WO2023024651A1 - 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池 - Google Patents

磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池 Download PDF

Info

Publication number
WO2023024651A1
WO2023024651A1 PCT/CN2022/098044 CN2022098044W WO2023024651A1 WO 2023024651 A1 WO2023024651 A1 WO 2023024651A1 CN 2022098044 W CN2022098044 W CN 2022098044W WO 2023024651 A1 WO2023024651 A1 WO 2023024651A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
source
precursor
positive electrode
electrode material
Prior art date
Application number
PCT/CN2022/098044
Other languages
English (en)
French (fr)
Inventor
梁策
刘亚飞
陈彦彬
Original Assignee
北京当升材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京当升材料科技股份有限公司 filed Critical 北京当升材料科技股份有限公司
Priority to JP2023536552A priority Critical patent/JP7493105B2/ja
Priority to KR1020237026840A priority patent/KR102682051B1/ko
Priority to EP22859998.1A priority patent/EP4245721A1/en
Publication of WO2023024651A1 publication Critical patent/WO2023024651A1/zh
Priority to US18/216,853 priority patent/US20230339756A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • C01B25/305Preparation from phosphorus-containing compounds by alkaline treatment
    • C01B25/306Preparation from phosphorus-containing compounds by alkaline treatment from phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a lithium manganese iron phosphate precursor, a lithium manganese iron phosphate cathode material, a preparation method thereof, an electrode material, an electrode and a lithium ion battery.
  • lithium-ion batteries have continued to grow.
  • cathode materials have put forward higher requirements for their safety performance and cost while focusing on high energy density.
  • Lithium cobaltate is the first positive electrode material to be commercially applied, with a capacity of up to 150mAh/g, but the relative scarcity of cobalt resources, high price and toxicity severely limit its wide application and long-term development.
  • nickel-cobalt-manganese ternary materials have been developed rapidly and occupy an important position in the field of power batteries, but they still face the problem of high cost and poor safety performance.
  • Olivine-type cathode materials have high safety performance and cost advantages, and lithium iron phosphate has also been applied on a large scale. Due to its low voltage platform, it is difficult to meet the demand for higher energy density. Lithium manganese iron phosphate has a high voltage platform and energy density, and takes into account the characteristics of low cost, environmental friendliness and high safety performance of lithium iron phosphate, and has received widespread attention.
  • the olivine-type crystal structure restricts the migration of lithium ions, resulting in lower electronic and ionic conductivity of lithium manganese iron phosphate, which affects its capacity and rate performance.
  • it is usually modified by reducing the particle size and carbon coating. This will reduce the compacted density of lithium manganese iron phosphate and increase its specific surface area, thereby affecting the volumetric energy density and processing performance of the material.
  • CN106328942A discloses the preparation of a lithium manganese iron phosphate positive electrode material: lithium source, manganese source, iron source, phosphorus source solution and pore-forming agent polymer solution are mixed to obtain spinning solution, which is electrospun to obtain manganese phosphate Lithium iron precursor is sintered to obtain lithium iron manganese phosphate positive electrode material.
  • the lithium manganese iron phosphate cathode material obtained by the method has higher aspect ratio and porosity, and improves the rate performance of the battery.
  • this process uses electrospinning technology to prepare the precursor, which is relatively complicated, high in cost, and has higher requirements for production safety, which is not conducive to large-scale industrial application.
  • CN105514422A discloses a preparation method of a precursor and lithium manganese iron phosphate: mix and react a water-soluble divalent manganese source, a divalent iron source, a divalent metal M salt and a precipitant, and obtain a pre-powder after drying; then The pre-powder is dispersed in water, and soluble and decomposable ferrous salt is added, and the oxalate precursor is obtained after heat treatment; the precursor is mixed with a water-soluble lithium source, a phosphorus source and an organic carbon source, dried and roasted, Lithium manganese iron phosphate with less metal elution and excellent cycle performance can be obtained.
  • this process uses ferromanganese oxalate as a precursor, which has a high gas production during the sintering process, which is not conducive to obtaining a high compaction density.
  • CN105226273A discloses a lithium manganese iron phosphate and a preparation method thereof, which is characterized in that: a sol-gel method is used to prepare lithium iron phosphate sol and lithium manganese phosphate sol; Calcination to obtain lithium manganese iron phosphate.
  • the method can conveniently prepare lithium iron manganese phosphate with any ratio of manganese to iron, and the production is convenient.
  • this process is obtained by co-sintering lithium iron phosphate and lithium manganese phosphate. It is difficult to evenly distribute the two substances, and it is easy to enrich ferromanganese alone, resulting in phase separation, which affects the performance of electrical properties.
  • the purpose of the present invention is to provide a lithium manganese iron phosphate precursor, lithium iron manganese phosphate Positive electrode material and preparation method thereof, electrode material, electrode and lithium ion battery.
  • the first aspect of the present invention provides a precursor of lithium manganese iron phosphate, the expression of the precursor is (NH 4 )Mn 1-xy Fex M y PO 4 ⁇ H 2 O/C, where , 0.1 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.04; M is selected from at least one of Mg, Co, Ni, Cu, Zn and Ti.
  • a second aspect of the present invention provides a method for preparing a lithium manganese iron phosphate precursor, the method comprising:
  • the third aspect of the present invention provides a lithium manganese iron phosphate positive electrode material
  • the expression of the positive electrode material is Li i Mn 1-xyz Fe x M y M' z (PO 4 ) 1-n N n /C, where, 0.1 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.04, 0 ⁇ z ⁇ 0.04, 0.9 ⁇ i ⁇ 1.2, 0 ⁇ n ⁇ 0.04, and z and n are not 0 at the same time.
  • M is selected from at least one of Mg, Co, Ni, Cu, Zn and Ti; M' is selected from Mg, Ca, Sr, Ti, V, Cr, Co, Ni, Cu, Zn, Zr, Y, Mo, At least one of Nb, B, Al, W, La and Sm; N is selected from F and/or Cl.
  • a fourth aspect of the present invention provides a method for preparing a lithium manganese iron phosphate positive electrode material, the method comprising:
  • lithium manganese iron phosphate precursor with the expression (NH 4 )Mn 1-xy Fe x My PO 4 ⁇ H 2 O/C, where 0.1 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.04; M is selected from at least one of Mg, Co, Ni, Cu, Zn and Ti;
  • the fifth aspect of the present invention provides an electrode material, the electrode material contains an active material, a conductive agent and a binder, and the active material is the lithium manganese iron phosphate positive electrode material described in the third aspect or according to the fourth aspect The lithium manganese iron phosphate positive electrode material prepared by the method.
  • a sixth aspect of the present invention provides an electrode, which includes a current collector and an electrode material coated and/or filled on the current collector, and the electrode material is the electrode material described in the fifth aspect.
  • the seventh aspect of the present invention provides a method for preparing an electrode, the method comprising coating and/or filling a slurry containing an active material, a conductive agent, a binder and a solvent on a current collector, drying, calendering or not calendering,
  • the active material is the lithium manganese iron phosphate positive electrode material described in the third aspect or the lithium manganese iron phosphate positive electrode material prepared according to the method described in the fourth aspect.
  • the eighth aspect of the present invention provides a lithium-ion battery, the lithium-ion battery includes an electrode group and an electrolyte, the electrode group and the electrolyte are sealed in the battery case, the electrode group includes a positive electrode, a negative electrode and a separator, and the separator is located on the positive electrode Between the positive electrode and the negative electrode, the positive electrode is the electrode described in the sixth aspect or the electrode prepared according to the method described in the seventh aspect.
  • the present invention has the following advantages:
  • the lithium manganese iron phosphate precursor provided by the present invention has a secondary spherical particle structure formed by primary particles.
  • the XRD spectrum shows that the precursor is a crystal structure with an orthogonal structure, and the elements in the precursor are evenly distributed. Elements enter the metal site to form nanoparticles with a stable structure, and at the same time, the surface of the nanoparticles is coated with carbon to form a dense spherical aggregate.
  • the lithium manganese iron phosphate cathode material prepared by using the precursor provided by the present invention has a high compaction density;
  • the lithium manganese iron phosphate positive electrode material provided by the present invention the primary particles show that it has formed a stable carbon coating, the carbon coating is uniform, and has a dense secondary spherical shape.
  • the positive electrode material provided by the present invention is applied to lithium When used in lithium-ion batteries, it can improve the electrochemical performance of lithium-ion batteries, with high specific capacity and good cycle performance;
  • the uniformity of element distribution in the precursor and positive electrode material can be improved, and the material structure can be improved. Stability, so as to obtain higher compaction density and electrochemical performance, and the process is simple, suitable for industrial production.
  • Fig. 1 is the scanning electron micrograph of the lithium manganese iron phosphate precursor Z1 that preparation example 1 makes;
  • Fig. 2 is the scanning electron micrograph of the lithium manganese iron phosphate cathode material C1 that embodiment 1 makes;
  • Fig. 3 is the scanning electron micrograph of the lithium manganese iron phosphate cathode material D4 that comparative example 4 makes;
  • Fig. 4 is the XRD spectrogram of the lithium manganese iron phosphate precursor Z1 that preparation example 1 makes and the lithium manganese iron phosphate cathode material C1 that embodiment 1 makes;
  • the first aspect of the present invention provides a lithium manganese iron phosphate precursor, the expression of the precursor is (NH 4 )Mn 1-xy Fe x M y PO 4 ⁇ H 2 O/C, where 0.1 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.04; M is at least one selected from Mg, Co, Ni, Cu, Zn and Ti.
  • the purpose of the present invention can also be achieved.
  • the content of carbon in the precursor is 0.05-5wt%, preferably 0.5-2wt%, more preferably 1-1.4wt%.
  • M is selected from at least one of Mg, Cu and Ti.
  • the precursor has a secondary spherical particle structure formed by primary particles; preferably, the average particle size of the secondary spherical particles is 1-50 ⁇ m, preferably 5-12 ⁇ m;
  • the secondary spherical particles are spherical or quasi-spherical.
  • the average particle size of the primary particles of the precursor is 10-500nm, preferably 40-100nm; the surface of the primary particles is coated with carbon, which can not only enhance the compactness of the primary particles agglomerated into secondary spherical particles, but also Graphite carbon is formed to build a conductive network.
  • the crystal structure of the precursor can be determined by XRD characterization.
  • a second aspect of the present invention provides a method for preparing a lithium manganese iron phosphate precursor, the method comprising:
  • the manganese source is at least one selected from manganese sulfate, manganese nitrate, manganese acetate and manganese chloride.
  • the iron source is at least one selected from ferric sulfate, ferrous sulfate, ferric nitrate, ferric acetate and ferric chloride.
  • the M source is selected from at least one of M-containing sulfates, nitrates, acetates, and chlorides.
