WO2023021813A1 - 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物 - Google Patents

樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物 Download PDF

Info

Publication number
WO2023021813A1
WO2023021813A1 PCT/JP2022/022655 JP2022022655W WO2023021813A1 WO 2023021813 A1 WO2023021813 A1 WO 2023021813A1 JP 2022022655 W JP2022022655 W JP 2022022655W WO 2023021813 A1 WO2023021813 A1 WO 2023021813A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin
structural unit
unit described
Prior art date
Application number
PCT/JP2022/022655
Other languages
English (en)
French (fr)
Inventor
拓矢 魚谷
直人 青柳
享 印南
祥一 伊藤
雅司 荻原
弘明 岡
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2023542232A priority Critical patent/JPWO2023021813A1/ja
Priority to KR1020247002286A priority patent/KR20240041320A/ko
Publication of WO2023021813A1 publication Critical patent/WO2023021813A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/12Chemically modified polycondensates

Definitions

  • the present invention relates to novel resins, methods for producing resins, curable resin compositions, and cured products.
  • Resins having a vinyl group such as vinyl compounds
  • resins having a vinyl group are used in various materials due to their excellent heat resistance.
  • Patent Document 1 one disclosed in Patent Document 1 is known.
  • resins having vinyl groups such as vinyl compounds
  • Such vinyl compounds and production methods thereof are known, for example, as disclosed in Patent Documents 2 and 3.
  • An object of the present invention is to solve such problems, and an object of the present invention is to provide a novel resin excellent in dielectric properties, a method for producing the resin, a curable resin composition, and a cured product. .
  • each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group.
  • R 2 represents an alkyl group having 1 to 3 carbon atoms.
  • R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 10 carbon atoms, or 6 carbon atoms. represents an aryl group of 1 to 12.
  • R 6 , R 7 and R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, represents a hydroxyalkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, wherein R 9 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a halogenated group having 1 to 10 carbon atoms; an alkyl group, a hydroxyl group, a hydroxyalkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, v represents 0 or 1, w represents a number of 1 to 3, x, y and z each independently represents a number from 0 to 3.
  • a, b, c and d each independently represent a molar ratio of the structural units, a is a number of 1 or more, b is a number of 0 or more is a number, c is a number of 1 or more, and d is a number of 0 or more, R 1 may be bonded to each other to form a crosslinked structure, * is another structural unit or a terminal group indicates the binding position with ⁇ 2>
  • ⁇ 6> The resin according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the group represented by the following in the resin group (1) is 1.0 mmol/g or more.
  • R 6 to R 8 in the above groups have the same definitions as R 6 to R 8 in group (1).
  • ⁇ 7> The structural unit described in group (1), the structural unit described in group (1-1), the structural unit described in group (1-2), the structural unit described in group (1-3) and at least one of the structural units described in group (1-4), the resin according to any one of ⁇ 1> to ⁇ 6>.
  • Group (1-1) (In group (1-1), R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x, y, z, a1, b, c and d are are respectively synonymous with R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x, y, z, a, b, c and d in group (1) * indicates the bonding position with other structural units or terminal groups.)
  • Group (1-2) (In group (1-2), R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x, y, z, a2, b, c and d are are respectively synonymous with R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x,
  • the resin according to any one of ⁇ 1> to ⁇ 8> having a number average molecular weight (Mn) of 500 to 6,000 and a weight average molecular weight (Mw) of 500 to 15,000.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a carbon represents a hydroxyalkyl group of 1 to 10, or an aryl group of 6 to 12 carbon atoms.
  • group (4) each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group;
  • R 2 represents an alkyl group having 1 to 3 carbon atoms;
  • R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 10 carbon atoms, or 6 carbon atoms.
  • a, b, c and d each independently represent the molar ratio of the structural units, a is a number of 1 or more, b is a number of 0 or more, c is a number of 1 or more, and d is a number of 0 or more.
  • R 1 may be bonded to each other to form a crosslinked structure.
  • a method for producing a resin comprising reacting at least the compound represented by formula (2) with a starting resin having the structural unit described in group (4) in the presence of a basic compound.
  • formula (2) (In formula (2), R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a carbon represents a hydroxyalkyl group of 1 to 10, or an aryl group of 6 to 12 carbon atoms.) group (4) (In group (4), each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group; R 2 represents an alkyl group having 1 to 3 carbon atoms; R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group
  • a, b, c and d each independently represent the molar ratio of the structural units, a is a number of 1 or more, b is a number of 0 or more, c is a number of 1 or more, and d is a number of 0 or more.
  • R 1 may be bonded to each other to form a crosslinked structure.
  • the structural units described in group (4) are the structural units described in group (4-1), the structural units described in group (4-2), and the structural units described in group (4-3). and at least one of the structural units described in group (4-4).
  • R 1 , R 3 , R 4 , R 5 , v, x, y, z, a1, b, c and d are respectively R 1 , R 3 in group (4) , R 4 , R 5 , v, x, y, z, a, b, c and d.
  • Group (4-2) (In group (4-2), R 1 , R 3 , R 4 , R 5 , v, x, y, z, a2, b, c and d are respectively R 1 , R 3 in group (4) , R 4 , R 5 , v, x, y, z, a, b, c and d. * indicates the bonding position with other structural units or terminal groups.)
  • Group (4-3) In group (4-3), R 1 , R 3 , R 4 , R 5 , v, x, y, z, a3, b, c and d are R 1 , R 3 in group (4), respectively.
  • Group (4-4) (In group (4-4), R 1 , R 3 , R 4 , R 5 , v, x, y, z, a4, b, c and d are R 1 , R 3 in group (4), respectively , R 4 , R 5 , v, x, y, z, a, b, c and d.
  • the raw material resin having the structural unit described in the group (4) has a number average molecular weight Mn of 400 to 4,000 and a weight average molecular weight Mw of 400 to 16,000, ⁇ 12> to ⁇ 18> A method for producing a resin according to any one of.
  • ⁇ 20> Any one of ⁇ 12> to ⁇ 19>, wherein the terminal group of the raw material resin having the structural unit described in the group (4) is selected from a hydrogen atom, a hydroxyl group and a hydroxymethyl group.
  • method of producing the resin ⁇ 21> The method for producing a resin according to any one of ⁇ 12> to ⁇ 20>, wherein the basic compound contains at least one of potassium carbonate, rubidium carbonate, and cesium carbonate.
  • ⁇ 22> The method for producing a resin according to any one of ⁇ 12> to ⁇ 21>, wherein the resin to be produced is the resin according to any one of ⁇ 1> to ⁇ 11>.
  • thermosetting compound contains at least one selected from a compound having a carbon-carbon unsaturated bond group other than the resin according to any one of ⁇ 1> to ⁇ 11> and an epoxy resin.
  • ⁇ 26> A cured product of the curable resin composition according to any one of ⁇ 23> to ⁇ 25>.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the notations that do not describe substituted and unsubstituted are preferably unsubstituted. If the standards shown in this specification differ from year to year in terms of measurement methods, etc., the standards as of January 1, 2021 shall be used unless otherwise specified.
  • the resin of the present embodiment has structural units described in group (1).
  • a cured product of such a resin has excellent dielectric properties. Furthermore, a resin having excellent heat resistance can be obtained.
  • group (1) (In group (1), each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group.
  • R 2 represents an alkyl group having 1 to 3 carbon atoms.
  • R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 10 carbon atoms, or 6 carbon atoms. represents an aryl group of 1 to 12.
  • R 6 , R 7 and R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, represents a hydroxyalkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, wherein R 9 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a halogenated group having 1 to 10 carbon atoms; an alkyl group, a hydroxyl group, a hydroxyalkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, v represents 0 or 1, w represents a number of 1 to 3, x, y and z each independently represents a number from 0 to 3.
  • a, b, c and d each independently represent a molar ratio of the structural units, a is a number of 1 or more, b is a number of 0 or more is a number, c is a number of 1 or more, and d is a number of 0 or more, R 1 may be bonded to each other to form a crosslinked structure, * is another structural unit or a terminal group indicates the binding position with
  • each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group, preferably a methylene group or a methyleneoxymethylene group, more preferably a methylene group.
  • R 1 may be bonded to each other to form a crosslinked structure.
  • Examples of structures in which R 1 is crosslinked include the following structures.
  • R 1 preferably does not form a crosslinked structure.
  • n is a number of 1 or more, and usually a number of 1-10.
  • R 2 represents an alkyl group having 1 to 3 carbon atoms, preferably a methyl group or an ethyl group, more preferably a methyl group.
  • R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 10 carbon atoms, or carbon It represents an aryl group having 6 to 12 numbers, each independently preferably being an alkyl group having 1 to 10 carbon atoms, and more preferably each independently being an alkyl group having 1 to 5 carbon atoms.
  • Halogen atoms for R 3 to R 5 are preferably fluorine atoms or chlorine atoms.
  • the alkyl group having 1 to 10 carbon atoms as R 3 to R 5 is more preferably an alkyl group having 1 to 5 carbon atoms, such as methyl group, ethyl group, i-propyl group, n-propyl group, n- A butyl group or a t-butyl group is more preferred, and a t-butyl group is even more preferred.
  • the halogenated alkyl group having 1 to 10 carbon atoms as R 3 to R 5 is more preferably an alkyl group having 1 to 5 carbon atoms substituted with a fluorine atom or a chlorine atom, such as a fluoromethyl group or a chloromethyl group.
  • a hydroxyalkyl group having 1 to 10 carbon atoms as R 3 to R 5 is more preferably a hydroxyalkyl group having 1 to 5 carbon atoms, and more preferably a hydroxymethyl group or a hydroxyethyl group.
  • the aryl group having 6 to 12 carbon atoms as R 3 to R 5 is preferably a phenyl group.
  • R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and a hydroxyalkyl group having 1 to 10 carbon atoms. or an aryl group having 6 to 12 carbon atoms, each independently preferably a hydrogen atom, a halogen atom (preferably a chlorine atom or a fluorine atom), or a methyl group. More preferably, R6 is a methyl group and R7 and R8 are hydrogen atoms.
  • R 9 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a hydroxyalkyl group having 1 to 10 carbon atoms, or a hydroxyalkyl group having 6 to 12 carbon atoms.
  • v represents 0 or 1, and may contain both structural units in which v is 0 and structural units in which v is 1, and preferably contains structural units in which v is 0. Moreover, the aspect containing the structural unit which v is 1 at least is also mentioned.
  • w represents a number from 1 to 3, preferably 2 or more, and preferably 3 or less.
  • Each of x, y and z independently represents a number from 0 to 3, preferably 1 or more, preferably 2 or less, and more preferably 1.
  • R 1 is a methylene group
  • R 2 is a methyl group
  • R 3 to R 5 are each independently a t-butyl group
  • R 6 is a methyl group
  • R 7 and R 8 are A preferred embodiment is a hydrogen atom
  • R 9 is a methyl group or a phenyl group
  • w is 2 or 3
  • x is 1 or 2
  • y and z are 1 or 2.
  • a, b, c and d each independently represent the molar ratio of the structural units.
  • a is a number of 1 or more
  • b is a number of 0 or more
  • c is a number of 1 or more
  • d is a number of 0 or more.
  • the b:a molar ratio is preferably 1:0.8 or more, more preferably 1:3.5 or more. Although the upper limit of the b:a molar ratio is not particularly defined, b is ideally 0, and may be 1:100 or less.
  • the molar ratio of (c+d):a is preferably 1:0.05-7, more preferably 1:0.4-3.
  • the molar ratio of b:(c+d) is preferably 1:1.5 or more, more preferably 1:3 or more.
  • the upper limit of the molar ratio of b:(c+d) is not particularly defined, it may be 1:100 or less.
  • the d:c molar ratio is preferably 1:0.25 or more, more preferably 1:0.67 or more.
  • the upper limit of the d:c molar ratio is not particularly defined, d is ideally 0, and may be 1:100 or less.
  • the total of a, b, c and d is preferably 90 or more, more preferably 95 or more in terms of molar ratio, when the total structural units in the present embodiment is 100, excluding terminal groups More preferably, the total number of structural units is 100.
  • the structural units described in group (1) are the structural units described in group (1-1), the structural units described in group (1-2), and the structural units described in group (1-3). , and preferably at least one of the structural units described in group (1-4), at least the structural unit described in group (1-1) or the structural unit described in group (1-4) It is more preferable to contain structural units.
  • the resin of the present embodiment is preferably a reaction product of at least a compound represented by formula (2) and a raw material resin having a structural unit described in group (4).
  • the resin of the present embodiment is a raw material resin having at least one of the compound represented by formula (2) and the compound represented by formula (3) and the structural unit described in group (4). It may be a reactant.
  • Typical examples of raw material resins having structural units described in group (4) include xylene resins, which are inexpensive resins synthesized from xylene and formaldehyde, and mesitylene resins, which are inexpensive resins synthesized from mesitylene and formaldehyde. mentioned.
  • xylene resins which are inexpensive resins synthesized from xylene and formaldehyde
  • mesitylene resins which are inexpensive resins synthesized from mesitylene and formaldehyde. mentioned.
