WO2023095555A1 - (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法 - Google Patents

(メタ)アクリロイル基含有オルガノポリシロキサンの製造方法 Download PDF

Info

Publication number
WO2023095555A1
WO2023095555A1 PCT/JP2022/040476 JP2022040476W WO2023095555A1 WO 2023095555 A1 WO2023095555 A1 WO 2023095555A1 JP 2022040476 W JP2022040476 W JP 2022040476W WO 2023095555 A1 WO2023095555 A1 WO 2023095555A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
positive number
organopolysiloxane
hydroxyl group
Prior art date
Application number
PCT/JP2022/040476
Other languages
English (en)
French (fr)
Inventor
理 土田
健人 白神
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023095555A1 publication Critical patent/WO2023095555A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment

Definitions

  • the present invention relates to a method for producing radically polymerizable organopolysiloxane.
  • the technique of applying energy to harden a liquid resin composition is a widely used technique, and is used in many fields for the production of coatings and moldings.
  • Heat and radiation such as ultraviolet rays are used as the energy required for this curing.
  • thermosetting a heat-activated catalyst is added to the base resin and heat is applied to obtain a cured product.
  • radiation curing a composition containing a photoinitiator activated by radiation such as ultraviolet rays is cured by irradiation with radiation.
  • Typical functional groups used for radiation curing include (meth)acryloyl groups, mercapto groups, and epoxy groups.
  • a (meth)acryloyl group forms a crosslink by a radical polymerization reaction, and a mercapto group undergoes an ene-thiol reaction by a radical in the presence of an alkenyl group.
  • Epoxy groups undergo cationic polymerization with acids.
  • Silicone is a general term for organopolysiloxanes having continuous siloxane bonds as a main chain and side chains having organic groups such as methyl groups. Silicone has excellent heat resistance, cold resistance, chemical resistance, electrical insulation, mold releasability, etc., and can be made into various forms such as oil, rubber, and resin. , silicone rubber, silicone for release paper, and silicone for hard coating.
  • Organopolysiloxanes containing (meth)acryloyl groups as radiation-polymerizable groups are used as release coatings, hard coats, and surface tension modifiers.
  • a photopolymerization initiator is added to this base material, and a cured product is obtained by irradiating radiation while purging nitrogen in a chamber in order to efficiently react radicals generated by radiation.
  • an organopolysiloxane containing (meth)acryloyl groups is produced by reacting (meth)acrylic acid with an epoxy group using epoxy-modified organopolysiloxane as a raw material.
  • hydroxyl groups are generated as a result of the ring-opening of the epoxy, which increases the viscosity of the product, leaving a problem in terms of handling.
  • Patent Documents 2 and 3 propose a method of introducing (meth)acryloyl groups into the siloxane main chain by using hydroxyl group-containing organopolysiloxane as a raw material and subjecting (meth)acrylic acid to an esterification reaction.
  • the problem with this technique is that the strong acid used for esterification causes not only ester bond formation but also siloxane bond cleavage, making it extremely difficult to control the reaction conditions.
  • Patent Documents 4 and 5 a silane material having (meth)acryloyl groups is oligomerized by hydrolytic condensation, and then polymerized together with other silicon oligomers having dimethyl units to synthesize the desired organopolysiloxane.
  • the synthesis of the silane having a (meth)acryloyl group as a raw material is complicated, and purification by distillation is required, but there is a problem that the (meth)acryloyl group tends to polymerize unless the conditions are precisely controlled.
  • Patent Documents 6 and 9 Synthesis by esterification as in Patent Documents 2 and 3 would be more practical if it were simpler and easier to control the conditions during production. Therefore, prior art was investigated to enable esterification without using a strong protonic acid such as sulfuric acid. As a result, we were able to obtain some technical information, and confirmed that esterification using a general-purpose metal salt as a catalyst was being carried out (Patent Documents 6 to 9). However, all of these methods are limited to the use of silicon-free organic compounds as substrates, and the effect on silicon-containing compounds such as organopolysiloxane is not discussed. In addition, these documents do not mention application to highly radically polymerizable substrates such as (meth)acrylic acid.
  • the present invention has been made in view of the above-mentioned problems, and can provide a novel synthesis method by applying esterification without using protonic acid to silicon-containing compounds such as organopolysiloxane.
  • An object of the present invention is to provide a method for producing a (meth)acryloyl group-containing organopolysiloxane by a novel esterification method.
  • the present invention is a method for producing a (meth)acryloyl group-containing organopolysiloxane, comprising: (A) a hydroxyl group-containing organopolysiloxane represented by the following average formula (1); (In the formula, R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, or a monovalent hydrocarbon group having a terminal hydroxyl group or (poly)oxy an alkylenealkyl group (hereinafter collectively referred to as a hydroxyl group-containing group), at least one of R 1 is a hydroxyl group-containing group, a is a positive number of 2 or more, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, and 2 ⁇ a + b + c + d ⁇ 1,000) (B) (meth)acrylic acid, and a step of reacting
  • the production method according to the present invention does not use a strong acid, cleavage of siloxane bonds can be suppressed, and the intended (meth)acryloyl group-containing organopolysiloxane can be efficiently obtained.
  • the present invention provides a method for producing a (meth)acryloyl group-containing organopolysiloxane.
  • the (meth)acryloyl group-containing organopolysiloxane obtained by this production method is particularly represented by the following average formula (2).
  • R 8 are each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, the hydroxyl group-containing group, or a group having a (meth)acryloyloxy group at the end is a valent hydrocarbon group or (poly)oxyalkylenealkyl group (hereinafter collectively referred to as a (meth)acryloyloxy group-containing group), at least one R 8 is the (meth)acryloyloxy group-containing group, l is a positive number of 2 or more, m is 0 or a positive number, n is 0 or a positive number, o is 0 or a positive number, 2 ⁇ l + m + n + o ⁇ 1,000, and a hydroxyl group-containing group is bonded
  • the number of silicon atoms to be used is 0 to 30% with respect to the total number of all silicon atoms).
  • the production method of the present invention comprises (A) a hydroxyl group-containing organopolysiloxane represented by the following average formula (1) (In the formula, R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, or a monovalent hydrocarbon group having a terminal hydroxyl group or (poly)oxy an alkylenealkyl group (hereinafter collectively referred to as a hydroxyl group-containing group), at least one of R 1 is a hydroxyl group-containing group, a is a positive number of 2 or more, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, and 2 ⁇ a + b + c + d ⁇ 1,000) (B) reacting with (meth)acrylic acid in the presence of (C) an iron compound to obtain a (meth)acryloy
  • R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, or a hydroxyl group-containing group, and at least one of R 1 is a hydroxyl-containing group.
  • monovalent hydrocarbon groups having 1 to 10 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group and butyl group, cycloalkyl groups such as cyclohexyl group, and aryl groups such as phenyl group and tolyl group. be done.
  • the number of silicon atoms to which hydroxyl group-containing groups are bonded is 1 to 50%, preferably 2 to 45%, more preferably 3 to 40% of the total number of all silicon atoms. is good. If the number of silicon atoms to which the hydroxyl group-containing group is bonded is less than the above lower limit, the radiation curability may be insufficient. On the other hand, if it is more than the above upper limit, the substrate concentration of (meth)acrylic acid in the reaction system becomes high during the reaction, and there is a possibility that viscosity increase or gelation may occur due to polymerization of (meth)acryloyl groups.
  • the monovalent hydrocarbon group having a terminal hydroxyl group is preferably a monovalent hydrocarbon group having 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms and having one terminal hydroxyl group. More preferably, it is a monovalent hydrocarbon group having 2 to 10 carbon atoms, preferably 3 to 6 carbon atoms, and having one terminal hydroxyl group.
  • a (poly)oxyalkylenealkyl group having a terminal hydroxyl group is a (poly)oxyalkylenealkyl group having one terminal hydroxyl group, preferably having 4 to 25 carbon atoms, more preferably 5 to 16 carbon atoms.
  • Examples of the oxyalkylene group include an oxyethylene group, an oxyisopropylene group, an oxy n-propylene group, and an oxybutylene group. Among them, an oxyethylene group and an oxyisopropylene group are preferred, and two or more oxyalkylene groups are used. may have.
  • Examples of the hydroxyl group-containing group are represented by the following structures. In the formula below, the points indicated by dotted lines are bonds with the silicon atoms of the organopolysiloxane.
  • R2 is a hydrogen atom or a methyl group.
  • e is an integer of 1-10, and f and g are each independently an integer of 1-5.
  • e is an integer from 1 to 7 and f and g are independently from each other integers from 1 to 3. More preferably, e is an integer from 1 to 4, and f and g are 1 or 2 independently of each other.
  • the bonding order of ethylene oxide and propylene oxide shown in parentheses is not limited, and they may be arranged randomly or form a block structure.
  • broken lines indicate bonds with silicon atoms of organopolysiloxane. If the proportion of hydroxyl groups in the composition as a whole satisfies the above range, it may contain a compound having both a hydroxyl group-containing organic group and a (meth)acryloyl group, as shown in the above figure.
  • a is a positive number of 2 or more
  • b is 0 or a positive number
  • c is 0 or a positive number
  • d is 0 or a positive number, provided that 2 ⁇ a + b + c + d ⁇ 1 , 000.
  • the amount of hydroxyl group-containing groups satisfies the above range
  • the organopolysiloxane has a viscosity at 25° C. of 5 to 10,000 mPa ⁇ s, more preferably 10 to 5,000 mPa ⁇ s. Just do it. Viscosity is a value measured with a BM type rotational viscometer.
  • the upper limits of a, b, c, and d may be any value that satisfies 2 ⁇ a+b+c+d ⁇ 1,000 and the organopolysiloxane has the viscosity described above.
  • the upper limit of b is preferably 998 or less, more preferably 798 or less, and even more preferably 598 or less.
  • the lower limit of b may be 0, b is preferably 1 or more, more preferably 5 or more, and still more preferably 8 or more. That is, preferably 1 ⁇ b ⁇ 998, more preferably 5 ⁇ b ⁇ 798, and even more preferably 8 ⁇ b ⁇ 598.
  • c is preferably 0 ⁇ c ⁇ 5, more preferably 0 ⁇ c ⁇ 4, and still more preferably 0 ⁇ c ⁇ 3.
  • d is preferably 0 ⁇ d ⁇ 4, more preferably 0 ⁇ d ⁇ 3, and still more preferably 0 ⁇ d ⁇ 2.
  • the organopolysiloxane represented by the average formula (1) more more preferably has a linear structure.
  • Examples of the organopolysiloxane represented by the average formula (1) include compounds represented by the following structures.
  • Me represents a methyl group.
  • h is an integer of 0 to 1,000
  • i is an integer of 0 to 800
  • j is a positive number of 1 to 200
  • k is an integer of 0 to 100.
  • 0 ⁇ A number that satisfies b ⁇ 998, more preferably a number that satisfies 1 ⁇ b ⁇ 998, more preferably a number that satisfies 5 ⁇ b ⁇ 798, and still more preferably a number that satisfies 8 ⁇ b ⁇ 598)
  • Component (B) is (meth)acrylic acid and is a reaction reagent for introducing (meth)acryloyl groups into component (A).
  • the amount of component (B) to be blended is 1.0 mol or more, preferably 1.1 to 10 mol, more preferably 1.5 to 5 mol, per 1 mol of hydroxyl groups in organopolysiloxane (A). It is better to react in moles.
  • the rate of introduction of (meth)acryloyl groups by transesterification decreases
  • it is more than the above upper limit the rate of introduction of (meth)acryloyl groups by transesterification is reduced. Although it is high, the pot yield is lowered because the amount of the component (B) is too large.
  • Component (C) is an iron compound and functions as a catalyst for reacting components (A) and (B).
  • the (C) component is a trivalent iron compound.
  • the amount of component (C) is 0.005 to 0.1 mol, preferably 0.008 to 0.08 mol, more preferably 0.01 to 0.01 mol per 1 mol of hydroxyl groups contained in component (A). 0.05 mol. If it is less than the above lower limit, the reaction may not proceed sufficiently. If it exceeds the above upper limit, it may become difficult to remove after the reaction.
  • the trivalent iron compound is not particularly limited, but iron (III) chloride, iron (III) chloride hexahydrate, iron (III) bromide, iron (III) sulfate n-hydrate (n is undefined, Fujifilm available from Wako Pure Chemical Industries, Ltd.), iron (III) p-toluenesulfonate hexahydrate, iron (III) trifluoromethanesulfonate, iron (III) acetylacetonate, and the like.
  • iron (III) chloride iron (III) chloride hexahydrate, and iron (III) p-toluenesulfonate hexahydrate are preferred, and iron (III) chloride hexahydrate is particularly preferred. Hydrates are preferred.
  • Component (D) is an organic solvent having a boiling point of 100° C. or higher, and is a reactive solvent that makes the above components compatible.
  • organic solvents include aromatic hydrocarbon solvents such as toluene and xylene; aliphatic hydrocarbon solvents such as octane, isooctane, and isoparaffin; hydrocarbon solvents such as industrial gasoline, petroleum benzine, and solvent naphtha; Alternatively, a mixed solvent of these may be used. These can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the amount of the organic solvent is 5 to 100 parts by mass, preferably 8 to 90 parts by mass, more preferably 10 to 80 parts by mass, based on 100 parts by mass of components (A) to (C). If it is less than the above lower limit, the concentration of the substrate in the reaction system increases, and there is concern about thickening and gelation due to polymerization of the (meth)acryloyl group. If the amount is more than the above upper limit, the substrate concentration may become low and the reaction may not proceed sufficiently.
  • Component (E) is a polymerization inhibitor, and is an additive for suppressing polymerization of component (B) (meth)acrylic acid without reacting with component (A) during the reaction.
  • the polymerization inhibitor is not limited as long as it has the effect of suppressing radical polymerization, and the following alkylphenols are available.
  • amine-based polymerization inhibitors can also be used, including the following. Alkylated diphenylamine, N,N'-diphenyl-p-phenylenediamine, phenothiazine, 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine , 1,4-dihydroxy-2,2,6,6-tetramethylpiperidine, 1-hydroxy-4-benzoyloxy-2,2,6,6-tetramethylpiperidine.
  • the amount of the polymerization inhibitor is 0.01 to 1 part by mass, preferably 0.02 to 0.5 part by mass, more preferably 0.03 to 0.5 part by mass, based on 100 parts by mass of the organopolysiloxane (A). 3 parts by mass is good. If it is more than the above upper limit, the curability of the obtained radiation-curable organopolysiloxane composition containing the radically polymerizable organopolysiloxane may be lowered. If it is less than the above lower limit, there is a concern that (meth)acrylic acid may polymerize and thicken or gel during production.
  • the hydroxyl groups contained in component (A) and the carboxyl groups in component (B) are dehydrated and condensed by component (C), which is a catalyst, to obtain the desired organopolysiloxane.
  • component (C) which is a catalyst
  • This reaction is classically called the Fischer esterification reaction, which is an equilibrium reaction catalyzed by a protonic acid such as sulfuric acid, and the removal of by-product water from the reaction system promotes the progress of the reaction. Is possible. That is, the reaction is facilitated by setting the reaction temperature to 100° C. or higher and allowing vaporized water to escape from the reaction system. Toluene and xylene are preferred from the viewpoint of compatibility and versatility of various components (A) to (E).
  • Siloxane-OH in the formula is a hydroxyl group-containing organopolysiloxane represented by the above formula (1), and includes the compounds exemplified for the above component (A).
  • R3 is a hydrogen atom or a methyl group.
  • the esterification reaction usually uses a protonic acid such as sulfuric acid as a catalyst.
  • a protonic acid-catalyzed reaction is applied to an organopolysiloxane compound, the siloxane bond that forms the main chain is cleaved along with the esterification, making it extremely difficult to control the reaction conditions.
  • an iron compound as a catalyst allows the esterification reaction to proceed while suppressing the cleavage of the siloxane bond.
  • the reaction temperature is 100-150°C, preferably 105-140°C, more preferably 110-130°C. If the temperature is lower than 100°C, there is a possibility that the water produced as a by-product will not sufficiently escape out of the reaction system and the reaction will not proceed sufficiently. If the temperature is higher than 150°C, there is concern about thickening and gelation due to polymerization of (meth)acrylic acid of component (B).
  • the reaction time may be in the range of 1 to 72 hours, but is not limited to this.
  • the product can be obtained by distilling off the remaining component (B) under reduced pressure.
  • the temperature during distillation may be from 20° C. to 120° C., and the reduced pressure may be from 1 to 200 mmHg, but is not limited thereto.
  • the (meth)acryloyl group-containing organopolysiloxane obtained in the present invention is represented by the following average formula (2).
  • R 8 is the group defined by R 1 in the average formula (1) above, or a monovalent hydrocarbon group or (poly)oxyalkylene group having a (meth)acryloyl group at the end (hereinafter collectively referred to as (meth) (referred to as an acryloyloxy group-containing group). At least one of R8 is a (meth)acryloyloxy group-containing group.
  • the number of silicon atoms to which the (meth)acryloyloxy group-containing group is bonded is 1 to 50%, more preferably 2 to 45%, and still more preferably 3 to 40% of the total number of all silicon atoms. is good.
  • the (meth)acryloyloxy group-containing group is a group in which the terminal hydroxyl group of the hydroxyl group-containing group described above is substituted with a (meth)acryloyloxy group. Therefore, unlike a group into which a (meth)acryloyloxy group is introduced by ring opening of an epoxy group, it does not have a hydroxyl group.
  • the oxyalkylene group are as described above, preferably an oxyethylene group and an oxyisopropylene group, and may have two or more oxyalkylene groups.
  • it is represented by the following structure. In the formula below, the points indicated by the dotted lines are the bonds with the silicon atoms of the polysiloxane.
  • R2 is a hydrogen atom or a methyl group.
  • e is an integer of 1-10, and f and g are each independently an integer of 1-5.
  • e is an integer from 1 to 7 and f and g are independently from each other integers from 1 to 3. More preferably, e is an integer from 1 to 4, and f and g are 1 or 2 independently of each other.
  • the bonding order of ethylene oxide and propylene oxide shown in parentheses is not limited, and they may be arranged randomly or form a block structure. In the formula, broken lines indicate bonds with silicon atoms of organopolysiloxane.
  • l is a positive number of 2 or more
  • m is 0 or a positive number
  • n is 0 or a positive number
  • o is 0 or a positive number
  • the amount of the (meth)acryloyloxy group-containing organic group satisfies the above range
  • the organopolysiloxane has a viscosity at 25° C. of 5 to 10,000 mPa ⁇ s, more preferably 10 to 5,000 mPa ⁇ s.
  • the (meth)acryloyl group-containing organopolysiloxane obtained by the production method of the present invention can have a low viscosity.
  • Preferably 5 to 3,000 mPa s, more preferably 5 to 2,000 mPa s, still more preferably 8 to 1,500 mPa s, further 10 to 1,000 mPa s, particularly 15 to 700 mPa s. can have The viscosity is a value measured by a BM type rotational viscometer.
  • the upper limits of l, m, n, and o may be any value that satisfies 2 ⁇ l+m+n+o ⁇ 1,000 and the organopolysiloxane has the viscosity described above.
  • the upper limit of m is preferably 998 or less, more preferably 798 or less, and even more preferably 598 or less.
  • the lower limit of m may be 0, m is preferably 1 or more, more preferably 5 or more, and still more preferably 8 or more. That is, preferably 1 ⁇ m ⁇ 998, more preferably 5 ⁇ m ⁇ 798, and even more preferably 8 ⁇ m ⁇ 598.
  • n is preferably 0 ⁇ n ⁇ 5, more preferably 0 ⁇ n ⁇ 4, and still more preferably 0 ⁇ n ⁇ 3.
  • o is preferably 0 ⁇ o ⁇ 4, more preferably 0 ⁇ o ⁇ 3, and still more preferably 0 ⁇ o ⁇ 2.
  • the organopolysiloxane represented by the average formula (5) more more preferably has a linear structure.
  • the (meth)acryloyl group introduction rate of the transesterification reaction in Examples or Comparative Examples was calculated as follows.
  • Example 1 91.61 g of organopolysiloxane represented by the following average formula (A-1), (B-1) 28.39 g of acrylic acid (the above organopolysiloxane amount of 2 moles per 1 mole of hydroxyl groups in), 2,2′-methylene-bis(4-ethyl-6-tert-butylphenol) 0.24 g, (C-1) iron (III) chloride hexahydrate and (D-1) 24 g of toluene were charged, and a by-product was produced at a temperature of 120° C. in the reaction system. While distilling off water, the mixture was heated and stirred for 12 hours to react.
  • A-1 organopolysiloxane represented by the following average formula (A-1)
  • (B-1) 28.39 g of acrylic acid (the above organopolysiloxane amount of 2 moles per 1 mole of hydroxyl groups in), 2,2′-methylene-bis(4-ethyl-6-ter
  • the reaction solution was distilled off under reduced pressure of 20 mmHg at 50° C. for 1 hour and 120° C. for 3 hours to remove the solvent and unreacted components, thereby obtaining an organopolysiloxane represented by the following average formula (X-1).
  • the acryloyl group introduction rate was 97%.
  • Example 2 Instead of (C-1) iron (III) chloride hexahydrate 1.064 g in Example 1, (C-2) iron (III) sulfate n-hydrate 1.124 g (Fujifilm Wako Pure Chemical Industries, Ltd. The amount of iron equivalent to 0.01 mol per 1 mol of hydroxyl groups in the above organopolysiloxane (calculated as a value when hydrated water is 30% by weight) was used. , the steps of Example 1 were repeated to obtain the product. The acryloyl group introduction rate was 94%.
  • Example 3 instead of (C-1) 1.064 g of iron (III) chloride hexahydrate in Example 1, (C-3) 1.163 g of iron (III) bromide (1 mol of hydroxyl group in the organopolysiloxane A product was obtained by repeating the steps of Example 1 except that the amount was 0.02 mol in terms of iron. The acryloyl group introduction rate was 94%.
  • Example 4 instead of (C-1) 1.064 g of iron (III) chloride hexahydrate in Example 1, (C-4) 1.333 g of iron p-toluenesulfonate hexahydrate (in the organopolysiloxane A product was obtained by repeating the steps of Example 1 except that the amount was 0.01 mol in terms of iron with respect to 1 mol of the hydroxyl group of . The acryloyl group introduction rate was 97%.
  • Example 5 91.61 g of organopolysiloxane represented by the following average formula (A-2), (B-1) 28.39 g of acrylic acid (the above organopolysiloxane amount of 2 moles per 1 mole of hydroxyl groups in), 2,2′-methylene-bis(4-ethyl-6-tert-butylphenol) 0.24 g, (C-1) iron (III) chloride hexahydrate (D-1) 24 g of toluene were charged, and water produced as a by-product was removed at a temperature of 120° C. in the reaction system. While distilling off, the mixture was heated and stirred for 18 hours to react.
  • A-2 organopolysiloxane represented by the following average formula (A-2), (B-1) 28.39 g of acrylic acid (the above organopolysiloxane amount of 2 moles per 1 mole of hydroxyl groups in), 2,2′-methylene-bis(4-ethyl-6-tert
  • the reaction solution was distilled off under reduced pressure of 20 mmHg at 50° C. for 1 hour and 120° C. for 3 hours to remove the solvent and unreacted components, thereby obtaining an organopolysiloxane represented by the following average formula (X-2).
  • the acryloyl group introduction rate was 95%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】 本発明はプロトン酸を使用しないエステル化をオルガノポリシロキサン等のケイ素含有化合物に適用することで新規な合成手法を提供する。本発明は、新規なエステル化方法による(メタ)アクリロイル基を含有するオルガノポリシロキサンの製造方法を提供することを目的とする。  【解決手段】 (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法であって、 (A)下記平均式(1)で表される水酸基含有オルガノポリシロキサンと 【化1】 (式中、Rは互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、又は、末端に水酸基を有する、一価炭化水素基又は(ポリ)オキシアルキレンアルキル基(以下、まとめて水酸基含有基という)であり、Rのうち少なくとも1つは水酸基含有基であり、aは2以上の正数であり、bは0又は正数であり、cは0又は正数であり、dは0又は正数であり、及び2≦a+b+c+d≦1,000である) (B)(メタ)アクリル酸 前記(A)成分の水酸基に対するモル比が1.0以上となる量とを、 前記(A)成分の水酸基に対するモル比が0.005~0.1となる量の(C)鉄化合物の存在下で反応させて、上記(メタ)アクリロイル基含有オルガノポリシロキサンを得る工程を含むことを特徴とする、前記製造方法。

Description

(メタ)アクリロイル基含有オルガノポリシロキサンの製造方法
 本発明は、ラジカル重合性オルガノポリシロキサンの製造方法に関するものである。
 液状の樹脂組成物にエネルギーをかけて硬化させる手法は広く一般に普及した技術であり、コーティングや成形物などの作製に多くの分野で利用されている。この硬化に必要なエネルギーには熱や、紫外線などの放射線が利用される。熱硬化の場合には、熱により活性化する触媒をベースとなる樹脂に配合し、熱をかけることにより硬化物を得る。放射線硬化の場合、紫外線などの放射線により活性化する光開始剤を配合した組成物に放射線を照射することで硬化させる。
 放射線による硬化に利用される代表的な官能基としては(メタ)アクリロイル基、メルカプト基、エポキシ基などが挙げられる。(メタ)アクリロイル基はラジカルによる重合反応で架橋を形成し、メルカプト基はアルケニル基との共存下でラジカルによりエン-チオール反応が生じる。エポキシ基は酸でカチオン重合する。
 このような放射線による硬化には様々な樹脂が用いられるが、その中の一つとしてシリコーンが挙げられる。シリコーンは連続したシロキサン結合を主鎖とし、側鎖にメチル基などの有機基を有するオルガノポリシロキサンの総称である。シリコーンは耐熱性、耐寒性、耐薬品性、電気絶縁性、離型性などに優れており、オイル状、ゴム状、レジン状などの様々な形態にすることができ、放射線硬化性のシリコーンは、シリコーンゴム、剥離紙用シリコーン、ハードコート用シリコーンなどの硬化物の原料である。
 放射線重合性基として、(メタ)アクリロイル基を含有するオルガノポリシロキサンは、剥離コーティングやハードコート、また表面張力の調整剤として用いられている。このベース材料に光重合開始剤を配合し、放射線により生じたラジカルを効率よく反応させるためにチャンバー内で窒素パージしながら放射線を照射することで硬化物を得られる。
 このような(メタ)アクリロイル基を含有するオルガノポリシロキサンの製造方法について、これまでいくつかの検討がなされている。特許文献1では、エポキシ変性オルガノポリシロキサンを原料とし、(メタ)アクリル酸とエポキシ基を反応させることにより(メタ)アクリロイル基を含有するオルガノポリシロキサンを製造している。しかし、この場合エポキシの開環に伴い水酸基が生じることで、生成物の粘度が高くなるためハンドリングの観点で課題を残している。
 特許文献2,3では、水酸基含有オルガノポリシロキサンを原料に用い、(メタ)アクリル酸をエステル化反応させることでシロキサン主鎖に(メタ)アクリロイル基を導入する方法が提案されている。この手法の問題点は、エステル化に用いられる強酸がエステル結合形成だけでなく、シロキサン結合の開裂も引き起こすことであり、反応条件をコントロールすることは極めて難しい。
 特許文献4,5では、(メタ)アクリロイル基を有するシラン材料を加水分解縮合によりオリゴマー化し、そこからジメチル単位を有する他のケイ素オリゴマーとともに重合させて目的とするオルガノポリシロキサンを合成している。しかし、原料となる(メタ)アクリロイル基を有するシランの合成が煩雑であり、蒸留によって精製が必要だが、精密に条件をコントロールしないと(メタ)アクリロイル基が重合しやすいという問題がある。
 特許文献2,3にあるようなエステル化による合成が、より簡便で製造時の条件コントロールが容易となれば実用性は高いものとなる。そこで、硫酸などの強いプロトン酸を用いずにエステル化が実施できるような先行技術を調査した。すると、いくつかの技術情報を得ることができ、汎用的な金属塩を触媒としたエステル化が実施されていることを確認した(特許文献6~9)。しかし、これらはいずれもケイ素を含まない有機化合物を基質としての実施に終始しており、オルガノポリシロキサン等のケイ素含有化合物に対しての効果については議論されていない。加えて、これらの文献では(メタ)アクリル酸などのラジカル重合性の高い基質への適用についても言及されていない。
特公平5-83570号公報 特公平6-81826号公報 特許第3780113号 特許第2778403号 特許第3176010号 特許第3933588号 特許第4612547号 特許第4092406号 特開2008-174483号公報
 本発明は前述のような問題を鑑みてなされたもので、プロトン酸を使用しないエステル化をオルガノポリシロキサン等のケイ素含有化合物に適用することで、新規な合成手法を提供できる。本発明では、新規なエステル化方法による(メタ)アクリロイル基を含有するオルガノポリシロキサンの製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意検討を重ねた結果、水酸基含有の有機基を有するオルガノポリシロキサンと(メタ)アクリル酸を、鉄化合物を触媒としてエステル化させることで(メタ)アクリロイル基含有のラジカル重合性オルガノポリシロキサンを得るという新たな製造方法を見出した。
 すなわち、本発明は(メタ)アクリロイル基含有オルガノポリシロキサンの製造方法であって、(A)下記平均式(1)で表される水酸基含有オルガノポリシロキサンと
Figure JPOXMLDOC01-appb-C000003
(式中、Rは互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、又は、末端に水酸基を有する、一価炭化水素基又は(ポリ)オキシアルキレンアルキル基(以下、まとめて水酸基含有基という)であり、Rのうち少なくとも1つは水酸基含有基であり、aは2以上の正数であり、bは0又は正数であり、cは0又は正数であり、dは0又は正数であり、及び2≦a+b+c+d≦1,000である)
(B)(メタ)アクリル酸  前記(A)成分の水酸基に対するモル比が1.0以上となる量とを、
前記(A)成分の水酸基に対するモル比が0.005~0.1となる量の(C)鉄化合物の存在下で反応させて、上記(メタ)アクリロイル基含有オルガノポリシロキサンを得る工程を含むことを特徴とする、前記製造方法を提供する。
 本発明に記載の製造方法では、強酸を使用しないため、シロキサン結合の開裂を抑制することができ、かつ、効率よく目的とする(メタ)アクリロイル基含有オルガノポリシロキサンを得られる。
 以下、本発明についての詳細を記す。
 本発明は(メタ)アクリロイル基含有オルガノポリシロキサンの製造方法を提供する。該製造方法により得られる(メタ)アクリロイル基含有オルガノポリシロキサンは、特には、下記平均式(2)で表される。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、前記水酸基含有基、又は、末端に(メタ)アクリロイルオキシ基を有する一価炭化水素基又は(ポリ)オキシアルキレンアルキル基(以下、まとめて(メタ)アクリロイルオキシ基含有基という)であり、少なくとも1のRは前記(メタ)アクリロイルオキシ基含有基であり、lは2以上の正数であり、mは0又は正数であり、nは0又は正数であり、oは0又は正数であり、2≦l+m+n+o≦1,000であり、水酸基含有基が結合するケイ素原子の個数が全ケイ素原子の合計個数に対して0~30%である)。
 以下、本発明の製造方法について、より詳細に説明する。
 本発明の製造方法は(A)下記平均式(1)で表される水酸基含有オルガノポリシロキサンと
Figure JPOXMLDOC01-appb-C000005
(式中、Rは互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、又は、末端に水酸基を有する、一価炭化水素基又は(ポリ)オキシアルキレンアルキル基(以下、まとめて水酸基含有基という)であり、Rのうち少なくとも1つは水酸基含有基であり、aは2以上の正数であり、bは0又は正数であり、cは0又は正数であり、dは0又は正数であり、及び2≦a+b+c+d≦1,000である)
(B)(メタ)アクリル酸とを、(C)鉄化合物の存在下で反応させて(メタ)アクリロイル基含有オルガノポリシロキサンを得る工程を含むことを特徴とする。
 上記式(1)において、Rは、互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、又は水酸基含有基であり、Rのうち少なくとも1つは水酸基含有基である。炭素数1~10の1価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基等が挙げられる。これらの基の炭素原子に結合している水素原子の一部又は全部をフッ素、塩素等のハロゲン原子で置換した3,3,3-トリフルオロプロピル基、パーフルオロブチルエチル基、パーフルオロオクチルエチル基、アルコキシ基で置換されたメトキシプロピル基、エトキシプロピル基等であってもよい。アルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、及びブトキシ基等が挙げられる。好ましくはメチル基、エチル基、メトキシ基、エトキシ基、水酸基含有基であり、但し、少なくとも1つのRは水酸基含有基である。
 好ましくは、水酸基含有基が結合するケイ素原子の個数が全ケイ素原子の合計個数に対して1~50%であるのがよく、好ましくは2~45%、更に好ましくは3~40%であるのがよい。水酸基含有基が結合するケイ素原子の個数が上記下限値より少ないと、放射線による硬化性が不十分となるおそれがある。また上記上限値より多いと、反応時に反応系内の(メタ)アクリル酸の基質濃度が高くなり、(メタ)アクリロイル基の重合による増粘やゲル化がおこる恐れがある。
 末端に水酸基を有する一価炭化水素基とは、好ましくは、炭素数2~20、より好ましくは炭素数3~15の、末端に水酸基を一つ有する一価炭化水素基である。より好ましくは、炭素数2~10、好ましくは炭素数3~6の、末端に水酸基を一つ有する一価炭化水素基である。末端に水酸基を有する(ポリ)オキシアルキレンアルキル基は、末端に水酸基を一つ有する、好ましくは炭素数4~25、より好ましくは炭素数5~16の(ポリ)オキシアルキレンアルキル基である。オキシアルキレン基としては、オキシエチレン基、オキシイソプロピレン基、オキシn-プロピレン基、及びオキシブチレン基等が挙げられるが、オキシエチレン基及びオキシイソプロピレン基が好ましく、2種以上のオキシアルキレン基を有していてもよい。上記水酸基含有基としては、例えば、下記の構造で表される。下記式において、点線で示される箇所がオルガノポリシロキサンのケイ素原子との結合手である。
Figure JPOXMLDOC01-appb-C000006
 Rは、水素原子又はメチル基である。eは1~10の整数であり、f及びgは互いに独立に1~5の整数である。好ましくは、eは1~7の整数であり、f及びgは互いに独立に1~3の整数である。更に好ましくは、eは1~4の整数であり、f及びgは互いに独立に1又は2である。上記式において、括弧内に示されるエチレンオキサイド及びプロピレンオキサイドの結合順序は制限されるものでなく、ランダムに配列していても、ブロック構造を形成していてもよい。尚、式中、破線はオルガノポリシロキサンのケイ素原子との結合手を示す。組成物全体としての水酸基割合が上記範囲を満たせば上図に示したように、水酸基含有有機基と(メタ)アクリロイル基の両方を有する化合物を含んでも良い。
 平均式(1)において、aは2以上の正数であり、bは0又は正数であり、cは0又は正数であり、dは0又は正数であり、ただし2≦a+b+c+d≦1,000である。好ましくは、水酸基含有基の量が上記した範囲を満たし、且つ、該オルガノポリシロキサンが25℃における粘度5~10,000mPa・s、更に好ましくは粘度10~5,000mPa・sを有する値であればよい。粘度は、BM型回転粘度計で測定される値である。a、b、c、及びdの上限値は、2≦a+b+c+d≦1,000を満たし、オルガノポリシロキサンが上述した粘度を有する値であればよい。bの上限値は、好ましくは998以下であり、より好ましくは798以下であり、より好ましくは598以下である。bの下限値は0であってよいが、好ましくは、bは1以上であり、より好ましくは5以上であり、さらに好ましくは8以上がよい。すなわち、好ましくは1≦b≦998であり、より好ましくは5≦b≦798であり、さらに好ましくは8≦b≦598であるのがよい。cは好ましくは0≦c≦5であり、より好ましくは0≦c≦4であり、さらに好ましくは0≦c≦3であるのがよい。dは好ましくは0≦d≦4であり、より好ましくは0≦d≦3であり、さらに好ましくは0≦d≦2であるのがよい。上記平均式(1)で表されるオルガノポリシロキサンは、より好ましくは直鎖構造を有する。
 平均式(1)で表されるオルガノポリシロキサンとしては、例えば、下記構造で表される化合物が挙げられる。なお、式中Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000007
(式中、hは0~1,000の整数であり、iは0~800の整数、jは1~200の正数、kは0~100の整数である。好ましくは、上述した0≦b≦998を満たす数であり、より好ましくは1≦b≦998を満たす数であり、より好ましくは5≦b≦798であり、さらに好ましくは8≦b≦598を満たす数である)
[(B)成分]
 (B)成分は(メタ)アクリル酸であり、(A)成分へ(メタ)アクリロイル基を導入するための反応試剤である。
 (B)成分の配合量は、(A)オルガノポリシロキサンの水酸基1モルに対し、1.0モル以上になる量であり、好ましくは1.1~10モル、更に好ましくは1.5~5モルで反応させるのがよい。(B)成分の量が上記下限値より少ないと、エステル交換反応による(メタ)アクリロイル基の導入率が低下し、上記上限値より多いと、エステル交換反応による(メタ)アクリロイル基の導入率は高いが、(B)成分の配合量が多すぎるため、ポットイールドが低下してしまう。
[(C)成分]
 (C)成分は鉄化合物であり、前記(A)成分および(B)成分を反応させるための触媒として機能する。好ましくは、(C)成分は3価の鉄化合物である。
 (C)成分の量は、(A)成分中に含まれる水酸基1モルに対し0.005~0.1モルであり、好ましくは0.008~0.08モル、より好ましくは0.01~0.05モルである。上記下限値よりも少ないと反応が十分に進行しない可能性がある。上記上限値超になると反応後の除去が難しくなることがある。
 3価の鉄化合物は特に限定されないが、塩化鉄(III)、塩化鉄(III)六水和物、臭化鉄(III)、硫酸鉄(III)n水和物(nは不定、富士フイルム和光純薬株式会社製などが使用できる。)、p-トルエンスルホン酸鉄(III)六水和物、トリフルオロメタンスルホン酸鉄(III)、鉄(III)アセチルアセトナートなどが挙げられる。反応に対する活性や入手容易性の観点から、塩化鉄(III)および塩化鉄(III)六水和物、p-トルエンスルホン酸鉄(III)六水和物が好ましく、特に塩化鉄(III)六水和物が好ましい。
[(D)成分]
 (D)成分は沸点が100℃以上の有機溶剤であり、前述の成分を相溶させる反応溶剤である。有機溶剤としては、トルエン、及びキシレン等の芳香族炭化水素系溶剤、オクタン、イソオクタン、及びイソパラフィン等の脂肪族炭化水素系溶剤、工業用ガソリン、石油ベンジン、及びソルベントナフサ等の炭化水素系溶剤、又はこれらの混合溶剤等が挙げられる。これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。
 有機溶剤の量は、(A)~(C)成分の合計100質量部に対し、5~100質量部であり、好ましくは8~90質量部、より好ましくは10~80質量部である。上記下限値よりも少ない場合には、反応系内の基質濃度が高くなり、(メタ)アクリロイル基の重合による増粘やゲル化が懸念される。上記上限値よりも多い場合、基質濃度が低くなることで反応が十分に進行しない恐れがある。
[(E)成分]
 (E)成分は重合禁止剤であり、反応中に(B)成分である(メタ)アクリル酸が(A)成分と反応せずに重合することを抑制するための添加剤である。重合禁止剤としては、ラジカル重合を抑制する効果が得られるならば限定されないが、以下に挙げるようなアルキルフェノール類がある。
 p-メトキシフェノール、2,6-ジ-t-ブチルヒドロキシトルエン、4,4’-ジオキシジフェノール、1,1’-ビス(4-ヒドロキシフェニル)-シクロヘキサン、3-メチル-4-イソプロピルフェノール、2,4,5-トリ-ヒドロキシブチロフェノン、2,6-ジ-t-ブチルフェノール、2,5-ジ-t-アミルヒドロキノン、2,5-ジ-t-ブチルヒドロキノン、4-ヒドロキシメチル-2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-ジメチルアミノ-p-クレゾール、4,4-ビス(2,6-ジ-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、2,2’-メチレン(2,6-ジ-t-ブチルフェノール)、4,4’-メチレン(2,6-ジ-t-ブチルフェノール)、4,4’-ブチリデン(3-メチル-6-t-ブチルフェノール)、4,4’-チオ-ビス(6-t-ブチル-3-メチルフェノール)、ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンジル)サルファイド、4,4’-チオ-ビス(6-t-ブチル-o-クレゾール)、2,2’-チオ-ビス(4-メチル-6-t-ブチルフェノール)。
 また、アミン系の重合禁止剤も使用可能であり、以下に挙げるようなものがある。アルキル化ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、フェノチアジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1,4-ジヒドロキシ-2,2,6,6-テトラメチルピペリジン、1-ヒドロキシ-4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン。
 重合禁止剤の量は、オルガノポリシロキサン(A)100質量部に対し、0.01~1質量部であり、好ましくは0.02~0.5質量部、更に好ましくは0.03~0.3質量部がよい。上記上限値より多い場合、得られるラジカル重合性オルガノポリシロキサンを含む放射線硬化性オルガノポリシロキサン組成物の硬化性が低下する恐れがある。上記下限値より少ない場合、製造時に(メタ)アクリル酸が重合し増粘あるいはゲル化する懸念がある。
[エステル化反応]
 本発明の製造方法は、(A)成分中に含まれる水酸基と(B)成分中のカルボキシル基を、触媒である(C)成分によって脱水縮合させて目的であるオルガノポリシロキサンを得るというものである。この反応は、古典的にFischerのエステル化反応と呼ばれるものであり、硫酸などのプロトン酸を触媒とした平衡反応であり、副生する水を反応系外に除くことにより反応の進行を促進することが可能である。すなわち、反応温度を100℃以上とし気化した水を反応系外に逃がすことで反応が進行しやすく、そのため反応溶剤は沸点が100℃以上であるものが適用される。(A)~(E)の各種成分の相溶性および汎用性の観点から、トルエンやキシレンが好ましい。
 反応の概略は以下のように示される。なお、式中のSiloxane-OHは、上記式(1)で表される水酸基含有オルガノポリシロキサンであり、上記(A)成分のために例示した化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000008
(Rは、水素原子又はメチル基である。)
 通常、エステル化反応においては、前述の通り硫酸などのプロトン酸を触媒とする。しかし、プロトン酸を触媒とする反応をオルガノポリシロキサン化合物に適用すると、エステル化とともに、主鎖であるシロキサン結合の開裂も生じてしまい、反応条件のコントロールが極めて難しい。しかし、本発明の製造方法では、鉄化合物を触媒とすることでシロキサン結合の開裂を抑制しつつエステル化反応を進行させることができる。
 反応温度は、より詳細には100~150℃であり、好ましくは105~140℃、より好ましくは110~130℃である。100℃よりも低い場合、副生する水を十分に反応系外に逃がせずに反応が十分に進行しないおそれがある。150℃よりも高い場合、(B)成分の(メタ)アクリル酸の重合による増粘およびゲル化が懸念される。反応時間は1~72時間の範囲で行えばよいが、これに限定されるものではない。
 反応終了後は残存する(B)成分を減圧留去することによって生成物を得ることができる。留去時の温度は20℃から120℃、減圧は1~200mmHgとすればよいが、これに限定されるものではない。
 本発明で得られる(メタ)アクリロイル基を含有するオルガノポリシロキサンは下記平均式(2)で表される。
Figure JPOXMLDOC01-appb-C000009
 式中Rは、上記平均式(1)においてRで規定した基、又は末端に(メタ)アクリロイル基を有する一価炭化水素基又は(ポリ)オキシアルキレン基(以下、まとめて(メタ)アクリロイルオキシ基含有基という)である。Rのうち少なくとも1つは(メタ)アクリロイルオキシ基含有基である。好ましくは(メタ)アクリロイルオキシ基含有基が結合するケイ素原子の個数が全ケイ素原子の合計個数に対して1~50%、より好ましくは2~45%、更に好ましくは3~40%であるのがよい。
 (メタ)アクリロイルオキシ基含有基とは、上記した水酸基含有基の末端水酸基が(メタ)アクリロイルオキシ基に置換された基である。従って、エポキシ基の開環により(メタ)アクリロイルオキシ基が導入された基とは異なり水酸基を有さない。好ましくは、末端に(メタ)アクリロイルオキシ基を一つ有する、炭素数2~10、好ましくは炭素数3~6の一価炭化水素基、又は、末端に(メタ)アクリロイルオキシ基を一つ有する、炭素数4~25、好ましくは炭素数5~16の(ポリ)オキシアルキレンアルキル基である。オキシアルキレン基の例は上述した通りであり、オキシエチレン基及びオキシイソプロピレン基が好ましく、2種以上のオキシアルキレン基を有していてもよい。例えば、下記の構造で表される。下記式において、点線で示される箇所がポリシロキサンのケイ素原子との結合手である。
Figure JPOXMLDOC01-appb-C000010
 Rは、水素原子又はメチル基である。eは1~10の整数であり、f及びgは互いに独立に1~5の整数である。好ましくは、eは1~7の整数であり、f及びgは互いに独立に1~3の整数である。更に好ましくは、eは1~4の整数であり、f及びgは互いに独立に1又は2である。上記式において、括弧内に示されるエチレンオキサイド及びプロピレンオキサイドの結合順序は制限されるものでなく、ランダムに配列していても、ブロック構造を形成していてもよい。尚、式中、破線はオルガノポリシロキサンのケイ素原子との結合手を示す。
 平均式(2)において、lは2以上の正数であり、mは0又は正数であり、nは0又は正数であり、oは0又は正数であり、2≦l+m+n+o≦1,000である。好ましくは、(メタ)アクリロイルオキシ基含有有機基の量が上記範囲を満たし、且つ、上記オルガノポリシロキサンが25℃における粘度5~10,000mPa・s、更に好ましくは粘度10~5,000mPa・sを有するような値であるのがよい。本発明の上記製造方法により得られる(メタ)アクリロイル基含有オルガノポリシロキサンは低粘度を有することができる。好ましくは5~3,000mPa・s、更に好ましくは5~2,000mPa・s、更に好ましくは8~1,500mPa・s、更には10~1,000mPa・s、特には15~700mPa・sを有することができる。該粘度は、BM型回転粘度計により測定される値である。
l、m、n、及びoの上限値は、2≦l+m+n+o≦1,000を満たし、オルガノポリシロキサンが上述した粘度を有する値であればよい。mの上限値は、好ましくは998以下であり、より好ましくは798以下であり、より好ましくは598以下である。mの下限値は0であってよいが、好ましくは、mは1以上であり、より好ましくは5以上であり、さらに好ましくは8以上がよい。すなわち、好ましくは1≦m≦998であり、より好ましくは5≦m≦798であり、さらに好ましくは8≦m≦598であるのがよい。nは好ましくは0≦n≦5であり、より好ましくは0≦n≦4であり、さらに好ましくは0≦n≦3であるのがよい。oは好ましくは0≦o≦4であり、より好ましくは0≦o≦3であり、さらに好ましくは0≦o≦2であるのがよい。上記平均式(5)で表されるオルガノポリシロキサンは、より好ましくは直鎖構造を有する。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。
 以下において、表中の物性は、下記の試験法により測定されたものである。
 なお、例中の部は質量部である。
[(メタ)アクリロイル基導入率]
 実施例または比較例中のエステル交換反応の(メタ)アクリロイル基導入率は次のように計算した。本発明のエステル化反応による(メタ)アクリロイル基の導入率はH-NMRを用いて、原料である水酸基を含有するオルガノポリシロキサンの水酸基を有する有機基のSi原子に結合したメチレン基のプロトン(δ=0.42)は反応前後で不変であるため、このプロトンのピークを基準とした。例えば、アクリロイル基の場合、基準となるメチレンのプロトンのピークの積分値を1.00とし、エステル化反応によるアクリロイル基の導入率が100%ならば、アクリロイル基の3つプロトンのうち、それぞれのプロトンのピーク積分値は0.50となる。これより、アクリロイル基の導入率は下記式により決定される。
 
アクリロイル基導入率=[(アクリロイル基の3つのプロトンピークの積分値の平均)/0.50]×100 (%)
[実施例1]
 撹拌装置、温度計、ディーンスターク装置を取り付けたセパラブルフラスコへ下記平均式(A-1)で表されるオルガノポリシロキサン91.61g、(B-1)アクリル酸28.39g(上記オルガノポリシロキサン中の水酸基1モルに対し2モルとなる量)、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.24g、(C-1)塩化鉄(III)6水和物1.064g(上記オルガノポリシロキサン中の水酸基1モルに対し鉄換算で0.02モルとなる量)、(D-1)トルエン24g仕込み、反応系内が120℃となる温度で副生する水を留去しながら12時間加熱撹拌し反応させた。この反応溶液を50℃で1時間、120℃で3時間20mmHgの減圧留去により溶剤と未反応成分を除去することで、下記平均式(X-1)で示されるオルガノポリシロキサンを得た。アクリロイル基導入率は97%であった。
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
[実施例2]
 実施例1にて(C-1)塩化鉄(III)6水和物1.064gの代わりに、(C-2)硫酸鉄(III)n水和物1.124g(富士フイルム和光純薬株式会社製のものを使用した。上記オルガノポリシロキサン中の水酸基1モルに対し鉄換算で0.01モルとなる量、水和水が30重量%と仮定したときの値として算出)とした他は、実施例1の工程を繰り返し、生成物を得た。アクリロイル基導入率は94%であった。
[実施例3]
 実施例1にて(C-1)塩化鉄(III)6水和物1.064gの代わりに、(C-3)臭化鉄(III)1.163g(上記オルガノポリシロキサン中の水酸基1モルに対し鉄換算で0.02モルとなる量)とした以外は実施例1の工程を繰り返し、生成物を得た。アクリロイル基導入率は94%であった。
[実施例4]
 実施例1にて(C-1)塩化鉄(III)6水和物1.064gの代わりに、(C-4)p-トルエンスルホン酸鉄6水和物1.333g(上記オルガノポリシロキサン中の水酸基1モルに対し鉄換算で0.01モルとなる量)とした以外は実施例1の工程を繰り返し、生成物を得た。アクリロイル基導入率は97%であった。
[実施例5]
 撹拌装置、温度計、ディーンスターク装置を取り付けたセパラブルフラスコへ下記平均式(A-2)で表されるオルガノポリシロキサン91.61g、(B-1)アクリル酸28.39g(上記オルガノポリシロキサン中の水酸基1モルに対し2モルとなる量)、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.24g、(C-1)塩化鉄(III)6水和物1.064g(上記オルガノポリシロキサン中の水酸基1モルに対し0.02モルとなる量)、(D-1)トルエン24gを仕込み、反応系内が120℃となる温度で副生する水を留去しながら18時間加熱撹拌し反応させた。この反応溶液を50℃で1時間、120℃で3時間20mmHgの減圧留去により溶剤と未反応成分を除去することで、下記平均式(X-2)で示されるオルガノポリシロキサンを得た。アクリロイル基導入率は95%であった。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[比較例1]
 実施例1にて(C-1)塩化鉄(III)6水和物1.064gの代わりに、硫酸0.193g(上記オルガノポリシロキサン中の水酸基1モルに対し0.01モルとなる量)とした以外は実施例1の工程を繰り返したところ、一部にゲル状の固形物が生じ、目的とするオルガノポリシロキサンを得ることができなかった。
[比較例2]
 実施例1にて(C-1)塩化鉄(III)6水和物1.064gの代わりに、p-トルエンスルホン酸0.339g(上記オルガノポリシロキサン中の水酸基1モルに対し0.01モルとなる量)とした以外は実施例1の工程を繰り返したところ、一部にゲル状の固形物が生じ、目的とするオルガノポリシロキサンを得ることができなかった。
[比較例3]
 実施例1にて(C-1)塩化鉄(III)6水和物1.064gの代わりに、メタンスルホン酸0.189g(上記オルガノポリシロキサン中の水酸基1モルに対し0.01モルとなる量)とした以外は実施例1の工程を繰り返したところ、一部にゲル状の固形物が生じ、目的とするオルガノポリシロキサンを得ることができなかった。
Figure JPOXMLDOC01-appb-T000015
 上記の通り、本発明の製造方法に基づき、水酸基を有するオルガノポリシロキサンと(メタ)アクリル酸を、鉄化合物を触媒として反応させることにより、(メタ)アクリロイル変性オルガノポリシロキサンを合成することが可能である。得られた(メタ)アクリロイル変性オルガノポリシロキサンは放射線硬化型のコーティング剤や添加剤、樹脂などに利用できる。

Claims (7)

  1.  (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法であって、
    (A)下記平均式(1)で表される水酸基含有オルガノポリシロキサンと
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、又は、末端に水酸基を有する、一価炭化水素基又は(ポリ)オキシアルキレンアルキル基(以下、まとめて水酸基含有基という)であり、Rのうち少なくとも1つは水酸基含有基であり、aは2以上の正数であり、bは0又は正数であり、cは0又は正数であり、dは0又は正数であり、及び2≦a+b+c+d≦1,000である)
    (B)(メタ)アクリル酸  前記(A)成分の水酸基に対するモル比が1.0以上となる量とを、
    前記(A)成分の水酸基に対するモル比が0.005~0.1となる量の(C)鉄化合物の存在下で反応させて、上記(メタ)アクリロイル基含有オルガノポリシロキサンを得る工程を含むことを特徴とする、前記製造方法。
  2.  前記(A)成分中の前記水酸基含有基が結合するケイ素原子の数が、全ケイ素原子の数に対して1~50%である、請求項1記載の製造方法。
  3.  前記(C)成分が、3価の鉄化合物である、請求項1又は2記載の製造方法。
  4.  前記工程において、さらに(D)沸点100℃以上を有する有機溶剤を前記(A)~(C)成分の合計100質量部に対し5~100質量部で配合する、請求項1~3のいずれか1項記載の製造方法。
  5.  前記工程において、さらに(E)重合禁止剤を前記(A)成分100質量部に対し0.01~1質量部で配合する、請求項1~4のいずれか1項記載の製造方法。
  6.  前記工程において、前記(A)~(C)成分、及び任意的に(D)及び(E)成分を反応容器内にて混合撹拌しながら該反応容器内の混合物が100℃以上になるように加熱し、副生する水を反応容器外に排除しながら前記(A)成分と(B)成分とを反応させることを特徴とする、請求項1~5のいずれか1項記載の製造方法。
  7.  前記(メタ)アクリロイル基含有オルガノポリシロキサンが下記平均式(2)で表される、請求項1~6のいずれか1項記載の製造方法
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは互いに独立に、置換又は非置換の、炭素数1~10の1価炭化水素基、アルコキシ基、前記水酸基含有基、又は、末端に(メタ)アクリロイルオキシ基を有する一価炭化水素基又は(ポリ)オキシアルキレンアルキル基(以下、まとめて(メタ)アクリロイルオキシ基含有基という)であり、少なくとも1のRは前記(メタ)アクリロイルオキシ基含有基であり、lは2以上の正数であり、mは0又は正数であり、nは0又は正数であり、oは0又は正数であり、2≦l+m+n+o≦1,000であり、水酸基含有基が結合するケイ素原子の個数が全ケイ素原子の合計個数に対して0~30%である)。
PCT/JP2022/040476 2021-11-25 2022-10-28 (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法 WO2023095555A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021191105 2021-11-25
JP2021-191105 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023095555A1 true WO2023095555A1 (ja) 2023-06-01

Family

ID=86539333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040476 WO2023095555A1 (ja) 2021-11-25 2022-10-28 (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法

Country Status (2)

Country Link
TW (1) TW202323399A (ja)
WO (1) WO2023095555A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094486A (ja) * 1983-10-28 1985-05-27 Dainippon Printing Co Ltd 印字適性を有する剥離性処理剤
JP2005530821A (ja) * 2002-06-18 2005-10-13 ザ プロクター アンド ギャンブル カンパニー 高電荷密度を有するカチオン性ポリマー及びコンディショニング剤を含有する組成物
WO2006064685A1 (ja) * 2004-12-13 2006-06-22 Gifu University カルボン酸エステルの製造方法及びエステル化触媒
JP2007186557A (ja) * 2006-01-12 2007-07-26 Shin Etsu Chem Co Ltd ポリウレタンフォーム用整泡剤及びポリウレタンフォームの製造方法
JP2008174483A (ja) * 2007-01-18 2008-07-31 Gifu Univ カルボン酸多価アルコールエステルの製造方法
JP2008266285A (ja) * 2006-10-24 2008-11-06 Shiseido Co Ltd オルガノシロキサン誘導体
JP2010138255A (ja) * 2008-12-10 2010-06-24 Ipposha Oil Ind Co Ltd ポリエーテル変性ポリシロキサン化合物およびこれを含有する放射線硬化性組成物
JP2011153233A (ja) * 2010-01-27 2011-08-11 Lion Corp 液体洗浄剤組成物
JP2013209763A (ja) * 2012-03-30 2013-10-10 Toray Ind Inc 繊維構造物
JP2018521188A (ja) * 2015-07-06 2018-08-02 エルケム・シリコーンズ・フランス・エスアエスELKEM SILICONES France SAS (メタ)アクリレート官能基を有するオルガノポリシロキサンの製造方法
CN108794750A (zh) * 2017-04-26 2018-11-13 上海飞凯光电材料股份有限公司 一种具有(甲基)丙烯酸酯基的聚硅氧烷及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094486A (ja) * 1983-10-28 1985-05-27 Dainippon Printing Co Ltd 印字適性を有する剥離性処理剤
JP2005530821A (ja) * 2002-06-18 2005-10-13 ザ プロクター アンド ギャンブル カンパニー 高電荷密度を有するカチオン性ポリマー及びコンディショニング剤を含有する組成物
WO2006064685A1 (ja) * 2004-12-13 2006-06-22 Gifu University カルボン酸エステルの製造方法及びエステル化触媒
JP2007186557A (ja) * 2006-01-12 2007-07-26 Shin Etsu Chem Co Ltd ポリウレタンフォーム用整泡剤及びポリウレタンフォームの製造方法
JP2008266285A (ja) * 2006-10-24 2008-11-06 Shiseido Co Ltd オルガノシロキサン誘導体
JP2008174483A (ja) * 2007-01-18 2008-07-31 Gifu Univ カルボン酸多価アルコールエステルの製造方法
JP2010138255A (ja) * 2008-12-10 2010-06-24 Ipposha Oil Ind Co Ltd ポリエーテル変性ポリシロキサン化合物およびこれを含有する放射線硬化性組成物
JP2011153233A (ja) * 2010-01-27 2011-08-11 Lion Corp 液体洗浄剤組成物
JP2013209763A (ja) * 2012-03-30 2013-10-10 Toray Ind Inc 繊維構造物
JP2018521188A (ja) * 2015-07-06 2018-08-02 エルケム・シリコーンズ・フランス・エスアエスELKEM SILICONES France SAS (メタ)アクリレート官能基を有するオルガノポリシロキサンの製造方法
CN108794750A (zh) * 2017-04-26 2018-11-13 上海飞凯光电材料股份有限公司 一种具有(甲基)丙烯酸酯基的聚硅氧烷及其制备方法和应用

Also Published As

Publication number Publication date
TW202323399A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7393863B2 (ja) 硬化性ポリマー
JP6579335B2 (ja) 反応性シルセスキオキサン化合物を含む重合性組成物
JP4998702B2 (ja) コーティング剤組成物で被覆又は表面処理されてなる物品
KR102657436B1 (ko) 반응성 실세스퀴옥산 화합물 및 방향족 비닐 화합물을 포함하는 중합성 조성물
CN113825636A (zh) 放射线硬化性有机聚硅氧烷组合物以及剥离片
WO2023095555A1 (ja) (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法
JP7074641B2 (ja) (メタ)アクリロイル基含有オルガノシロキサン
CN110156996B (zh) 单封端反应性有机硅及其制备方法
KR101763986B1 (ko) 반응성 폴리실록산 용액의 제조 방법
CN117089076A (zh) 多功能超支化聚硅氧烷、使用其改性的防腐防污涂料用树脂及其制备方法
US20200299462A1 (en) Method for preparing ultraviolet (uv) curing polymethyl siloxane containing acrylate structure
KR102314075B1 (ko) 반응성 폴리실록산 및 이것을 포함하는 중합성 조성물
CN113336945B (zh) 一种主链含亚苯基(苯撑)的硅氧烷聚合物及其制备方法
US20210147710A1 (en) Coating resin composition and coating film comprising cured article thereof as coating layer
WO2012133079A1 (ja) かご型シルセスキオキサン樹脂及びかご型シルセスキオキサン共重合体、並びにそれらの製造方法
WO2023095556A1 (ja) (メタ)アクリロイル基含有オルガノポリシロキサンの製造方法
CN113968973A (zh) 一种环氧基硅氧烷、环氧基聚硅氧烷-硅橡胶复合物、其制备方法及其用途
JP7059233B2 (ja) (メタ)アクリル基含有オルガノポリシロキサンの製造方法
KR20110121151A (ko) 발광 다이오드 소자 봉지용 오가노 폴리실록산 수지
JP5662864B2 (ja) かご型シルセスキオキサン共重合体及びその製造方法
CN110551287A (zh) 含氟烃(氧)基官能化的硅基树脂及其制备方法
KR101613732B1 (ko) β-케토에스테르기 함유 오르가노폴리실록산 화합물
JP6886160B2 (ja) 硬化性樹脂組成物及び加工フィルムの製造方法
CN114058017A (zh) 一种环氧基硅氧烷的用途
JP2017049461A (ja) 反応性シロキサン化合物を含むインプリント成形用重合性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563578

Country of ref document: JP

Kind code of ref document: A