  • the phosphorus source is selected from at least one of phosphoric acid, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate and triammonium phosphate, preferably phosphoric acid, monohydrogen phosphate At least one of ammonium hydrogen and ammonium dihydrogen phosphate.
  • the ammonia source is selected from ammonia water, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate, triammonium phosphate, ammonium bicarbonate, ammonium carbonate, ammonium sulfate and urea At least one of them, preferably at least one of ammonia water, ammonium monohydrogen phosphate and ammonium dihydrogen phosphate.
  • the complexing agent is selected from citric acid and/or triammonium citrate.
  • the first carbon source is selected from graphene, carbon nanotubes, phenolic resin, polyethylene, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polypropylene and toluene diisocyanate (TDI), preferably at least one of graphene, carbon nanotubes, phenolic resin, polyethylene and polyvinylidene fluoride.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • TDI toluene diisocyanate
  • the amount of manganese source, iron source and M source satisfies: in terms of metal elements, the molar ratio of manganese source, iron source and M source is 60-80:20-40:1; Selecting the manganese source, iron source and M source with the above molar ratio range is conducive to obtaining a structurally stable lithium manganese iron phosphate precursor, which is conducive to improving the structural stability of lithium manganese iron phosphate cathode material, so that it has higher energy density.
  • the amount of the phosphorus source and the ammonia source satisfies: the molar ratio of the phosphorus source in terms of phosphate ions and the ammonia source in terms of ammonium ions is 1:1-3.
  • the phosphorus source and ammonia source within the molar ratio range are conducive to the uniform complexation of manganese element, iron element and optional M element to form a stable lithium manganese iron phosphate precursor.
  • the concentration of total metal ions in the first mixed liquid is 0.5-3 mol/L.
  • the concentration of phosphate ions in the second mixed liquid is 0.5-3 mol/L, and the concentration of ammonium ions is 0.05-15 mol/L.
  • the concentration of the complexing agent in the third mixed liquid is 0.03-10 mol/L.
  • step (b) the first mixed liquid and the second mixed liquid are added to the third mixed liquid in a cocurrent manner;
  • the co-precipitation reaction is carried out under stirring, and the conditions of the co-precipitation reaction include: a stirring speed of 500-1000 rpm, a pH of 2-8, a temperature of 25-90° C., and a time of 1-2 h.
  • the pH of the co-precipitation reaction can be controlled to be 2-8 by adjusting the adding speed of the second mixed solution (the error of the pH can be ⁇ 0.5).
  • the method of solid-liquid separation is not particularly limited, and existing techniques known to those skilled in the art can be used, for example, suction filtration or pressure filtration can be used for solid-liquid separation to obtain solid materials .
  • step (c) the solid-liquid separation method is obtained by pure water
  • the solid material is cleaned until the conductivity of the filtrate is less than or equal to 200 ⁇ s/cm to obtain a lithium manganese iron phosphate precursor.
  • the third aspect of the present invention provides a lithium manganese iron phosphate positive electrode material
  • the expression of the positive electrode material is Li i Mn 1-xyz Fe x M y M' z (PO 4 ) 1-n N n /C, where, 0.1 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.04, 0 ⁇ z ⁇ 0.04, 0.9 ⁇ i ⁇ 1.2, 0 ⁇ n ⁇ 0.04, and z and n are not 0 at the same time;
  • M is selected from at least one of Mg, Co, Ni, Cu, Zn and Ti; M' is selected from Mg, Ca, Sr, Ti, V, Cr, Co, Ni, Cu, Zn, Zr, Y, Mo, At least one of Nb, B, Al, W, La and Sm; N is selected from F and/or Cl.
  • the purpose of the present invention can be achieved.
  • the content of carbon in the positive electrode material is 0.5-10wt%, preferably 1-3wt%, more preferably 1.8-3wt%.
  • M is selected from at least one of Mg, Cu and Ti.
  • M' is selected from at least one of Ti, Nb and B.
  • N is F
  • M and/or M' is distributed in a gradient on the surface of the positive electrode material.
  • the positive electrode material has a secondary spherical particle structure formed by primary particles; preferably, the average particle size of the secondary spherical particles is 1-50 ⁇ m, preferably 7-15 ⁇ m; Preferably, the secondary spherical particles are spherical or quasi-spherical.
  • the average particle size of the primary particles of the positive electrode material is 10-500 nm, preferably 60-100 nm; in the positive electrode material, the surface of the primary particles has a uniform carbon coating, and the agglomerated secondary spherical particles have a dense structure, And has a stable doping structure, anion doping and/or metal ion doping in a gradient distribution on the surface of the secondary spherical particles, combined with uniform carbon coating, so that the lithium iron manganese phosphate cathode material can be used with lithium When used as an ion battery, it can improve the electrochemical performance of the lithium-ion battery, with high specific capacity and good cycle performance.
  • the positive electrode material has a compacted density of 1.5-2.5 g/cm 3 , a specific capacity of 145-160 mAh/g at a rate of 0.1C, and a capacity retention after 80 cycles The rate is 85-97%;
  • the compacted density of the positive electrode material is 2.09-2.31g/cm 3
  • the specific capacity at 0.1C rate is 152.1-157.2mAh/g
  • the capacity retention rate after 80 cycles is 92.6-95.9% .
  • a fourth aspect of the present invention provides a method for preparing a lithium manganese iron phosphate positive electrode material, the method comprising:
  • lithium manganese iron phosphate precursor with the expression (NH 4 )Mn 1-xy Fe x My PO 4 ⁇ H 2 O/C, where 0.1 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.04; M is selected from at least one of Mg, Co, Ni, Cu, Zn and Ti;
  • the lithium manganese iron phosphate precursor whose expression is (NH 4 )Mn 1-xy Fex M y PO 4 ⁇ H 2 O/C can refer to the above selection, and will not be repeated here.
  • the lithium source is selected from lithium oxide, lithium hydroxide, lithium chloride, lithium nitrate, lithium nitrite, lithium formate, lithium acetate, lithium oxalate, At least one of lithium carbonate, lithium phosphate, dilithium hydrogen phosphate, lithium dihydrogen phosphate and lithium citrate, preferably at least one of lithium carbonate, lithium hydroxide and lithium chloride.
  • the second carbon source is selected from at least one of glucose, sucrose, fructose, cellulose, starch, citric acid, polyacrylic acid, polyethylene glycol and dopamine One, preferably at least one of glucose, sucrose, starch and cellulose.
  • the source of M' is selected from oxygen-containing compounds and/or chlorides containing M', and the oxygen-containing compounds containing M' preferably contain M 'at least one of sulfate, nitrate, acetate, oxide and acid; more preferably, the source of M' is at least one of titanium dioxide, niobium pentoxide and boric acid.
  • the N source is selected from at least one of ammonium fluoride, ammonium bifluoride, lithium fluoride, ammonium chloride and lithium chloride, preferably fluorine Lithium oxide.
  • the molar ratio of the lithium manganese iron phosphate precursor, lithium source, M' source and/or N source to the second carbon source is 1:0.52-1.05:0.005-0.01:0.5- 1. Selecting the lithium manganese iron phosphate precursor, the lithium source, the M' source and/or the N source and the second carbon source in the above molar ratio range is conducive to improving the electronic conductivity and ion conductivity of the positive electrode material and obtaining higher electrical conductivity. performance.
  • mixing and homogenizing may be performed by mechanical stirring to form a uniform second slurry.
  • stirring temperature and the stirring speed are no particular limitation on the stirring temperature and the stirring speed, as long as the uniform second slurry can be formed.
  • the type of the solvent is not particularly limited, subject to the ability to form a uniform second slurry
  • the solvent can be water, ethanol, etc., preferably water; There is no particular limitation on the amount used, and it is also subject to the ability to form a uniform second slurry.
  • the solvent in the second slurry can be removed by direct evaporation, and the temperature and process of evaporation can adopt existing techniques known to those skilled in the art, for example , static drying or spray drying may be used to remove the solvent in the second slurry.
  • the calcination is carried out under the protection of an inert atmosphere, and the inert atmosphere may be a nitrogen atmosphere and/or an argon atmosphere;
  • the calcination conditions include: the calcination temperature is 500-1000°C, preferably 600-800°C; the calcination time is 4-20h, preferably 6-12h.
  • the method for preparing lithium manganese iron phosphate positive electrode material comprises:
  • the doping element in the method for preparing lithium manganese iron phosphate positive electrode material, can effectively enter the metal site through precursor doping to form a stable structure; through the introduction of carbon source coating through the precursor, It can make the carbon coating distributed on the surface of the primary particles uniform, form a stable conductive network, and make the primary particles tightly bonded, agglomerating to form dense secondary spherical particles; and then carry out batching and sintering by secondary doping and coating carbon , can achieve gradient doping of different elements and coating of different carbon sources.
  • the preparation method has a simple process, can achieve good doping and coating effects, and the prepared lithium manganese iron phosphate positive electrode material has high compaction density and electrochemical performance.
  • the fifth aspect of the present invention provides an electrode material, the electrode material contains an active material, a conductive agent and a binder, and the active material is the lithium manganese iron phosphate positive electrode material described in the third aspect or according to the fourth aspect The lithium manganese iron phosphate positive electrode material prepared by the method.
  • a sixth aspect of the present invention provides an electrode, which includes a current collector and an electrode material coated and/or filled on the current collector, and the electrode material is the electrode material described in the fifth aspect.
  • the seventh aspect of the present invention provides a method for preparing an electrode, the method comprising coating and/or filling a slurry containing an active material, a conductive agent, a binder and a solvent on a current collector, drying, calendering or not calendering,
  • the active material is the lithium manganese iron phosphate positive electrode material described in the third aspect or the lithium manganese iron phosphate positive electrode material prepared according to the method described in the fourth aspect.
  • the eighth aspect of the present invention provides a lithium-ion battery, the lithium-ion battery includes an electrode group and an electrolyte, the electrode group and the electrolyte are sealed in the battery case, the electrode group includes a positive electrode, a negative electrode and a separator, and the separator is located on the positive electrode Between the positive electrode and the negative electrode, the positive electrode is the electrode described in the sixth aspect or the electrode prepared according to the method described in the seventh aspect.
  • the present invention only relates to the improvement of the active material contained in the prior art electrode material, there is no special limitation on other compositions and structures of the lithium-ion battery.
  • the content and the kind of the conductive agent of positive electrode material described in the present invention are known to those skilled in the art, and described conductive agent can be selected from conductive carbon black (Super-P), acetylene One or more of black, Ketjen black, graphene and carbon nanotubes, the present invention preferably uses carbon nanotubes as the conductive agent.
  • conductive carbon black Super-P
  • the binder of the positive electrode material in the present invention can adopt all the binders known in the art that can be used for lithium-ion batteries. It can be selected from one or more of fluorine-containing resins and/or polyolefin compounds, such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) and styrene-butadiene rubber.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the present invention preferably uses polyvinylidene fluoride as the adhesive Binder.