  • the structural units described in group (1-1), the structural units described in group (1-2), and the group (1-3) A resin containing at least one structural unit described in group (1-4) is obtained.
  • resins containing structural units described in group (1-1) are preferentially obtained.
  • a resin containing a structural unit described in group (1-4) is preferentially obtained.
  • a resin eg, mesitylene resin
  • the curing initiation temperature of the resin can be increased. That is, the structural units described in group (1-1), the structural units described in group (1-2), the structural units described in group (1-3), and the structural units described in group (1-4)
  • the resin of the present embodiment can be made into a resin that is industrially inexpensive, easy to produce, and readily practicable.
  • Group (1-1) (In group (1-1), R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x, y, z, a1, b, c and d are are respectively synonymous with R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x, y, z, a, b, c and d in group (1) * indicates the bonding position with other structural units or terminal groups.)
  • Group (1-2) (In group (1-2), R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x, y, z, a2, b, c and d are are respectively synonymous with R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , v, x,
  • the resin of the present embodiment may contain only one type of each structural unit in group (1), or may contain two or more types. When two or more kinds are included, the total amount is within the above range.
  • the resin of the present embodiment may contain structural units other than each structural unit represented in group (1). Further, in the resin of the present embodiment, each structural unit represented by group (1) may be randomly polymerized or block polymerized.
  • * indicates the bonding position with other structural units or terminal groups.
  • the terminal group is preferably selected from a hydrogen atom, a hydroxyl group and a hydroxymethyl group, more preferably a hydrogen atom or a hydroxyl group, and still more preferably a hydrogen atom.
  • the resin of the present embodiment preferably has a phenolic hydroxyl group content of 0.5 mmol/g or less, more preferably 0.3 mmol/g or less, and even more preferably 0.2 mmol/g or less. , is more preferably 0.1 mmol/g or less, and even more preferably 0.05 mmol/g or less.
  • the lower limit of the phenolic hydroxyl group content is preferably 0 mmol/g, but more than 0 mmol/g is practical.
  • the content of the group represented by the following in group (1) is preferably 1.0 mmol/g or more, more preferably 1.1 mmol/g or more, It is more preferably 1.2 mmol/g or more, still more preferably 1.5 mmol/g or more, and even more preferably 2.0 mmol/g or more.
  • a resin having more excellent curability can be obtained by setting the content to be at least the above lower limit.
  • the upper limit is not particularly defined, it can be, for example, 5.0 mmol/g or less.
  • R 6 to R 8 in the above groups have the same definitions as R 6 to R 8 in group (1).
  • the weight average molecular weight (Mw) is preferably 500 or more, more preferably 1,000 or more, still more preferably 3,000 or more, and 4,000 or more. 7,000 or more is even more preferable.
  • the content is at least the above lower limit, the toughness and flexibility of the resin are improved, and cracks during molding and cracks in the molded product can be more effectively suppressed.
  • the weight average molecular weight (Mw) is preferably 30,000 or less, more preferably 20,000 or less, even more preferably 18,000 or less, and 16 ,000 or less, and may be 15,000 or less.
  • the handleability of the resin is further improved due to the improvement of the solvent solubility of the resin and the decrease of the melt viscosity of the resin.
  • the number average molecular weight (Mn) is preferably 500 or more, more preferably 800 or more, further preferably 1,000 or more, further preferably 1,200 or more. More preferably, it is 1,700 or more.
  • the content is at least the above lower limit, the toughness and flexibility of the resin are improved, and cracks during molding and cracks in the molded product can be more effectively suppressed.
  • the number average molecular weight (Mn) is preferably 10,000 or less, more preferably 8,000 or less, further preferably 7,000 or less. It is more preferably 000 or less, and may be 4,500 or less.
  • the handleability of the resin is further improved due to the improvement of the solvent solubility of the resin and the decrease of the melt viscosity of the resin.
  • the weight average molecular weight and number average molecular weight are measured according to the methods described in Examples below.
  • the method for producing a resin of the present embodiment comprises reacting at least the compound represented by formula (2) with a raw material resin having a structural unit described in group (4) in the presence of a basic compound. characterized by comprising A resin having excellent dielectric properties can be obtained by manufacturing by such a method. Furthermore, a resin having excellent heat resistance can be obtained. Furthermore, the compound represented by formula (3) may also be reacted.
  • R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a carbon represents a hydroxyalkyl group of 1 to 10, or an aryl group of 6 to 12 carbon atoms.
  • group (4) each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group;
  • R 2 represents an alkyl group having 1 to 3 carbon atoms;
  • R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 10 carbon atoms, or 6 carbon atoms.
  • a, b, c and d each independently represent the molar ratio of the structural units, a is a number of 1 or more, b is a number of 0 or more, c is a number of 1 or more, and d is a number of 0 or more.
  • R 1 may be bonded to each other to form a crosslinked structure. * indicates the bonding position with other structural units or terminal groups.
  • Formula (3) (wherein R 9 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a hydroxyalkyl group having 1 to 10 carbon atoms, or , represents an aryl group having 6 to 12 carbon atoms.)
  • R 1 , R 2 , R 3 , R 4 , R 5 , v, w, x, y, z, a, b, c and d are each R 1 , R 3 , R 4 , R 5 in group (1)
  • R 2 , R 3 , v, w, x, y, z, a, b and c have the same meanings and preferred ranges.
  • the terminal groups in group (4) are the same as the terminal groups in group (1).
  • the structural unit described in group (4) the structural unit described in group (4-1), the structural unit described in group (4-2), the structural unit described in group (4-3) It preferably contains a structural unit and at least one structural unit described in group (4-4), and may contain a structural unit described in group (4-1) or group (4-4). more preferred.
  • the structural units described in group (4-1), the structural units described in group (4-2), the structural units described in group (4-3), and the structural units described in group (4-4) By using a raw material resin containing at least one of the above structural units, it becomes possible to produce a resin having the structural unit described in group (1) at a lower cost.
  • R 1 , R 3 , R 4 , R 5 , v, x, y, z, a1, b, c and d are respectively R 1 , R 3 in group (4) , R 4 , R 5 , v, x, y, z, a, b, c and d.
  • Group (4-2) (In group (4-2), R 1 , R 3 , R 4 , R 5 , v, x, y, z, a2, b, c and d are respectively R 1 , R 3 in group (4) , R 4 , R 5 , v, x, y, z, a, b, c and d. * indicates the bonding position with other structural units or terminal groups.)
  • Group (4-3) In group (4-3), R 1 , R 3 , R 4 , R 5 , v, x, y, z, a3, b, c and d are R 1 , R 3 in group (4), respectively.
  • Group (4-4) (In group (4-4), R 1 , R 3 , R 4 , R 5 , v, x, y, z, a4, b, c and d are R 1 , R 3 in group (4), respectively , R 4 , R 5 , v, x, y, z, a, b, c and d. * indicates the bonding position with other structural units or terminal groups.)
  • the weight-average molecular weight (Mw) of the raw material resin having the structural unit described in group (4) is preferably 400 or more, more preferably 600 or more, even more preferably 800 or more, It is more preferably 1,000 or more, still more preferably 2,000 or more, even more preferably 3,000 or more, and may be 5,000 or more.
  • the content is at least the above lower limit, the toughness and flexibility of the resin are improved, and cracks during molding and cracks in the molded product can be more effectively suppressed.
  • the weight average molecular weight (Mw) of the raw material resin having the structural unit described in group (4) is preferably 30,000 or less, more preferably 20,000 or less, and more preferably 16,000.
  • the content is equal to or less than the above upper limit, there is a tendency that the handleability of the resin is further improved due to the improvement of the solvent solubility of the resin and the decrease of the melt viscosity of the resin.
  • the number average molecular weight (Mn) of the raw material resin having the structural unit described in group (4) is preferably 400 or more, more preferably 600 or more, even more preferably 800 or more, It may be 1,000 or more. When the content is at least the above lower limit, the toughness and flexibility of the resin are improved, and cracks during molding and cracks in the molded product can be more effectively suppressed.
  • the number average molecular weight (Mn) of the raw material resin having the structural unit described in group (4) is preferably 5,000 or less, more preferably 4,000 or less, and more preferably 3,500. It is more preferably 2,500 or less, and even more preferably 2,500 or less.
  • the handleability of the resin is further improved due to the improvement of the solvent solubility of the resin and the decrease of the melt viscosity of the resin.
  • the weight average molecular weight and number average molecular weight are measured according to the methods described in Examples below.
  • the starting resin having the structural unit described in group (4) preferably has a hydroxyl value of 100 g/mol or more, more preferably 130 g/mol or more, and even more preferably 160 g/mol or more. , is more preferably 190 g/mol or more, and even more preferably 210 g/mol or more.
  • the starting resin having the structural unit described in group (4) also preferably has a hydroxyl value of 600 g/mol or less, more preferably 550 g/mol or less, and preferably 500 g/mol or less.
  • R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a carbon represents a hydroxyalkyl group of 1 to 10, or an aryl group of 6 to 12 carbon atoms.
  • R 6 , R 7 and R 8 are synonymous with R 6 , R 7 and R 8 in group (1), respectively, and the preferred ranges are also the same.
  • each of the raw material resin having the structural unit described in group (4) and the compound represented by formula (2) may be used alone, or two or more of them may be used. may be used.
  • the molar ratio of the phenolic hydroxyl group of the raw material resin having the structural unit described in group (4) and the compound represented by formula (2) added to the reaction system is 1: It is preferably 1.3 to 0.4, more preferably 1:1.2 to 0.5.
  • the compound represented by formula (2) and the starting resin having the structural unit described in group (4) are reacted in the presence of a basic compound.
  • a basic compound By using a basic compound, the reaction between the phenolic hydroxyl group of the raw material resin having the structural unit described in the above group (4) and the compound represented by formula (2) is promoted.
  • the basic compound is preferably selected from at least one of potassium carbonate, rubidium carbonate and cesium carbonate.
  • potassium carbonate is more preferred.
  • the forms of potassium carbonate, rubidium carbonate and cesium carbonate are not particularly limited, they are preferably in the form of powder. Further, the form of potassium carbonate, rubidium carbonate and cesium carbonate is preferably fine powder (average particle diameter of about 10 to 200 ⁇ m). Using a powdery one increases the specific surface area and enhances the reactivity.
  • the production method of the present embodiment it is preferable to use 1.0 mol (mol/mol-OH) or more of the basic compound per 1 mol of the hydroxyl group of the raw material resin having the structural unit described in group (4). It is more preferable to use 2.5 mol or more, more preferably 10.0 mol or less, and more preferably 7.0 mol or less.
  • the content is at least the above lower limit, the reactivity between the hydroxyl group of the raw material resin having the structural unit described in group (4) and the compound represented by formula (2) tends to be further improved.
  • the content is equal to or less than the upper limit, the effect of reducing the manufacturing cost tends to be further improved.
  • only one type of basic compound may be used, or two or more types may be used. When two or more are used, the total amount is preferably within the above range.
  • the compound represented by formula (3) is also reacted with the compound represented by formula (2) and the raw material resin having the structural unit described in group (4). good too.
  • the compound represented by the formula (3) it reacts with the phenolic hydroxyl groups in the resin that have not reacted with the compound represented by the formula (2), thereby lowering the hydroxyl value of the resulting resin. It is possible to obtain a resin having excellent dielectric properties.
  • Formula (3) (wherein R 9 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a hydroxyalkyl group having 1 to 10 carbon atoms, or , represents an aryl group having 6 to 12 carbon atoms.)
  • R9 has the same definition as R9 in group (1), and the preferred range is also the same.
  • the reaction between the raw material resin having the structural unit described in group (4) and the compound represented by formula (2) is preferably carried out at 40 to 110°C. It is more preferable to carry out at 90°C.
  • a solvent when reacting the raw material resin having the structural unit described in group (4) and the compound represented by formula (2).
  • the solvent can be used without any particular limitation, but an aprotic solvent is preferred, and at least one of an aromatic hydrocarbon solvent and an ether solvent is more preferred.
  • an aprotic solvent By using an aprotic solvent, the action on O 2 - derived from phenolic hydroxyl groups tends to proceed effectively.
  • the resin obtained after the reaction of the raw material resin having the structural unit described in the above group (4) and the compound represented by formula (2) it is preferable to separate and purify the resin obtained after the reaction of the raw material resin having the structural unit described in the above group (4) and the compound represented by formula (2). Separation and purification can be performed according to a conventional method. In the present embodiment, purification can be performed using water or a solvent containing water as a main component (for example, 70% by mass or more of the solvent is water). Further, after purification with water or the like, it may be washed with alcohol (eg, methanol).
