属层,包括层叠的多层子金属层;以及
    设置于所述金属层上的钝化层,包括层叠的第一子钝化层及第二子钝化层,所述第一子钝化层设置在金属层与第二子钝化层之间,其中,所述金属层在所述显示区包括源漏极图案,所述金属层在所述边框区包括接垫图案,所述第一子钝化层的材料包括氮化硅。
  2. 根据权利要求1所述的显示面板,其中,所述第一子钝化层覆盖于所述金属层上,所述第二子钝化层覆盖于所述第一子钝化层上,所述第二子钝化层的材料包括氧化硅。
  3. 根据权利要求2所述的显示面板,其中,所述第一子钝化层的厚度为100nm至300nm,所述第二子钝化层的厚度为100nm至300nm。
  4. 根据权利要求2所述的显示面板,其中,所述多层子金属层包括第一子金属层、第二子金属层以及第三子金属层,其中,所述第二子金属层覆盖于所述第一子金属层上,所述第三子金属层覆盖于所述第二子金属层上,所述第三子金属层的材料包括钼钛合金。
  5. 根据权利要求4所述的显示面板,其中,所述第一子金属层的材料包 括钼钛合金,所述第二子金属层的材料包括铜。
  6. 根据权利要求5所述的显示面板,其中,所述第一子金属层的厚度大于零且小于100nm,所述第二子金属层的厚度为400nm至800nm,所述第三子金属层的厚度大于零且小于100nm。
  7. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    平坦化层,设置于所述钝化层上;
    发光组件,设置于所述平坦化层上。
  8. 一种显示装置,包括显示面板,以及通过柔性电路板连接于所述显示面板的驱动组件,其中,所述显示面板包括显示区和边框区,所述显示面板还包括:
    基板;
    设置于所述基板上的金属层,包括层叠的多层子金属层;以及
    设置于所述金属层上的钝化层,包括层叠的第一子钝化层及第二子钝化层,所述第一子钝化层设置在金属层与第二子钝化层之间,其中,所述金属层在所述显示区包括源漏极图案,所述金属层在所述边框区包括接垫图案,所述第一子钝化层的材料包括氮化硅,所述柔性电路板连接于所述显示面板的所述接垫图案。
  9. 根据权利要求8所述的显示装置,其中,所述第一子钝化层覆盖于所述金属层上,所述第二子钝化层覆盖于所述第一子钝化层上,所述第二子钝化 层的材料包括氧化硅。
  10. 根据权利要求9所述的显示装置,其中,所述第一子钝化层的厚度为100nm至300nm,所述第二子钝化层的厚度为100nm至300nm。
  11. 根据权利要求9所述的显示装置,其中,所述多层子金属层包括第一子金属层、第二子金属层以及第三子金属层,其中,所述第二子金属层覆盖于所述第一子金属层上,所述第三子金属层覆盖于所述第二子金属层上,所述第三子金属层的材料包括钼钛合金。
  12. 根据权利要求11所述的显示装置,其中,所述第一子金属层的材料包括钼钛合金,所述第二子金属层的材料包括铜。
  13. 根据权利要求12所述的显示装置,其中,所述第一子金属层的厚度大于零且小于100nm,所述第二子金属层的厚度为400nm至800nm,所述第三子金属层的厚度大于零且小于100nm。
  14. 根据权利要求8所述的显示装置,其中,所述显示面板还包括:
    平坦化层,设置于所述钝化层上;
    发光组件,设置于所述平坦化层上。
  15. 一种显示面板的制作方法,包括步骤:
    提供一基板;
    在基板上沉积金属层,所述金属层包括层叠的多层子金属层;
    对所述金属层进行图案化处理,形成源漏极图案及接垫图案;
    在所述源漏极图案及所述接垫图案上沉积第一子钝化层;
    在所述第一子钝化层上沉积第二子钝化层,其中,所述第一子钝化层的材料包括氮化硅。
  16. 根据权利要求15所述的显示面板的制作方法,其中,所述多层子金属层包括第一子金属层、第二子金属层以及第三子金属层,其中,所述第二子金属层覆盖于所述第一子金属层上,所述第三子金属层覆盖于所述第二子金属层上,所述第三子金属层的材料包括钼钛合金。
PCT/CN2021/139221 2021-12-09 2021-12-17 显示面板、显示装置以及显示面板的制作方法 WO2023103044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/622,270 US20240032348A1 (en) 2021-12-09 2021-12-17 Display panel and display device and method of manufacturing display panel
JP2021576403A JP2024502686A (ja) 2021-12-09 2021-12-17 表示パネル、表示装置及び表示パネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111501116.XA CN114188388A (zh) 2021-12-09 2021-12-09 显示面板、显示装置以及显示面板的制作方法
CN202111501116.X 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023103044A1 true WO2023103044A1 (zh) 2023-06-15