  • the mass ratio of lithium manganese iron phosphate cathode material, conductive agent and binder is 80-96:10-2:10-2, preferably 90:5:5.
  • the current collector in the present invention can be various current collectors known to those skilled in the art, such as aluminum foil, copper foil, nickel-plated steel strip, and the like.
  • the present invention selects aluminum foil as the current collector.
  • the solvent described in the present invention can be all solvents known in the art that can be used in the preparation of lithium-ion battery electrodes, such as ethanol and/or N-methylpyrrolidone (NMP), preferably N-methylpyrrolidone.
  • NMP N-methylpyrrolidone
  • the amount of solvent used is that which will form the desired coating slurry.
  • metal lithium sheets can be used as negative electrodes of lithium ion batteries.
  • the electrolyte solution of the lithium ion battery can be the electrolyte solution conventionally used in this field, and the concentration of electrolyte solution is generally 0.2-8mol/L, and the present invention selects 1mol/L LiPF 6 , ethylene carbonate ( EC) and an equal mixture of diethyl carbonate (DEC) as the electrolyte.
  • the separator of the present invention has electrical insulation performance and liquid retention performance, is arranged between the positive pole and the negative pole, and is sealed in the battery casing together with the positive pole, the negative pole and the electrolyte.
  • the diaphragm can be various diaphragms commonly used in the art, such as polyethylene, polypropylene, modified polyethylene felt, modified polypropylene felt, ultra-fine glass fiber Felt, vinylon felt or nylon felt and wettable polyolefin microporous membrane are welded or bonded composite membrane, the present invention uses polyethylene porous membrane as the diaphragm.
  • Information such as the composition of materials, the structure or morphology of atoms or molecules inside materials can be obtained by XRD.
  • the surface morphology of the materials was characterized by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the model of the scanning electron microscope used is S-4800 (manufactured by Hitachi, Japan), and the test conditions of the scanning electron microscope are: accelerating voltage 1kV, magnification 10K.
  • the average particle size of primary particles and secondary spherical particles in the material is measured by scanning electron microscope pictures.
  • C element was carried out on Elementar Micro Cube Elemental Analyzer.
  • the specific operation method and conditions are as follows: Weigh 1-2 mg of the sample in a tin cup, put it into the automatic sampling tray, and enter the combustion tube through the ball valve to burn at a temperature of 1000 °C (in order to remove atmospheric interference during sample injection, use helium blowing Sweep), and then use reduced copper to reduce the burned gas to form carbon dioxide, and then use TCD detector to detect carbon dioxide.
  • each element and its content were obtained by testing with an inductively coupled plasma spectrometer (ICP).
  • ICP inductively coupled plasma spectrometer
  • the instrument was purchased from PerkinElmer Instruments Co., Ltd., and the model is PE-7000DV.
  • Preparation examples 1-7 are used to illustrate the lithium manganese iron phosphate precursor and its preparation method.
  • Figure 1 is a scanning electron microscope image of Z1. It can be observed from the figure that the precursor Z1 has a secondary spherical particle structure formed by primary particles. The average particle size is 8 ⁇ m.
  • the precursor Z2 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 50 nm, and the average particle size of the secondary spherical particles is 10 ⁇ m.
  • the precursor Z2 has an orthorhombic crystal structure.
  • the precursor Z3 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 100 nm, and the average particle size of the secondary spherical particles is 12 ⁇ m.
  • the precursor Z3 has an orthorhombic crystal structure.
  • the precursor Z4 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 80 nm, and the average particle size of the secondary spherical particles is 10 ⁇ m.
  • the precursor Z4 has an orthorhombic crystal structure.
  • the precursor Z5 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 50 nm, and the average particle size of the secondary spherical particles is 6 ⁇ m.
  • the precursor Z5 has an orthorhombic crystal structure.
  • the precursor Z6 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 40 nm, and the average particle size of the secondary spherical particles is 5 ⁇ m.
  • the precursor Z6 has an orthorhombic crystal structure.
  • the precursor Z7 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 80 nm, and the average particle size of the secondary spherical particles is 8 ⁇ m.
  • the precursor Z7 has an orthorhombic crystal structure.
  • step (a) Prepare the lithium manganese iron phosphate precursor according to the method of Preparation Example 1, the difference is that in step (a), the third mixed solution does not contain PVDF, and the expression is (NH 4 )Mn 0.7 Fe 0.29 Mg 0.01 PO 4 ⁇ H 2 O manganese iron phosphate precursor DZ1.
  • DZ1 is in the form of random flakes and no spherical aggregates are formed.
  • step (a) the first mixed solution does not contain magnesium sulfate, and the third mixed solution does not contain PVDF, and the expression is (NH 4 )Mn 0.7 Fe 0.3 PO 4 ⁇ H 2 O lithium manganese iron phosphate precursor DZ2.
  • DZ2 is in the form of random agglomerated blocks without forming dense spherical agglomerates.
  • DZ3 is in the form of random agglomerated blocks without forming dense spherical agglomerates.
  • Examples 1-7 are used to illustrate lithium manganese iron phosphate positive electrode material and its preparation method.
  • the lithium manganese iron phosphate positive electrode material C1 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of primary particles is 80nm
  • the average particle size of secondary spherical particles is 9 ⁇ m.
  • the positive electrode material C2 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 60 nm, and the average particle size of the secondary spherical particles is 11 ⁇ m.
  • the positive electrode material C2 has an orthorhombic crystal structure.
  • Precursor Z3, lithium chloride, niobium pentoxide and starch expressed as (NH 4 )Mn 0.7 Fe 0.29 Cu 0.01 PO 4 ⁇ H 2 O/C are calculated according to the molar ratio of 1:1.05:0.005:0.5 than mixed with pure water, and mixed uniformly by mechanical stirring to obtain the second slurry;
  • the positive electrode material C3 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 100 nm, and the average particle size of the secondary spherical particles is 15 ⁇ m.
  • the positive electrode material C3 has an orthorhombic crystal structure.
  • the positive electrode material C4 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 80 nm, and the average particle size of the secondary spherical particles is 10 ⁇ m.
  • the positive electrode material C4 has an orthorhombic crystal structure.
  • the positive electrode material C5 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 70 nm, and the average particle size of the secondary spherical particles is 8 ⁇ m.
  • the positive electrode material C5 has an orthorhombic crystal structure.
  • the positive electrode material C6 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 60 nm, and the average particle size of the secondary spherical particles is 7 ⁇ m.
  • the positive electrode material C6 has an orthorhombic crystal structure.
  • the positive electrode material C7 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 90 nm, and the average particle size of the secondary spherical particles is 10 ⁇ m.
  • the positive electrode material C7 has an orthorhombic crystal structure.
  • the positive electrode material D1 has a secondary spherical particle structure formed by primary particles, and the primary particles are densely bonded.
  • the average particle size of the primary particles is 90 nm, and the average particle size of the secondary spherical particles is 10 ⁇ m.
  • the positive electrode material D2 is in the form of random agglomerated blocks, and no dense spherical agglomerates are formed.
  • the difference is that the precursor DZ2 (expressed as (NH 4 )Mn 0.7 Fe 0.3 PO 4 ⁇ H 2 O) is used to prepare the lithium manganese iron phosphate cathode material, and the obtained cathode material is denoted as D3 , the expression of D3 is shown in Table 1.
  • the positive electrode material D3 is in the form of random agglomerated blocks, and no dense spherical agglomerates are formed.
  • the morphology of the positive electrode material D4 was observed with a scanning electron microscope, as shown in Figure 3. It can be seen from the figure that D4 is in the form of random agglomerated blocks without forming dense agglomerates.
  • D5 is in the form of random agglomerated blocks without forming dense agglomerates.
  • This test example is used to illustrate electrode materials, electrodes, lithium-ion batteries and their preparation methods.
  • Preparation of the positive electrode sheet respectively carry out the NMP solution of the lithium iron manganese phosphate positive electrode materials C1-C7 obtained in Examples 1-7, the conductive agent carbon nanotubes, and the binder PVDF at a mass ratio of 90:5:5 mix.
  • the specific method is: grind the dried positive electrode material and conductive agent in a mortar for 15 minutes, after grinding evenly, add PVDF solution (5% by mass fraction) according to the proportion, and stir on a magnetic stirrer for 6 hours;
  • the slurry is uniformly coated on the aluminum foil of the current collector, and then dried in a vacuum oven at 60°C for 20 hours, and then stamped with a pressure of 100MPa to form a positive electrode sheet with a diameter of 12mm and a thickness of 120 ⁇ m, and put the positive electrode sheet at 120°C Dry in a vacuum oven for 12 h.
  • Battery assembly a metal lithium sheet with a diameter of 17 mm and a thickness of 1 mm is used as the negative electrode, and a polyethylene porous film with a thickness of 25 ⁇ m coated with an alumina ceramic layer is used as the separator, and 1 mol/L LiPF 6 , An equal mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) is used as the electrolyte, and the positive pole piece, separator, negative pole piece and electrolyte are placed in an Ar gas glove box with a water content and an oxygen content of less than 5ppm.
  • the 2025-type button batteries were assembled inside, and the lithium-ion batteries A1-A7 were prepared respectively.
  • Electrochemical performance test Use the LAND CT2001A charge and discharge instrument of Wuhan Lanbo Electronics Co., Ltd. to conduct charge and discharge tests on the battery.
  • the charge and discharge voltage range is 2.5 to 4.4V.
  • the assembled lithium-ion batteries A1-A7 were tested for specific capacity and cycle performance at 1C rate. The test results are shown in Table 1.
  • the positive electrode sheet was prepared according to the method of the test example, except that the positive active materials used were the lithium manganese iron phosphate positive electrode materials D1-D5 obtained in Comparative Examples 1-5.
  • the charge-discharge curves of the lithium manganese iron phosphate positive electrode material C1 prepared in Example 1 and the lithium manganese iron phosphate positive electrode material D1 prepared in Comparative Example 1 at a rate of 0.1C are shown in Figure 5. It can be seen from the figure that the positive electrode The button battery assembled with material C1 has a discharge specific capacity of 156.8mAh/g at 2.5-4.4V, 0.1C rate, and 149.7mAh/g at 1C rate, and the capacity retention rate after 80 cycles was 95.8%. Compared with the positive electrode material D1 of Comparative Example 1, the discharge specific capacity of the positive electrode material C1 of Example 1 at 0.1C and 1C rates and the capacity retention rate after 80 cycles of cycling are significantly improved.
  • the lithium manganese iron phosphate positive electrode material provided by the present invention has a high compaction density and can be used in lithium-ion batteries to significantly increase the specific capacity of the lithium-ion battery and improve the cycle performance of the lithium-ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子电池技术领域,公开了磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池。该磷酸锰铁锂前驱体的表达式为(NH4)Mn1-x-yFexMyPO4·H2O/C,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种。该前驱体具有由一次颗粒形成的二次球颗粒结构,具有正交晶系的晶体结构,前驱体中的元素分布均匀,掺杂元素进入金属位点形成具有稳定结构的纳米颗粒,同时纳米颗粒表面包覆有碳,形成致密的球形团聚体,采用该前驱体制备的磷酸锰铁锂正极材料的碳包覆均匀,具有致密的二次球形貌,压实密度高,应用于锂离子电池时,能够提高锂离子电池的电化学性能,比容量高,循环性能好。

