CN109244391A - 一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法 - Google Patents

一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法 Download PDF

Info

Publication number
CN109244391A
CN109244391A CN201810959860.6A CN201810959860A CN109244391A CN 109244391 A CN109244391 A CN 109244391A CN 201810959860 A CN201810959860 A CN 201810959860A CN 109244391 A CN109244391 A CN 109244391A
Authority
CN
China
Prior art keywords
lithium
manganese phosphate
iron manganese
nitrogen
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810959860.6A
Other languages
English (en)
Other versions
CN109244391B (zh
Inventor
李德成
黄国林
王建琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU YUANJING LITHIUM POWDER INDUSTRY Co Ltd
Original Assignee
JIANGSU YUANJING LITHIUM POWDER INDUSTRY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU YUANJING LITHIUM POWDER INDUSTRY Co Ltd filed Critical JIANGSU YUANJING LITHIUM POWDER INDUSTRY Co Ltd
Priority to CN201810959860.6A priority Critical patent/CN109244391B/zh
Publication of CN109244391A publication Critical patent/CN109244391A/zh
Application granted granted Critical
Publication of CN109244391B publication Critical patent/CN109244391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于锂电池正极材料领域,具体涉及一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法。所述磷酸锰铁锂的分子式为:LiMn1‑xFexPO4,其中0.05≤x≤0.4,所述氮参杂碳包覆磷酸锰铁锂材料具有外层氮碳包覆完整的球形核壳结构,所述壳层的厚度为1~5um,包覆量为1~5%,其中氮参杂含量为25~35%;制备方法:(1)制备球形磷酸锰铁;(2)制备磷酸锰铁锂前驱体;(3)制备有机氮源包覆液;(4)制备氮参杂碳包覆磷酸锰铁锂。本发明制备的磷酸锰铁锂材料碳包覆效果好,导电性好,电容量高,将其应用于锂电池的正极材料时,具有耐低温性能好和倍率高的优点;制备工艺流程简单且易于控制、能耗和原料成本低、生产效率高、可应用于工业化大生产。

Description

一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法
技术领域
本发明属于锂电池正极材料领域,具体涉及一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法。
背景技术
能源问题成为当今世界的主要问题,随着化石能源的日益枯竭,人们开始寻找各种新能源来满足能源的需求。在众多的新能源开发中,电池作为新能源中的化学电源研究的比较多,其中锂离子电池是一种高能绿色电池,具有电压高、能量密度大、循环性能好、无自放电等特点。近二十多年来很多人在锂离子电池上进行了大量的研究并取得了很大的进展,锂离子电池已经广泛应用于手机,笔记本电脑、各种便携式电动工具等,现在人们研究锂离子电池在混合电动汽车上的应用也取得了很大的进展。所以,锂离子电池在能源紧缺的今天占有重要的地位。