  • the resin produced by the resin production method of the present embodiment is preferably the resin of the present embodiment described above.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the resin produced by the resin production method of the present embodiment are respectively the weight average molecular weight (Mw) and number average molecular weight (Mw) of the resin of the present embodiment described above.
  • the same range as the average molecular weight (Mn) is preferred.
  • the resin of this embodiment can be used as a curable resin composition.
  • the curable resin composition may consist only of one or more resins of the present embodiment, or may further contain a thermosetting compound other than the resin of the present embodiment.
  • the thermosetting compound preferably contains at least one selected from a compound other than the resin of the present embodiment and having a carbon-carbon unsaturated bond group and an epoxy resin.
  • the curable resin composition may contain one or more of various additives.
  • Additives include curing initiators, flame retardants, ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, flow modifiers, lubricants, Foaming agents, dispersing agents, leveling agents, brightening agents, polymerization inhibitors and the like.
  • Curing initiators include di-3-methoxybutylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, bis(4-t-butylcyclohexyl)peroxydicarbonate, diisopropylperoxydicarbonate, t-butyl peroxyisopropyl carbonate, dimyristyl peroxycarbonate, 1,1,3,3-tetramethylbutyl neodecanoate, ⁇ -cumyl peroxyneodecanoate, t-butyl peroxyneodecanoate, 1, 1bis(t-butylperoxy)cyclohexane, 2,2bis(4,4-di-t-butylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy)cyclododecane, t-hexylper Oxyisopropyl monocarbonate, t-butylperoxy-3,5,5
  • the amount thereof is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the resin of the present embodiment, and 0.5 parts by mass. more preferably 1.0 parts by mass or more, preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less; It is more preferably 0 parts by mass or less, and even more preferably 2.0 parts by mass or less.
  • the curable resin composition of the present embodiment may contain only one curing initiator, or may contain two or more curing initiators. When two or more types are included, the total amount is preferably within the above range.
  • the cured product of this embodiment is obtained by curing the curable resin composition. Since such a cured product has excellent heat resistance and excellent dielectric properties, it can be suitably used as an insulating layer for printed wiring boards and a semiconductor package material.
  • the number average molecular weight and weight average molecular weight of the resin were obtained by gel permeation chromatography (GPC) method. Showa Denko KF-801, KF-802, KF-803, and KF-804 manufactured by Showa Denko K.K. Using. 10 mg of the resin to be measured was dissolved in 3 g of tetrahydrofuran as an eluent, the injection amount to the column was 20 ⁇ L, and the analysis was performed at an eluent flow rate of 1 mL/min and a column temperature of 40°C. A molecular weight calibration curve was created using standard polystyrene PStQuick MP-N manufactured by Tosoh Corporation, and the polystyrene equivalent molecular weight was estimated.
  • ⁇ Hydroxyl group content of resin The phenolic hydroxyl group content of the above resin was calculated by proton nuclear magnetic resonance spectrum ( 1 H-NMR) analysis. Specifically, when the proton peak area of the p-tert-butyl group around 1.07 to 1.24 ppm is set to 9, the proton peak area of the phenolic hydroxyl group around 4.2 to 5.4 ppm is calculated. The reduction rate [%] before and after was calculated by the following formula as the modification rate [%] of the phenolic hydroxyl group.
  • the methacryl group content was calculated by proton nuclear magnetic resonance spectrum ( 1 H-NMR) analysis. Specifically, when the peak area of p-tert-butyl group protons around 1.07 to 1.24 ppm is set to 9, the peak area of one of the methacrylic group terminal protons around 5.4 to 5.8 ppm is Multiplied by 100 is the methacrylic rate [%], and the methacrylic group content [mmol/ g] was calculated. In addition, the peak of the phenolic hydroxyl group of the phenol-modified xylene resin or phenol-modified mesitylene resin around 4.2 to 5.4 ppm disappeared after the reaction, confirming that the reaction had progressed completely. bottom. Equipment used: AVANCEIII500 (500MHz) manufactured by Bruker
  • mesitylene manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • mesitylene manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the separated upper oil phase was left, and the lower aqueous phase was removed. Further, the oil phase was neutralized and washed with water, and unreacted raw materials were distilled off under reduced pressure to obtain 578.6 g of mesitylene formaldehyde resin.
  • the number-average molecular weight and weight-average molecular weight of the obtained resin were measured according to the conditions described above, and are shown in Table 1.
  • Example 1 22.0 g of the p-tert-butylphenol-modified xylene resin obtained in Synthesis Example 1 (96.0 g of the p-tert-butylphenol-modified xylene resin obtained in Synthesis Example 1) was placed in a 300 mL four-necked flask equipped with a stirrer, thermometer and reflux tube under a nitrogen atmosphere.
  • the solid matter was collected and washed with purified water and then with methanol.
  • the obtained solid was washed again with purified water and methanol, and then dried under reduced pressure to obtain 23.1 g of the desired methacrylic compound.
  • the number average molecular weight, weight average molecular weight and methacrylic group content of the obtained methacrylic compound were measured according to the conditions described above, and are shown in Table 2.
  • a cured product was produced according to the following method. In addition, the dielectric properties, glass transition temperature, and 5% weight loss temperature of the obtained cured product were measured and shown in Table 2.
  • cured product a mixture obtained by adding 1.5 parts by mass of Perbutyl (registered trademark) P (manufactured by NOF Corporation) to the methacrylic compound obtained above was put into a mold of 100 mm in length and 30 mm in width. It was produced by vacuum heat pressing at 200° C. for 1 hour and a half at a pressure of 92 MPa.
  • the dielectric constant and dielectric loss tangent of the cured product were obtained by cutting the obtained cured product into pieces of 1 mm in thickness, 0.8 mm in width and 100 mm in length. It was measured.
  • the glass transition temperature of the cured product was defined as the peak temperature of the dynamic elastic modulus obtained by measuring the dynamic viscoelasticity of the obtained cured product cut into 5 mm wide and 40 mm long pieces.
  • the unit is °C.
  • 5% weight loss temperature of cured product was determined by measuring the weight of the resulting cured product by cutting it into pieces of about 10 mg and performing simultaneous thermogravimetric and differential thermal measurements. The unit is °C. Equipment used: STA7200 manufactured by Hitachi High-Tech Science Co., Ltd. Heating rate: 10°C/min
  • Example 2 In Example 1, the amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., average particle size 150 ⁇ m or less) was changed to 66.4 g (480 mmol), and methacrylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged. The reaction was carried out in the same manner as in Example 1 except that the amount was changed to 12.4 g (80.5 mmol) and the amount of acetic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was changed to 14.9 g (146 mmol). and purification to obtain 21.6 g of the desired methacrylic compound.
  • potassium carbonate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., average particle size 150 ⁇ m or less
  • methacrylic anhydride manufactured by Tokyo Chemical Industry Co., Ltd.
  • the number average molecular weight, weight average molecular weight and methacrylation rate of the obtained methacrylic compound were measured according to the conditions described above, and are shown in Table 2.
  • the dielectric properties, glass transition temperature, and 5% weight loss temperature of the cured product prepared in the same manner as in Example 1 were measured and shown in Table 2.
  • Example 3 In Example 1, the amount of p-tert-butylphenol-modified xylene resin charged was changed to 22.1 g (96.3 mmol in terms of hydroxyl group moles), and the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to 191 g. , the amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., average particle size of 150 ⁇ m or less) was replaced with 66.6 g (482 mmol), and methacrylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged.
  • the amount of p-tert-butylphenol-modified xylene resin charged was changed to 22.1 g (96.3 mmol in terms of hydroxyl group moles), and the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to
  • the reaction was carried out in the same manner as in Example 1, except that the amount was changed to 12.3 g (79.7 mmol) and the charged amount of acetic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was changed to 15.3 g (150 mmol). and purification to obtain 23.8 g of the desired methacrylic compound.
  • the number average molecular weight, weight average molecular weight and methacrylation rate of the obtained methacrylic compound were measured according to the conditions described above, and are shown in Table 2.
  • the dielectric properties, glass transition temperature, and 5% weight loss temperature of the cured product prepared in the same manner as in Example 1 were measured and shown in Table 2.
  • Example 4 In Example 1, the amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., average particle size 150 ⁇ m or less) was changed to 66.5 g (481 mmol), and methacrylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged. The reaction was carried out in the same manner as in Example 1 except that the amount was changed to 13.7 g (88.8 mmol) and the amount of acetic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was changed to 11.8 g (115 mmol). and purification to obtain 23.9 g of the target methacrylic compound.
  • the number average molecular weight, weight average molecular weight and methacrylation rate of the obtained methacrylic compound were measured according to the conditions described above, and are shown in Table 2.
  • the dielectric properties, glass transition temperature, and 5% weight loss temperature of the cured product prepared in the same manner as in Example 1 were measured and shown in Table 2.
  • Example 5 In Example 1, instead of the p-tert-butylphenol-modified xylene resin obtained in Synthesis Example 1, 22.6 g of the p-tert-butylphenol-modified xylene resin obtained in Synthesis Example 2 (66.6 g in terms of the number of moles of hydroxyl groups). 4 mmol) was used, the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to 200 g, and the amount of potassium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., average particle size 150 ⁇ m or less) was changed to 45.
  • the amount of tetrahydrofuran manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • potassium carbonate manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., average particle size 150 ⁇ m or less
  • Example 6 In Example 1, the amount of p-tert-butylphenol-modified xylene resin charged was changed to 17.1 g (74.5 mmol in terms of hydroxyl group moles), and the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to 223 g. , the amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., average particle size of 150 ⁇ m or less) was replaced with 60.4 g (437 mmol), and methacrylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged.
  • the amount of p-tert-butylphenol-modified xylene resin charged was changed to 17.1 g (74.5 mmol in terms of hydroxyl group moles), and the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to
  • Example 1 Except that the amount was changed to 10.4 g (67.3 mmol) and that 26.7 g (118 mmol) of benzoic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of acetic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). was reacted and purified in the same manner as in Example 1 to obtain 21.4 g of the objective methacrylic compound.
  • the number-average molecular weight, weight-average molecular weight and methacrylation rate of the obtained methacrylic compound were measured according to the conditions described above, and are shown in Table 3.
  • the dielectric properties, glass transition temperature, and 5% weight loss temperature of the cured product prepared in the same manner as in Example 1 were measured and shown in Table 3.
  • Example 7 In Example 1, instead of the p-tert-butylphenol-modified xylene resin obtained in Synthesis Example 1, 22.2 g of the p-tert-butylphenol-modified mesitylene resin obtained in Synthesis Example 4 (70.0 g in terms of hydroxyl group moles) was used. 5 mmol) was used, the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to 200 g, and the amount of potassium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., average particle size: 150 ⁇ m or less) was changed to 38.
  • tetrahydrofuran manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • potassium carbonate manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., average particle size: 150 ⁇ m or less
  • Example 8 In Example 1, instead of the p-tert-butylphenol-modified xylene resin obtained in Synthesis Example 1, 15.0 g of the p-tert-butylphenol-modified mesitylene resin obtained in Synthesis Example 5 (59.0 g in terms of moles of hydroxyl groups) was used. 8 mmol) was used, the amount of tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was changed to 136 g, and the amount of potassium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., average particle size: 150 ⁇ m or less) was changed to 33.
  • tetrahydrofuran manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • potassium carbonate manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., average particle size: 150 ⁇ m or less
  • Example 1 Using a mixture obtained by adding 1.5 parts by mass of Perbutyl (registered trademark) P (manufactured by NOF Corporation) to SA9000 (manufactured by SABIC), which is a general polyphenylene ether with methacrylic groups at both ends, Example 1 and A cured product was produced in the same manner. Dielectric properties, glass transition temperature, and 5% weight loss temperature were measured using the obtained cured product, and the results are shown in Table 3.
  • Perbutyl (registered trademark) P manufactured by NOF Corporation
  • SA9000 manufactured by SABIC