Family

ID=80604083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139221 WO2023103044A1 (zh) 2021-12-09 2021-12-17 显示面板、显示装置以及显示面板的制作方法

Country Status (4)

Country Link
US (1) US20240032348A1 (zh)
JP (1) JP2024502686A (zh)
CN (1) CN114188388A (zh)
WO (1) WO2023103044A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155733A1 (en) * 2008-12-18 2010-06-24 Lg Display Co., Ltd. Array substrate for display device and method for fabricating the same
CN103258743A (zh) * 2012-02-15 2013-08-21 乐金显示有限公司 薄膜晶体管、薄膜晶体管阵列基板及其制造方法
CN109427817A (zh) * 2017-08-30 2019-03-05 瀚宇彩晶股份有限公司 薄膜晶体管基板以及显示器
CN111129104A (zh) * 2020-01-16 2020-05-08 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示面板制程方法
CN111682044A (zh) * 2020-07-10 2020-09-18 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN112002823A (zh) * 2020-08-11 2020-11-27 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107680993B (zh) * 2017-10-23 2019-12-24 深圳市华星光电半导体显示技术有限公司 Oled面板及其制作方法
CN110676222A (zh) * 2019-10-10 2020-01-10 合肥鑫晟光电科技有限公司 显示基板的制造方法、显示基板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155733A1 (en) * 2008-12-18 2010-06-24 Lg Display Co., Ltd. Array substrate for display device and method for fabricating the same
CN103258743A (zh) * 2012-02-15 2013-08-21 乐金显示有限公司 薄膜晶体管、薄膜晶体管阵列基板及其制造方法
CN109427817A (zh) * 2017-08-30 2019-03-05 瀚宇彩晶股份有限公司 薄膜晶体管基板以及显示器
CN111129104A (zh) * 2020-01-16 2020-05-08 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示面板制程方法
CN111682044A (zh) * 2020-07-10 2020-09-18 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN112002823A (zh) * 2020-08-11 2020-11-27 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Also Published As

Publication number Publication date
JP2024502686A (ja) 2024-01-23
CN114188388A (zh) 2022-03-15
US20240032348A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
TWI671898B (zh) 有機發光二極體顯示器
WO2020216259A1 (zh) 显示面板、显示装置及制造方法
WO2019071751A1 (zh) Tft基板及其制作方法与oled面板的制作方法
TWI412294B (zh) 有機發光裝置及其製造方法
WO2021218418A1 (zh) 驱动基板及其制备方法和显示装置
US10529790B2 (en) Organic light-emitting diode display and method of manufacturing the same with no cladding process
WO2019100478A1 (zh) 触控显示面板及其制造方法
WO2020253336A1 (zh) 显示基板及其制造方法、有机发光二极管显示装置
KR20180057805A (ko) 표시 장치용 백플레인 및 이의 제조 방법
US11678528B2 (en) Display substrate, method of manufacturing display substrate, and display device including display substrate
TWI485499B (zh) 液晶顯示面板陣列基板及其製造方法
WO2020228532A1 (zh) 电子设备、显示面板、驱动背板及其制造方法
WO2020154875A1 (zh) 像素单元及其制造方法和双面oled显示装置
WO2021022635A1 (zh) 显示装置及其制备方法
KR100786294B1 (ko) 유기 전계 발광 표시 장치 및 그 제조 방법
TWI747914B (zh) 顯示設備
CN113421904B (zh) 显示面板及其制作方法
CN1914737A (zh) 半导体元件及其制造方法和液晶显示器及其制造方法
US11024699B2 (en) Display device and method of manufacturing display device
CN113972252B (zh) 显示面板及电子设备
WO2023103044A1 (zh) 显示面板、显示装置以及显示面板的制作方法
KR20070024777A (ko) 유기 발광 표시장치 및 그 제조 방법
US20220181399A1 (en) Electroluminescence Display Apparatus
TWI406415B (zh) 薄膜電晶體陣列基板及其製造方法
WO2022041022A1 (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021576403

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 17622270

Country of ref document: US