电池主要是由正极、负极、电解液体系、隔膜组成,其中正极材料是限制锂离子电池放电容量的关键因素,因此,找到一种很好的正极材料是研究锂离子电池的主要工作。作为锂离子电池正极材料的磷酸铁锂(LiFePO4)具有良好的安全性能、优异的循环性能和环境友好等优点,并且原材料丰富、比容量高。但是磷酸铁锂存在离子传导率和电子电导率偏低、比能量不足等问题,然而,LiFePO4材料由于脱嵌锂电位平台(约3.4V)较低,降低了电池整体的能量密度,限制了其在电动汽车上的发展,成为制约磷酸铁锂电池大规模应用的关键因素。最近几年对橄榄石结构的磷酸锰锂(LiMnPO4)材料的研究取得了很大的成果。相比LiFe PO4,LiMnPO4具有放电电压高,功率密度大等优点,而LiMnPO4对Li的工作电压为4.1V,能够在Li Fe PO4的基础上提高20%左右的能量密度,有可能成为未来电动汽车电池的正极材料的首选。制约Li Mn PO4大规模应用的主要原因是其比LiFePO4更差的电子电导率(<10-10S·cm-1)和锂离子扩散速率,导致充放电容量极低,电池倍率性能差。而为了提高锂离子传输效率和电子传导效率,必须将磷酸锰锂颗粒的尺寸减小至纳米尺度,但传统的固相反应法难以获得Li Mn PO4纳米结构材料。此外,还必须对磷酸锰锂进行铁掺杂和有效的碳包覆,以提高材料的导电性能。尽管有报道采用水热法,溶胶凝胶法等方法获得了纳米级磷酸锰锂材料,但是该制备方法复杂,成本较高,且分散的纳米颗粒的振实密度很低,导致体积能量密度很低,不利于实际应用。此外,由于Li Mn PO4与碳不具有较好亲和力,现有的制备方法中碳包覆的效果普遍不理想,为了获得较高放电容量,需要加入比例高达20-30wt%的碳,进一步降低了电池的功率密度。然而作为橄榄石结构的Li MnxFe1-xPO4材料有两个充放电平台,比Li Fe PO4的比能量要高,比Li Mn PO4的导电性要好,具有较好的循环性,因此对其研究具有重要的意义,但磷酸锰铁锂材料也有自身的不足,与碳不具有较好亲和力,现有的制备方法中碳包覆的效果普遍不理想,导致材料的高倍率和低温性能不好。因此,目前为了获得高倍率和低温性能更为优异的磷酸锰铁锂正极活性材料显得尤为重要。
发明内容
针对现有现有的磷酸锰铁锂材料性能的诸多缺点,本发明公开了一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法,制备的磷酸锰铁锂材料碳包覆效果好,导电性好,电容量高,将其应用于锂电池的正极材料时,具有耐低温性能好和倍率高的优点;制备工艺流程简单且易于控制、能耗和原料成本低、生产效率高、可应用于工业化大生产。
为了实现上述目的,本发明采用如下技术方案:
一种氮参杂碳包覆磷酸锰铁锂材料,所述磷酸锰铁锂的分子式为:LiMn1-xFexPO4,其中0.05 ≤x≤0.4,所述氮参杂碳包覆磷酸锰铁锂材料具有外层氮碳包覆完整的球形核壳结构,所述壳层的厚度为1~5um,包覆量为1~5%,其中氮参杂含量为25~35%。
进一步,一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,具体包括如下步骤:
步骤(一)制备球形磷酸锰铁:
(1)分别缓慢滴加铁盐溶液、锰盐溶液、磷源溶液、表面活性剂和络合剂的混合溶液、沉淀剂溶液于反应釜中,搅拌反应后得到二水磷酸锰铁浆料;
(2)将步骤(1)的浆料充分反应后研磨后得到二水磷酸铁料浆,通过热干空气气流喷雾干燥得到球形磷酸铁;
步骤(二)制备磷酸锰铁锂前驱体:
分别称取磷酸锰铁、锂源、碳源和表面活性剂,加入无水乙醇,球料质量比为3∶1,浆料固含量为50~60%,混合均匀后进行以700~800rpm转速球磨8~10h,然后在90~100℃真空干燥得到磷酸锰铁锂前驱体粉;
步骤(三)制备有机氮源包覆液:
将导电剂和有机溶剂加入到反应容器中,超声分散1~2h形成悬浊液,加入有机氮源,继续超声1~2h,加入氨水调节溶液pH至8~9,继续超声1~2h,反应容器密封,并放置于烘箱中,在180~220℃下反应24~36h,即得有机氮源包覆液;
步骤(四)制备氮参杂碳包覆磷酸锰铁锂:
将磷酸锰铁锂前驱体材料粉碎后,加入到有机氮源包覆液中浸泡,其中磷酸锰铁锂前驱体和有机氮源固体的质量比为1:0.1~0.3,进行包覆,并经过湿法研磨混合分散5~8h,喷雾干燥得到机氮源包覆磷酸锰铁锂前驱体粉末,将物料置于N2保护下的管式马弗炉中烧结,冷却后过筛即得高容量高压实密度的氮参杂碳包覆磷酸锰铁锂复合材料。
进一步,上述所述的铁盐的浓度为8~12wt%,锰盐的浓度为5~10wt%,磷源溶液的浓度为12~15wt%,表面活性剂和络合剂的质量比为1:3~5,混合液的浓度为5~8mg/mL,沉淀剂的浓度为12~18wt%,铁盐、锰盐、磷源、混合液与沉淀剂的用量摩尔比为1:1~1.1: 1.1:0.3~0.5:0.5~0.8;
所述的铁盐为三氯化铁、硫酸铁或硝酸铁中的一种或几种;所述的锰盐为氯化亚锰、硫酸亚锰、硝酸亚锰或醋酸亚锰中的一种或几种;所述的磷源为磷盐和磷酸的任意比例混合,其中磷盐为磷酸二氢铵、磷酸氢二铵、磷酸二氢钠中的一种或几种;所述的络合剂为柠檬酸、酒石酸或苏糖酸中的一种或几种;所述的沉淀剂为氨水、氢氧化钠、尿素中的一种或几种。
进一步,上述反应釜的搅拌转速为500~550rpm,体系的pH值控制在8~9范围内,反应温度控制在85~90℃,反应时间为5~8h。
进一步,上述所述球磨后磷酸锰铁料浆的粒径为0.1~0.3μm;喷雾空气的压力为0.8~ 1.2MPa;所用热干空气的温度为200-300℃。
进一步,上述所述磷酸锰铁中的铁:锂源中的锂和碳源中的碳的摩尔比例为1~1.05:1:0.05~0.08;表面活性剂的添加量为磷酸锰铁、锂源和碳源质量之和的3~5%;
所述的锂源为碳酸锂、硝酸锂、氢氧化锂中的一种或几种;所述的碳源为聚乙烯醇、蔗糖、可溶性淀粉、纤维素、坏血酸、酚醛树脂中的一种或几种;所述的表面活性剂为硬脂酸铵、十二烷基苯磺酸、二乙醇胺、吐温80中的一种或几种。
进一步,上述所述导电剂、有机溶剂、有机氮源的质量比为1:100~150:5~8;
所述的导电剂为乙炔黑、碳纳米管、石墨烯中的一种或几种;所述的有机溶剂为乙醇、正己烷、N,N-二甲基甲酰胺、甲基叔丁基醚中的一种或几种;所述的有机氮源为硼氮源、氮磷源、氮硫源,其中硼氮源选自吡啶硼酸和咪唑硼酸中的一种或两种;氮磷源选自N-(膦羧甲基)亚氨基二乙酸;所述氮硫源选自巯基唑类化合物、巯基嘧啶类化合物和巯基嘌呤类化合物中的一种或几种。
进一步,上述所述步骤(四)中所述研磨后包覆的磷酸锰铁锂前驱体料浆的粒径为0.5~ 1.5μm;喷雾空气的压力为0.2~0.5MPa;所用热干空气的温度为150~200℃。
进一步,上述所述烧结过程具体是:温度先以1~5℃/min升温至300~350℃,保温1~ 2h,再以5~10℃/min升温至650~800℃煅烧8~12h。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明的一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法,选用不同种类的氮化合物参杂碳包覆,能够提高磷酸锰铁锂材料与碳表面的亲和力,提高碳的包覆率,碳对磷酸锰铁锂材料包覆完整度极好,极大的提高电子电导和离子扩散系数,同时氮对碳参杂后包覆磷酸锰铁锂材料,能够使得材料耐低温性能显著。
(2)本发明的一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法,选用导电性能良好的碳作为包覆材料,使其导电性能也大大提高,作为电池正极活性材料的利用率也显著提高。
(3)本发明的一种氮参杂碳包覆磷酸锰铁锂复合材料及其制备方法,在分子水平上对原料进行混合,所以磷酸锰铁锂的粒度和形貌可以得到有效地调控,使得本发明技术所得到的氮参杂碳包覆磷酸锰铁锂材料的物相结构及化学组成均一、且不含非均一的杂质相。
(4)本发明的一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法,结晶较完美、颗粒粒径小、粒径分布均一,其颗粒粒径分布范围为0.5~1.5μm;且振实密度高,其振实密度为2.3~2.4g/cm3。
(5)本发明的一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法,先制备球形磷酸锰铁,能有效的抑制磷酸锰铁锂材料粒径生长过大,使磷酸锰铁锂材料的粒径分布均匀。
(6)本发明的一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法,制备反应工艺简单,便于控制,用喷雾干燥法将物料烘干,大大的提高了物料的利用率,能耗和原料成本低、生产效率高、可应用于工业化大生产。
具体实施方式
现在结合实施例对本发明作进一步详细的说明。
实施例1
一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,具体包括如下步骤:
步骤(一)制备球形磷酸锰铁:
(1)分别缓慢滴加浓度为10wt%三氯化铁溶液、浓度为8wt%的氯化亚锰溶液、磷酸二氢铵和磷酸按质量比1:1.5组成的浓度为12wt%的磷源溶液、硬脂酸铵和柠檬酸按质量比1:4 组成的浓度为8mg/m L的混合溶液、浓度为15wt%氨水溶液于反应釜中,各物质之间的用量摩尔比为1:1.05:1.1:0.4:0.8;反应釜的搅拌转速为550rpm,体系的pH值控制在9范围内,反应温度控制在90℃,反应时间为5h后得到二水磷酸锰铁浆料;
(2)将步骤(1)的浆料充分反应后研磨后得到粒径为0.2μm的二水磷酸铁料浆,通过压力为1.2MPa,温度为300℃的热干空气气流喷雾干燥得到球形磷酸铁;
步骤(二)制备磷酸锰铁锂前驱体:
分别称取磷酸锰铁、碳酸锂、聚乙烯醇和硬脂酸铵,其磷酸锰铁中的铁:锂源中的锂和碳源中的碳的摩尔比例为1:1:0.08;硬脂酸铵的添加量为磷酸锰铁、锂源和碳源质量之和的 5%,加入无水乙醇,球料质量比为3∶1,浆料固含量为60%,混合均匀后进行以800rpm转速球磨10h,然后在90~100℃真空干燥得到磷酸锰铁锂前驱体粉;
步骤(三)制备有机氮源包覆液:
将乙炔黑和乙醇加入到反应容器中,超声分散1h形成悬浊液,加入吡啶硼酸,继续超声 2h,其乙炔黑、乙醇和吡啶硼酸的质量比为1:150:8加入氨水调节溶液pH至8,继续超声 2h,反应容器密封,并放置于烘箱中,在200℃下反应30h,即得有机氮源包覆液;
步骤(四)制备氮参杂碳包覆磷酸锰铁锂:
将磷酸锰铁锂前驱体材料粉碎后,加入到有机氮源包覆液中浸泡,其中磷酸锰铁锂前驱体和有机氮源固体的质量比为1:0.3,进行包覆,并经过湿法研磨混合分散8h,研磨后粒径为 0.5μm,然后使用压力为0.5MPa,温度为200℃的热干空气的喷雾干燥得到机氮源包覆磷酸锰铁锂前驱体粉末,将物料置于N2保护下的管式马弗炉中烧结,温度先以3℃/min升温至 350℃,保温2h,再以8℃/min升温至800℃煅烧12h,冷却后过筛即得高容量高压实密度的氮参杂碳包覆磷酸锰铁锂复合材料,其壳层的厚度为5um,包覆量为5%,其中氮参杂含量为 35%。
实施例2
一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,具体包括如下步骤:
步骤(一)制备球形磷酸锰铁:
(1)分别缓慢滴加浓度为8wt%硫酸铁溶液、浓度为10wt%的硫酸亚锰溶液、磷酸二氢铵和磷酸按质量比2:1组成的浓度为15wt%的磷源溶液、十二烷基苯磺酸和柠檬酸按质量比1:3 组成的浓度为7mg/m L的混合溶液、浓度为12wt%氢氧化钠溶液于反应釜中,各物质之间的用量摩尔比为1:1:1.1:0.3:0.5;反应釜的搅拌转速为500rpm,体系的pH值控制在8范围内,反应温度控制在85℃,反应时间为8h后得到二水磷酸锰铁浆料;
(2)将步骤(1)的浆料充分反应后研磨后得到粒径为0.2μm的二水磷酸铁料浆,通过压力为1MPa,温度为250℃的热干空气气流喷雾干燥得到球形磷酸铁;
步骤(二)制备磷酸锰铁锂前驱体:
分别称取磷酸锰铁、硝酸锂、蔗糖和十二烷基苯磺酸,其磷酸锰铁中的铁:锂源中的锂和碳源中的碳的摩尔比例为1.03:1:0.05;硬脂酸铵的添加量为磷酸锰铁、锂源和碳源质量之和的4%,加入无水乙醇,球料质量比为3∶1,浆料固含量为50%,混合均匀后进行以750rpm 转速球磨9h,然后在90~100℃真空干燥得到磷酸锰铁锂前驱体粉;
步骤(三)制备有机氮源包覆液:
将乙炔黑和乙醇加入到反应容器中,超声分散2h形成悬浊液,加入N-(膦羧甲基)亚氨基二乙酸,继续超声1h,其乙炔黑、乙醇和N-(膦羧甲基)亚氨基二乙酸的质量比为1:120: 5加入氨水调节溶液pH至8.5,继续超声1h,反应容器密封,并放置于烘箱中,在180℃下反应36h,即得有机氮源包覆液;
步骤(四)制备氮参杂碳包覆磷酸锰铁锂:
将磷酸锰铁锂前驱体材料粉碎后,加入到有机氮源包覆液中浸泡,其中磷酸锰铁锂前驱体和有机氮源固体的质量比为1:0.2,进行包覆,并经过湿法研磨混合分散5h,研磨后粒径为 1.5μm,然后使用压力为0.2MPa,温度为180℃的热干空气的喷雾干燥得到机氮源包覆磷酸锰铁锂前驱体粉末,将物料置于N2保护下的管式马弗炉中烧结,温度先以1℃/min升温至 300℃,保温2h,再以5℃/min升温至650℃煅烧12h,冷却后过筛即得高容量高压实密度的氮参杂碳包覆磷酸锰铁锂复合材料,其壳层的厚度为3um,包覆量为3%,其中氮参杂含量为 30%。
实施例3
一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,具体包括如下步骤:
步骤(一)制备球形磷酸锰铁:
(1)分别缓慢滴加浓度为11wt%硫酸铁溶液、浓度为5wt%的硫酸亚锰溶液、磷酸氢二铵和磷酸按质量比1:5组成的浓度为14wt%的磷源溶液、十二烷基苯磺酸和酒石酸按质量比1:5 组成的浓度为5mg/m L的混合溶液、浓度为14wt%氢氧化钠溶液于反应釜中,各物质之间的用量摩尔比为1:1.1:1.1:0.4:0.8;反应釜的搅拌转速为500rpm,体系的pH值控制在9 范围内,反应温度控制在88℃,反应时间为6h后得到二水磷酸锰铁浆料;
(2)将步骤(1)的浆料充分反应后研磨后得到粒径为0.1μm的二水磷酸铁料浆,通过压力为0.8MPa,温度为200℃的热干空气气流喷雾干燥得到球形磷酸铁;
步骤(二)制备磷酸锰铁锂前驱体:
分别称取磷酸锰铁、硝酸锂、蔗糖和十二烷基苯磺酸,其磷酸锰铁中的铁:锂源中的锂和碳源中的碳的摩尔比例为1:1:0.06;硬脂酸铵的添加量为磷酸锰铁、锂源和碳源质量之和的3%,加入无水乙醇,球料质量比为3∶1,浆料固含量为55%,混合均匀后进行以700rpm转速球磨8h,然后在90~100℃真空干燥得到磷酸锰铁锂前驱体粉;
步骤(三)制备有机氮源包覆液:
将碳纳米管和正己烷加入到反应容器中,超声分散2h形成悬浊液,加入2-巯基咪唑,继续超声1h,其碳纳米管、正己烷和2-巯基咪唑的质量比为1:100:6,加入氨水调节溶液pH为9,继续超声2h,反应容器密封,并放置于烘箱中,在220℃下反应24h,即得有机氮源包覆液;
步骤(四)制备氮参杂碳包覆磷酸锰铁锂:
将磷酸锰铁锂前驱体材料粉碎后,加入到有机氮源包覆液中浸泡,其中磷酸锰铁锂前驱体和有机氮源固体的质量比为1:0.1,进行包覆,并经过湿法研磨混合分散6h,研磨后粒径为 1.2μm,然后使用压力为0.4MPa,温度为200℃的热干空气的喷雾干燥得到机氮源包覆磷酸锰铁锂前驱体粉末,将物料置于N2保护下的管式马弗炉中烧结,温度先以5℃/min升温至 320℃,保温1h,再以10℃/min升温至750℃煅烧12h,冷却后过筛即得高容量高压实密度的氮参杂碳包覆磷酸锰铁锂复合材料,其壳层的厚度为1um,包覆量为1%,其中氮参杂含量为25%。
实施例4
一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,具体包括如下步骤:
步骤(一)制备球形磷酸锰铁:
(1)分别缓慢滴加浓度为12wt%硝酸铁溶液、浓度为9wt%的硝酸亚锰溶液、磷酸二氢钠和磷酸按质量比5:1组成的浓度为12wt%的磷源溶液、二乙醇胺和苏糖酸按质量比1:5组成的浓度为5mg/m L的混合溶液、浓度为18wt%尿素溶液于反应釜中,各物质之间的用量摩尔比为1:1:1.1:0.3:0.5;反应釜的搅拌转速为500rpm,体系的pH值控制在9范围内,反应温度控制在88℃,反应时间为6h后得到二水磷酸锰铁浆料;
(2)将步骤(1)的浆料充分反应后研磨后得到粒径为0.3μm的二水磷酸铁料浆,通过压力为0.8MPa,温度为200℃的热干空气气流喷雾干燥得到球形磷酸铁;
步骤(二)制备磷酸锰铁锂前驱体:
分别称取磷酸锰铁、硝酸锂、酚醛树脂和二乙醇胺,其磷酸锰铁中的铁:锂源中的锂和碳源中的碳的摩尔比例为1:1:0.08;硬脂酸铵的添加量为磷酸锰铁、锂源和碳源质量之和的 5%,加入无水乙醇,球料质量比为3∶1,浆料固含量为55%,混合均匀后进行以700rpm转速球磨8h,然后在90~100℃真空干燥得到磷酸锰铁锂前驱体粉;
步骤(三)制备有机氮源包覆液:
将石墨烯和甲基叔丁基醚加入到反应容器中,超声分散2h形成悬浊液,加入6-巯基嘌呤,继续超声2h,其石墨烯、甲基叔丁基醚和6-巯基嘌呤的质量比为1:150:8,加入氨水调节溶液pH为9,继续超声2h,反应容器密封,并放置于烘箱中,在220℃下反应24h,即得有机氮源包覆液;
步骤(四)制备氮参杂碳包覆磷酸锰铁锂:
将磷酸锰铁锂前驱体材料粉碎后,加入到有机氮源包覆液中浸泡,其中磷酸锰铁锂前驱体和有机氮源固体的质量比为1:0.1,进行包覆,并经过湿法研磨混合分散6h,研磨后粒径为 1μm,然后使用压力为0.4MPa,温度为200℃的热干空气的喷雾干燥得到机氮源包覆磷酸锰铁锂前驱体粉末,将物料置于N2保护下的管式马弗炉中烧结,温度先以5℃/min升温至320℃,保温1h,再以10℃/min升温至750℃煅烧12h,冷却后过筛即得高容量高压实密度的氮参杂碳包覆磷酸锰铁锂复合材料,其壳层的厚度为1um,包覆量为1%,其中氮参杂含量为25%。
对比例1与实施例1进行比较,不同之处在于:
未事先制备球形磷酸锰铁,直接将铁源、锰源和磷源加入到实施例1的步骤(二)中,其他步骤和参数同实施例1。
对比例2与实施例1进行比较,不同之处在于:
包覆液中未加导电剂,其他步骤和参数同实施例1。
对比例3与实施例1进行比较,不同之处在于:
包覆液中未加有机氮源,其他步骤和参数同实施例1。
测试例
测试例用于说明氮参杂碳包覆磷酸锰铁锂电化学性能的测试。
采用NMP作为溶剂,按活性物质:SP:PVDF=90:5:5配制成固含量为70%的浆料均匀涂覆于箔上,制成正极。负极选用直径14mm的金属锂片,电解液选用1mol Li FP6 (EC:DMC:EMC=1:1:1,V/V),以负极壳一弹片一垫片一锂片一电解液一隔膜一正极片一垫片一正极壳的顺序将电池进行封装,整个过程都在充有氢气的手套箱中完成。
1)充放电容量测试:
在室温30℃下,将CR2025扣式电池在0.1C倍率下CCCV充电到4.3V,截止电流为0.01C,然后0.1C倍率下CC放电到2.5V,得到的充放电容量如表1所示。
2)放电倍率测试:
在0.1C倍率下CCCV充到4.3V,截止电流为0.01C,然后分别在1C、2C、5C和10C 倍率下CC放电到2.5V,在各个倍率下的放电容量与在0.1C倍率下的放电容量的比值作为该倍率下的放电倍率,所得结果如表1所示。
3)低温效率测试:
将电池在0.2C倍率下循环充放电两次后,以0.5C倍率充电到4.3V,然后将电池置于-10℃环境中以0.5C倍率放电到2.5V,-10℃的放电容量与室温30℃下0.5C的放电容量的比值为该材料在-10℃下的低温效率,所得结果如表1所示。
4)粉体电阻率测试:
将上述由正极活性材料、乙炔黑、聚偏氟乙烯和N-甲基吡咯烷酮搅拌均匀得到的浆料烘干,然后用玛瑙磨细,过400目的筛网,再用粉体电阻率仪进行对其电阻率进行测试,
所得结果如表1所示。
表1
从表1的结果可以看出,将采用本发明提供的方法能够获得粒径小、粒径分布均匀的氮参杂碳包覆磷酸锰铁锂,并且由所述磷酸锰铁锂制备得到的电池的放电容量能够达到162m Ah/g以上,在5C倍率下放电倍率能够保持在90%以上,在10C倍率下放电倍率能够保持在 85%以上,在-10℃下0.5C倍率下的放电倍率仍然能够保持在85%以上,综合性能非常优异,对比例由于方法和原料的改变,综合性能均下降明显。
以上述依据本发明的实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

1.一种氮参杂碳包覆磷酸锰铁锂材料,所述磷酸锰铁锂的分子式为:LiMn1-xFexPO4,其中0.05≤x≤0.4,所述氮参杂碳包覆磷酸锰铁锂材料具有外层氮碳包覆完整的球形核壳结构,其特征在于:所述壳层的厚度为1~5um,包覆量为1~5%,其中氮参杂含量为25~35%。
2.一种制备如权利要求1所述的氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:具体包括如下步骤:
步骤(一)制备球形磷酸锰铁:
(1)分别缓慢滴加铁盐溶液、锰盐溶液、磷源溶液、表面活性剂和络合剂的混合溶液、沉淀剂溶液于反应釜中,搅拌反应后得到二水磷酸锰铁浆料;
(2)将步骤(1)的浆料充分反应后研磨后得到二水磷酸铁料浆,通过热干空气气流喷雾干燥得到球形磷酸铁;
步骤(二)制备磷酸锰铁锂前驱体:
分别称取磷酸锰铁、锂源、碳源和表面活性剂,加入无水乙醇,球料质量比为3∶1,浆料固含量为50~60%,混合均匀后进行以700~800rpm转速球磨8~10h,然后在90~100℃真空干燥得到磷酸锰铁锂前驱体粉;
步骤(三)制备有机氮源包覆液:
将导电剂和有机溶剂加入到反应容器中,超声分散1~2h形成悬浊液,加入有机氮源,继续超声1~2h,加入氨水调节溶液pH至8~9,继续超声1~2h,反应容器密封,并放置于烘箱中,在180~220℃下反应24~36h,即得有机氮源包覆液;
步骤(四)制备氮参杂碳包覆磷酸锰铁锂:
将磷酸锰铁锂前驱体材料粉碎后,加入到有机氮源包覆液中浸泡,其中磷酸锰铁锂前驱体和有机氮源固体的质量比为1:0.1~0.3,进行包覆,并经过湿法研磨混合分散5~8h,喷雾干燥得到机氮源包覆磷酸锰铁锂前驱体粉末,将物料置于N2保护下的管式马弗炉中烧结,冷却后过筛即得高容量高压实密度的氮参杂碳包覆磷酸锰铁锂复合材料。
3.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:所述的铁盐的浓度为8~12wt%,锰盐的浓度为5~10wt%,磷源溶液的浓度为12~15wt%,表面活性剂和络合剂的质量比为1:3~5,混合液的浓度为5~8mg/m L,沉淀剂的浓度为12~18wt%,铁盐、锰盐、磷源、混合液与沉淀剂的用量摩尔比为1:1~1.1:1.1:0.3~0.5:0.5~0.8;
所述的铁盐为三氯化铁、硫酸铁或硝酸铁中的一种或几种;所述的锰盐为氯化亚锰、硫酸亚锰、硝酸亚锰或醋酸亚锰中的一种或几种;所述的磷源为磷盐和磷酸的任意比例混合,其中磷盐为磷酸二氢铵、磷酸氢二铵、磷酸二氢钠中的一种或几种;所述的络合剂为柠檬酸、酒石酸或苏糖酸中的一种或几种;所述的沉淀剂为氨水、氢氧化钠、尿素中的一种或几种。
4.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:反应釜的搅拌转速为500~550rpm,体系的pH值控制在8~9范围内,反应温度控制在85~90℃,反应时间为5~8h。
5.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:所述球磨后磷酸锰铁料浆的粒径为0.1~0.3μm;喷雾空气的压力为0.8~1.2MPa;所用热干空气的温度为200-300℃。
6.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:所述磷酸锰铁中的铁:锂源中的锂和碳源中的碳的摩尔比例为1~1.05:1:0.05~0.08;表面活性剂的添加量为磷酸锰铁、锂源和碳源质量之和的3~5%;
所述的锂源为碳酸锂、硝酸锂、氢氧化锂中的一种或几种;所述的碳源为聚乙烯醇、蔗糖、可溶性淀粉、纤维素、坏血酸、酚醛树脂中的一种或几种;所述的表面活性剂为硬脂酸铵、十二烷基苯磺酸、二乙醇胺、吐温80中的一种或几种。
7.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:所述导电剂、有机溶剂、有机氮源的质量比为1:100~150:5~8;
所述的导电剂为乙炔黑、碳纳米管、石墨烯中的一种或几种;所述的有机溶剂为乙醇、正己烷、N ,N-二甲基甲酰胺、甲基叔丁基醚中的一种或几种;所述的有机氮源为硼氮源、氮磷源、氮硫源,其中硼氮源选自吡啶硼酸和咪唑硼酸中的一种或两种;氮磷源选自N-(膦羧甲基)亚氨基二乙酸;所述氮硫源选自巯基唑类化合物、巯基嘧啶类化合物和巯基嘌呤类化合物中的一种或几种。
8.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:所述步骤(四)中所述研磨后包覆的磷酸锰铁锂前驱体料浆的粒径为0.5~1.5μm;喷雾空气的压力为0.2~0.5MPa;所用热干空气的温度为150~200℃。
9.如权利要求2所述的一种制备氮参杂碳包覆磷酸锰铁锂材料的方法,其特征在于:所述烧结过程具体是:温度先以1~5℃/min升温至300~350℃,保温1~2h,再以5~10℃/min升温至650~800℃煅烧8~12h。
CN201810959860.6A 2018-08-22 2018-08-22 一种氮掺杂碳包覆磷酸锰铁锂材料及其制备方法 Active CN109244391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810959860.6A CN109244391B (zh) 2018-08-22 2018-08-22 一种氮掺杂碳包覆磷酸锰铁锂材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810959860.6A CN109244391B (zh) 2018-08-22 2018-08-22 一种氮掺杂碳包覆磷酸锰铁锂材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109244391A true CN109244391A (zh) 2019-01-18
CN109244391B CN109244391B (zh) 2021-06-22

Family

ID=65068292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810959860.6A Active CN109244391B (zh) 2018-08-22 2018-08-22 一种氮掺杂碳包覆磷酸锰铁锂材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109244391B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613786A (zh) * 2020-05-29 2020-09-01 东莞东阳光科研发有限公司 一种复合材料及其制备方法
CN114883538A (zh) * 2022-03-31 2022-08-09 蜂巢能源科技股份有限公司 一种复合正极材料及其制备方法和应用
CN115285961A (zh) * 2022-06-30 2022-11-04 浙江格派钴业新材料有限公司 一种包覆纳米材料磷酸锰铁锂的正极材料制备方法
WO2023024651A1 (zh) * 2021-08-25 2023-03-02 北京当升材料科技股份有限公司 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
WO2023066386A1 (zh) * 2021-10-22 2023-04-27 宁德时代新能源科技股份有限公司 正极活性材料及制备方法、正极极片、二次电池、电池模块、电池包及用电装置
CN116332149A (zh) * 2023-04-20 2023-06-27 河北九丛科技有限公司 一种改善磷酸锰铁锂低温稳定性的制备方法
CN116354325A (zh) * 2022-12-26 2023-06-30 蜂巢能源科技(无锡)有限公司 正极材料、其制备方法及锂离子电池
WO2023124575A1 (zh) 2021-12-29 2023-07-06 湖北万润新能源科技股份有限公司 一种锂离子电池正极材料及其制备方法
CN116986574A (zh) * 2023-09-05 2023-11-03 河北九丛科技有限公司 一种高压实密度磷酸锰铁锂的制备方法
CN117720086A (zh) * 2024-02-07 2024-03-19 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池
CN117720086B (zh) * 2024-02-07 2024-05-14 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681795A (zh) * 2015-01-29 2015-06-03 北大先行科技产业有限公司 一种磷酸铁锰锂/碳复合材料的制备方法
CN107768613A (zh) * 2017-09-01 2018-03-06 上海交通大学 一种包覆碳的磷酸锰铁锂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681795A (zh) * 2015-01-29 2015-06-03 北大先行科技产业有限公司 一种磷酸铁锰锂/碳复合材料的制备方法
CN107768613A (zh) * 2017-09-01 2018-03-06 上海交通大学 一种包覆碳的磷酸锰铁锂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERCAN AVCI等: "High performance LiFePO4/CN cathode material promoted by polyaniline as carbonenitrogen precursor", 《JOURNAL OF POWER SOURCES》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613786A (zh) * 2020-05-29 2020-09-01 东莞东阳光科研发有限公司 一种复合材料及其制备方法
WO2023024651A1 (zh) * 2021-08-25 2023-03-02 北京当升材料科技股份有限公司 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
CN116547835A (zh) * 2021-10-22 2023-08-04 宁德时代新能源科技股份有限公司 正极活性材料及制备方法、正极极片、二次电池、电池模块、电池包及用电装置
WO2023066386A1 (zh) * 2021-10-22 2023-04-27 宁德时代新能源科技股份有限公司 正极活性材料及制备方法、正极极片、二次电池、电池模块、电池包及用电装置
WO2023124575A1 (zh) 2021-12-29 2023-07-06 湖北万润新能源科技股份有限公司 一种锂离子电池正极材料及其制备方法
CN114883538A (zh) * 2022-03-31 2022-08-09 蜂巢能源科技股份有限公司 一种复合正极材料及其制备方法和应用
CN114883538B (zh) * 2022-03-31 2024-02-20 蜂巢能源科技股份有限公司 一种复合正极材料及其制备方法和应用
CN115285961A (zh) * 2022-06-30 2022-11-04 浙江格派钴业新材料有限公司 一种包覆纳米材料磷酸锰铁锂的正极材料制备方法
CN116354325A (zh) * 2022-12-26 2023-06-30 蜂巢能源科技(无锡)有限公司 正极材料、其制备方法及锂离子电池
CN116332149A (zh) * 2023-04-20 2023-06-27 河北九丛科技有限公司 一种改善磷酸锰铁锂低温稳定性的制备方法
CN116986574A (zh) * 2023-09-05 2023-11-03 河北九丛科技有限公司 一种高压实密度磷酸锰铁锂的制备方法
CN117720086A (zh) * 2024-02-07 2024-03-19 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池
CN117720086B (zh) * 2024-02-07 2024-05-14 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池

Also Published As

Publication number Publication date
CN109244391B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN109244391A (zh) 一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法
US10957903B2 (en) Layered lithium-rich manganese-based cathode material with olivine structured LIMPO4 surface modification and preparation method thereof
US20140106223A1 (en) METHODS FOR SURFACE COATING OF CATHODE MATERIAL LiNi0.5-XMn1.5MXO4 FOR LITHIUM-ION BATTERIES
CN100448772C (zh) 高密度超微复合型磷酸铁锂正极材料的制备方法
CN103682266B (zh) 一种Li、Mn位共掺杂磷酸锰锂/碳复合材料及其制备方法
CN109103433B (zh) 一种氮参杂碳包覆磷酸铁锂复合材料及其制备方法
CN101826617B (zh) 磷酸铁锂的制备方法
CN101540398A (zh) 一种用于锂二次电池的介孔结构磷酸盐材料及其制备方法
CN102683697A (zh) 一种石墨烯基LiFePO4/C复合材料的制备方法
CN103682327B (zh) 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法
CN103956461B (zh) 一种磷酸亚铁锂和亚铁酸锂复合材料的水热制备方法
CN103384001B (zh) 一种石墨烯复合电极材料及其固相催化制备方法
CN109037659A (zh) 一种双层碳包覆磷酸铁锂材料的制备方法
CN108899531A (zh) 一种磷酸盐包覆镍钴铝三元正极材料的制备方法
CN104638242A (zh) 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN107887583A (zh) 一种掺杂磷酸铁锂正极材料及其制备方法
CN102024989A (zh) 一种高电压锂离子电池的制备方法
CN105226267A (zh) 三维碳纳米管修饰尖晶石镍锰酸锂材料及其制备方法和应用
CN107658461B (zh) 一种以有机铁化合物为原料制备氟化铁/碳复合材料的方法
CN105529439A (zh) 利用水热法制备磷酸铁锂的方法及其制备的磷酸铁锂
CN107069029B (zh) 一种锂电池用高电压正极材料及其制备方法
CN102479945A (zh) 球形磷酸铁锂正极材料的制备方法
CN101209819B (zh) 一种磷酸亚铁锂的制备方法
CN109980221A (zh) 一种高压锂离子电池正极材料及其制备方法和应用
CN101759172A (zh) 一种制备高性能磷酸铁锂的微波烧结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant