WO2023008508A1 - シリコン単結晶の製造方法 - Google Patents

シリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2023008508A1
WO2023008508A1 PCT/JP2022/029046 JP2022029046W WO2023008508A1 WO 2023008508 A1 WO2023008508 A1 WO 2023008508A1 JP 2022029046 W JP2022029046 W JP 2022029046W WO 2023008508 A1 WO2023008508 A1 WO 2023008508A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
single crystal
seeding
silicon
silicon single
Prior art date
Application number
PCT/JP2022/029046
Other languages
English (en)
French (fr)
Inventor
佳祐 三原
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112022002697.9T priority Critical patent/DE112022002697T5/de
Priority to KR1020247000285A priority patent/KR20240038957A/ko
Priority to CN202280046419.3A priority patent/CN117597476A/zh
Publication of WO2023008508A1 publication Critical patent/WO2023008508A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the present invention relates to a method for manufacturing silicon single crystals by the CZ method using a cusp magnetic field.
  • the region in which the current flows in the power device has a thickness ranging from several tens to several hundred ⁇ m from the surface layer, and in some cases the current flows through the entire wafer. If oxygen precipitates or BMDs are present in the region through which the current flows, a breakdown voltage defect or a leakage defect may occur. In order to prevent the above defects, silicon single crystal wafers for power devices are required to have a low oxygen concentration that does not generate oxygen precipitates, and to have a flat in-plane distribution of oxygen and resistivity. ing.
  • CZ Czochralski
  • a silicon single crystal is grown by bringing a seed crystal into contact with a heated silicon melt and gradually pulling the seed crystal above the melt. If the temperature difference between the seed crystal and the silicon melt is large, thermal shock will occur when the seed crystal is brought into contact with the silicon melt, and slip dislocations will occur due to this thermal shock.
  • the technique of removing the slip dislocations generated when the seed crystal is brought into contact with the silicon melt by narrowing the crystal diameter to about 3 to 5 mm is called the dash necking method, and in the production of silicon single crystals using the CZ method, has been widely used.
  • Patent Document 1 a dislocation-free seeding method that does not use the dash necking method described in Patent Document 1 has also been implemented.
  • a seed crystal with a sharp tip having an angle of 28° or less is used, and the seed crystal is heated to a temperature similar to that of the raw material melt before contacting the silicon melt.
  • the generation of thermal shock can be suppressed.
  • MZ magnetic field application CZ
  • a method using a horizontal magnetic field and a method using a cusp magnetic field are known as methods for growing low-oxygen crystals for power devices.
  • Patent Document 2 discloses a method of obtaining a low-oxygen crystal by defining the number of rotations of the crystal and the number of rotations of the crucible under a horizontal magnetic field. This method cannot be applied to the growth of large-diameter silicon single crystals of 300 mm or more. Moreover, there is also a method of setting the magnetic field strength to 2000 G or more and the crystal rotation speed to 5 rpm or less, as described in Patent Document 3. In this method, hydrogen doping is performed during single crystal manufacturing, and neutron irradiation is performed after single crystal manufacturing. However, the use of these treatments increases the cost during crystal manufacturing, which is a problem.
  • the position of the magnetic field minimum plane of the cusp magnetic field is raised as the solidification rate of the single crystal increases.
  • a single crystal with a low oxygen concentration of 4 ⁇ 10 17 atoms/cm 3 or less can be obtained by setting the minimum magnetic field position to a position close to the solid-liquid interface and setting the magnetic field strength to 500 to 700 G. .
  • the present invention has been made to solve the above-mentioned problems, and is capable of efficiently producing a single crystal with a lower oxygen concentration and a good in-plane distribution compared to the conventional technology by improving the success rate of seeding.
  • An object of the present invention is to provide a method for producing a single crystal.
  • the present invention has been made to achieve the above objects, and is a method for producing a silicon single crystal by the CZ method using a cusp magnetic field formed by an upper coil and a lower coil provided in a pulling furnace, comprising: It has a seeding step of bringing the seed crystal into contact with the silicon melt for seeding, and a straight body step performed after expanding the diameter of the silicon single crystal.
  • the minimum plane position is set to a first position below the surface of the silicon melt, and the magnetic field minimum plane position on the central axis of the pulling furnace is moved from the first position before proceeding to the straight body process.
  • a method for producing a silicon single crystal in which the substrate is moved upward to a second position, and the straight body step is performed with the position of the magnetic field minimum plane on the central axis of the pulling furnace as the second position.
  • the first position is 30 mm to 80 mm below the surface of the silicon melt
  • the second position is 10 mm below to 100 mm above the surface of the silicon melt. can do.
  • the magnetic field strength at the intersection point between the intermediate surface between the upper coil and the lower coil and the inner wall of the crucible can be 1500 G or more.
  • the success rate of seeding can be improved more stably and reliably, and production can be done more efficiently.
  • the magnetic field intensity at the intersection of the crucible inner wall and the intermediate surface between the upper coil and the lower coil can be 750 G or more and 1800 G or less.
  • the seeding step can be performed by a dislocation-free seeding method.
  • the necking step can be performed while the position of the magnetic field minimum plane on the central axis of the pulling furnace remains at the first position below the surface of the silicon melt.
  • the success rate of seeding is improved by reducing temperature fluctuations on the surface of the silicon melt during the seeding step. For example, it is possible to efficiently produce a single crystal with a low oxygen concentration and a good in-plane distribution that satisfies the required quality for power devices.
  • the quality of low-oxygen crystals for power devices and the like is required to be higher than the conventional level.
  • the oxygen concentration is desirably 3 ⁇ 10 17 atoms/cm 3 (ASTM'79) or less in order to eliminate the influence of thermal donors generated in low-temperature heat treatment.
  • ROG can be used as an index for measuring the goodness of the in-plane distribution of oxygen.
  • ROG is a value obtained by measuring the oxygen concentration at least at two locations, 5 mm from the center of the wafer and the outer periphery of the wafer, and by the formula (maximum value ⁇ minimum value) ⁇ 100/maximum value.
  • a higher level of ROG than the conventional level is also required, and a good distribution satisfying ROG ⁇ 15% is required.
  • the silicon melt is contained in a quartz crucible, and oxygen is taken into the silicon single crystal by eluting the oxygen component from the quartz crucible into the silicon melt during crystal pulling.
  • the convection is suppressed by the magnetic field acting in the direction parallel to the magnetic force line, but the magnetic field is almost in the direction perpendicular to the magnetic force line. is not working, convection becomes active. In this way, since there are regions where convection is locally active, the oxygen component is likely to be eluted from the quartz crucible in the horizontal magnetic field, resulting in a high oxygen concentration in the silicon single crystal. .
  • the cusp magnetic field since the magnetic field acts around the entire circumference near the inner wall of the crucible, the convection near the inner wall of the crucible is suppressed over the entire circumference. For this reason, in the cusp magnetic field, when the crucible rotation speed is sufficiently high and the magnetic field strength is strong, the relative velocity between the quartz crucible and the silicon melt increases and the elution of the oxygen component is promoted. When the magnetic field is sufficiently low and the magnetic field strength is weak, the relative velocity between the quartz crucible and the silicon melt becomes low, thereby suppressing the elution of oxygen.
  • the present inventors found that by using a cusp magnetic field to set the position of the magnetic field minimum plane to a position close to or above the solid-liquid interface of the single crystal, it is possible to reduce the oxygen content of the crystal and improve the uniformity. rice field.
  • the position of the minimum magnetic field plane on the center axis of the pulling furnace is set below the surface of the silicon melt (raw material melt). After performing the seeding process, the position of the magnetic field minimum plane is moved upward before moving to the product part of the straight body process, and the straight body process of the product part is performed.
  • the inventors of the present invention have developed a method for producing a silicon single crystal by the CZ method using a cusp magnetic field formed by an upper coil and a lower coil provided in a pulling furnace.
  • a seeding step in which the seed crystal is brought into contact with the silicon melt to seed the silicon single crystal;
  • the position of the magnetic field minimum plane is set to the first position below the surface of the silicon melt, and the position of the magnetic field minimum plane on the central axis of the pulling furnace is set to the first position before proceeding to the straight body process. It is moved to a second position above, and the straight body process is performed with the second position at the magnetic field minimum plane position on the central axis of the pulling furnace.
  • the inventors have found that it is possible to efficiently produce a single crystal with a good in-plane distribution, and have completed the present invention.
  • FIG. 1 shows an example of a single crystal pulling apparatus.
  • a single crystal pulling furnace 1 shown in FIG. A heat shield member 13 is arranged at the lower end of the cylindrical portion 12 .
  • a magnetic field generator 30 having an upper coil 30a and a lower coil 30b, which are two upper and lower superconducting coils, is provided around the device. is applied.
  • the seed crystal 2 held by the seed holder 3 connected to the wire is brought into contact with the silicon melt 5 for seeding, the diameter of the silicon single crystal is expanded, and the product part is produced.
  • the silicon single crystal 4 is manufactured by pulling up the straight body part to be formed in the pulling direction.
  • the magnetic field generator 30 is installed on a lifting device 30c that can move up and down in the vertical direction, and includes an upper coil 30a and a lower coil 30b.
  • a cusp magnetic field is generated by applying currents in opposite directions to the two upper and lower coils.
  • the magnetic field distribution is symmetrical and bilaterally symmetrical. At this time, the magnetic field strength at the magnetic field minimum plane position 31 at the intersection of the central axis 10 and the intermediate plane 11 between the upper and lower coils is 0 gauss.
  • the magnetic field distribution becomes vertically asymmetrical and left-right symmetrical.
  • the magnetic field minimum surface position 31 changes (hereinafter referred to as "unbalanced excitation"). For example, if the upper coil current value > the lower coil current value, the magnetic field minimum plane position 31 shifts to the lower side compared to the case where the current values of the upper and lower coils are set to the same value, and the upper coil current value ⁇ the lower coil current value. Then, the magnetic field minimum plane position 31 is shifted upward compared to the case where the current values of the upper and lower coils are set to the same value.
  • the structures other than the above, such as the HZ (hot zone), can be the same structures as those of a general CZ silicon single crystal manufacturing apparatus.
  • the method for producing a silicon single crystal according to the present invention includes a seeding step in which a seed crystal is brought into contact with a silicon melt for seeding, and a straight body step performed after expanding the diameter of the silicon single crystal.
  • the position of the magnetic field minimum plane on the central axis of the pulling furnace is set as the first position below the surface of the silicon melt.
  • the position of the minimum surface is moved to a second position above the first position, and the straight body process is performed with the position of the magnetic field minimum surface on the central axis of the pulling furnace as the second position.
  • the necking step is performed with the minimum magnetic field position 31 on the central axis 10 of the single crystal pulling furnace 1 as the first position below the surface of the silicon melt 5 (raw material melt).
  • the first position of the magnetic field minimum plane position of the cusp magnetic field it is preferable to set the first position of the magnetic field minimum plane position of the cusp magnetic field to a position 30 mm to 80 mm (30 mm or more and 80 mm or less) downward from the surface of the silicon melt. With such a range, seeding is more stable and the success rate is higher.
  • the magnetic field distribution and magnetic field strength near the inner wall of the crucible are factors that determine the amount of oxygen components taken into the single crystal, and low-oxygen crystals are manufactured with high productivity. It is preferable to define these conditions in order to Therefore, in the method of manufacturing a silicon single crystal according to the present invention, the magnetic field intensity is defined by the value at the intersection of the crucible inner wall and the intermediate plane between the upper and lower coils (between the upper and lower coils).
  • the necking step after applying a magnetic field so that the magnetic field strength at the intersection of the intermediate surface between the upper and lower coils and the inner wall of the crucible is 1500 G or more. . With such a range, seeding is more stable and the success rate is higher.
  • the first position of the magnetic field minimum plane position of the cusp magnetic field is set to 30 mm to 80 mm downward from the surface of the silicon melt (raw material melt) and/or between the upper and lower two coils.
  • the magnetic field acts on the entire surface of the silicon melt, reducing temperature fluctuations on the surface of the silicon melt and increasing the success rate of seeding. substantially improved.
  • the first position of the magnetic field minimum plane position of the cusp magnetic field is 30 mm to 80 mm downward from the surface of the silicon melt, and the magnetic field strength at the intersection of the intermediate surface between the upper and lower two coils and the inner wall of the crucible is 1500 G or more.
  • the magnetic field strength increases, the convection suppression force in the silicon melt becomes stronger, so the temperature fluctuation on the surface of the silicon melt becomes smaller. Therefore, it is not necessary to set an upper limit to the value of the magnetic field strength during the seeding process, but the upper limit of the magnetic field strength can be set according to the ability, structure, etc. of the device (the coil that forms the cusp magnetic field), and should be, for example, 5000 G or less. can be done.
  • the seeding process may be performed by a dislocation-free seeding method in which a necking process (dash necking method) is not performed after the seeding process.
  • a necking process debris necking method
  • a seed crystal having a sharp front end is used, and the angle of the front end of the seed crystal is preferably 28° or less. If the seed crystal has such a shape, the thermal shock generated when the silicon melt and the seed crystal come into contact can be more effectively alleviated, and as a result, success in pulling the silicon single crystal without dislocations can be achieved. better rate.
  • the necking process (dash necking method) can be performed without changing the position of the magnetic field minimum plane and keeping it at the first position.
  • the success rate of seeding can be stably improved and efficient production can be carried out.
  • the magnetic field minimum plane position 31 on the central axis 10 of the single crystal pulling furnace 1 is moved to a second position above the first position, and the straight body step is performed. is performed using the magnetic field minimum plane position 31 on the central axis 10 of the single crystal pulling furnace 1 as the second position. This makes it possible to manufacture a silicon single crystal with a low oxygen concentration and a good in-plane distribution.
  • the position of the minimum magnetic field plane is at the same first position as in the seeding process, so the convection of the silicon melt in the vicinity of the quartz crucible is suppressed, so the relative velocity between the quartz crucible and the silicon melt increases. , the oxygen component is easily eluted from the quartz crucible into the silicon melt.
  • the position of the magnetic field minimum plane is moved from the first position to the second position above the first position before the straight body process of manufacturing the product part after the diameter expansion of the silicon single crystal.
  • the second position is preferably positioned 10 mm downward to 100 mm upward (within 10 mm downward and within 100 mm upward) from the surface of the silicon melt.
  • a single crystal with a low oxygen concentration and good in-plane distribution can be more stably produced.
  • the magnetic field in the direction perpendicular to the melt surface becomes stronger (VMCZ ), the thickness of the boundary diffusion layer at the solid-liquid interface can be maintained more stably, and the in-plane distribution of oxygen concentration can be kept highly uniform.
  • the magnetic field strength is adjusted to a predetermined value.
  • the straight body process it is preferable to set the magnetic field strength at the intersection of the intermediate surface between the upper coil and the lower coil and the inner wall of the crucible to 750 G or more and 1800 G or less. Within such a range, a silicon single crystal having a low oxygen concentration and good in-plane distribution can be more stably produced. If the magnetic field strength in the straight body process of the product section is 750 G or more, the crystal deformation can be suppressed more effectively and the operation can be stably continued. The relative velocity between the quartz crucible and the silicon melt is reduced without being excessively suppressed, and the oxygen component is less likely to elute from the quartz crucible into the silicon melt, so that an increase in oxygen concentration can be suppressed more effectively.
  • the second position of the magnetic field minimum plane position is set downward from the surface of the silicon melt by 10 mm to above before proceeding to the straight body process of the product part. and/or the magnetic field strength at the intersection of the crucible inner wall and the intermediate plane between the two upper and lower coils is preferably 750 G or more and 1800 G or less.
  • the relative velocity between the quartz crucible and the silicon melt becomes low, which has the effect of suppressing the elution of oxygen and the effect of facilitating the incorporation of oxygen into the single crystal from the low-oxygen layer on the surface of the silicon melt.
  • the position of the minimum magnetic field plane is moved upward before shifting from the process of the non-product part such as seeding and necking to the process of the product part (straight body part).
  • 30c may be used to move the magnetic field generator 30 upward to move the position of the magnetic field minimum plane upward, or the current values of the upper and lower coils 30a and 30b may be set to the upper coil current value ⁇ the lower coil current value.
  • the position of the magnetic field minimum plane may be moved upward by performing balanced excitation.
  • ROG is a value obtained by measuring the oxygen concentration at least at two locations, 5 mm from the center of the wafer and the outer periphery of the wafer, and using the formula (maximum value - minimum value) x 100/maximum value.
  • the ROG shown in the tables is the average value at solidification rates of 20%, 35%, 50% and 65%.
  • the minimum magnetic field position is expressed as " ⁇ mm below/above the melt surface” with the surface of the silicon melt (melt surface) as a reference.
  • the expression "0 mm below the molten metal surface” means that the molten metal surface coincides with the position of the minimum magnetic field plane.
  • Example 1-4 silicon single crystals were produced under the following conditions.
  • Example 1-4 during the seeding step, the magnetic field minimum plane position of the cusp magnetic field was set to 30 mm or 70 mm downward from the surface of the silicon melt (melt surface), and the seeding step was followed by the necking step (dash necking method).
  • the position of the magnetic field minimum plane is moved upward before moving to the straight body process of the product part, and the magnetic field minimum plane position during the straight body process of the product part is moved downward by 10 mm from the silicon melt surface (melt surface).
  • the single crystal was pulled under a total of four types of pulling conditions, such as 100 mm upward.
  • a lifting device was used to move the position of the minimum magnetic field before moving to the straight body process of the product section. Table 1 shows the results of Examples 1-4.
  • Example 1-4 As shown in Table 1, under the conditions of Example 1-4, a single crystal was successfully pulled without generating dislocations during seeding.
  • the oxygen concentration was 3 ⁇ 10 17 atoms/cm 3 (ASTM'79) or less, and ROG ⁇ 15%, and a good in-plane distribution was obtained.
  • Example 5-8 In Example 5-8, the magnetic field intensity in the seeding process was changed to 2000 G, the magnetic field intensity in the straight body process of the product part was changed to 1800 G, and the other conditions were the same as in Example 1-4. A single crystal was pulled under these conditions. Table 2 shows the results of Examples 5-8.
  • Example 9-12 In Examples 9-12, the single crystal was pulled under a total of four types of pulling conditions, except that the magnetic field strength in the straight body process of the product section was changed to 750 G, and the other conditions were the same as in Examples 1-4. bottom. The results of Examples 9-12 are shown in Table 3.
  • Examples 13-14 In Examples 13 and 14, a dislocation-free seeding method without a necking step (dash necking method) was carried out, and the other conditions were the same as in Examples 1 and 2. A total of two types of pulling conditions were used for unit pulling. Crystal pulling was performed. The results of Examples 13-14 are shown in Table 4.
  • Comparative Example 1-4 In Comparative Example 1-4, the magnetic field minimum plane position during the seeding process was 0 mm below the molten metal surface or 15 mm below the molten metal surface, and the magnetic field strength at the intersection of the middle surface between the upper and lower coils and the inner wall of the crucible was 1500 G or 2000 G, Single crystals were pulled under a total of four types of pulling conditions, with the conditions of the straight body process of the product part being the same as the magnetic field minimum plane position and magnetic field intensity during the seeding process. In Comparative Examples 1-4, all other conditions were the same as those in Example 1. Table 5 shows the results of Comparative Examples 1-4.
  • Comparative Example 5-6 In Comparative Example 5-6, a dislocation-free seeding method without a necking step (dash necking method) was performed, and the position of the magnetic field minimum plane during the seeding step was 0 mm below the melt surface or 15 mm below the melt surface, and the upper and lower coils.
  • the magnetic field intensity at the intersection of the intermediate surface between the crucible and the inner wall of the crucible was 1500 G, and the conditions for the straight body process of the product part were the same as the magnetic minimum plane position and magnetic field intensity during the seeding process. Crystal pulling was performed. In Comparative Examples 5 and 6, all other conditions were the same as those in Example 1. Table 6 shows the results of Comparative Examples 5-6.