Abstract

誘電特性に優れた新規な樹脂、ならびに、樹脂の製造方法、硬化性樹脂組成物および硬化物の提供。群(1)に記載された構成単位を有する樹脂。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。

Description

樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物
 本発明は、新規な樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物に関する。
 ビニル化合物等のビニル基を有する樹脂は、耐熱性に優れていることから各種材料に用いられている。例えば、特許文献1に開示されているものが知られている。
 一方、ビニル化合物等のビニル基を有する樹脂の優れた耐熱性を活かしつつ、誘電特性を高めることによって、高周波信号を扱う電子機器の材料として用いることも検討されている。このようなビニル化合物およびその製造方法については、例えば、特許文献2、特許文献3に開示されているものが知られている。
特開2020-037651号公報 特開2015-189925号公報 特開平01-108212号公報
 そして、近年の技術革新に伴い、誘電特性に優れた新規なビニル基を有する樹脂およびその製造方法が求められる。
 本発明はかかる課題を解決することを目的とするものであって、誘電特性に優れた新規な樹脂、ならびに、樹脂の製造方法、硬化性樹脂組成物および硬化物を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、所定の構造の樹脂とすることにより、上記課題を解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>群(1)に記載された構成単位を有する樹脂。
群(1)
Figure JPOXMLDOC01-appb-C000015
(群(1)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。Rは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
<2>群(1)において、Rがメチル基であり、RおよびRが水素原子である、<1>に記載の樹脂。
<3>群(1)において、R、RおよびRが、それぞれ独立に、炭素数1~10のアルキル基である、<1>または<2>に記載の樹脂。
<4>群(1)において、R、RおよびRが、それぞれ独立に、炭素数1~5のアルキル基である、<1>または<2>に記載の樹脂。
<5>前記樹脂のフェノール性水酸基含量が、0.5mmol/g以下である、<1>~<4>のいずれか1つに記載の樹脂。
<6>前記樹脂の群(1)中の下記で表される基の含有量が1.0mmol/g以上である、<1>~<5>のいずれか1つに記載の樹脂。
Figure JPOXMLDOC01-appb-C000016
(上記基におけるR~Rは、群(1)におけるR~Rと同義である。)
<7>群(1)に記載された構成単位が、群(1-1)に記載された構成単位、群(1-2)に記載された構成単位、群(1-3)に記載された構成単位、および、群(1-4)に記載された構成単位の少なくとも1種を含む、<1>~<6>のいずれか1つに記載の樹脂。
群(1-1)
Figure JPOXMLDOC01-appb-C000017
(群(1-1)中、R、R、R、R、R、R、R、R、v、x、y、z、a1、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(1-2)
Figure JPOXMLDOC01-appb-C000018
(群(1-2)中、R、R、R、R、R、R、R、R、v、x、y、z、a2、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(1-3)
Figure JPOXMLDOC01-appb-C000019
(群(1-3)中、R、R、R、R、R、R、R、R、v、x、y、z、a3、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(1-4)
Figure JPOXMLDOC01-appb-C000020
(群(1-4)中、R、R、R、R、R、R、R、R、v、x、y、z、a4、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
<8>群(1)に記載された構成単位が、群(1-1)に記載された構成単位または群(1-4)に記載された構成単位を含む、<7>に記載の樹脂。
<9>数平均分子量(Mn)が500~6,000、かつ、重量平均分子量(Mw)が500~15,000である、<1>~<8>のいずれか1つに記載の樹脂。
<10>前記樹脂の末端基が、水素原子、水酸基およびヒドロキシメチル基から選択される、<1>~<9>のいずれか1つに記載の樹脂。
<11>少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂との反応物である樹脂。
式(2)
Figure JPOXMLDOC01-appb-C000021
(式(2)中、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
群(4)
Figure JPOXMLDOC01-appb-C000022
(群(4)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
<12>少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂とを、塩基性化合物の存在下で反応させることを含む、樹脂の製造方法。
式(2)
Figure JPOXMLDOC01-appb-C000023
(式(2)中、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
群(4)
Figure JPOXMLDOC01-appb-C000024
(群(4)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
<13>式(2)において、Rがメチル基であり、RおよびRが水素原子である、<12>に記載の樹脂の製造方法。
<14>群(4)において、R、RおよびRが、それぞれ独立に、炭素数1~10のアルキル基である、<12>または<13>に記載の樹脂の製造方法。
<15>群(4)において、R、RおよびRが、それぞれ独立に、炭素数1~5のアルキル基である、<12>または<13>に記載の樹脂の製造方法。
<16>前記原料樹脂の水酸基価が、100~600g/molである、<12>~<15>のいずれか1つに記載の樹脂の製造方法。
<17>群(4)に記載された構成単位が、群(4-1)に記載された構成単位、群(4-2)に記載された構成単位、群(4-3)に記載された構成単位、および、群(4-4)に記載された構成単位の少なくとも1種を含む、<12>~<16>のいずれか1つに記載の樹脂の製造方法。
群(4-1)
Figure JPOXMLDOC01-appb-C000025
(群(4-1)中、R、R、R、R、v、x、y、z、a1、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(4-2)
Figure JPOXMLDOC01-appb-C000026
(群(4-2)中、R、R、R、R、v、x、y、z、a2、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(4-3)
Figure JPOXMLDOC01-appb-C000027
(群(4-3)中、R、R、R、R、v、x、y、z、a3、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(4-4)
Figure JPOXMLDOC01-appb-C000028
(群(4-4)中、R、R、R、R、v、x、y、z、a4、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
<18>群(4)に記載された構成単位が、群(4-1)に記載された構成単位または群(4-4)に記載された構成単位を含む、<17>に記載の樹脂の製造方法。
<19>前記群(4)に記載された構成単位を有する原料樹脂の数平均分子量Mnが400~4,000、重量平均分子量Mwが400~16,000である、<12>~<18>のいずれか1つに記載の樹脂の製造方法。
<20>前記群(4)に記載された構成単位を有する原料樹脂の末端基が、水素原子、水酸基およびヒドロキシメチル基から選択される、<12>~<19>のいずれか1つに記載の樹脂の製造方法。
<21>前記塩基性化合物が、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウムの少なくとも1種を含む、<12>~<20>のいずれか1つに記載の樹脂の製造方法。
<22>前記製造される樹脂が、<1>~<11>のいずれか1つに記載の樹脂である、<12>~<21>のいずれか1つに記載の樹脂の製造方法。
<23><1>~<11>のいずれか1つに記載の樹脂を含む、硬化性樹脂組成物。
<24>さらに、<1>~<11>のいずれか1つに記載の樹脂以外の熱硬化性化合物を含む、<23>に記載の硬化性樹脂組成物。
<25>前記熱硬化性化合物が、<1>~<11>のいずれか1つに記載の樹脂以外の炭素炭素不飽和結合基を有する化合物およびエポキシ樹脂から選択される少なくとも1種を含む、<23>または<24>に記載の硬化性樹脂組成物。
<26><23>~<25>のいずれか1つに記載の硬化性樹脂組成物の硬化物。
 本発明により、誘電特性に優れた新規な樹脂、ならびに、樹脂の製造方法、硬化性樹脂組成物および硬化物を提供可能になった。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。本明細書では、置換および無置換を記していない表記は、無置換の方が好ましい。
 本明細書で示す規格が年度によって、測定方法等が異なる場合、特に述べない限り、2021年1月1日時点における規格に基づくものとする。
 本実施形態の樹脂は、群(1)に記載された構成単位を有する。このような樹脂の硬化物は、誘電特性に優れる。さらに、耐熱性に優れた樹脂が得られる。特に、ビニル基を含む構成単位として、群(1)の左から3番目の構成単位を含むことにより、工業的により安価に製造可能となる。また、合成後の樹脂の精製に際し、水で精製することができるため、工業的に有利である。
群(1)
Figure JPOXMLDOC01-appb-C000029
(群(1)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。Rは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
 群(1)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表し、メチレン基、メチレンオキシメチレン基が好ましく、メチレン基がより好ましい。Rは、互いに結合して、架橋構造を形成していてもよい。Rが架橋した構造としては、下記構造が例示される。
Figure JPOXMLDOC01-appb-C000030
 Rは、架橋構造を形成していない方が好ましい。nは1以上の数であり、通常1~10の数である。
 Rは、炭素数1~3のアルキル基を表し、メチル基またはエチル基が好ましく、メチル基がより好ましい。
 R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表し、それぞれ独立に、炭素数1~10のアルキル基であることが好ましく、それぞれ独立に、炭素数1~5のアルキル基であることがより好ましい。
 R~Rとしてのハロゲン原子は、フッ素原子または塩素原子が好ましい。
 R~Rとしての炭素数1~10のアルキル基は、炭素数1~5のアルキル基であることがより好ましく、メチル基、エチル基、i-プロピル基、n-プロピル基、n-ブチル基、またはt-ブチル基であることがより好ましく、t-ブチル基であることがさらに好ましい。
 R~Rとしての炭素数1~10のハロゲン化アルキル基は、フッ素原子または塩素原子で置換された炭素数1~5のアルキル基であることがより好ましく、フルオロメチル基、クロロメチル基、フルオロエチル基またはクロロエチル基であることがさらに好ましい。
 R~Rとしての炭素数1~10のヒドロキシアルキル基は、炭素数1~5のヒドロキシアルキル基であることがより好ましく、ヒドロキシメチル基またはヒドロキシエチル基であることがさらに好ましい。
 R~Rとしての炭素数6~12のアリール基は、フェニル基が好ましい。
 R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表し、それぞれ独立に、水素原子、ハロゲン原子(好ましくは、塩素原子またはフッ素原子)、メチル基が好ましい。より好ましくは、Rがメチル基であり、RおよびRが水素原子である。
 Rは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表し、それぞれ独立に、炭素数1~10のアルキル基、または、炭素数6~12のアリール基が好ましく、炭素数1~5のアルキル基またはフェニル基が好ましく、メチル基またはフェニル基がさらに好ましい。
 vは0または1を表し、vが0である構成単位とvが1である構成単位の両方を含んでいてもよく、少なくともvが0である構成単位を含むことが好ましい。また、少なくともvが1である構成単位を含む態様も挙げられる。
 wは1~3の数を表し、2以上が好ましく、また、3以下が好ましい。
 x、yおよびzは、それぞれ独立に、0~3の数を表し、1以上が好ましく、また、2以下が好ましく、1がより好ましい。
 群(1)において、Rがメチレン基、Rはメチル基、R~Rは、それぞれ独立に、t-ブチル基であり、Rがメチル基であり、RおよびRが水素原子であり、Rがメチル基またはフェニル基であり、wが2または3であり、xが1または2であり、yおよびzは、1または2である態様が好ましい。
 a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表す。aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。b:aのモル比率は、1:0.8以上であることが好ましく、1:3.5以上であることがより好ましい。b:aのモル比率の上限は特に定めるものではないが、bが0の場合が理想であり、1:100以下であってもよい。また、(c+d):aのモル比率は、1:0.05~7であることが好ましく、1:0.4~3であることがより好ましい。さらに、b:(c+d)のモル比率は、1:1.5以上であることが好ましく、1:3以上であることがより好ましい。b:(c+d)のモル比率の上限は特に定めるものではないが、1:100以下であってもよい。d:cのモル比率は、1:0.25以上であることが好ましく、1:0.67以上であることがより好ましい。d:cのモル比率の上限は特に定めるものではないが、dが0の場合が理想であり、1:100以下であってもよい。
 a、b、cおよびdの合計は、本実施形態における全構成単位を100としたときに、モル比率で、90以上であることが好ましく、95以上であることがより好ましく、末端基を除く全構成単位が100であることがさらに好ましい。
 群(1)に記載された構成単位は、群(1-1)に記載された構成単位、群(1-2)に記載された構成単位、群(1-3)に記載された構成単位、および、群(1-4)に記載された構成単位の少なくとも1種を含むことが好ましく、少なくとも、群(1-1)に記載された構成単位または群(1-4)に記載された構成単位を含むことがより好ましい。
 本実施形態の樹脂は、後述するとおり、少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂との反応物であることが好ましい。さらには、本実施形態の樹脂は、式(2)で表される化合物および式(3)で表される化合物の少なくとも1種と、群(4)に記載された構成単位を有する原料樹脂の反応物であってもよい。
 群(4)に記載された構成単位を有する原料樹脂は、例えば、キシレンとホルムアルデヒドから合成できる安価な樹脂であるキシレン樹脂やメシチレンとホルムアルデヒドから合成される安価な樹脂であるメシチレン樹脂が代表例として挙げられる。これらの原料樹脂を用いて、本実施形態の樹脂を得る場合、群(1-1)に記載された構成単位、群(1-2)に記載された構成単位、群(1-3)に記載された構成単位、群(1-4)に記載された構成単位の少なくとも1種を含む樹脂が得られる。特に、キシレン樹脂を用いた場合、群(1-1)に記載された構成単位を含む樹脂が優先的に得られる。また、メシチレン樹脂を用いた場合、群(1-4)に記載された構成単位を含む樹脂が優先的に得られる。本実施形態の樹脂は、群(1-4)に記載された構成単位の少なくとも1種を含む樹脂(例えば、メシチレン樹脂)とすることにより、樹脂の硬化開始温度を高くできる。
 すなわち、群(1-1)に記載された構成単位、群(1-2)に記載された構成単位、群(1-3)に記載された構成単位、群(1-4)に記載された構成単位の少なくとも1種を含む樹脂とすることにより、本実施形態の樹脂を工業的に安価で製造しやすい、即実行性のある樹脂とすることができる。
群(1-1)
Figure JPOXMLDOC01-appb-C000031
(群(1-1)中、R、R、R、R、R、R、R、R、v、x、y、z、a1、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(1-2)
Figure JPOXMLDOC01-appb-C000032
(群(1-2)中、R、R、R、R、R、R、R、R、v、x、y、z、a2、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(1-3)
Figure JPOXMLDOC01-appb-C000033
(群(1-3)中、R、R、R、R、R、R、R、R、v、x、y、z、a3、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(1-4)
Figure JPOXMLDOC01-appb-C000034
(群(1-4)中、R、R、R、R、R、R、R、R、v、x、y、z、a4、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
 本実施形態の樹脂は、群(1)における各構成単位を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となる。
 本実施形態の樹脂は、群(1)において表される各構成単位以外の構成単位を含んでいてもよい。
 また、本実施形態の樹脂は、群(1)で示される各構成単位がランダム重合していても、ブロック重合していてもよい。
 群(1)において、*は他の構成単位または末端基との結合位置を示す。末端基としては、水素原子、水酸基およびヒドロキシメチル基から選択されることが好ましく、水素原子または水酸基がより好ましく、水素原子がさらに好ましい。
 本実施形態の樹脂は、フェノール性水酸基含量が、0.5mmol/g以下であることが好ましく、0.3mmol/g以下であることがより好ましく、0.2mmol/g以下であることがさらに好ましく、0.1mmol/g以下であることが一層好ましく、0.05mmol/g以下であることがより一層好ましい。前記上限値以下とすることにより、より低誘電特性に優れた樹脂が得られる。前記フェノール性水酸基含量の下限値は、0mmol/gであることが好ましいが、0mmol/g超であることが実際的である。
 また、本実施形態の樹脂は、群(1)中の下記で表される基の含有量が1.0mmol/g以上であることが好ましく、1.1mmol/g以上であることがより好ましく、1.2mmol/g以上であることがさらに好ましく、1.5mmol/g以上であることが一層好ましく、2.0mmol/g以上であることがより一層好ましい。前記下限値以上とすることにより、より硬化性に優れた樹脂が得られる。また、耐熱性や誘電特性により優れたものが得られる傾向にある。上限値については特に定めるものではないが、例えば、5.0mmol/g以下とすることができる。
Figure JPOXMLDOC01-appb-C000035
(上記基におけるR~Rは、群(1)におけるR~Rと同義である。)
 本実施形態の樹脂においては、重量平均分子量(Mw)が500以上であることが好ましく、1,000以上であることがより好ましく、3,000以上であることがさらに好ましく、4,000以上であることが一層好ましく、7,000以上であることがより一層好ましい。前記下限値以上とすることにより、樹脂の靭性や柔軟性が向上し、成形時の割れ、および、成形品のクラックの発生をより効果的に抑制できる。また、本実施形態の樹脂においては、重量平均分子量(Mw)が30,000以下であることが好ましく、20,000以下であることがより好ましく、18,000以下であることがさらに好ましく、16,000以下であることが一層好ましく、15,000以下であってもよい。前記上限値以下とすることにより、樹脂の溶剤溶解性の向上や樹脂の溶融粘度の低下により、樹脂のハンドリング性がより向上する傾向にある。
 本実施形態の樹脂においては、数平均分子量(Mn)が500以上であることが好ましく、800以上であることがより好ましく1,000以上であることがさらに好ましく、1,200以上であることが一層好ましく、1,700以上であることがより一層好ましい。前記下限値以上とすることにより、樹脂の靭性や柔軟性が向上し、成形時の割れ、および、成形品のクラックの発生をより効果的に抑制できる。また、本実施形態の樹脂においては、数平均分子量(Mn)10,000以下であることが好ましく、8,000以下であることがより好ましく、7,000以下であることがさらに好ましく、6,000以下であることが一層好ましく、4,500以下であってもよい。前記上限値以下とすることにより、樹脂の溶剤溶解性の向上や樹脂の溶融粘度の低下により、樹脂のハンドリング性がより向上する傾向にある。
 重量平均分子量および数平均分子量は、後述する実施例に記載の方法に従って測定される。
 本実施形態の樹脂の製造方法は、少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂とを、塩基性化合物の存在下で反応させることを含むことを特徴とする。このような方法で製造することにより、誘電特性に優れた樹脂が得られる。さらに、耐熱性に優れた樹脂が得られる。さらに、式(3)で表される化合物も反応させてもよい。
式(2)
Figure JPOXMLDOC01-appb-C000036
(式(2)中、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
群(4)
Figure JPOXMLDOC01-appb-C000037
(群(4)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
式(3)
Figure JPOXMLDOC01-appb-C000038
(式(3)中、Rは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
 まず、群(4)の詳細について説明する。
 群(4)において、R、R、R、R、R、v、w、x、y、z、a、b、cおよびdは、それぞれ、群(1)におけるR、R、R、v、w、x、y、z、a、bおよびcと同義であり好ましい範囲も同様である。群(4)における末端基は、群(1)における末端基と同様である。
 また、群(4)に記載された構成単位が、群(4-1)に記載された構成単位、群(4-2)に記載された構成単位、群(4-3)に記載された構成単位、および、群(4-4)に記載された構成単位の少なくとも1種を含むことが好ましく、群(4-1)または群(4-4)に記載された構成単位を含むことがより好ましい。群(4-1)に記載された構成単位、群(4-2)に記載された構成単位、群(4-3)に記載された構成単位、および、群(4-4)に記載された構成単位の少なくとも1種を含む原料樹脂を用いることにより、より安価に群(1)に記載された構成単位を有する樹脂を製造することが可能になる。
群(4-1)
Figure JPOXMLDOC01-appb-C000039
(群(4-1)中、R、R、R、R、v、x、y、z、a1、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(4-2)
Figure JPOXMLDOC01-appb-C000040
(群(4-2)中、R、R、R、R、v、x、y、z、a2、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(4-3)
Figure JPOXMLDOC01-appb-C000041
(群(4-3)中、R、R、R、R、v、x、y、z、a3、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
群(4-4)
Figure JPOXMLDOC01-appb-C000042
(群(4-4)中、R、R、R、R、v、x、y、z、a4、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
 群(4)に記載された構成単位を有する原料樹脂においては、重量平均分子量(Mw)が400以上であることが好ましく、600以上であることがより好ましく、800以上であることがさらに好ましく、1,000以上であることが一層好ましく、2,000以上であることがより一層好ましく、3,000以上であることがより一層好ましく、5,000以上であってもよい。前記下限値以上とすることにより、樹脂の靭性や柔軟性が向上し、成形時の割れ、および、成形品のクラックの発生をより効果的に抑制できる。また、群(4)に記載された構成単位を有する原料樹脂においては、重量平均分子量(Mw)が30,000以下であることが好ましく、20,000以下であることがより好ましく、16,000以下であることがさらに好ましく、12,000以下であることが一層好ましく、10,000以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の溶剤溶解性の向上や樹脂の溶融粘度の低下により、樹脂のハンドリング性がより向上する傾向にある。
 群(4)に記載された構成単位を有する原料樹脂においては、数平均分子量(Mn)が400以上であることが好ましく、600以上であることがより好ましく、800以上であることが一層好ましく、1,000以上であってもよい。前記下限値以上とすることにより、樹脂の靭性や柔軟性が向上し、成形時の割れ、および、成形品のクラックの発生をより効果的に抑制できる。また、群(4)に記載された構成単位を有する原料樹脂においては、数平均分子量(Mn)が5,000以下であることが好ましく、4,000以下であることがより好ましく、3,500以下であることがさらに好ましく、2,500以下であることが一層好ましい。前記上限値以下とすることにより、樹脂の溶剤溶解性の向上や樹脂の溶融粘度の低下により、樹脂のハンドリング性がより向上する傾向にある。
 重量平均分子量および数平均分子量は、後述する実施例に記載の方法に従って測定される。
 群(4)に記載された構成単位を有する原料樹脂は、水酸基価が100g/mol以上であることが好ましく、130g/mol以上であることがより好ましく、160g/mol以上であることがさらに好ましく、190g/mol以上であることが一層好ましく、210g/mol以上であることがより一層好ましい。前記下限値以上とすることにより、式(2)で表される化合物と反応する水酸基の量が必要以上に多くならず、誘電特性がより向上する傾向にある。群(4)に記載された構成単位を有する原料樹脂は、また、水酸基価が600g/mol以下であることが好ましく、550g/mol以下であることがより好ましく、500g/mol以下であることがさらに好ましく、450g/mol以下であることが一層好ましく、400g/mol以下であることがより一層好ましく、360g/mol以下であってもよい。前記上限値以下とすることにより、耐熱性に優れ、誘電特性に優れた樹脂が得られる傾向にある。
 すなわち、式(2)で表される化合物由来の構造を導入することにより、得られる樹脂は、Tgが高くなるが、誘電特性が劣る傾向にある。そこで、原料の水酸基の量を上記のとおり調整することが望ましい。
 水酸基当量は実施例の記載に従って測定される。
 次に、式(2)の詳細について説明する。
式(2)
Figure JPOXMLDOC01-appb-C000043
(式(2)中、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
 式(2)において、R、RおよびRは、それぞれ、群(1)におけるR、RおよびRと同義であり好ましい範囲も同様である。
 本実施形態の樹脂の製造方法において、群(4)に記載された構成単位を有する原料樹脂および式(2)で表される化合物は、それぞれ1種のみを用いてもよいし、2種以上を用いてもよい。
 本実施形態の樹脂の製造方法において、反応系に添加する群(4)に記載された構成単位を有する原料樹脂のフェノール性水酸基および式(2)で表される化合物のモル比率は、1:1.3~0.4であることが好ましく、1:1.2~0.5であることがより好ましい。
 本実施形態の樹脂の製造方法においては、少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂とを、塩基性化合物の存在下で反応させる。塩基性化合物を用いることにより、上記群(4)に記載された構成単位を有する原料樹脂のフェノール性水酸基と式(2)で表される化合物の反応が促進される。
 塩基性化合物は、炭酸カリウム、炭酸ルビジウムおよび炭酸セシウムの少なくとも1種から選択されることが好ましい。これらの塩基性化合物を触媒として用いることにより、群(4)に記載された構成単位を有する原料樹脂と式(2)で表される化合物の反応を効果的に促進させることができると共に、得られる化合物の収率が高くなる傾向にある。
 本実施形態では、炭酸カリウム、炭酸ルビジウムおよび炭酸セシウムのうち、炭酸カリウムおよび炭酸セシウムが好ましく、炭酸カリウムがより好ましい。
 炭酸カリウム、炭酸ルビジウムおよび炭酸セシウムの形態については、特に定めるものではないが、粉末状であることが好ましい。また、炭酸カリウム、炭酸ルビジウムおよび炭酸セシウムの形態は、微粉(平均粒径10~200μm程度)のものが好ましい。粉末状のものを用いると、比表面積が大きくなり、反応性を高めることができる。
 本実施形態の製造方法においては、群(4)に記載された構成単位を有する原料樹脂の水酸基1モル当たり、塩基性化合物で1.0モル(mol/mol-OH)以上用いることが好ましく、2.5モル以上用いることがより好ましく、また、10.0モル以下用いることが好ましく、7.0モル以下用いることがより好ましい。前記下限値以上とすることにより、群(4)に記載された構成単位を有する原料樹脂の水酸基と式(2)で表される化合物の反応性がより向上する傾向にある。前記上限値以下とすることにより、製造コストの低減効果がより向上する傾向にある。
 本実施形態の製造方法においては、塩基性化合物を1種のみを用いてもよいし、2種以上を用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂の製造方法においては、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂と共に、式(3)で表される化合物も反応させてもよい。式(3)で表される化合物も反応させることにより、式(2)で表される化合物と反応しなかった樹脂中のフェノール性水酸基と反応し、得られる樹脂の水酸基価を低くすることができ、誘電特性に優れた樹脂が得られる。
式(3)
Figure JPOXMLDOC01-appb-C000044
(式(3)中、Rは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
 式(3)において、Rは、群(1)におけるRと同義であり、好ましい範囲も同様である。
 本実施形態の製造方法においては、群(4)に記載された構成単位を有する原料樹脂および式(2)で表される化合物との反応は、40~110℃で行うことが好ましく、50~90℃で行うことがより好ましい。
 本実施形態の製造方法においては、群(4)に記載された構成単位を有する原料樹脂および式(2)で表される化合物を反応させる際に溶媒を用いることが好ましい。
 溶媒は、特に制限なく用いることができるが、非プロトン性溶媒が好ましく、芳香族炭化水素溶媒、および、エーテル溶媒の少なくとも1種がより好ましい。非プロトン性溶媒を用いることにより、フェノール性水酸基由来のOへの作用が効果的に進行する傾向にある。
 本実施形態の製造方法においては、上記群(4)に記載された構成単位を有する原料樹脂および式(2)で表される化合物の反応後に得られる樹脂を分離精製することが好ましい。分離精製は常法に従って行うことができる。本実施形態では、水または水を主成分とする溶媒(例えば、溶媒の70質量%以上が水)を用いて精製することができる。さらに、水等で精製した後、アルコール(例えば、メタノール)で洗浄してもよい。
 本実施形態の樹脂の製造方法で製造される樹脂は、上述の本実施形態の樹脂であることが好ましい。従って、本実施形態の樹脂の製造方法で製造される樹脂の重量平均分子量(Mw)および、数平均分子量(Mn)は、それぞれ、上述の本実施形態の樹脂の重量平均分子量(Mw)および数平均分子量(Mn)と同じ範囲が好ましい。
<用途>
 本実施形態の樹脂は、硬化性樹脂組成物として用いることができる。前記硬化性樹脂組成物は、1種または2種以上の本実施形態の樹脂のみからなっていてもよいし、さらに、本実施形態の樹脂以外の熱硬化性化合物を含んでいてもよい。前記熱硬化性化合物は、本実施形態の樹脂以外の化合物であって炭素炭素不飽和結合基を有する化合物およびエポキシ樹脂から選択される少なくとも1種を含むことが好ましい。
 さらに、前記硬化性樹脂組成物は、1種または2種以上の各種添加剤を含有してもよい。添加剤としては、硬化開始剤、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、流動調整剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等が挙げられる。
 硬化開始剤としては、ジ-3-メトキシブチルパーオキシジカルボネート、ジ-2-エチルヘキシルパーオキシジカルボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカルボネート、ジイソプロピルパーオキシジカルボネート、t-ブチルパーオキシイソプロピルカーボネート、ジミリスチルパーオキシカルボネート、1,1,3,3-テトラメチルブチルネオデカノエート、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、1,1ビス(t-ブチルパーオキシ)シクロヘキサン、2,2ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-2-エチルヘキサン、2,5ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブテン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ベルオキシ)バレラート、ジ-t-ブチルベルオキシイソフタレート、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、1,3-ビス(t-ブチルパーオキシジイソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、および2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3などが挙げられる。
 本実施形態の硬化性樹脂組成物が硬化開始剤を含む場合、その配合量は、本実施形態の樹脂100質量部に対し、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1.0質量部以上であることがさらに好ましく、また、10.0質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましく、2.0質量部以下であることが一層好ましい。本実施形態の硬化性樹脂組成物は、硬化開始剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態の硬化物は、前記硬化性樹脂組成物を硬化したものである。この様な硬化物は、耐熱性に優れ、かつ、誘電特性に優れることから、プリント配線板の絶縁層、半導体パッケージ用材料として好適に用いることができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
<数平均分子量、重量平均分子量の測定>
 樹脂の数平均分子量および重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)法により求めた。
 分析カラムには昭和電工(株)製のKF-801、KF-802、KF-803、KF-804を連結して用い、検出には(株)島津製作所製、示差屈折検出器RID-20Aを用いた。溶離液であるテトラヒドロフラン3gに測定対象である樹脂を10mg溶解し、カラムへの注入量を20μLとし、溶離液流量1mL/min、カラム温度40℃で分析を行った。東ソー(株)製、標準ポリスチレンPStQuick MP-Nにより分子量校正曲線を作成し、ポリスチレン換算分子量を見積もった。
<原料樹脂の水酸基価の測定>
 原料フェノール類変性キシレン樹脂および原料フェノール類変性メシチレン樹脂の水酸基価はJIS K0070-92-7.1に準拠する形で測定を実施した。
<樹脂の水酸基含量>
 上記樹脂のフェノール性水酸基含量は、プロトン核磁気共鳴スペクトル(H-NMR)分析により算出した。具体的には1.07~1.24ppm付近のp-tert-ブチル基のプロトンのピーク面積を9としたときの4.2~5.4ppm付近のフェノール性水酸基のプロトンのピーク面積について、反応前後での減少率[%]をフェノール性水酸基の変性率[%]として、下記式により算出した。
(樹脂の水酸基含量[mmol/g])=(原料樹脂の水酸基含量[mmol/g])×(100-(変性率[%]))/100
使用機器:Bruker社製 AVANCEIII500(500MHz)
<メタクリル基含量>
 メタクリル基含量は、プロトン核磁気共鳴スペクトル(H-NMR)分析により算出した。具体的には、1.07~1.24ppm付近のp-tert-ブチル基のプロトンのピーク面積を9としたときの5.4~5.8ppm付近のメタクリル基末端プロトンの1つのピーク面積に対して100を乗じた値をメタクリル化率[%]とし、得られたメタクリル化率およびフェノール性水酸基の変性率、原料樹脂の水酸基含量、変性置換基の分子量を基にメタクリル基含量[mmol/g]を算出した。また、4.2~5.4ppm付近のフェノール類変性キシレン樹脂またはフェノール類変性メシチレン樹脂のフェノール性水酸基のピークが反応後では消滅していることから、反応が完全に進行していることを確認した。
使用機器:Bruker社製 AVANCEIII500(500MHz)
<合成例1 p-tert-ブチルフェノール(PTBP)変性キシレン樹脂の合成(1)>
 温度計、および、撹拌機を備えた0.5L容のセパラブルフラスコにキシレンホルムアルデヒド樹脂(フドー社製、「ニカノールG」)200.0g、p-tert-ブチルフェノール(DIC社製)253.2g(1.69mol)、および、パラトルエンスルホン酸一水和物(富士フイルム和光純薬社製)0.14g(0.74mmol)を仕込み、90℃まで昇温した。さらに、脱水しながら220℃まで5時間掛けて昇温し、反応させた。次に、尿素(東京化成工業株式会社)0.09g(1.50mmol)を添加して反応を停止し、p-tert-ブチルフェノール変性キシレン樹脂411.4gを得た。得られた樹脂の数平均分子量、重量平均分子量および水酸基価は前述した条件に従って測定し、表1に示した。
<合成例2 p-tert-ブチルフェノール(PTBP)変性キシレン樹脂の合成(2)>
 温度計、および、撹拌機を備えた0.5L容のセパラブルフラスコにキシレンホルムアルデヒド樹脂(フドー社製、「ニカノールH」)250.0g、p-tert-ブチルフェノール(DIC社製)166.7g(1.11mol)、および、パラトルエンスルホン酸一水和物(富士フイルム和光純薬社製)0.14g(0.74mmol)を仕込み、115℃まで昇温した。さらに、脱水しながら180℃まで6時間掛けて昇温し、反応させた。次に、尿素(東京化成工業株式会社)0.14g(2.33mmol)を添加して反応を停止し、p-tert-ブチルフェノール変性キシレン樹脂375.2gを得た。得られた樹脂の数平均分子量、重量平均分子量および水酸基価は前述した条件に従って測定し、表1に示した。
<合成例3 メシチレンホルムアルデヒド樹脂の合成>
 温度計、ジムロート冷却管、および、撹拌機を備えた底抜きが可能な1.0L容のセパラブルフラスコに37質量%ホルマリン水溶液(ホルムアルデヒドとして7.66mol、三菱ガス化学社製)621.6gを仕込んだ。撹拌しながら98質量%硫酸(富士フイルム和光純薬社製)132.9g(1.33mol)、および、メシチレン(富士フイルム和光純薬社製)459.7g(3.82mol)を加え、常圧下、100℃前後で還流しながら4時間反応させた。次いで、希釈溶媒としてメシチレン(富士フイルム和光純薬社製)335gを加え、静置後、分離した上相の油相を残し、下相の水相を除去した。さらに、油相に対して中和および水洗を行い、未反応原料などを減圧下で留去し、メシチレンホルムアルデヒド樹脂578.6gを得た。得られた樹脂の数平均分子量および重量平均分子量は前述した条件に従って測定し、表1に示した。
<合成例4 p-tert-ブチルフェノール(PTBP)変性メシチレン樹脂の合成(1)>
 温度計、および、撹拌機を備えた0.5L容のセパラブルフラスコに合成例3で得られたメシチレンホルムアルデヒド樹脂200.0g、p-tert-ブチルフェノール(DIC社製)163.1g(1.09mol)、および、パラトルエンスルホン酸一水和物(富士フイルム和光純薬社製)0.42g(0.22mmol)を仕込み、115℃まで昇温した。さらに、脱水しながら200℃まで1時間掛けて昇温し、反応させた。次に、尿素(東京化成工業株式会社)0.05g(0.83mmol)を添加して反応を停止し、p-tert-ブチルフェノール変性メシチレン樹脂346.1gを得た。得られた樹脂の数平均分子量、重量平均分子量および水酸基価は前述した条件に従って測定し、表1に示した。
<合成例5 p-tert-ブチルフェノール(PTBP)変性メシチレン樹脂の合成(2)>
 温度計、および、撹拌機を備えた0.5リットルセパラブルフラスコに合成例3で得られたメシチレンホルムアルデヒド樹脂100.3g、p-tert-ブチルフェノール(DIC社製)134.1g(0.89mol)、92%パラホルムアルデヒド(三菱ガス化学株式会社製)9.32g、および、パラトルエンスルホン酸一水和物(富士フイルム和光純薬社製)0.28g(0.15mmol)を仕込み、90℃まで昇温した。さらに、脱水しながら220℃まで5時間掛けて昇温し、反応させた。次に、尿素(東京化成工業株式会社)0.04g(0.67mmol)を添加して反応を停止し、p-tert-ブチルフェノール変性メシチレン樹脂251.6gを得た。得られた樹脂の数平均分子量、重量平均分子量および水酸基価は前述した条件に従って測定し、表1に示した。
Figure JPOXMLDOC01-appb-T000045
実施例1
 撹拌装置、温度計および還流管を備えた300mL容の四ツ口フラスコに窒素雰囲気下で、合成例1で得られたp-tert-ブチルフェノール変性キシレン樹脂22.0g(水酸基モル数換算で96.2mmol)、190gのテトラヒドロフラン(富士フイルム和光純薬社製)、66.5g(481mmol)の炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)および11.2g(72.7mmol)のメタクリル酸無水物(東京化成工業社製)を仕込み、70℃で24時間反応させ、さらに、18.1g(177mmol)の無水酢酸(富士フイルム和光純薬社製)を添加して70℃で24時間反応させた。反応液を空冷後に、0.45μmフィルターを通してろ過し、得られた溶液を精製水に滴下することで固形化した。固形化物を回収し、精製水、次いでメタノールで洗浄した。得られた固体を再度精製水、メタノールで洗浄した後、減圧乾燥して目的とするメタクリル化合物23.1gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル基含量は前述した条件に従って測定し、表2に示した。
 以下の方法に従って、硬化物を作製した。また、得られた硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表2に示した。
<硬化物の作製>
 硬化物は、上記で得られたメタクリル化合物に対して1.5質量部のパーブチル(登録商標)P(日油社製)を添加した混合物を縦100mm、横30mmの金型に入れ、1.92MPaの圧力で、200℃で1時間半真空熱プレスすることで作製した。
使用機器:北川精機株式会社製5段プレス機VH2-1630
<硬化物の誘電特性の測定>
 硬化物の誘電率および誘電正接は、得られた硬化物を厚さ1mm、横0.8mm、縦100mmにカットしたものについて、120℃で1時間乾燥後に、空洞共振摂動法により10GHzにおける値を測定した。
使用機器:Agilent社製8722ESNetworkAnalyzer
<硬化物のガラス転移温度の測定>
 硬化物のガラス転移温度は、得られた硬化物を横5mm、縦40mmにカットしたものについて動的粘弾性測定を行い、得られた動的弾性率のピーク温度とした。単位は、℃で示した。
使用機器:日立ハイテクサイエンス社製DMA7100
昇温速度:5℃/min
周波数:正弦波、10Hz
<硬化物の5%重量減少温度の測定>
 硬化物の5%重量減少温度は、得られた硬化物を約10mgにカットしたものについて熱重量・示差熱同時測定を行い、重量が5%減少した際の温度とした。単位は、℃で示した。
使用機器:日立ハイテクサイエンス社製STA7200
昇温速度:10℃/min
実施例2
 実施例1において、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を66.4g(480mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を12.4g(80.5mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)の仕込み量を14.9g(146mmol)に代えたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物21.6gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表2に示した。
 実施例1と同様にして作製した硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表2に示した。
実施例3
 実施例1において、p-tert-ブチルフェノール変性キシレン樹脂の仕込み量を22.1g(水酸基モル数換算で96.3mmol)に代えたこと、テトラヒドロフラン(富士フイルム和光純薬社製)の仕込み量を191gに代えたこと、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を66.6g(482mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を12.3g(79.7mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)の仕込み量を15.3g(150mmol)に代えたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物23.8gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表2に示した。
 実施例1と同様にして作製した硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表2に示した。
実施例4
 実施例1において、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を66.5g(481mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を13.7g(88.8mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)の仕込み量を11.8g(115mmol)に代えたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物23.9gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表2に示した。
 実施例1と同様にして作製した硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表2に示した。
実施例5
 実施例1において、合成例1で得られたp-tert-ブチルフェノール変性キシレン樹脂に代えて、合成例2で得られたp-tert-ブチルフェノール変性キシレン樹脂22.6g(水酸基モル数換算で66.4mmol)を用いたこと、テトラヒドロフラン(富士フイルム和光純薬社製)の仕込み量を200gに代えたこと、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を45.9g(332mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を12.6g(81.7mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)の仕込み量を8.1g(79.5mmol)に代えたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物20.7gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表2に示した。
 実施例1と同様にして作製した硬化物の誘電特性、および、5%重量減少温度を測定し、表2に示した。
実施例6
 実施例1において、p-tert-ブチルフェノール変性キシレン樹脂の仕込み量を17.1g(水酸基モル数換算で74.5mmol)に代えたこと、テトラヒドロフラン(富士フイルム和光純薬社製)の仕込み量を223gに代えたこと、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を60.4g(437mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を10.4g(67.3mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)に代えて無水安息香酸(東京化成工業社製)26.7g(118mmol)を用いたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物21.4gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表3に示した。
 実施例1と同様にして作製した硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表3に示した。
実施例7
 実施例1において、合成例1で得られたp-tert-ブチルフェノール変性キシレン樹脂に代えて、合成例4で得られたp-tert-ブチルフェノール変性メシチレン樹脂22.2g(水酸基モル数換算で70.5mmol)を用いたこと、テトラヒドロフラン(富士フイルム和光純薬社製)の仕込み量を200gに代えたこと、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を38.8g(281mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を13.3g(86.4mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)の仕込み量を5.77g(56.5mmol)に代えたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物24.4gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表3に示した。
 実施例1と同様にして作製した硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表3に示した。
実施例8
 実施例1において、合成例1で得られたp-tert-ブチルフェノール変性キシレン樹脂に代えて、合成例5で得られたp-tert-ブチルフェノール変性メシチレン樹脂15.0g(水酸基モル数換算で59.8mmol)を用いたこと、テトラヒドロフラン(富士フイルム和光純薬社製)の仕込み量を136gに代えたこと、炭酸カリウム(富士フイルム和光純薬社製、平均粒径150μm以下)の仕込み量を33.4g(242mmol)に代えたこと、メタクリル酸無水物(東京化成工業社製)の仕込み量を11.3g(73.3mmol)に代えたこと、無水酢酸(富士フイルム和光純薬社製)の仕込み量を4.88g(47.8mmol)に代えたこと以外は実施例1と同様にして反応および精製を行い、目的とするメタクリル化合物16.6gを得た。得られたメタクリル化合物の数平均分子量、重量平均分子量およびメタクリル化率は前述した条件に従って測定し、表3に示した。
 実施例1と同様にして作製した硬化物の誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表3に示した。
参考例1
 一般的な両末端メタクリル基ポリフェニレンエーテルであるSA9000(SABIC社製)に対して1.5質量部のパーブチル(登録商標)P(日油社製)を添加した混合物を用いて、実施例1と同様にして硬化物を作製した。得られた硬化物を用いて誘電特性、ガラス転移温度、および、5%重量減少温度を測定し、表3に示した。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047

Claims (26)

  1. 群(1)に記載された構成単位を有する樹脂。
    群(1)
    Figure JPOXMLDOC01-appb-C000001
    (群(1)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。Rは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
  2. 群(1)において、Rがメチル基であり、RおよびRが水素原子である、請求項1に記載の樹脂。
  3. 群(1)において、R、RおよびRが、それぞれ独立に、炭素数1~10のアルキル基である、請求項1または2に記載の樹脂。
  4. 群(1)において、R、RおよびRが、それぞれ独立に、炭素数1~5のアルキル基である、請求項1または2に記載の樹脂。
  5. 前記樹脂のフェノール性水酸基含量が、0.5mmol/g以下である、請求項1~4のいずれか1項に記載の樹脂。
  6. 前記樹脂の群(1)中の下記で表される基の含有量が1.0mmol/g以上である、請求項1~5のいずれか1項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (上記基におけるR~Rは、群(1)におけるR~Rと同義である。)
  7. 群(1)に記載された構成単位が、群(1-1)に記載された構成単位、群(1-2)に記載された構成単位、群(1-3)に記載された構成単位、および、群(1-4)に記載された構成単位の少なくとも1種を含む、請求項1~6のいずれか1項に記載の樹脂。
    群(1-1)
    Figure JPOXMLDOC01-appb-C000003
    (群(1-1)中、R、R、R、R、R、R、R、R、v、x、y、z、a1、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
    群(1-2)
    Figure JPOXMLDOC01-appb-C000004
    (群(1-2)中、R、R、R、R、R、R、R、R、v、x、y、z、a2、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
    群(1-3)
    Figure JPOXMLDOC01-appb-C000005
    (群(1-3)中、R、R、R、R、R、R、R、R、v、x、y、z、a3、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
    群(1-4)
    Figure JPOXMLDOC01-appb-C000006
    (群(1-4)中、R、R、R、R、R、R、R、R、v、x、y、z、a4、b、cおよびdは、それぞれ、群(1)におけるR、R、R、R、R、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
  8. 群(1)に記載された構成単位が、群(1-1)に記載された構成単位または群(1-4)に記載された構成単位を含む、請求項7に記載の樹脂。
  9. 数平均分子量(Mn)が500~6,000、かつ、重量平均分子量(Mw)が500~15,000である、請求項1~8のいずれか1項に記載の樹脂。
  10. 前記樹脂の末端基が、水素原子、水酸基およびヒドロキシメチル基から選択される、請求項1~9のいずれか1項に記載の樹脂。
  11. 少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂との反応物である樹脂。
    式(2)
    Figure JPOXMLDOC01-appb-C000007
    (式(2)中、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
    群(4)
    Figure JPOXMLDOC01-appb-C000008
    (群(4)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
  12. 少なくとも、式(2)で表される化合物と群(4)に記載された構成単位を有する原料樹脂とを、塩基性化合物の存在下で反応させることを含む、樹脂の製造方法。
    式(2)
    Figure JPOXMLDOC01-appb-C000009
    (式(2)中、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、水酸基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。)
    群(4)
    Figure JPOXMLDOC01-appb-C000010
    (群(4)中、Rは、それぞれ独立に、メチレン基、メチレンオキシ基、メチレンオキシメチレン基またはオキシメチレン基を表す。Rは、炭素数1~3のアルキル基を表す。R、RおよびRは、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数1~10のヒドロキシアルキル基、または、炭素数6~12のアリール基を表す。vは0または1を表し、wは1~3の数を表し、x、yおよびzは、それぞれ独立に、0~3の数を表す。a、b、cおよびdは、それぞれ独立に、構成単位のモル比率を表し、aは1以上の数であり、bは0以上の数であり、cは1以上の数であり、dは0以上の数を表す。Rは、互いに結合して、架橋構造を形成していてもよい。*は他の構成単位または末端基との結合位置を示す。)
  13. 式(2)において、Rがメチル基であり、RおよびRが水素原子である、請求項12に記載の樹脂の製造方法。
  14. 群(4)において、R、RおよびRが、それぞれ独立に、炭素数1~10のアルキル基である、請求項12または13に記載の樹脂の製造方法。
  15. 群(4)において、R、RおよびRが、それぞれ独立に、炭素数1~5のアルキル基である、請求項12または13に記載の樹脂の製造方法。
  16. 前記原料樹脂の水酸基価が、100~600g/molである、請求項12~15のいずれか1項に記載の樹脂の製造方法。
  17. 群(4)に記載された構成単位が、群(4-1)に記載された構成単位、群(4-2)に記載された構成単位、群(4-3)に記載された構成単位、および、群(4-4)に記載された構成単位の少なくとも1種を含む、請求項12~16のいずれか1項に記載の樹脂の製造方法。
    群(4-1)
    Figure JPOXMLDOC01-appb-C000011
    (群(4-1)中、R、R、R、R、v、x、y、z、a1、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
    群(4-2)
    Figure JPOXMLDOC01-appb-C000012
    (群(4-2)中、R、R、R、R、v、x、y、z、a2、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
    群(4-3)
    Figure JPOXMLDOC01-appb-C000013
    (群(4-3)中、R、R、R、R、v、x、y、z、a3、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
    群(4-4)
    Figure JPOXMLDOC01-appb-C000014
    (群(4-4)中、R、R、R、R、v、x、y、z、a4、b、cおよびdは、それぞれ、群(4)におけるR、R、R、R、v、x、y、z、a、b、cおよびdと同義である。*は他の構成単位または末端基との結合位置を示す。)
  18. 群(4)に記載された構成単位が、群(4-1)に記載された構成単位または群(4-4)に記載された構成単位を含む、請求項17に記載の樹脂の製造方法。
  19. 前記群(4)に記載された構成単位を有する原料樹脂の数平均分子量Mnが400~4,000、重量平均分子量Mwが400~16,000である、請求項12~18のいずれか1項に記載の樹脂の製造方法。
  20. 前記群(4)に記載された構成単位を有する原料樹脂の末端基が、水素原子、水酸基およびヒドロキシメチル基から選択される、請求項12~19のいずれか1項に記載の樹脂の製造方法。
  21. 前記塩基性化合物が、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウムの少なくとも1種を含む、請求項12~20のいずれか1項に記載の樹脂の製造方法。
  22. 前記製造される樹脂が、請求項1~11のいずれか1項に記載の樹脂である、請求項12~21のいずれか1項に記載の樹脂の製造方法。
  23. 請求項1~11のいずれか1項に記載の樹脂を含む、硬化性樹脂組成物。
  24. さらに、請求項1~11のいずれか1項に記載の樹脂以外の熱硬化性化合物を含む、請求項23に記載の硬化性樹脂組成物。
  25. 前記熱硬化性化合物が、請求項1~11のいずれか1項に記載の樹脂以外の炭素炭素不飽和結合基を有する化合物およびエポキシ樹脂から選択される少なくとも1種を含む、請求項23または24に記載の硬化性樹脂組成物。
  26. 請求項23~25のいずれか1項に記載の硬化性樹脂組成物の硬化物。
PCT/JP2022/022655 2021-08-18 2022-06-03 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物 WO2023021813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023542232A JPWO2023021813A1 (ja) 2021-08-18 2022-06-03
KR1020247002286A KR20240041320A (ko) 2021-08-18 2022-06-03 수지, 수지의 제조 방법, 경화성 수지 조성물 및 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133308 2021-08-18
JP2021133308 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023021813A1 true WO2023021813A1 (ja) 2023-02-23

Family

ID=85240402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022655 WO2023021813A1 (ja) 2021-08-18 2022-06-03 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物

Country Status (4)

Country Link
JP (1) JPWO2023021813A1 (ja)
KR (1) KR20240041320A (ja)
TW (1) TW202319424A (ja)
WO (1) WO2023021813A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108212A (ja) 1987-10-21 1989-04-25 Sumitomo Chem Co Ltd ビニルベンジルエーテル化クレゾールノボラック樹脂
JP2002003563A (ja) * 2000-06-20 2002-01-09 Taiyo Ink Mfg Ltd カリックスアレーン誘導体及びそれを含有するアルカリ現像型光硬化性組成物
WO2003078494A1 (fr) * 2002-03-15 2003-09-25 Taiyo Ink Manufacturing Co., Ltd. Resines durcissables et compositions de resines durcissables les contenant
JP2015189925A (ja) 2014-03-28 2015-11-02 新日鉄住金化学株式会社 ビニルベンジルエーテル樹脂、その製造方法、これを含有する硬化性樹脂組成物、硬化物
JP2019065150A (ja) * 2017-09-29 2019-04-25 三菱瓦斯化学株式会社 (メタ)アクリル変性芳香族炭化水素ホルムアルデヒド樹脂、該樹脂を含む組成物、該樹脂を含んで得られる硬化物及び該樹脂の製造方法
WO2019098338A1 (ja) * 2017-11-20 2019-05-23 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
JP2020037651A (ja) 2018-09-04 2020-03-12 三菱瓦斯化学株式会社 (メタ)アクリレート樹脂、硬化性樹脂組成物、及び硬化物
WO2022034752A1 (ja) * 2020-08-12 2022-02-17 三菱瓦斯化学株式会社 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108212A (ja) 1987-10-21 1989-04-25 Sumitomo Chem Co Ltd ビニルベンジルエーテル化クレゾールノボラック樹脂
JP2002003563A (ja) * 2000-06-20 2002-01-09 Taiyo Ink Mfg Ltd カリックスアレーン誘導体及びそれを含有するアルカリ現像型光硬化性組成物
WO2003078494A1 (fr) * 2002-03-15 2003-09-25 Taiyo Ink Manufacturing Co., Ltd. Resines durcissables et compositions de resines durcissables les contenant
JP2015189925A (ja) 2014-03-28 2015-11-02 新日鉄住金化学株式会社 ビニルベンジルエーテル樹脂、その製造方法、これを含有する硬化性樹脂組成物、硬化物
JP2019065150A (ja) * 2017-09-29 2019-04-25 三菱瓦斯化学株式会社 (メタ)アクリル変性芳香族炭化水素ホルムアルデヒド樹脂、該樹脂を含む組成物、該樹脂を含んで得られる硬化物及び該樹脂の製造方法
WO2019098338A1 (ja) * 2017-11-20 2019-05-23 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
JP2020037651A (ja) 2018-09-04 2020-03-12 三菱瓦斯化学株式会社 (メタ)アクリレート樹脂、硬化性樹脂組成物、及び硬化物
WO2022034752A1 (ja) * 2020-08-12 2022-02-17 三菱瓦斯化学株式会社 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物

Also Published As

Publication number Publication date
KR20240041320A (ko) 2024-03-29
TW202319424A (zh) 2023-05-16
JPWO2023021813A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2007097305A1 (ja) 熱硬化性樹脂の製造方法、熱硬化性樹脂、それを含む熱硬化性組成物、成形体、硬化体、並びにそれらを含む電子機器
JP6971222B2 (ja) 熱硬化性樹脂組成物、プリプレグ及びその硬化物
JP6277134B2 (ja) ポリ(ビニルベンジル)エーテル化合物、その製造方法、これを含有する硬化性組成物及び硬化物
US20090318658A1 (en) Baked resin product and electronic device comprising same
WO2007026553A1 (ja) 低軟化点フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物
EP3239200B1 (en) Thermosetting resin composition
CN112010833B (zh) 含缩醛结构的双邻苯二甲腈类化合物、聚合物及其制备方法和应用
WO2023021813A1 (ja) 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物
WO2022034752A1 (ja) 樹脂、樹脂の製造方法、硬化性樹脂組成物および硬化物
KR101609014B1 (ko) 에폭시 수지 조성물, 이 에폭시 수지 조성물의 제조 방법 및 그의 경화물
TWI628194B (zh) 含(2,6-二甲基-1,4-苯醚)寡聚物之氧氮苯并環己烷樹脂、固化物及其製備方法
JPWO2018199157A1 (ja) マレイミド樹脂組成物、プリプレグ及びその硬化物
JP6423316B2 (ja) 新規アルデヒド含有樹脂
US10766887B2 (en) Benzoxazine-based mixture and use thereof
JP2012072319A (ja) ベンゾオキサジン環を有する熱硬化性樹脂の製造方法、及びベンゾオキサジン環を有する熱硬化性樹脂
JP2001316429A (ja) ビスマレイミド樹脂組成物
JP6555975B2 (ja) 新規イミン基含有樹脂
KR102295391B1 (ko) 벤족사진 및 이를 이용한 폴리벤족사진의 제조방법
WO2022163360A1 (ja) (メタ)アクリル酸エステル化合物の製造方法
JP7283409B2 (ja) ビスマレイミド化合物及びその製造方法
JP3888915B2 (ja) エポキシ樹脂硬化剤
WO2023181838A1 (ja) 樹脂原料用組成物、有機溶媒溶液、硬化性樹脂組成物、ワニス、プリプレグ、硬化物
JP2005336227A (ja) 固形レゾール型フェノール樹脂の製造方法
JP2023088477A (ja) 硬化性樹脂組成物
KR20160021816A (ko) 방향족 탄화수소 포름알데히드 수지, 변성 방향족 탄화수소 포름알데히드 수지 및 에폭시 수지, 그리고 그들의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542232

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022858137

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022858137

Country of ref document: EP

Effective date: 20240318