Description

磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
相关申请的交叉引用
本申请要求2021年08月30日提交的中国专利申请202111002582.3的权益,该申请的内容通过引用被合并于本文。
本申请要求2021年08月25日提交的中国专利申请202110981854.2的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及锂离子电池技术领域,具体涉及磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池。
背景技术
近年来,便携式电子设备、电动力汽车以及大规模储能市场不断壮大,对锂离子电池的需求持续增长。正极材料作为锂离子电池的关键组成部分,在关注高能量密度的同时,对其安全性能和成本都提出了更高的要求。钴酸锂是最先实现商业化应用的正极材料,容量可达150mAh/g,但钴资源相对匮乏、价格高且具有毒性,严重限制了其广泛应用和长远发展。为了降低成本、提高能量密度,镍钴锰三元材料得到了快速发展,在动力电池领域占有重要地位,但仍面临着成本较高的问题,并且其安全性能较差。橄榄石型正极材料具有较高的安全性能和成本优势,磷酸铁锂也得到了规模化的应用,由于其电压平台较低,难以满足更高的能量密度需求。磷酸锰铁锂具有较高的电压平台和能量密度,并兼顾了磷酸铁锂的成本低、环境友好、安全性能高的特点,得到了广泛的关注。
然而,橄榄石型晶体结构限制了锂离子的迁移,导致磷酸锰铁锂具有较低的电子电导率和离子电导率,影响其容量发挥和倍率性能。为了提升磷酸锰铁锂的电导性,通常会采用减小颗粒尺寸、碳包覆的手段对其进行改性。这将会使磷酸锰铁锂的压实密度降低,并增加其比表面积,从而影响材料的体积能量密度和加工性能。
CN106328942A公开了一种磷酸锰铁锂正极材料的制备:将锂源、锰源、铁源、磷源溶液与造孔剂聚合物溶液混合得到纺丝溶液,对其进行静电纺丝,得到磷酸锰铁锂前驱体,烧结进一步得到磷酸锰铁锂正极材料。该方法得到的磷酸锰铁锂正极材料具有较高的长径比和孔隙率,改善了电池的倍率性能。但是,这种工艺采用了静电纺丝技术制备前驱体,工艺较为复杂,成本较高,对生产安全有更高的要求,不利于大规模工业化应用。
CN105514422A公开了一种前驱体和磷酸锰铁锂的制备方法:将水溶性二价锰源、二价铁源、二价金属M盐以及沉淀剂混合并反应,干燥后得到预粉体;然后将预粉体分散于水中,并加入可溶性可分解的亚铁盐,热处理后得到所述草酸盐前驱体;将前驱体与水溶性锂源、磷源以及有机碳源进行混合,干燥并焙烧,能够获得金属溶出少、循环性能优异的磷酸锰铁锂。但是,这种工艺采用了草酸 锰铁作为前驱体,在烧结过程中具有较高的产气,不利于获得较高的压实密度。
CN105226273A公开了一种磷酸锰铁锂及其制备方法,其特征在于:分别用溶胶凝胶法制备磷酸铁锂溶胶和磷酸锰锂溶胶;然后将磷酸铁锂溶胶和磷酸锰锂溶胶在惰性气氛中煅烧得到磷酸锰铁锂。该方法能够很方便的制备得到任意锰铁比例的磷酸锰铁锂,生产便利。但是,这种工艺由磷酸铁锂和磷酸锰锂共同烧结获得,难以使两种物质均匀分布,容易发生锰铁独自富集,产生分相,影响电性能的发挥。
发明内容
本发明的目的是为了克服现有技术存在的磷酸锰铁锂正极材料元素分布不均匀、压实密度较低和比容量不高的问题,提供一种磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池。
为了实现上述目的,本发明第一方面提供一种磷酸锰铁锂前驱体,该前驱体的表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种。
本发明第二方面提供一种制备磷酸锰铁锂前驱体的方法,该方法包括:
(a)提供含有锰源、铁源和任选的M源的第一混合液;提供含有磷源和氨源的第二混合液;提供含有络合剂和第一碳源的第三混合液;
(b)将第一混合液和第二混合液加入第三混合液中进行共沉淀反应,得到第一浆料;
(c)将第一浆料进行固液分离和洗涤,得到磷酸锰铁锂前驱体。
本发明第三方面提供一种磷酸锰铁锂正极材料,该正极材料的表达式为Li iMn 1-x-y-zFe xM yM′ z(PO 4) 1-nN n/C,式中,0.1<x≤0.6,0≤y≤0.04,0≤z≤0.04,0.9<i≤1.2,0≤n≤0.04,且z、n不同时为0。
M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种;M′选自Mg、Ca、Sr、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、Y、Mo、Nb、B、Al、W、La和Sm中的至少一种;N选自F和/或Cl。
本发明第四方面提供一种制备磷酸锰铁锂正极材料的方法,该方法包括:
(1)提供表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C的磷酸锰铁锂前驱体,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种;
(2)在溶剂的存在下,将磷酸锰铁锂前驱体、锂源、第二碳源、M′源和/或N源进行混合匀质,得到第二浆料;
(3)除去第二浆料中的溶剂,得到干料,然后在惰性气氛保护下,将干料进行煅烧,得到磷酸锰铁锂正极材料。
本发明第五方面提供一种电极材料,该电极材料含有活性物质、导电剂和粘结剂,所述活性物质为第三方面所述的磷酸锰铁锂正极材料或者为按照第四方面所述的方法制备得到的磷酸锰铁锂正极材料。
本发明第六方面提供一种电极,该电极包括集流体及涂覆和/或填充于集流体上的电极材料,所述电极材料为第五方面所述的电极材料。
本发明第七方面提供一种制备电极的方法,该方法包括将含有活性物质、导 电剂和粘结剂与溶剂的浆料涂覆和/或填充在集流体上,干燥,压延或不压延,所述活性物质为第三方面所述的磷酸锰铁锂正极材料或者为按照第四方面所述的方法制备得到的磷酸锰铁锂正极材料。
本发明第八方面提供一种锂离子电池,该锂离子电池包括电极组和电解液,所述电极组和电解液密封在电池壳体内,所述电极组包括正极、负极和隔膜,隔膜位于正极和负极之间,所述正极为第六方面所述的电极或者为按照第七方面所述的方法制备得到的电极。
通过上述技术方案,本发明具有如下优势:
(1)本发明提供的磷酸锰铁锂前驱体具有由一次颗粒形成的二次球颗粒结构,XRD谱图显示前驱体为具有正交结构的晶体结构,前驱体中的元素分布均匀,掺杂元素进入金属位点形成具有稳定结构的纳米颗粒,同时纳米颗粒表面包覆有碳,形成致密的球形团聚体,采用本发明提供的前驱体制备的磷酸锰铁锂正极材料的压实密度高;
(2)本发明提供的磷酸锰铁锂正极材料,一次颗粒表明其形成了稳定的碳包覆,碳包覆均匀,具有致密的二次球形貌,采用本发明提供的正极材料应用于锂离子电池时,能够提高锂离子电池的电化学性能,比容量高,循环性能好;
(3)本发明提供的制备磷酸锰铁锂前驱体和正极材料的方法中,通过二次掺杂和二次碳包覆,能够改善前驱体和正极材料中元素分布的均匀度,提高材料结构的稳定性,从而获得较高的压实密度和电化学性能,且工艺简单,适合产业化生产。
附图说明
图1是制备例1制得的磷酸锰铁锂前驱体Z1的扫描电镜图;
图2是实施例1制得的磷酸锰铁锂正极材料C1的扫描电镜图;
图3是对比例4制得的磷酸锰铁锂正极材料D4的扫描电镜图;
图4是制备例1制得的磷酸锰铁锂前驱体Z1和实施例1制得的磷酸锰铁锂正极材料C1的XRD谱图;
图5是实施例1制得的磷酸锰铁锂正极材料C1和对比例1制得的磷酸锰铁锂正极材料D1在0.1C倍率下的充放电曲线图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种磷酸锰铁锂前驱体,该前驱体的表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种。
本发明的一些实施方式中,所述磷酸锰铁锂前驱体中,即使碳元素的含量相 对较少,也可以达到本发明的目的。优选地,基于所述前驱体的总重量,所述前驱体中碳元素的含量为0.05-5wt%,优选为0.5-2wt%,更优选为1-1.4wt%。
本发明的一些实施方式中,优选地,所述前驱体的表达式中,0.19≤x≤0.39,0.01≤y≤0.04。
本发明的一些实施方式中,优选地,M选自Mg、Cu和Ti中的至少一种。
本发明的一些实施方式中,优选地,所述前驱体具有由一次颗粒形成的二次球颗粒结构;优选地,所述二次球颗粒的平均粒度为1-50μm,优选为5-12μm;所述二次球颗粒呈球形或类球形。优选地,所述前驱体的一次颗粒的平均粒度为10-500nm,优选为40-100nm;一次颗粒的表面包覆有碳,不仅能够增强一次颗粒团聚为二次球颗粒的致密性,还可以形成石墨碳构筑导电网络。
本发明的一些实施方式中,优选地,所述前驱体在CuKa辐射下得到的XRD衍射图谱中,最强衍射峰出现在2θ=9.5°-10.5°的范围内,并在2θ=31.4°附近出现强度稍弱的衍射峰,表现出正交晶系的晶体结构。所述前驱体的晶体结构可通过XRD表征确定。
本发明第二方面提供一种制备磷酸锰铁锂前驱体的方法,该方法包括:
(a)提供含有锰源、铁源和任选的M源的第一混合液;提供含有磷源和氨源的第二混合液;提供含有络合剂和第一碳源的第三混合液;
(b)将第一混合液和第二混合液加入第三混合液中进行共沉淀反应,得到第一浆料;
(c)将第一浆料进行固液分离和洗涤,得到磷酸锰铁锂前驱体。
本发明的一些实施方式中,优选地,步骤(a)中,所述锰源选自硫酸锰、硝酸锰、乙酸锰和氯化锰中的至少一种。
本发明的一些实施方式中,优选地,步骤(a)中,所述铁源选自硫酸铁、硫酸亚铁、硝酸铁、乙酸铁和氯化铁中的至少一种。
本发明的一些实施方式中,优选地,步骤(a)中,所述M源选自含有M的硫酸盐、硝酸盐、乙酸盐和氯化物中的至少一种。
本发明的一些实施方式中,优选地,步骤(a)中,所述磷源选自磷酸、磷酸一氢铵、磷酸二氢铵和磷酸三铵中的至少一种,优选为磷酸、磷酸一氢铵和磷酸二氢铵中的至少一种。
本发明的一些实施方式中,优选地,步骤(a)中,所述氨源选自氨水、磷酸一氢铵、磷酸二氢铵、磷酸三铵、碳酸氢铵、碳酸铵、硫酸铵和尿素中的至少一种,优选为氨水、磷酸一氢铵和磷酸二氢铵中的至少一种。
本发明的一些实施方式中,优选地,步骤(a)中,所述络合剂选自柠檬酸和/或柠檬酸三铵。
本发明的一些实施方式中,优选地,步骤(a)中,所述第一碳源选自石墨烯、碳纳米管、酚醛树脂、聚乙烯、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚丙烯和甲苯二异氰酸酯(TDI)中的至少一种,优选为石墨烯、碳纳米管、酚醛树脂、聚乙烯和聚偏氟乙烯中的至少一种。
本发明的一些实施方式中,优选地,锰源、铁源和M源的用量满足:以金属元素计,锰源、铁源和M源的摩尔比为60-80:20-40:1;选择具有上述摩尔 比范围内的锰源、铁源和M源有利于获得结构稳定的磷酸锰铁锂前驱体,有利于提高磷酸锰铁锂正极材料的结构稳定性,使其具有较高的能量密度。
本发明的一些实施方式中,优选地,磷源和氨源的用量满足:以磷酸根离子计的磷源和以铵根离子计的氨源的摩尔比为1:1-3,选择具有上述摩尔比范围内的磷源和氨源有利于锰元素、铁元素和任选的M元素均匀络合生成稳定的磷酸锰铁锂前驱体。
本发明的一些实施方式中,优选地,所述第一混合液中的总金属离子的浓度为0.5-3mol/L。
本发明的一些实施方式中,优选地,所述第二混合液中的磷酸根离子的浓度为0.5-3mol/L,铵根离子的浓度为0.05-15mol/L。
本发明的一些实施方式中,优选地,所述第三混合液中的络合剂的浓度为0.03-10mol/L。
本发明的一些实施方式中,优选地,步骤(b)中,第一混合液和第二混合液通过并流的方式加入第三混合液中;
优选地,所述共沉淀反应在搅拌下进行,所述共沉淀反应的条件包括:搅拌速度为500-1000rpm,pH为2-8,温度为25-90℃,时间为1-2h。可以通过调节第二混合液的加入速度来控制共沉淀反应的pH为2-8(pH的误差可以为±0.5)。
本发明的一些实施方式中,对所述固液分离的方式没有特别的限定,可以采用本领域技术人员所公知的现有技术,例如可以采用抽滤或者压滤进行固液分离以得到固体物料。
本发明的一些实施方式中,对所述洗涤的方式也没有特别的限定,本领域常规的洗涤方式均可适用于本发明,优选地,步骤(c)中,通过纯水将固液分离得到的固体物料进行清洗,直至滤液的电导率≤200μs/cm,得到磷酸锰铁锂前驱体。
本发明第三方面提供一种磷酸锰铁锂正极材料,该正极材料的表达式为Li iMn 1-x-y-zFe xM yM′ z(PO 4) 1-nN n/C,式中,0.1<x≤0.6,0≤y≤0.04,0≤z≤0.04,0.9<i≤1.2,0≤n≤0.04,且z、n不同时为0;
M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种;M′选自Mg、Ca、Sr、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、Y、Mo、Nb、B、Al、W、La和Sm中的至少一种;N选自F和/或Cl。
本发明的一些实施方式中,所述磷酸锰铁锂正极材料中,即使碳元素的含量相对较少,也可以达到本发明的目的。优选地,基于所述正极材料的总重量,所述正极材料中碳元素的含量为0.5-10wt%,优选为1-3wt%,更优选为1.8-3wt%。
本发明的一些实施方式中,优选地,所述正极材料的表达式中,0.19≤x≤0.39,0.01≤y≤0.04,0.01≤z≤0.04,1≤i≤1.1,0.01≤n≤0.04;
更优选地,所述正极材料的表达式中,0.19≤x≤0.39,0.01≤y≤0.04,0.01≤z≤0.02,1.02≤i≤1.05,0.01≤n≤0.02。
本发明的一些实施方式中,优选地,M选自Mg、Cu和Ti中的至少一种。
本发明的一些实施方式中,优选地,M′选自Ti、Nb和B中的至少一种。
本发明的一些实施方式中,优选地,N为F。
本发明的一些实施方式中,优选地,M和/或M′在所述正极材料的表面呈梯度分布。
本发明的一些实施方式中,优选地,所述正极材料的XRD谱图在2θ=35°-36°的范围内出现最强衍射峰,并在2θ为17.8°、25.5°、29.6°和36.4°附近分别出现明显衍射峰,表现出正交晶系的晶体结构。
本发明的一些实施方式中,优选地,所述正极材料具有由一次颗粒形成的二次球颗粒结构;优选地,所述二次球颗粒的平均粒度为1-50μm,优选为7-15μm;优选地,所述二次球颗粒呈球形或类球形。优选地,所述正极材料的一次颗粒的平均粒度为10-500nm,优选为60-100nm;该正极材料中,一次颗粒表面具有均匀的碳包覆,团聚而成的二次球颗粒结构致密,并具有稳定的掺杂结构,在二次球颗粒表面具有的阴离子掺杂和/或呈梯度分布的金属离子掺杂,结合均匀的碳包覆,使得所述磷酸锰铁锂正极材料应用与锂离子电池时,能够提高锂离子电池的电化学性能,比容量高,循环性能好。