  • a single crystal with a low oxygen concentration and a good in-plane distribution could be efficiently produced with an improved seeding success rate.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、引上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、種結晶をシリコン融液に接触させて種付けを行う種付け工程と、シリコン単結晶を拡径した後に行われる直胴工程とを有し、前記種付け工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記シリコン融液の表面より下方の第1の位置として行い、前記直胴工程に移行する前に、前記引上げ炉の中心軸上にある磁場極小面位置を前記第1の位置より上方の第2の位置に移動させ、前記直胴工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記第2の位置として行うシリコン単結晶の製造方法である。これにより、低い酸素濃度でかつ良好な面内分布の単結晶を、種付けの成功率を向上し効率よく製造するシリコン単結晶の製造方法が提供される。

Description

シリコン単結晶の製造方法
 本発明は、カスプ磁場を用いたCZ法によるシリコン単結晶の製造方法に関する。
 近年、省電力を実現するためのデバイスとしてパワーデバイスが注目されている。パワーデバイスにおける電流が流れる領域は、表層から数十~数百μm程度の厚さ範囲のものや、場合によってはウェーハ全体に電流が流れるものもある。この電流が流れる領域に酸素析出物やBMDが存在すると、耐圧不良やリーク不良が発生する場合がある。上記の不良を発生させないためにもパワーデバイス向けのシリコン単結晶ウェーハでは、酸素析出物が発生しない程度の低い酸素濃度であること、酸素や抵抗率の面内分布がフラットであることが要求されている。
 パワーデバイス向けのシリコン単結晶を製造する代表的な手法の一つにチョクラルスキー(CZ)法がある。CZ法では、加熱されたシリコン融液中に種結晶を接触させ、融液上方に種結晶を徐々に引き上げることでシリコン単結晶の育成を行う。種結晶とシリコン融液間の温度差が大きいと種結晶をシリコン融液に接触させた際に熱ショックが生じ、この熱ショックに起因してスリップ転位が発生してしまう。種結晶をシリコン融液に接触させた際に生じたスリップ転位を結晶直径3~5mm程度まで細く絞ることによって除去する手法はダッシュネッキング法と呼ばれ、CZ法を用いたシリコン単結晶の製造では広く用いられてきた。
 また最近では、シリコン単結晶の大直径化と高重量化の進展に伴い、特許文献1に記載のダッシュネッキング法を行わない無転位種付け法も実施されるようになってきている。特許文献1の手法では、先端部の角度が28°以下である先端が尖った形状の種結晶を使用し、上記の種結晶をシリコン融液に接触させる前に原料融液と同程度の温度まで加温した後にシリコン融液中に種結晶を接触させることで熱ショックの発生を抑制することができる。この手法を用いて単結晶の育成を実施することで、直径300mm以上の大直径かつ高重量の単結晶を効率よく製造することが可能となる。
特許第4151580号公報 特開2009-18984号公報 国際公開第2009/025340号 特開2001-89289号公報 特開2020-33200号公報
 CZ法を用いたシリコン単結晶の製造を行う場合、原料融液に磁場を印加して単結晶の引上げを行う磁場印加CZ(MCZ)法を用いるのが主流となっている。パワーデバイス向けの低酸素結晶の育成方法として水平磁場を用いた方法とカスプ磁場を用いた方法が知られている。
 水平磁場を用いた方法として、例えば、特許文献2には、水平磁場下で結晶回転数と坩堝回転数を規定して低酸素結晶を得る手法が開示されているが、この手法は直径200mmを対象としており直径300mm以上の大直径のシリコン単結晶の成長には適用できない。また、特許文献3に記載されるような、磁場強度を2000G以上とし、結晶回転数を5rpm以下とする手法もある。この手法では、単結晶製造時に水素ドープ、単結晶製造後に中性子照射を行うが、これらの処理を用いることで結晶製造時のコストが増加することが問題となる。加えて、水平磁場中で直径300mm以上の低酸素結晶を製造するには、特許文献3に記載されているように結晶回転数を低速にする必要があるが、結晶回転数を低速にすると抵抗率や酸素の面内分布が悪化し、デバイス不良の要因となる問題がある。
 一方、カスプ磁場を用いた方法として、例えば特許文献4に記載されるような、シリコン融液の減少量に応じてカスプ磁場の磁場中心位置(=磁場極小面位置)を温度が安定する位置に移動させる手法がある。この手法では、単結晶の固化率の上昇とともにカスプ磁場の磁場極小面位置を上昇させるが、製品部(直胴部)で磁場極小面位置を変化させると製品部における酸素濃度の変化量が大きくなってしまい、酸素濃度の規格幅が狭い結晶や低酸素結晶を製造する場合は歩留まりが著しく低下することが問題となる。
 また、特許文献5に記載されるように、結晶回転数、坩堝回転数、磁場中心位置(=磁場極小面位置)、磁場強度を規定して低酸素結晶を得る方法もある。この手法では、磁場極小面位置を固液界面に近い位置とし、なおかつ磁場強度を500~700Gとすることで、4×1017atoms/cm以下の低い酸素濃度の単結晶を得ることができる。上述したとおり、直径300mm以上の大直径かつ高重量の単結晶を製造するにはダッシュネッキング法を行わない無転位種付け法を行うのが好ましいが、特許文献5に記載の条件では、種付け工程の原料融液表面の温度変動が大きくなるため種付けが成功しにくくなり、単結晶の生産性が低下してしまうことが問題となる。
 本発明は、上記問題を解決するためになされたものであり、従来技術に比べてより低い酸素濃度でかつ良好な面内分布の単結晶を、種付けの成功率を向上し効率よく製造するシリコン単結晶の製造方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、引上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、種結晶をシリコン融液に接触させて種付けを行う種付け工程と、シリコン単結晶を拡径した後に行われる直胴工程とを有し、前記種付け工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記シリコン融液の表面より下方の第1の位置として行い、前記直胴工程に移行する前に、前記引上げ炉の中心軸上にある磁場極小面位置を前記第1の位置より上方の第2の位置に移動させ、前記直胴工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記第2の位置として行うシリコン単結晶の製造方法を提供する。
 このようなシリコン単結晶の製造方法によれば、種付け工程中は原料融液(シリコン融液)表面の温度変動が小さくなり、種付けの成功率が飛躍的に向上する。加えて、製品部の直胴工程では、磁場極小面位置を変更することでシリコン融液の表面にある低酸素の層から酸素が単結晶に取り込まれやすくなるため、酸素濃度が低く面内分布の良好なシリコン単結晶を生産することが可能となる。これらの効果が組み合わされた結果として、低い酸素濃度でかつ良好な面内分布の単結晶を効率よく製造することが可能となる。
 このとき、前記第1の位置を、前記シリコン融液の表面から下方に30mm~80mmの位置とし、前記第2の位置を、前記シリコン融液の表面から下方に10mm~上方に100mmの位置とすることができる。
 これにより、より安定して確実に、低い酸素濃度でかつ良好な面内分布のシリコン単結晶を、種付けの成功率を向上し効率よく製造することができる。
 このとき、前記種付け工程において、前記上側コイル及び前記下側コイル間の中間面と坩堝内壁の交点における磁場強度を1500G以上とすることができる。
 これにより、種付けの成功率をより安定して確実に向上し、効率よく製造することができる。
 このとき、前記直胴工程において、前記上側コイル及び前記下側コイル間の中間面と坩堝内壁の交点における磁場強度を750G以上、1800G以下とすることができる。
 これにより、低い酸素濃度でかつ良好な面内分布のシリコン単結晶を、より安定して確実に製造することができる。
 このとき、前記種付け工程は無転位種付け法により行うことができる。
 これにより、より大直径のシリコン単結晶であっても、安定して低い酸素濃度でかつ良好な面内分布のシリコン単結晶を、種付けの成功率を向上し効率よく製造することができる。
 このとき、前記種付け工程の後に、前記引上げ炉の中心軸上にある磁場極小面位置を前記シリコン融液の表面より下方の前記第1の位置としたままネッキング工程を行うことができる。
 このように、ダッシュネッキング法を行う場合でも、安定して低い酸素濃度でかつ良好な面内分布のシリコン単結晶を、種付けの成功率を向上し効率よく製造することができる。
 以上のように、本発明のシリコン単結晶の製造方法によれば、種付け工程を行う際のシリコン融液表面の温度変動を小さくすることで種付けの成功率が向上し、加えて直胴部では例えばパワーデバイス向けの要求品質を満たすような低い酸素濃度でかつ良好な面内分布の単結晶を、効率よく製造することが可能となる。
単結晶引上げ装置の一例を示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述したように近年、パワーデバイス向けなどの低酸素結晶の品質については従来のレベルよりも高いレベルが求められている。特に、酸素濃度については、低温熱処理で発生するサーマルドナーの影響をなくすために、3×1017atoms/cm(ASTM’79)以下であることが望ましいとされている。加えて、酸素濃度の面内分布に関しては、チップ間の品質ばらつきをなくすためにも均一化することが望ましい。例えば、ウェーハ外周側の酸素濃度が低い場合、熱処理中にスリップ転位が発生し、デバイスプロセスの歩留に悪影響を及ぼすケースがある。このケースに対して、窒素ドープ等の不純物ドープを行えば強度を上げることが可能だが、窒素は欠陥やドナーの形成にも影響を与えるため、これに依存しない対策として面内の酸素濃度を均一化することが重要である。
 なお、酸素の面内分布の良好さを図る指標としてROGを用いることができる。ROGとは、少なくともウェーハ中心及びウェーハ外周から5mmの位置の2箇所の酸素濃度を測定し、(最大値-最小値)×100/最大値の式で得られる値とする。近年、ROGについても従来のレベルよりも高いレベルが求められており、ROG<15%を満たした良好な分布が要求されている。
 ところで、CZ法では石英坩堝中にシリコン融液が収容されるが、結晶引き上げ中に石英坩堝から酸素成分がシリコン融液中に溶出することで、シリコン単結晶中に酸素が取り込まれる。シリコン融液面の表層を鉛直方向から俯瞰すると、水平磁場を用いたMCZ法では磁力線と平行な方向には磁場が作用することで対流が抑制されるが、磁力線と垂直な方向にはほとんど磁場が作用していないため対流が活発になってしまう。このように、局所的に対流が活発になっている領域が生じるため、水平磁場では石英坩堝から酸素成分が溶出しやすくなってしまい、その結果としてシリコン単結晶の高酸素濃度化を招いてしまう。
 一方、カスプ磁場の場合は、坩堝内壁付近では全周にわたって磁場が作用するため坩堝内壁付近の対流は全周にわたって抑制されることになる。このため、カスプ磁場では、坩堝回転数が十分高速かつ磁場強度が強磁場になると石英坩堝とシリコン融液間の相対速度が高速となり酸素成分の溶出が促進されるが、逆に坩堝回転数が十分低速かつ磁場強度が弱磁場になると石英坩堝とシリコン融液間の相対速度が低速となり酸素の溶出が抑制される。上記の要素に加えて、カスプ磁場中の磁場極小面位置を単結晶の固液界面に近い条件ないし上方位置にすることでカスプ磁場固有の自然対流により、シリコン融液表面の酸素濃度が低い層から単結晶中に酸素成分が取り込まれやすくなる。よって、カスプ磁場を用いて、磁場極小面位置を単結晶の固液界面に近い位置ないし上方位置にすることで、結晶の低酸素化及び均一性の向上を実現できることを、本発明者は見出した。
 上記に加えて、パワーデバイス向けの要求品質を全て満たした低酸素結晶を高い生産性で製造するには、種付けの成功率を向上させる必要がある。本発明者が鋭意調査を行ったところ、カスプ磁場の磁場極小面位置を、上述した製品部の条件と同様の固液界面に近い位置ないし上方位置としたまま種付け工程を実施すると、シリコン融液表面の温度変動が大きくなることで種付けの成功率が著しく低下し、結晶の生産性が低下してしまうことがわかった。
 そこで、本発明者は、カスプ磁場を用いたCZ法によるシリコン単結晶の製造方法において、引上げ炉の中心軸上にある磁場極小面位置をシリコン融液(原料融液)表面よりも下側として種付け工程を実施し、その後、直胴工程の製品部に移行する前に前記磁場極小面位置を上方に移動させ、製品部の直胴工程を行うことに想到した。
 すなわち、本発明者らは、上記課題について鋭意検討を重ねた結果、引上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、種結晶をシリコン融液に接触させて種付けを行う種付け工程と、シリコン単結晶を拡径した後に行われる直胴工程とを有し、前記種付け工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記シリコン融液の表面より下方の第1の位置として行い、前記直胴工程に移行する前に、前記引上げ炉の中心軸上にある磁場極小面位置を前記第1の位置より上方の第2の位置に移動させ、前記直胴工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記第2の位置として行うシリコン単結晶の製造方法により、低い酸素濃度でかつ良好な面内分布の単結晶を効率よく製造することが可能となることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 [単結晶引上げ装置]
 まず、本発明に係るシリコン単結晶の製造方法に好適に使用される単結晶引上げ装置について説明する。図1に単結晶引上げ装置の一例を示す。図1に示す単結晶引上げ炉1は、断熱材9と、その内部の加熱ヒーター8と、黒鉛坩堝7内の石英坩堝6に収容されたシリコン融液5(原料融液)と対向するように熱遮蔽部材13が筒部12の下端に配置されている。また、周囲に設けられた上下2つの超電導コイルである上コイル30aと下コイル30bを有する磁場発生装置30とを備え、上コイル30a、下コイル30bに通電することによりシリコン融液5にカスプ磁場を印加する。引上げ炉1の中心軸10上であって、ワイヤーに接続された種ホルダ3で保持された種結晶2をシリコン融液5に接触させて種付けを行い、シリコン単結晶を拡径し、製品部となる直胴部を引上げ方向に引き上げてシリコン単結晶4を製造する構成となっている。
 磁場発生装置30は、鉛直方向に上下移動可能な昇降装置30cの上に設置されており、上コイル30aと下コイル30bを備えている。上下2本のコイルに対し互いに反対方向の電流を流すことによりカスプ磁場を発生させるが、このときに上コイル30aと下コイル30bの電流値を同じ値として互いに反対方向の電流を流すと、上下対称かつ左右対称な磁場分布となる。またこのとき、中心軸10と上下コイル間の中間面11の交点にある磁場極小面位置31の磁場強度は0ガウスとなる。
 また、上コイル30aと下コイル30bの電流値を互いに異なる値に設定し、上下2本のコイルに対し互いに反対方向の電流を流すことで、上下非対称かつ左右対称な磁場分布となり、上下コイルの電流値を同じ値に設定した場合と比べて磁場極小面位置31が変化する(以後、「不平衡励磁」と称する)。例えば、上コイル電流値>下コイル電流値とすると磁場極小面位置31は上下コイルの電流値を同じ値に設定した場合に比べて下側にシフトし、上コイル電流値<下コイル電流値とすると磁場極小面位置31は上下コイルの電流値を同じ値に設定した場合に比べて上側にシフトする。
 なお、上記以外のHZ(ホットゾーン)等の構造は、一般的なCZシリコンの単結晶製造装置と同様の構造とすることができる。
 [シリコン単結晶の製造方法]
 次に、本発明に係るシリコン単結晶の製造方法について説明する。本発明に係るシリコン単結晶の製造方法は、種結晶をシリコン融液に接触させて種付けを行う種付け工程と、シリコン単結晶を拡径した後に行われる直胴工程とを有している。種付け工程は、引上げ炉の中心軸上にある磁場極小面位置をシリコン融液の表面より下方の第1の位置として行い、直胴工程に移行する前に、引上げ炉の中心軸上にある磁場極小面位置を第1の位置より上方の第2の位置に移動させ、直胴工程は、引上げ炉の中心軸上にある磁場極小面位置を第2の位置として行う。以下、詳細に説明する。
 (種付け工程)
 種付け工程では単結晶引上げ炉1の中心軸10上にある磁場極小面位置31をシリコン融液5(原料融液)の表面よりも下方の第1の位置としてネッキング工程を実施する。このとき、種付け前には種結晶2をシリコン融液5の直上で5~60分程度加温することが好ましい。この加温を実施することで種結晶2とシリコン融液5の温度差が小さくなり、その結果として融液と種結晶が接触した際の熱ショックを緩和することができ、無転位でシリコン単結晶を引き上げる際の成功率がより向上し、生産性を向上することが可能となる。
 種付け工程中は、カスプ磁場の磁場極小面位置の第1の位置を、シリコン融液の表面から下方に30mm~80mm(30mm以上、80mm以下)の位置とすることが好ましい。このような範囲であれば、種付けがより安定し、成功率がより高くなる。
 なお、上述のとおり、MCZ法では、坩堝内壁付近の磁場分布や磁場強度が単結晶中への酸素成分の取り込み量を決定するための因子となっており、低酸素結晶を高い生産性で製造するためにはこれらの条件を規定することが好ましい。よって、本発明に係るシリコン単結晶の製造方法において、磁場強度を上側コイル及び下側コイル間(上下コイル間)の中間面と坩堝内壁の交点における値で規定することとする。
 本発明に係るシリコン単結晶の製造方法における種付け工程では、上下コイル間の中間面と坩堝内壁の交点における磁場強度が1500G以上となるように磁場を印加した上でネッキング工程を実施することが好ましい。このような範囲であれば、種付けがより安定し、成功率がより高くなる。
 このように、種付け工程中に、カスプ磁場の磁場極小面位置の第1の位置を、シリコン融液(原料融液)の表面から下方に30mm~80mm、及び/又は、上下2つのコイル間の中間面と坩堝内壁の交点における磁場強度を1500G以上とすることで、シリコン融液表面の全体に磁場が作用した状態となり、シリコン融液表面の温度変動が小さくなることで種付けの成功率が飛躍的に向上する。なお、カスプ磁場の磁場極小面位置の第1の位置を、シリコン融液の表面から下方に30mm~80mm、かつ、上下2つのコイル間の中間面と坩堝内壁の交点における磁場強度を1500G以上とした場合、磁場強度を増加させるにつれてシリコン融液中の対流抑制力が強くなることから、シリコン融液表面の温度変動は小さくなる。よって、種付け工程中における磁場強度の値に上限を設ける必要はないが、磁場強度の上限は装置(カスプ磁場を形成するコイル)の能力、構造等に応じて設定でき、例えば5000G以下とすることができる。
 種付け工程は、種付け工程の後にネッキング工程(ダッシュネッキング法)を行わない無転位種付け法により実施しても良い。この無転位種付け法を実施する際には、種結晶先端部が尖った形状の種結晶を用いるが、このときの種結晶先端部の角度は28°以下とすることが好ましい。このような形状の種結晶であればシリコン融液と種結晶が接触した際に生じる熱ショックをより効果的に緩和することができ、その結果として、無転位でシリコン単結晶を引き上げる際の成功率がより向上する。
 種付け工程の後に、磁場極小面位置を変化させず第1の位置としたままネッキング工程(ダッシュネッキング法)を行うこともできる。本発明に係るシリコン単結晶の製造方法では、ダッシュネッキング法を行う場合でも安定して種付けの成功率を向上し効率よい製造を行うことができる。
 (直胴工程)
 種付け工程の後、直胴工程に移行する前に、単結晶引上げ炉1の中心軸10上にある磁場極小面位置31を第1の位置より上方の第2の位置に移動させ、直胴工程は、単結晶引上げ炉1の中心軸10上にある磁場極小面位置31を第2の位置として行う。これにより、低い酸素濃度でかつ良好な面内分布のシリコン単結晶を製造することが可能となる。
 直胴工程において、磁場極小面位置が種付け工程と同じ第1の位置にあると、石英坩堝近傍のシリコン融液の対流が抑制されているので、石英坩堝とシリコン融液の相対速度が大きくなり、石英坩堝から酸素成分がシリコン融液中に溶出しやすくなる。上記の酸素成分の溶出を抑制するためには、シリコン単結晶を拡径した後に製品部を製造する直胴工程までに、磁場極小面位置を第1の位置より上方の第2の位置に移動させる。
 このとき、第2の位置は、シリコン融液の表面から下方に10mm~上方に100mm(下方に10mm以内かつ上方に100mm以内)の位置とすることが好ましい。このような範囲であれば、低い酸素濃度でかつ良好な面内分布の単結晶をより安定して製造することができる。
 製品部の直胴工程における磁場極小面位置の第2の位置をシリコン融液表面から下方に10mm~上方に100mmの位置にすると、融液表面に対して直交する方向の磁場が強くなり(VMCZに近くなる)すぎるのを抑制できるため、より安定して固液界面の境界拡散層の厚さを均一に維持でき、酸素濃度の面内分布の均一性が高い状態を維持できる。
 また、磁場強度を所定の値に調整することが好ましい。直胴工程において、上側コイル及び下側コイル間の中間面と坩堝内壁の交点における磁場強度を750G以上、1800G以下とすることが好ましい。このような範囲であれば、低い酸素濃度でかつ良好な面内分布のシリコン単結晶をより安定して製造することができる。製品部の直胴工程における磁場強度が750G以上であれば結晶変形をより効果的に抑制でき安定して操業を継続することができ、1800G以下であれば石英坩堝近傍のシリコン融液の対流が抑制され過ぎず石英坩堝とシリコン融液の相対速度が小さくなり、石英坩堝から酸素成分がシリコン融液中により溶出しにくくなることで酸素濃度の上昇をより効果的に抑制できる。
 以上説明したように、本発明に係るシリコン単結晶の製造方法では、製品部の直胴工程に移行する前に、磁場極小面位置の第2の位置をシリコン融液表面から下方に10mm~上方に100mmの位置とすることが好ましく、及び/又は、上下2つのコイル間の中間面と坩堝内壁の交点における磁場強度を750G以上、1800G以下とすることが好ましい。それにより石英坩堝とシリコン融液間の相対速度が低速となり酸素の溶出が抑制される効果や、シリコン融液の表面にある低酸素の層から酸素が単結晶に取り込まれやすくなる効果が得られ、その結果として、3×1017atoms/cm(ASTM’79)以下の低い酸素濃度をより安定して実現することが可能となる。
 本発明に係るシリコン単結晶の製造方法では、種付けやネッキングを行う非製品部の工程から製品部(直胴部)の工程に移行する前に磁場極小面位置を上方に移動させるが、昇降装置30cを用いて磁場発生装置30を上方に移動させることで磁場極小面位置を上方に移動させても良いし、上下コイル30a、30bの電流値を上コイル電流値<下コイル電流値とした不平衡励磁を行うことで磁場極小面位置を上方に移動させても良い。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 CZ引上げ炉中の32インチ坩堝(口径800mm)に340kgのシリコン原料を溶融し、カスプ磁場を印加して結晶直径300mmのシリコン単結晶の引上げを行った。単結晶引上げ後、固化率20%、35%、50%、65%の各位置からサンプルを切り出し、FT-IRを用いて酸素濃度の面内分布を検証した。なお、酸素濃度の面内分布の良好さを図る指標としてROGを用いた。
 ここで、ROGとは、少なくともウェーハ中心及びウェーハ外周から5mmの位置の2箇所の酸素濃度を測定し、(最大値-最小値)×100/最大値なる式で得られる値とする。以下の実施例及び比較例において表に示すROGには固化率20%、35%、50%、65%の各位置の平均値を用いることとする。
 以下の説明において、磁場極小面位置はシリコン融液の表面(湯面)を基準として、「湯面から下方/上方に~mm」と表現する。なお、「湯面から下方に0mm」と表現した場合は、湯面と磁場極小面位置とが一致することを意味する。
 [実施例1-4]
 実施例1-4では、以下に示す条件でシリコン単結晶の製造を行った。
 (種付け工程)
 磁場極小面位置(=上下コイル間の0Gの位置):湯面から下方に30mm又は湯面から下方に70mm
 上下コイル間の中間面と坩堝内壁の交点における磁場強度:1500G
 坩堝回転速度:1.0rpm
 単結晶回転速度:8rpm
 (直胴工程)
 磁場極小面位置:湯面から下方に10mm又は湯面から上方に100mm
 上下コイル間の中間面と坩堝内壁の交点における磁場強度:1500G
 坩堝回転速度:1.0rpm
 単結晶回転速度:8rpm
 実施例1-4では、種付け工程中はカスプ磁場の磁場極小面位置をシリコン融液表面(湯面)から下方に30mm又は下方に70mmとし、種付け工程に続けてネッキング工程(ダッシュネッキング法)を実施した後、製品部の直胴工程に移行する前に磁場極小面位置を上方に移動させ、製品部の直胴工程中における磁場極小面位置をシリコン融液表面(湯面)から下方に10mm又は上方に100mmとした、合計4種類の引上げ条件で単結晶の引上げを実施した。なお、製品部の直胴工程に移行する前の磁場極小面位置の移動は、昇降装置を用いて実施した。実施例1-4の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり実施例1-4の条件とした場合は、種付け時に有転位になることなく単結晶の引上げに成功した。また、製品部の結晶品質についても酸素濃度3×1017atoms/cm(ASTM’79)以下でなおかつ、ROG<15%と面内分布も良好な分布が得られた。操業性を損なうことなく、パワーデバイス向けの要求品質を満たした低酸素結晶を引上げることに成功した。
 [実施例5-8]
 実施例5-8では、種付け工程の磁場強度を2000G、製品部の直胴工程の磁場強度を1800Gに変更し、その他の条件は実施例1-4と同条件とした、合計4種類の引上げ条件で単結晶の引上げを実施した。実施例5-8の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり実施例5-8の条件とした場合も、種付け時に有転位になることなく単結晶の引上げに成功し、製品部の結晶品質についても酸素濃度3×1017atoms/cm(ASTM’79)以下でなおかつ、ROG<15%と面内分布も良好な分布が得られた。操業性を損なうことなく、パワーデバイス向けの要求品質を満たした低酸素結晶を引上げることに成功した。
 [実施例9-12]
 実施例9-12では、製品部の直胴工程の磁場強度のみ750Gに変更し、その他の条件は実施例1-4と同条件とした、合計4種類の引上げ条件で単結晶の引上げを実施した。実施例9-12の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり実施例9-12の条件とした場合も、種付け時に有転位になることなく単結晶の引上げに成功し、製品部の結晶品質についても酸素濃度3×1017atoms/cm(ASTM’79)以下でなおかつ、ROG<15%と面内分布も良好なものが得られた。操業性を損なうことなく、パワーデバイス向けの要求品質を満たした低酸素結晶を引上げることに成功した。
 [実施例13-14]
 実施例13-14では、ネッキング工程(ダッシュネッキング法)を行わない無転位種付け法を実施し、その他の条件は実施例1、実施例2と同条件とした、合計2種類の引上げ条件で単結晶の引上げを実施した。実施例13-14の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すとおり実施例13-14の条件とした場合も、種付け時に有転位になることなく単結晶の引上げに成功し、製品部の結晶品質についても酸素濃度3×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<15%と面内分布も良好なものが得られた。操業性を損なうことなく、パワーデバイス向けの要求品質を満たした低酸素結晶を引上げることに成功した。
 [比較例1-4]
 比較例1-4では、種付け工程中の磁場極小面位置を湯面から下方に0mm又は湯面から下方に15mm、上下コイル間の中間面と坩堝内壁の交点における磁場強度を1500G又は2000Gとし、製品部の直胴工程の条件は種付け工程中の磁場極小面位置及び磁場強度と同じ条件とした、合計4種類の引上げ条件で単結晶の引上げを実施した。なお、比較例1-4において、その他の条件は全て実施例1と同じ条件とした。比較例1-4の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すとおり、比較例1-4のうち、磁場極小面位置を湯面から下方に0mmとした比較例1,3では磁場強度によらず種付けに10回失敗し、操業を継続することが困難であった。一方、磁場極小面位置を湯面から下方に15mmとした場合は、種付け時の磁場強度が1500Gのときは種付けの失敗回数が6回に減少し(比較例2)、種付け時の磁場強度が2000Gのときは種付けの失敗回数が5回に減少した(比較例4)。種付け時の磁場極小面位置を湯面から下方に15mmの位置とすることで、磁場極小面位置を湯面から下方に0mmとしたときより種付けの失敗回数が減少する結果となった。しかしながら、比較例2,4では製品部の直胴工程の磁場極小面位置及び磁場強度を種付け工程中と同条件にしたため、製品部の酸素濃度が3×1017atoms/cmよりも高くなってしまい、パワーデバイス向けの要求品質を満たした低酸素結晶を引上げることができなかった。
 [比較例5-6]
 比較例5-6では、ネッキング工程(ダッシュネッキング法)を行わない無転位種付け法を実施し、種付け工程中の磁場極小面位置を湯面から下方に0mm又は湯面から下方に15mm、上下コイル間の中間面と坩堝内壁の交点における磁場強度を1500Gとし、製品部の直胴工程の条件は種付け工程中の磁場極小面位置及び磁場強度と同じ条件とした、合計2種類の引上げ条件で単結晶の引上げを実施した。なお、比較例5-6において、その他の条件は全て実施例1と同じ条件とした。比較例5-6の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すとおり、磁場極小面位置を湯面から下方に0mmとした比較例5の場合は種付けに10回失敗し、操業を継続することが困難であった。一方、磁場極小面位置を湯面から下方に15mmとした比較例6の場合は、種付けの失敗回数が5回に減少した。種付け時の磁場極小面位置を湯面から下方に15mmの位置とすることで、磁場極小面位置を湯面から下方に0mmとしたときより種付けの失敗回数が減少する結果となった。このため、カスプ磁場中でネッキング工程(ダッシュネッキング法)を行わない無転位種付け法を実施する場合においても、種付け工程中における磁場極小面位置をシリコン融液表面より下方の位置とする必要があることがわかった。しかしながら、製品部の磁場極小面位置及び磁場強度を種付け工程中と同条件にした比較例6では、製品部の酸素濃度が3×1017atoms/cmよりも高くなってしまい、パワーデバイス向けの要求品質を満たした低酸素結晶を引上げることができなかった。
 以上のとおり、本発明の実施例によれば、低い酸素濃度でかつ良好な面内分布の単結晶を、種付けの成功率を向上し効率よく製造することができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  引上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、
     種結晶をシリコン融液に接触させて種付けを行う種付け工程と、シリコン単結晶を拡径した後に行われる直胴工程とを有し、
     前記種付け工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記シリコン融液の表面より下方の第1の位置として行い、
     前記直胴工程に移行する前に、前記引上げ炉の中心軸上にある磁場極小面位置を前記第1の位置より上方の第2の位置に移動させ、
     前記直胴工程は、前記引上げ炉の中心軸上にある磁場極小面位置を前記第2の位置として行い、
     前記第1の位置を、前記シリコン融液の表面から下方に30mm~80mmの位置とし、
     前記第2の位置を、前記シリコン融液の表面から下方に10mm~上方に100mmの位置とし、
     前記種付け工程において、前記上側コイル及び前記下側コイル間の中間面と坩堝内壁の交点における磁場強度を1500G以上とし、
     前記直胴工程において、前記上側コイル及び前記下側コイル間の中間面と坩堝内壁の交点における磁場強度を750G以上、1800G以下とすることを特徴とするシリコン単結晶の製造方法。
  2.  前記種付け工程は無転位種付け法により行うことを特徴とする請求項1に記載のシリコン単結晶の製造方法。
  3.  前記種付け工程の後に、前記引上げ炉の中心軸上にある磁場極小面位置を前記シリコン融液の表面より下方の前記第1の位置としたままネッキング工程を行うことを特徴とする請求項1又は2に記載のシリコン単結晶の製造方法。
PCT/JP2022/029046 2021-07-29 2022-07-28 シリコン単結晶の製造方法 WO2023008508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022002697.9T DE112022002697T5 (de) 2021-07-29 2022-07-28 Verfahren zum herstellen eines silizium-einkristalls
KR1020247000285A KR20240038957A (ko) 2021-07-29 2022-07-28 실리콘 단결정의 제조방법
CN202280046419.3A CN117597476A (zh) 2021-07-29 2022-07-28 单晶硅的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124122 2021-07-29
JP2021124122A JP7124938B1 (ja) 2021-07-29 2021-07-29 シリコン単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2023008508A1 true WO2023008508A1 (ja) 2023-02-02

Family

ID=83004355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029046 WO2023008508A1 (ja) 2021-07-29 2022-07-28 シリコン単結晶の製造方法

Country Status (5)

Country Link
JP (1) JP7124938B1 (ja)
KR (1) KR20240038957A (ja)
CN (1) CN117597476A (ja)
DE (1) DE112022002697T5 (ja)
WO (1) WO2023008508A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107487A (ja) * 1996-06-20 1998-01-13 Komatsu Electron Metals Co Ltd 磁場印加による半導体単結晶の製造方法
JP2000239097A (ja) * 1999-02-22 2000-09-05 Sumitomo Metal Ind Ltd 半導体用シリコン単結晶の引上げ方法
JP2002249396A (ja) * 2001-02-20 2002-09-06 Sumitomo Metal Ind Ltd シリコン単結晶の育成方法
JP2002249397A (ja) * 2001-02-16 2002-09-06 Sumitomo Metal Ind Ltd シリコン単結晶の製造方法
JP2003002784A (ja) * 2001-06-26 2003-01-08 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の引上げ方法
JP2007031187A (ja) * 2005-07-25 2007-02-08 Sumco Corp シリコン単結晶製造方法及びシリコン単結晶
JP2007145666A (ja) * 2005-11-29 2007-06-14 Toshiba Ceramics Co Ltd シリコン単結晶の製造方法
JP2008526666A (ja) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 成長するシリコン結晶のメルト−固体界面形状の可変磁界を用いる制御
JP2012031005A (ja) * 2010-07-30 2012-02-16 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2013163642A (ja) * 2013-05-28 2013-08-22 Sumco Corp シリコン単結晶の育成方法及びシリコンウェーハの製造方法
JP2014227321A (ja) * 2013-05-23 2014-12-08 信越半導体株式会社 シリコン単結晶の製造方法
JP2020033200A (ja) * 2018-08-27 2020-03-05 株式会社Sumco シリコン単結晶の製造方法及びシリコンウェーハ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750440B2 (ja) 1999-09-22 2006-03-01 株式会社Sumco 単結晶引上方法
US7179330B2 (en) 2002-04-24 2007-02-20 Shin-Etsu Handotai Co., Ltd. Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
JP2009018984A (ja) 2007-06-15 2009-01-29 Covalent Materials Corp 低酸素濃度シリコン単結晶およびその製造方法
WO2009025340A1 (ja) 2007-08-21 2009-02-26 Sumco Corporation Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107487A (ja) * 1996-06-20 1998-01-13 Komatsu Electron Metals Co Ltd 磁場印加による半導体単結晶の製造方法
JP2000239097A (ja) * 1999-02-22 2000-09-05 Sumitomo Metal Ind Ltd 半導体用シリコン単結晶の引上げ方法
JP2002249397A (ja) * 2001-02-16 2002-09-06 Sumitomo Metal Ind Ltd シリコン単結晶の製造方法
JP2002249396A (ja) * 2001-02-20 2002-09-06 Sumitomo Metal Ind Ltd シリコン単結晶の育成方法
JP2003002784A (ja) * 2001-06-26 2003-01-08 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の引上げ方法
JP2008526666A (ja) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 成長するシリコン結晶のメルト−固体界面形状の可変磁界を用いる制御
JP2007031187A (ja) * 2005-07-25 2007-02-08 Sumco Corp シリコン単結晶製造方法及びシリコン単結晶
JP2007145666A (ja) * 2005-11-29 2007-06-14 Toshiba Ceramics Co Ltd シリコン単結晶の製造方法
JP2012031005A (ja) * 2010-07-30 2012-02-16 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2014227321A (ja) * 2013-05-23 2014-12-08 信越半導体株式会社 シリコン単結晶の製造方法
JP2013163642A (ja) * 2013-05-28 2013-08-22 Sumco Corp シリコン単結晶の育成方法及びシリコンウェーハの製造方法
JP2020033200A (ja) * 2018-08-27 2020-03-05 株式会社Sumco シリコン単結晶の製造方法及びシリコンウェーハ

Also Published As

Publication number Publication date
KR20240038957A (ko) 2024-03-26
DE112022002697T5 (de) 2024-03-14
CN117597476A (zh) 2024-02-23
JP2023019420A (ja) 2023-02-09
JP7124938B1 (ja) 2022-08-24

Similar Documents

Publication Publication Date Title
EP2083098B1 (en) Apparatus for manufacturing semiconductor single crystal ingot and method using the same
US7611580B2 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US6569535B2 (en) Silicon wafer and epitaxial silicon wafer utilizing same
JP2014509584A (ja) 単結晶インゴットの製造方法およびこれによって製造された単結晶インゴットとウェハ
JP5240191B2 (ja) シリコン単結晶引上装置
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
JP2017057127A (ja) 単結晶引き上げ装置、及び単結晶引き上げ方法
JP5283543B2 (ja) シリコン単結晶の育成方法
JP2012246218A (ja) シリコン単結晶ウェーハおよびシリコン単結晶の製造方法
JP2007031274A (ja) シリコン単結晶インゴット、ウエハ、その成長装置、及びその成長方法
JP3601328B2 (ja) シリコン単結晶の製造方法およびこの方法で製造されたシリコン単結晶とシリコンウエーハ
WO2023008508A1 (ja) シリコン単結晶の製造方法
JP4461781B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶製造装置の設計方法並びにシリコン単結晶製造装置
WO2023243357A1 (ja) シリコン単結晶の製造方法
JP4293188B2 (ja) 単結晶の製造方法及びシリコン単結晶ウエーハ
JP2000086392A (ja) シリコン単結晶の製造方法
JPH11278993A (ja) 単結晶成長方法
JP2018523626A (ja) 単結晶インゴット成長装置及びその成長方法
JP5668786B2 (ja) シリコン単結晶の育成方法及びシリコンウェーハの製造方法
JPH05208887A (ja) Fz法シリコン単結晶棒の成長方法及び装置
JP2019196289A (ja) 単結晶の製造方法及び単結晶引き上げ装置
JP2000239096A (ja) シリコン単結晶の製造方法
JP4953386B2 (ja) シリコン単結晶の引上げ方法
JP4150167B2 (ja) シリコン単結晶の製造方法
JP4501507B2 (ja) シリコン単結晶育成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280046419.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022002697

Country of ref document: DE