本发明的一些实施方式中,优选地,所述正极材料的压实密度为1.5-2.5g/cm 3,在0.1C倍率下的比容量为145-160mAh/g,循环80周后的容量保持率为85-97%;
更优选地,所述正极材料的压实密度为2.09-2.31g/cm 3,在0.1C倍率下的比容量为152.1-157.2mAh/g,循环80周后的容量保持率为92.6-95.9%。
本发明第四方面提供一种制备磷酸锰铁锂正极材料的方法,该方法包括:
(1)提供表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C的磷酸锰铁锂前驱体,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种;
(2)在溶剂的存在下,将磷酸锰铁锂前驱体、锂源、第二碳源、M′源和/或N源进行混合匀质,得到第二浆料;
(3)除去第二浆料中的溶剂,得到干料,然后在惰性气氛保护下,将干料进行煅烧,得到磷酸锰铁锂正极材料。
本发明的一些实施方式中,优选地,步骤(1)中,表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C的磷酸锰铁锂前驱体可以参照上文进行选用,在此将不再赘述。
本发明的一些实施方式中,优选地,步骤(2)中,所述锂源选自氧化锂、氢氧化锂、氯化锂、硝酸锂、亚硝酸锂、甲酸锂、乙酸锂、草酸锂、碳酸锂、磷酸锂、磷酸氢二锂、磷酸二氢锂和柠檬酸锂中的至少一种,优选为碳酸锂、氢氧化锂和氯化锂中的至少一种。
本发明的一些实施方式中,优选地,步骤(2)中,所述第二碳源选自葡萄糖、蔗糖、果糖、纤维素、淀粉、柠檬酸、聚丙烯酸、聚乙二醇和多巴胺中的至少一种,优选为葡萄糖、蔗糖、淀粉和纤维素中的至少一种。
本发明的一些实施方式中,优选地,步骤(2)中,所述M′源选自含有M′的含氧化合物和/或氯化物,所述含有M′的含氧化合物优选为含有M′的硫酸盐、硝酸盐、乙酸盐、氧化物和酸中的至少一种;更优选地,所述M′源为二氧化钛、五氧化二铌和硼酸中的至少一种。
本发明的一些实施方式中,优选地,步骤(2)中,所述N源选自氟化铵、氟化氢铵、氟化锂、氯化铵和氯化锂中的至少一种,优选为氟化锂。
本发明的一些实施方式中,优选地,磷酸锰铁锂前驱体、锂源、M′源和/或N源与第二碳源的摩尔比为1:0.52-1.05:0.005-0.01:0.5-1。选择具有上述摩尔比范围内的磷酸锰铁锂前驱体、锂源、M′源和/或N源与第二碳源有利于提升正极材料的电子电导率和离子电导率,获得较高的电性能。
本发明的一些实施方式中,对所述混合匀质的方法没有特别的限定,例如可以通过机械搅拌的方式进行混合匀质,以形成均匀的第二浆料。对搅拌的温度和搅拌的速率也没有特别的限定,以能够形成均匀的第二浆料为准。
本发明的一些实施方式中,对所述溶剂的种类没有特别的限定,以能够形成均匀的第二浆料为准,例如所述溶剂可以为水、乙醇等,优选为水;对所述溶剂的用量也没有特别的限定,同样以能够形成均匀的第二浆料为准。
本发明的一些实施方式中,步骤(3)中,可以采用直接蒸发的方式除去所述第二浆料中的溶剂,蒸发的温度和工艺可以采用本领域技术人员所公知的现有技术,例如,可以采用静态干燥或喷雾干燥以除去所述第二浆料中的溶剂。
本发明的一些实施方式中,优选地,所述煅烧在惰性气氛保护下进行,所述惰性气氛可以为氮气气氛和/或氩气气氛;
所述煅烧的条件包括:煅烧温度为500-1000℃,优选为600-800℃;煅烧时间为4-20h,优选为6-12h。
根据本发明的一种优选的实施方式,所述制备磷酸锰铁锂正极材料的方法包括:
(S1)提供含有锰源、铁源和M源的第一混合液,提供含有磷源和氨源的第二混合液;提供含有络合剂和第一碳源的第三混合液;
(S2)将第一混合液和第二混合液加入第三混合液中进行共沉淀反应,得到第一浆料;
(S3)将第一浆料进行固液分离和洗涤,得到磷酸锰铁锂前驱体;
(S4)在溶剂的存在下,将得到的磷酸锰铁锂前驱体、锂源、第二碳源、M′源和/或N源进行混合匀质,得到第二浆料;
(S5)除去第二浆料中的溶剂,得到干料,然后在惰性气氛保护下,将干料进行煅烧,得到磷酸锰铁锂正极材料。
本发明的一些实施方式中,所述制备磷酸锰铁锂正极材料的方法,先通过前驱体掺杂能够使掺杂元素有效进入金属位点,形成稳定结构;通过前驱体引入碳源包覆,能够使分布在一次颗粒表面的碳包覆均匀,形成稳定的导电网络,并使一次颗粒紧密粘结,团聚形成致密的二次球颗粒;再通过二次掺杂包覆碳的方式进行配料烧结,可以实现不同元素的梯度掺杂和不同碳源的包覆。该制备方法工艺简单,能够达到很好的掺杂和包覆效果,制备的磷酸锰铁锂正极材料具有较高的压实密度和电化学性能。
本发明第五方面提供一种电极材料,该电极材料含有活性物质、导电剂和粘结剂,所述活性物质为第三方面所述的磷酸锰铁锂正极材料或者为按照第四方面所述的方法制备得到的磷酸锰铁锂正极材料。
本发明第六方面提供一种电极,该电极包括集流体及涂覆和/或填充于集流体上的电极材料,所述电极材料为第五方面所述的电极材料。
本发明第七方面提供一种制备电极的方法,该方法包括将含有活性物质、导电剂和粘结剂与溶剂的浆料涂覆和/或填充在集流体上,干燥,压延或不压延,所述活性物质为第三方面所述的磷酸锰铁锂正极材料或者为按照第四方面所述的方法制备得到的磷酸锰铁锂正极材料。
本发明第八方面提供一种锂离子电池,该锂离子电池包括电极组和电解液,所述电极组和电解液密封在电池壳体内,所述电极组包括正极、负极和隔膜,隔膜位于正极和负极之间,所述正极为第六方面所述的电极或者为按照第七方面所述的方法制备得到的电极。
由于本发明只涉及对现有技术电极材料中含有的活性物质的改进,因此,对锂离子电池的其它组成和结构没有特别的限制。
例如,对于锂离子电池的正极来说,本发明所述的正极材料的导电剂的含量和种类为本领域技术人员所公知,所述导电剂可以选自导电炭黑(Super-P)、乙炔黑、科琴黑、石墨烯和碳纳米管中的一种或几种,本发明优选碳纳米管作为导电剂。
本发明所述的正极材料的粘结剂可以采用本领域已知的所有可用于锂离子电池的粘结剂。可以选自含氟树脂和/或聚烯烃化合物,例如聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)和丁苯橡胶中的一种或几种,本发明优选聚偏氟乙烯作为粘结剂。
本发明的一些实施方式中,优选地,磷酸锰铁锂正极材料、导电剂和粘结剂的质量比为80-96:10-2:10-2,优选为90:5:5。
本发明所述的集流体可以是本领域技术人员所公知的各种集流体,如铝箔、铜箔、镀镍钢带等。本发明选用铝箔作为集流体。
本发明所述的溶剂可以采用本领域已知的所有可用于锂离子电池电极制备的溶剂,例如可以为乙醇和/或N-甲基吡咯烷酮(NMP),优选为N-甲基吡咯烷酮。溶剂的用量以能够形成所需的涂覆浆料为准。
本发明的一些实施方式中,可以使用金属锂片作为锂离子电池的负极。
本发明的一些实施方式中,锂离子电池的电解液可以为本领域常规使用的电解液,电解液的浓度一般为0.2-8mol/L,本发明选用1mol/L的LiPF 6、碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的等量混合液作为电解液。
本发明所述的隔膜具有电绝缘性能和液体保持性能,设置于正极和负极之间,并与正极、负极和电解液一起密封在电池壳中。所述隔膜可以是本领域通用的各种隔膜,比如由本领域人员在公知的各厂家生产的各生产牌号的聚乙烯、聚丙烯、改性聚乙烯毡、改性聚丙烯毡、超细玻璃纤维毡、维尼纶毡或尼龙毡与可湿性聚烯烃微孔膜经焊接或粘接而成的复合膜,本发明选用聚乙烯多孔膜作为隔膜。
以下将通过实施例对本发明进行详细描述。
通过XRD获得材料的成分、材料内部原子或分子的结构或形态等信息。所采用XRD衍射仪的型号为XRD-6000型X射线粉末衍射仪(日本岛津),XRD的测试条件为:Cu靶,Kα射线(波长λ=0.154nm),管电压为40kV,管电流为200mA,扫描速度为10°(2θ)/min。
通过扫描电镜(SEM)表征材料的表面形貌。所采用扫描电镜的型号为S-4800 (厂家为日本日立),扫描电镜的测试条件为:加速电压1kV,放大倍数为10K。材料中一次颗粒和二次球颗粒的平均粒度通过扫描电镜图片测量得到。
碳(C)元素的分析在Elementar Micro Cube元素分析仪上进行。具体操作方法和条件如下:样品在锡杯中称量1-2mg,放入自动进样盘,通过球阀进入燃烧管燃烧,燃烧温度为1000℃(为了去除进样时大气干扰,采用氦气吹扫),再用还原铜对燃烧后的气体进行还原,形成二氧化碳,然后采用TCD检测器检测二氧化碳。
前驱体和正极材料分别的表达式中,各元素及含量通过电感耦合等离子光谱仪(ICP)测试得到,仪器购自珀金埃尔默仪器有限公司,型号为PE-7000DV。
制备例1-7用于说明磷酸锰铁锂前驱体及其制备方法。
制备例1
(a)将硫酸锰、硫酸铁、硫酸镁(均以金属元素计)按照70:29:1的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸、氨水按照1:3的摩尔比混合,并加入纯水,得到4L磷酸根离子浓度为1mol/L的第二混合液;将PVDF和柠檬酸三铵加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.05mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在60℃,在搅拌速度800rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为6.0±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.7Fe 0.29Mg 0.01PO 4·H 2O/C的磷酸锰铁锂前驱体Z1,基于前驱体Z1的总重量,Z1中碳的含量为1.2wt%。
图1是Z1的扫描电镜图,从图中可观察到前驱体Z1具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为80nm,二次球颗粒的平均粒度为8μm。
前驱体Z1的XRD谱图如图4所示,从图中可以看出,在2θ=10.0°和31.5°出现明显特征峰,说明Z1具有正交晶系的晶体结构。
制备例2
(a)将硫酸锰、硫酸铁、硫酸镁(均以金属元素计)按照60:39:1的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸、氨水按照1:3的摩尔比混合,并加入纯水,得到4L磷酸根离子浓度为1mol/L的第二混合液;将石墨烯和柠檬酸三铵加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.05mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在60℃,在搅拌速度600rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为6.0±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.6Fe 0.39Mg 0.01PO 4·H 2O/C的磷酸锰铁锂前驱体Z2,基于前驱体Z2的总重量,Z2中碳的含量为1.2wt%。
通过扫描电镜可观察到前驱体Z2具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为50nm,二次球颗粒的平均粒度为10μm。
通过XRD的检测结果可知,前驱体Z2具有正交晶系的晶体结构。
制备例3
(a)将氯化锰、氯化铁、硫酸铜(均以金属元素计)按照70:29:1的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸一氢铵作为磷源和氨源加入纯水,得到2L浓度为2mol/L的第二混合液;将碳纳米管和柠檬酸加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.05mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在80℃,在搅拌速度800rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为5.2±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.7Fe 0.29Cu 0.01PO 4·H 2O/C的磷酸锰铁锂前驱体Z3,基于前驱体Z3的总重量,Z3中碳的含量为1.0wt%。
通过扫描电镜可观察到前驱体Z3具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为100nm,二次球颗粒的平均粒度为12μm。
通过XRD的检测结果可知,前驱体Z3具有正交晶系的晶体结构。
制备例4
(a)将乙酸锰、乙酸铁、乙酸钛(均以金属元素计)按照80:19:1的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸二氢铵作为磷源和氨源加入纯水,得到2L浓度为2mol/L的第二混合液;将酚醛树脂和柠檬酸加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.06mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在90℃,在搅拌速度1000rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为5.2±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.8Fe 0.19Ti 0.01PO 4·H 2O/C的磷酸锰铁锂前驱体Z4,基于前驱体Z4的总重量,Z4中碳的含量为1.1wt%。
通过扫描电镜可观察到前驱体Z4具有由一次颗粒形成的二次球颗粒结构, 一次颗粒粘结致密,其中,一次颗粒的平均粒度为80nm,二次球颗粒的平均粒度为10μm。
通过XRD的检测结果可知,前驱体Z4具有正交晶系的晶体结构。
制备例5
(a)将硝酸锰、硝酸铁、硝酸铜(均以金属元素计)按照70:29:1的摩尔比溶解在纯水中,得到2L总金属离子浓度为1.5mol/L的第一混合液;将磷酸一氢铵作为磷源和氨源加入纯水,得到2L浓度为1.5mol/L的第二混合液;将聚乙烯和柠檬酸三铵加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.03mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在40℃,在搅拌速度900rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为4.5±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.7Fe 0.29Cu 0.01PO 4·H 2O/C的磷酸锰铁锂前驱体Z5,基于前驱体Z5的总重量,Z5中碳的含量为1.4wt%。
通过扫描电镜可观察到前驱体Z5具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为50nm,二次球颗粒的平均粒度为6μm。
通过XRD的检测结果可知,前驱体Z5具有正交晶系的晶体结构。
制备例6
(a)将硫酸锰、硫酸铁、硫酸镁(均以金属元素计)按照70:29:1的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸、氨水按照1:3的摩尔比混合,并加入纯水,得到4L磷酸根离子浓度为1mol/L的第二混合液;将PVDF和柠檬酸加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.3mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在60℃,在搅拌速度800rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为6.0±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.7Fe 0.29Mg 0.01PO 4·H 2O/C的磷酸锰铁锂前驱体Z6,基于前驱体Z6的总重量,Z6中碳的含量为1.4wt%。
通过扫描电镜可观察到前驱体Z6具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为40nm,二次球颗粒的平均粒度为5μm。
通过XRD的检测结果可知,前驱体Z6具有正交晶系的晶体结构。
制备例7
(a)将硫酸锰、硫酸铁(均以金属元素计)按照70:30的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸、氨水按照1:3的摩尔比混合,并加入纯水,得到4L磷酸根离子浓度为1mol/L的第二混合液;将PVDF和柠檬酸三铵加入到1L纯水中,得到第三混合液,第三混合液中络合剂的浓度为0.05mol/L,将第三混合液作为反应底液;
(b)将第三混合液加入到反应釜中,控制温度在60℃,在搅拌速度800rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为6.0±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O/C的磷酸锰铁锂前驱体Z7,基于前驱体Z7的总重量,Z7中碳的含量为1.2wt%。
通过扫描电镜可观察到,前驱体Z7具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为80nm,二次球颗粒的平均粒度为8μm。
通过XRD的检测结果可知,前驱体Z7具有正交晶系的晶体结构。
对比制备例1
按照制备例1的方法制备磷酸锰铁锂前驱体,不同的是,步骤(a)中,第三混合液不含PVDF,得到表达式为(NH 4)Mn 0.7Fe 0.29Mg 0.01PO 4·H 2O的磷酸锰铁锂前驱体DZ1。
通过扫描电镜可观察到,DZ1为无规则片状,未形成球形团聚体。
对比制备例2
按照制备例1的方法制备磷酸锰铁锂前驱体,不同的是,步骤(a)中,第一混合液不含硫酸镁,第三混合液不含PVDF,得到表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O的磷酸锰铁锂前驱体DZ2。
通过扫描电镜可观察到,DZ2为无规则团聚块状,未形成致密的球形团聚体。
对比制备例3
(a)将硫酸锰、硫酸铁(均以金属元素计)按照70:30的摩尔比溶解在纯水中,得到2L总金属离子浓度为2mol/L的第一混合液;将磷酸二氢铵加入到纯水中,得到2L磷酸根离子浓度为2mol/L的第二混合液;
(b)将1L纯水作为反应底液加入到反应釜中,控制温度在60℃,在搅拌速度400rpm下,将第一混合液和第二混合液并流滴加到反应釜中,通过调节第二混合液的加入速度,控制反应体系内的pH为6.0±0.5;加料完成后,继续搅拌1h,得到第一浆料;
(c)将第一浆料进行抽滤,并用纯水进行清洗,直至滤液的电导率≤200μs/cm,得到表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O的磷酸锰铁锂前驱体DZ3。
通过扫描电镜可观察到,DZ3为无规则团聚块状,未形成致密的球形团聚体。
实施例1-7用于说明磷酸锰铁锂正极材料及其制备方法。
实施例1
(1)将表达式为(NH 4)Mn 0.7Fe 0.29Mg 0.01PO 4·H 2O/C的前驱体Z1、碳酸锂、二氧化钛和葡萄糖按照1:0.52:0.01:0.7的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于650℃煅烧10h,筛分后,得到磷酸锰铁锂正极材料,记为C1,C1的表达式如表1所示。
采用扫描电镜观察正极材料C1的形貌,如图2所示,从图中可以看到,磷酸锰铁锂正极材料C1具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为80nm,二次球颗粒的平均粒度为9μm。
正极材料C1的XRD谱图如图4所示,从图中可以看出,在2θ=35.4°处出现最强衍射峰,并在2θ为17.8°、25.5°、29.6°和36.4°处分别出现明显衍射峰,说明C1具有正交晶系的晶体结构。
实施例2
(1)将表达式为(NH 4)Mn 0.6Fe 0.39Mg 0.01PO 4·H 2O/C的前驱体Z2、氢氧化锂、二氧化钛和蔗糖按照1:1.03:0.01:0.7的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于680℃煅烧10h,筛分后,得到磷酸锰铁锂正极材料,记为C2,C2的表达式如表1所示。
通过扫描电镜可观察到正极材料C2具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为60nm,二次球颗粒的平均粒度为11μm。
通过XRD的检测结果可知,正极材料C2具有正交晶系的晶体结构。
实施例3
(1)将表达式为(NH 4)Mn 0.7Fe 0.29Cu 0.01PO 4·H 2O/C的前驱体Z3、氯化锂、五氧化二铌和淀粉按照1:1.05:0.005:0.5的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于700℃煅烧12h,筛分后,得到磷酸锰铁锂正极材料,记为C3,C3的表达式如表1所示。
通过扫描电镜可观察到正极材料C3具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为100nm,二次球颗粒的平均粒度为15μm。
通过XRD的检测结果可知,正极材料C3具有正交晶系的晶体结构。
实施例4
(1)将表达式为(NH 4)Mn 0.8Fe 0.19Ti 0.01PO 4·H 2O/C的前驱体Z4、氢氧化锂、二氧化钛和蔗糖按照1:1.03:0.01:0.8的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于600℃煅烧12h,筛分后,得到磷酸锰铁锂正极材料,记为C4,C4的表达式如表1所示。
通过扫描电镜可观察到正极材料C4具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为80nm,二次球颗粒的平均粒度为10μm。
通过XRD的检测结果可知,正极材料C4具有正交晶系的晶体结构。
实施例5
(1)将表达式为(NH 4)Mn 0.7Fe 0.29Cu 0.01PO 4·H 2O/C的前驱体Z5、碳酸锂、硼酸和纤维素按照1:1.03:0.01:1的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于700℃煅烧8h,筛分后,得到磷酸锰铁锂正极材料,记为C5,C5的表达式如表1所示。
通过扫描电镜可观察到正极材料C5具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为70nm,二次球颗粒的平均粒度为8μm。
通过XRD的检测结果可知,正极材料C5具有正交晶系的晶体结构。
实施例6
(1)将表达式为(NH 4)Mn 0.7Fe 0.29Mg 0.01PO 4·H 2O/C的前驱体Z6、碳酸锂、氟化锂和葡萄糖按照1:0.52:0.01:0.7的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于650℃煅烧10h,筛分后,得到磷酸锰铁锂正极材料,记为C6,C6的表达式如表1所示。
通过扫描电镜可观察到正极材料C6具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为60nm,二次球颗粒的平均粒度为7μm。
通过XRD的检测结果可知,正极材料C6具有正交晶系的晶体结构。
实施例7
按照实施例1的方法制备磷酸锰铁锂正极材料,不同的是,采用的前驱体为Z7,其表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O/C,得到的正极材料记为C7,C7的表达 式如表1所示。
通过扫描电镜可观察到,正极材料C7具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为90nm,二次球颗粒的平均粒度为10μm。
通过XRD的检测结果可知,正极材料C7具有正交晶系的晶体结构。
对比例1
(1)将表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O/C的前驱体Z7、碳酸锂和葡萄糖按照1:0.52:0.7的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于650℃煅烧10h,筛分后,得到磷酸锰铁锂正极材料,记为D1,D1的表达式如表1所示。
通过扫描电镜可观察到,正极材料D1具有由一次颗粒形成的二次球颗粒结构,一次颗粒粘结致密,其中,一次颗粒的平均粒度为90nm,二次球颗粒的平均粒度为10μm。
对比例2
按照实施例1的方法制备磷酸锰铁锂正极材料,不同的是,采用的前驱体为DZ1(表达式为(NH 4)Mn 0.7Fe 0.29Mg 0.01PO 4·H 2O),得到的正极材料记为D2,D2的表达式如表1所示。
通过扫描电镜可观察到,正极材料D2为无规则团聚块状,未形成致密的球形团聚体。
对比例3
按照实施例1的方法,不同的是采用前驱体DZ2(表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O)进行磷酸锰铁锂正极材料的制备,得到的正极材料记为D3,D3的表达式如表1所示。
通过扫描电镜可观察到,正极材料D3为无规则团聚块状,未形成致密的球形团聚体。
对比例4
(1)将表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O的前驱体DZ3、碳酸锂和葡萄糖按照1:0.51:1的摩尔比与纯水混合,通过机械搅拌混合均匀,得到第二浆料;
(2)将第二浆料在加热炉料盘中蒸干,再放入85℃的真空烘箱中干燥4h后得到干料;将干料在氮气气氛下于650℃煅烧10h,筛分后,得到磷酸锰铁锂正极材料,记为D4,D4的表达式如表1所示。
采用扫描电镜观察正极材料D4的形貌,如图3所示,从图中可以看到,D4为无规则团聚块状,未形成致密的团聚体。
对比例5
(1)将表达式为(NH 4)Mn 0.7Fe 0.3PO 4·H 2O的前驱体DZ3、氢氧化锂、碳酸镁和蔗糖按照1:1.03:0.01:0.7的摩尔比与纯水混合,在行星式球磨机中研磨,得到第二浆料;
(2)将第二浆料通过喷雾干燥,得到干料;将干料在氮气气氛下于630℃煅烧10h,通过气流磨破碎,筛分后,得到磷酸锰铁锂正极材料,记为D5,D5的表达式如表1所示。
通过扫描电镜可观察到,D5为无规则团聚块状,未形成致密的团聚体。
测试例
本测试例用于说明电极材料、电极、锂离子电池及其制备方法。
(1)正极极片的制备:分别将实施例1-7所得的磷酸锰铁锂正极材料C1-C7,导电剂碳纳米管,粘结剂PVDF的NMP溶液以质量比90:5:5进行混合。具体方法为:将干燥后的正极材料和导电剂在研钵中研磨15分钟,研磨均匀后,按照比例加入PVDF溶液(质量分数5%),在磁力搅拌器上搅拌6小时;将得到的膏状浆液均匀涂布在集流体铝箔上,然后在60℃的真空干燥箱中干燥20小时,再用100MPa的压力冲压成型为直径12mm、厚度120μm的正极极片,将正极极片放入120℃的真空干燥箱中干燥12h。
(2)电池组装:以直径为17mm、厚度为1mm的金属锂片为负极,以表面涂覆有氧化铝陶瓷层、厚度为25μm的聚乙烯多孔膜为隔膜,选取1mol/L的LiPF 6、碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的等量混合液为电解液,将正极极片、隔膜、负极极片及电解液在水含量与氧含量均小于5ppm的Ar气手套箱内组装成2025型扣式电池,分别制备得到锂离子电池A1-A7。
(3)电化学性能测试:使用武汉兰博电子有限公司的蓝电LAND CT2001A充放电仪对电池进行充放电测试,充放电电压范围为2.5到4.4V,分别在0.1C和1C的倍率下对组装的锂离子电池A1-A7进行比容量测试,并在1C倍率下进行循环性能测试,测试结果如表1所示。
对比测试例
(1)正极极片的制备:按照测试例的方法进行正极极片的制备,不同的是使用的正极活性物质分别为对比例1-5所得的磷酸锰铁锂正极材料D1-D5。
(2)电池组装:按照测试例的方法进行。
(3)电化学性能测试:按照测试例的方法进行,测试结果如表1所示。
实施例1制得的磷酸锰铁锂正极材料C1和对比例1制得的磷酸锰铁锂正极材料D1在0.1C倍率下的充放电曲线如图5所示,从图中可以看出,正极材料C1组装成的扣式电池在2.5-4.4V,0.1C倍率下的放电比容量为156.8mAh/g,在1C倍率下的放电比容量达到149.7mAh/g,循环80周后的容量保持率为95.8%。与对比例1的正极材料D1相比,实施例1的正极材料C1在0.1C、1C倍率下的放电比容量及循环80周后的容量保持率均有显著提升。
表1
Figure PCTCN2022098044-appb-000001
Figure PCTCN2022098044-appb-000002
通过表1的结果可以看出,本发明提供的磷酸锰铁锂正极材料压实密度高,应用于锂离子电池中,可显著提高锂离子电池的比容量,改善锂离子电池的循环性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (20)

  1. 一种磷酸锰铁锂前驱体,其特征在于,所述前驱体的表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种。
  2. 根据权利要求1所述的磷酸锰铁锂前驱体,其中,基于所述前驱体的总重量,所述前驱体中碳元素的含量为0.05-5wt%,优选为0.5-2wt%,更优选为1-1.4wt%。
  3. 根据权利要求1或2所述的磷酸锰铁锂前驱体,其中,所述前驱体的表达式中,0.19≤x≤0.39,0.01≤y≤0.04;和/或,M选自Mg、Cu和Ti中的至少一种。
  4. 根据权利要求1-3中任意一项所述的磷酸锰铁锂前驱体,其中,所述前驱体具有由一次颗粒形成的二次球颗粒结构;和/或,所述二次球颗粒的平均粒度为1-50μm,优选为5-12μm;和/或,所述前驱体的一次颗粒的平均粒度为10-500nm,优选为40-100nm;和/或,所述前驱体具有正交晶系的晶体结构。
  5. 一种制备磷酸锰铁锂前驱体的方法,其特征在于,该方法包括:
    (a)提供含有锰源、铁源和任选的M源的第一混合液;提供含有磷源和氨源的第二混合液;提供含有络合剂和第一碳源的第三混合液;
    (b)将第一混合液和第二混合液加入第三混合液中进行共沉淀反应,得到第一浆料;
    (c)将第一浆料进行固液分离和洗涤,得到磷酸锰铁锂前驱体。
  6. 根据权利要求5所述的方法,其中,步骤(a)中,所述锰源选自硫酸锰、硝酸锰、乙酸锰和氯化锰中的至少一种;和/或,所述铁源选自硫酸铁、硫酸亚铁、硝酸铁、乙酸铁和氯化铁中的至少一种;和/或,所述M源选自含有M的硫酸盐、硝酸盐、乙酸盐和氯化物中的至少一种;和/或,所述磷源选自磷酸、磷酸一氢铵、磷酸二氢铵和磷酸三铵中的至少一种,优选为磷酸、磷酸一氢铵和磷酸二氢铵中的至少一种;和/或,所述氨源选自氨水、磷酸一氢铵、磷酸二氢铵、磷酸三铵、碳酸氢铵、碳酸铵、硫酸铵和尿素中的至少一种,优选为氨水、磷酸一氢铵和磷酸二氢铵中的至少一种;和/或,所述络合剂选自柠檬酸和/或柠檬酸三铵;和/或,所述第一碳源选自石墨烯、碳纳米管、酚醛树脂、聚乙烯、聚偏氟乙烯、聚四氟乙烯、聚丙烯和甲苯二异氰酸酯中的至少一种,优选为石墨烯、碳纳米管、酚醛树脂、聚乙烯和聚偏氟乙烯中的至少一种;和/或
    锰源、铁源和M源的用量满足:以金属元素计,锰源、铁源和M源的摩尔比为60-80:20-40:1;和/或
    磷源和氨源的用量满足:以磷酸根离子计的磷源和以铵根离子计的氨源的摩尔比为1:1-3。
  7. 根据权利要求5或6所述的方法,其中,所述第一混合液中的总金属离子的浓度为0.5-3mol/L;和/或,所述第二混合液中的磷酸根离子的浓度为0.5-3mol/L,铵根离子的浓度为0.05-15mol/L;和/或,所述第三混合液中的络合剂的浓度为0.03-10mol/L。
  8. 根据权利要求5-7中任意一项所述的方法,其中,步骤(b)中,第一混合液和第二混合液通过并流的方式加入第三混合液中;和/或
    所述共沉淀反应在搅拌下进行,所述共沉淀反应的条件包括:搅拌速度为500-1000rpm,pH为2-8,温度为25-90℃,时间为1-2h。
  9. 一种磷酸锰铁锂正极材料,其特征在于,所述正极材料的表达式为Li iMn 1-x-y-zFe xM yM′ z(PO 4) 1-nN n/C,式中,0.1<x≤0.6,0≤y≤0.04,0≤z≤0.04,0.9<i≤1.2,0≤n≤0.04,且z、n不同时为0;
    M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种;M′选自Mg、Ca、Sr、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、Y、Mo、Nb、B、Al、W、La和Sm中的至少一种;N选自F和/或Cl。
  10. 根据权利要求9所述的磷酸锰铁锂正极材料,其中,基于所述正极材料的总重量,所述正极材料中碳元素的含量为0.5-10wt%,优选为1-3wt%,更优选为1.8-3wt%。
  11. 根据权利要求9或10所述的磷酸锰铁锂正极材料,其中,所述正极材料的表达式中,0.19≤x≤0.39,0.01≤y≤0.04,0.01≤z≤0.04,1≤i≤1.1,0.01≤n≤0.04;优选地,所述正极材料的表达式中,0.19≤x≤0.39,0.01≤y≤0.04,0.01≤z≤0.02,1.02≤i≤1.05,0.01≤n≤0.02;和/或
    M选自Mg、Cu和Ti中的至少一种;和/或,M′选自Ti、Nb和B中的至少一种;和/或,N为F。
  12. 根据权利要求9-11中任意一项所述的磷酸锰铁锂正极材料,其中,所述正极材料具有由一次颗粒形成的二次球颗粒结构;和/或,所述二次球颗粒的平均粒度为1-50μm,优选为7-15μm;和/或,所述正极材料的一次颗粒的平均粒度为10-500nm,优选为60-100nm;和/或
    所述正极材料具有正交晶系的晶体结构;和/或
    所述正极材料的压实密度为1.5-2.5g/cm 3,在0.1C倍率下的比容量为145-160mAh/g,循环80周后的容量保持率为85-97%;
    优选地,所述正极材料的压实密度为2.09-2.31g/cm 3,在0.1C倍率下的比容量为152.1-157.2mAh/g,循环80周后的容量保持率为92.6-95.9%。
  13. 一种制备磷酸锰铁锂正极材料的方法,其特征在于,该方法包括:
    (1)提供表达式为(NH 4)Mn 1-x-yFe xM yPO 4·H 2O/C的磷酸锰铁锂前驱体,式中,0.1<x≤0.6,0≤y≤0.04;M选自Mg、Co、Ni、Cu、Zn和Ti中的至少一种;
    (2)在溶剂的存在下,将磷酸锰铁锂前驱体、锂源、第二碳源、M′源和/或N源进行混合匀质,得到第二浆料;
    (3)除去第二浆料中的溶剂,得到干料,然后在惰性气氛保护下,将干料进行煅烧,得到磷酸锰铁锂正极材料。
  14. 根据权利要求13所述的方法,其中,步骤(2)中,所述锂源选自氧化锂、氢氧化锂、氯化锂、硝酸锂、亚硝酸锂、甲酸锂、乙酸锂、草酸锂、碳酸锂、磷酸锂、磷酸氢二锂、磷酸二氢锂和柠檬酸锂中的至少一种,优选为碳酸锂、氢氧化锂和氯化锂中的至少一种;和/或
    所述第二碳源选自葡萄糖、蔗糖、果糖、纤维素、淀粉、柠檬酸、聚丙烯酸、聚乙二醇和多巴胺中的至少一种,优选为葡萄糖、蔗糖、淀粉和纤维素中的至少一种;和/或
    所述M′源选自含有M′的含氧化合物和/或氯化物,优选为二氧化钛、五氧化二铌和硼酸中的至少一种;和/或
    所述N源选自氟化铵、氟化氢铵、氟化锂、氯化铵和氯化锂中的至少一种,优选为氟化锂。
  15. 根据权利要求13或14所述的方法,其中,磷酸锰铁锂前驱体、锂源、M′源和/或N源与第二碳源的摩尔比为1:0.52-1.05:0.005-0.01:0.5-1。
  16. 根据权利要求12或13所述的方法,其中,步骤(3)中,所述煅烧的条件包括:煅烧温度为500-1000℃,优选为600-800℃;煅烧时间为4-20h,优选为6-12h;和/或,所述惰性气氛为氮气气氛和/或氩气气氛。
  17. 一种电极材料,该电极材料含有活性物质、导电剂和粘结剂,其特征在于,所述活性物质为权利要求9-12中任意一项所述的磷酸锰铁锂正极材料或者为按照权利要求13-16中任意一项所述的方法制备得到的磷酸锰铁锂正极材料。
  18. 一种电极,该电极包括集流体及涂覆和/或填充于集流体上的电极材料,其特征在于,所述电极材料为权利要求17所述的电极材料。
  19. 一种制备电极的方法,该方法包括将含有活性物质、导电剂和粘结剂与溶剂的浆料涂覆和/或填充在集流体上,干燥,压延或不压延,其特征在于,所述活性物质为权利要求9-12中任意一项所述的磷酸锰铁锂正极材料或者为按照权利要求13-16中任意一项所述的方法制备得到的磷酸锰铁锂正极材料。
  20. 一种锂离子电池,该锂离子电池包括电极组和电解液,所述电极组和电解液密封在电池壳体内,所述电极组包括正极、负极和隔膜,隔膜位于正极和负 极之间,其特征在于,所述正极为权利要求18所述的电极或者为按照权利要求19所述的方法制备得到的电极。
PCT/CN2022/098044 2021-08-25 2022-06-10 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池 WO2023024651A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023536552A JP7493105B2 (ja) 2021-08-25 2022-06-10 リン酸マンガン鉄リチウム前駆体、リン酸マンガン鉄リチウム正極材料及びその製造方法、電極材料、電極、並びにリチウムイオン電池
KR1020237026840A KR102682051B1 (ko) 2021-08-25 2022-06-10 리튬 망간 인산철 전구체, 리튬 망간 인산철 양극재 및 이의 제조 방법과 전극 재료, 전극 및 리튬 이온 배터리
EP22859998.1A EP4245721A1 (en) 2021-08-25 2022-06-10 Lithium iron manganese phosphate precursor, lithium iron manganese phosphate positive electrode material and preparation method therefor, electrode material, electrode, and lithium-ion battery
US18/216,853 US20230339756A1 (en) 2021-08-25 2023-06-30 Lithium iron manganese phosphate precursor, lithium iron manganese phosphate positive electrode material and preparation method therefor, electrode material, electrode, and lithium-ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110981854 2021-08-25
CN202110981854.2 2021-08-25
CN202111002582.3A CN113942990B (zh) 2021-08-25 2021-08-30 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
CN202111002582.3 2021-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/216,853 Continuation US20230339756A1 (en) 2021-08-25 2023-06-30 Lithium iron manganese phosphate precursor, lithium iron manganese phosphate positive electrode material and preparation method therefor, electrode material, electrode, and lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2023024651A1 true WO2023024651A1 (zh) 2023-03-02

Family

ID=79327521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098044 WO2023024651A1 (zh) 2021-08-25 2022-06-10 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池

Country Status (6)

Country Link
US (1) US20230339756A1 (zh)
EP (1) EP4245721A1 (zh)
JP (1) JP7493105B2 (zh)
KR (1) KR102682051B1 (zh)
CN (1) CN113942990B (zh)
WO (1) WO2023024651A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344791A (zh) * 2023-05-26 2023-06-27 天津巴莫科技有限责任公司 正极材料及其制备方法、正极片和电池
CN116835560A (zh) * 2023-08-28 2023-10-03 合肥国轩高科动力能源有限公司 磷酸铁锰锂复合材料和其制备方法、正极极片

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942990B (zh) * 2021-08-25 2023-06-20 北京当升材料科技股份有限公司 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
CN114497505B (zh) * 2022-01-28 2024-05-10 佛山市德方纳米科技有限公司 一种喷雾干燥连续制备正极材料的方法及装置
CN114572951B (zh) * 2022-01-28 2023-09-12 宜昌邦普循环科技有限公司 掺杂型磷酸铁及其制备方法和应用
CN114620703B (zh) * 2022-03-31 2023-04-07 重庆长安新能源汽车科技有限公司 一种碳包覆的磷酸锰铁锂复合材料及其制备方法
CN115215318B (zh) * 2022-05-30 2024-07-09 中国地质大学(武汉) 具有硼氮修饰的高致密超微孔碳电极材料及其制备方法
CN114988386B (zh) * 2022-06-16 2024-02-02 蜂巢能源科技股份有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN115020664B (zh) * 2022-06-17 2024-04-05 蜂巢能源科技股份有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN114975986B (zh) * 2022-06-30 2023-11-10 蜂巢能源科技股份有限公司 一种高性能磷酸锰铁锂正极材料及其制备方法
WO2024011626A1 (zh) * 2022-07-15 2024-01-18 宁德时代新能源科技股份有限公司 连续式反应系统、磷酸锰铁前驱体、磷酸锰铁锂、及其制备方法和二次电池
CN116314762A (zh) * 2023-02-10 2023-06-23 湖北亿纬动力有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN117069084B (zh) * 2023-05-19 2024-06-14 河北九丛科技有限公司 一种纳米高活性磷酸锰铁锂正极材料的制备方法
CN117117153B (zh) * 2023-10-16 2024-02-20 宁波容百新能源科技股份有限公司 一种正极材料及其制备方法、锂离子电池
CN117246990B (zh) * 2023-11-16 2024-03-05 合肥国轩高科动力能源有限公司 磷酸铁锰锂、其制备方法及锂离子电池
CN117509596A (zh) * 2023-11-23 2024-02-06 新洋丰农业科技股份有限公司 一种磷酸铁锰固溶体及磷酸铁锰锂的制备方法
CN117720086B (zh) * 2024-02-07 2024-05-14 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000956A1 (fr) * 2013-01-17 2014-07-18 Commissariat Energie Atomique Procede de synthese d'un compose lim1-x-y-znyqzfexpo4 et son utilisation comme materiau d'electrode pour accumulateur au lithium
CN104167549A (zh) * 2014-07-04 2014-11-26 深圳市贝特瑞新能源材料股份有限公司 一种微纳结构磷酸铁锰锂正极材料及其制备方法、锂离子电池
JPWO2013038516A1 (ja) * 2011-09-14 2015-03-23 住友金属鉱山株式会社 リン酸アンモニウムマンガン鉄とその製造方法、および該リン酸アンモニウムマンガン鉄を用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
CN105226273A (zh) 2014-05-30 2016-01-06 比亚迪股份有限公司 一种磷酸锰铁锂及其制备方法及应用
CN105514422A (zh) 2014-09-26 2016-04-20 比亚迪股份有限公司 一种前驱体和磷酸锰铁锂及其制备方法和应用
CN105826536A (zh) * 2016-05-19 2016-08-03 贵州安达科技能源股份有限公司 一种磷酸锰铁锂及其制备方法
CN106328942A (zh) 2016-11-11 2017-01-11 宁德新能源科技有限公司 一种磷酸铁锰锂正极材料,其制备方法和应用
CN106450239A (zh) * 2016-12-08 2017-02-22 深圳市鑫永丰科技有限公司 一种磷酸锰铁锂复合材料及其制备方法与锂离子电池
CN109244391A (zh) * 2018-08-22 2019-01-18 江苏元景锂粉工业有限公司 一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法
CN111900344A (zh) * 2020-07-02 2020-11-06 江苏海基新能源股份有限公司 一种碳包覆磷酸锰铁锂正极材料的制备方法
CN111933915A (zh) * 2020-09-14 2020-11-13 天津斯科兰德科技有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN113072049A (zh) * 2021-03-26 2021-07-06 天津斯科兰德科技有限公司 一种高压实密度磷酸锰铁锂/碳复合正极材料的制备方法
CN113942990A (zh) * 2021-08-25 2022-01-18 北京当升材料科技股份有限公司 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305148C (zh) * 2005-01-12 2007-03-14 清华大学 高密度球形磷酸铁锂及磷酸锰铁锂的制备方法
CN102024951A (zh) 2010-10-30 2011-04-20 华南理工大学 一种氟离子掺杂的磷酸铁锂材料及其制备方法
JP5120523B1 (ja) 2011-09-14 2013-01-16 住友金属鉱山株式会社 リン酸アンモニウムマンガン鉄マグネシウムとその製造方法、および該リン酸アンモニウムマンガン鉄マグネシウムを用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
CN103367746A (zh) 2013-07-16 2013-10-23 烟台卓能电池材料有限公司 一种多离子掺杂的碳包覆磷酸铁锂电池材料及其制备方法
JP5700345B2 (ja) * 2013-07-19 2015-04-15 太平洋セメント株式会社 リン酸マンガンリチウム正極活物質前駆体の製造方法
KR20160083630A (ko) * 2014-12-31 2016-07-12 삼성에스디아이 주식회사 리튬이차전지용 올리빈형 양극 활물질, 그것의 제조방법 및 그것을 포함하는 리튬이차전지
JP5999240B1 (ja) 2015-09-30 2016-09-28 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料およびその製造方法
CN105355885A (zh) * 2015-11-26 2016-02-24 中南大学 一种锂离子电池复合正极材料LiMn1-xFexPO4/C的合成方法
CN106816582B (zh) * 2015-11-30 2019-08-13 比亚迪股份有限公司 一种磷酸锰铁锂类材料及其制备方法以及电池浆料和正极与锂电池
CN106935851B (zh) * 2015-12-31 2019-11-29 惠州比亚迪电池有限公司 一种磷酸锰铁锂类材料及其制备方法以及电池浆料和正极与锂电池
KR20170098728A (ko) * 2016-02-22 2017-08-30 주식회사 엘지화학 리튬 전이금속 인산화물 입자를 포함하는 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN107658432A (zh) * 2016-07-26 2018-02-02 微宏动力系统(湖州)有限公司 改性金属氧化物正极材料的制备方法及其正极材料
JP6501011B1 (ja) 2018-02-28 2019-04-17 住友大阪セメント株式会社 電極材料、電極材料の製造方法、電極、及びリチウムイオン電池
CN109103452A (zh) * 2018-08-28 2018-12-28 重庆大学 纳米磷酸锰铁锂正极复合材料的制备方法
CN111268664A (zh) 2020-02-13 2020-06-12 上海华谊(集团)公司 磷酸锰铁中间体、磷酸锰铁锂和它们的制造方法
CN113078319A (zh) * 2021-03-26 2021-07-06 天津斯科兰德科技有限公司 一种磷酸锰铁锂/碳复合纳米颗粒正极材料的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013038516A1 (ja) * 2011-09-14 2015-03-23 住友金属鉱山株式会社 リン酸アンモニウムマンガン鉄とその製造方法、および該リン酸アンモニウムマンガン鉄を用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
FR3000956A1 (fr) * 2013-01-17 2014-07-18 Commissariat Energie Atomique Procede de synthese d'un compose lim1-x-y-znyqzfexpo4 et son utilisation comme materiau d'electrode pour accumulateur au lithium
CN105226273A (zh) 2014-05-30 2016-01-06 比亚迪股份有限公司 一种磷酸锰铁锂及其制备方法及应用
CN104167549A (zh) * 2014-07-04 2014-11-26 深圳市贝特瑞新能源材料股份有限公司 一种微纳结构磷酸铁锰锂正极材料及其制备方法、锂离子电池
CN105514422A (zh) 2014-09-26 2016-04-20 比亚迪股份有限公司 一种前驱体和磷酸锰铁锂及其制备方法和应用
CN105826536A (zh) * 2016-05-19 2016-08-03 贵州安达科技能源股份有限公司 一种磷酸锰铁锂及其制备方法
CN106328942A (zh) 2016-11-11 2017-01-11 宁德新能源科技有限公司 一种磷酸铁锰锂正极材料,其制备方法和应用
CN106450239A (zh) * 2016-12-08 2017-02-22 深圳市鑫永丰科技有限公司 一种磷酸锰铁锂复合材料及其制备方法与锂离子电池
CN109244391A (zh) * 2018-08-22 2019-01-18 江苏元景锂粉工业有限公司 一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法
CN111900344A (zh) * 2020-07-02 2020-11-06 江苏海基新能源股份有限公司 一种碳包覆磷酸锰铁锂正极材料的制备方法
CN111933915A (zh) * 2020-09-14 2020-11-13 天津斯科兰德科技有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN113072049A (zh) * 2021-03-26 2021-07-06 天津斯科兰德科技有限公司 一种高压实密度磷酸锰铁锂/碳复合正极材料的制备方法
CN113942990A (zh) * 2021-08-25 2022-01-18 北京当升材料科技股份有限公司 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344791A (zh) * 2023-05-26 2023-06-27 天津巴莫科技有限责任公司 正极材料及其制备方法、正极片和电池
CN116344791B (zh) * 2023-05-26 2023-08-08 天津巴莫科技有限责任公司 正极材料及其制备方法、正极片和电池
CN116835560A (zh) * 2023-08-28 2023-10-03 合肥国轩高科动力能源有限公司 磷酸铁锰锂复合材料和其制备方法、正极极片
CN116835560B (zh) * 2023-08-28 2024-01-23 合肥国轩高科动力能源有限公司 磷酸铁锰锂复合材料和其制备方法、正极极片

Also Published As

Publication number Publication date
KR102682051B1 (ko) 2024-07-08
CN113942990B (zh) 2023-06-20
JP7493105B2 (ja) 2024-05-30
KR20230125080A (ko) 2023-08-28
EP4245721A1 (en) 2023-09-20
CN113942990A (zh) 2022-01-18
US20230339756A1 (en) 2023-10-26
JP2023551742A (ja) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2023024651A1 (zh) 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
CN111554919B (zh) 正极活性材料、其制备方法及钠离子电池
CN111435740B (zh) 正极活性材料、正极片及钠离子电池
KR101494715B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
CN115472819A (zh) 正极活性材料、正极极片及钠离子电池
TWI725822B (zh) 鋰電池及其負極材料
KR20220092556A (ko) 전지를 위한 음극활물질 및 그 제조 방법, 전지 음극, 전지
CN111435742A (zh) 正极活性材料、正极极片及钠离子电池
CN113363483A (zh) 橄榄石结构正极材料及其制备方法与应用、锂离子电池
CN108963235B (zh) 石墨烯增强碳包覆磷酸钛锰钠微米球电极材料及其制备方法和应用
CN110875473A (zh) 正极活性材料、其制备方法及钠离子电池
CN110495026A (zh) 负极材料和非水电解质二次电池
TWI651272B (zh) 一種富鋰-鋰鎳錳氧化物陰極複合材料的製備方法及其用途
CN112928246A (zh) 一种复合材料、其制备方法及应用
CN113675389A (zh) 一种石墨复合电极材料及其制备方法
CN108682828A (zh) 一种氮掺杂碳包覆正极材料的制备方法
Chung et al. A surfactant-based method for carbon coating of LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode in Li ion batteries
CN109216692B (zh) 改性三元正极材料及其制备方法、锂离子电池
CN114597368B (zh) 一种表面硫掺杂且具有硫酸锂保护层的富锂锰基层状材料
CN115275168A (zh) 一种高倍率的锂离子电池负极材料及其制备方法
JP2006528408A (ja) 充電式電池の負電極
CN113745514A (zh) 一种氟掺杂及硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
CN113161526A (zh) 一种正极材料及其制备方法和应用
Xu et al. Oxalate co-precipitation synthesis of LiNi0. 45Cr0. 05Mn1. 5O4/Ag composite for lithium-ion batteries
TW202413276A (zh) 過渡金屬層狀結構氧化物、正極材料以及鈉離子電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536552

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022859998

Country of ref document: EP

Effective date: 20230612

ENP Entry into the national phase

Ref document number: 20237026840

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026840

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE