WO2023243357A1 - シリコン単結晶の製造方法 - Google Patents

シリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2023243357A1
WO2023243357A1 PCT/JP2023/019599 JP2023019599W WO2023243357A1 WO 2023243357 A1 WO2023243357 A1 WO 2023243357A1 JP 2023019599 W JP2023019599 W JP 2023019599W WO 2023243357 A1 WO2023243357 A1 WO 2023243357A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
single crystal
oxygen concentration
silicon single
rpm
Prior art date
Application number
PCT/JP2023/019599
Other languages
English (en)
French (fr)
Inventor
佳祐 三原
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2023243357A1 publication Critical patent/WO2023243357A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for producing a silicon single crystal by a CZ method using a cusp magnetic field formed by an upper coil and a lower coil provided in a pulling furnace.
  • the region in which current flows in a power device has a thickness ranging from several tens to several hundred ⁇ m from the surface layer, and in some cases, current flows throughout the entire wafer. If oxygen precipitates or BMD (Bulk Micro Defect) are present in the region where this current flows, breakdown voltage failure or leakage failure may occur.
  • BMD Bit Micro Defect
  • silicon single crystal wafers for power devices are required to have a low oxygen concentration that does not generate oxygen precipitates, and to have a flat in-plane distribution of oxygen concentration.
  • RF radio frequency
  • CZ Czochralski
  • MZ magnetic field applied CZ
  • Patent Document 1 describes a method of obtaining a low-oxygen crystal by specifying the crystal rotation speed and crucible rotation speed under a horizontal magnetic field
  • Patent Document 2 describes a method of obtaining a low-oxygen crystal by specifying the crystal rotation speed and crucible rotation speed under a horizontal magnetic field.
  • a method is disclosed in which the crucible rotation speed is 0.2 rpm or less and the crystal rotation speed is 5 rpm or less.
  • Patent Document 6 describes that the magnetic field strength of the cusp magnetic field is 0.05T to 0.12T, the magnetic field center position is 0 mm to -30 mm (30 mm downward) with respect to the melt surface, the crystal rotation is 8 to 14 rpm, and the crucible rotation speed is A method of adjusting the speed to 1.3 to 2.2 rpm is disclosed.
  • the crystal rotation speed is set to about 5 rpm (Patent Document 1) or lower (Patent Document 2), but when the crystal rotation speed is made low, resistivity and oxygen The problem is that the in-plane distribution of this material deteriorates and becomes a factor in device failure.
  • the oxygen concentration described in Patent Document 6 is the result of model prediction based on numerical analysis, and the oxygen concentration is only at one point near the center. In the production of large-diameter single crystals with a diameter of 300 mm or more, if the rotation speed of the quartz crucible is increased to 1.3 rpm as described in Patent Document 6, the oxygen concentration value increases and the in-plane distribution of oxygen concentration increases. The problem is that it gets worse.
  • the present invention has been made in order to solve the above problems, and provides a method for efficiently producing silicon single crystals with a lower oxygen concentration and a better in-plane distribution of oxygen concentration than in the prior art. With the goal.
  • the present invention has been made to achieve the above object, and is a method for producing a silicon single crystal by a CZ method using a cusp magnetic field formed by an upper coil and a lower coil provided in a pulling furnace, comprising: In the direct shell process, the rotation speed of the silicon single crystal is set to 7 rpm or more and 12 rpm or less, the rotation speed of the quartz crucible is set to 1.0 rpm or less, and the position of the minimum magnetic field of the cusp magnetic field is set from 10 mm downward to 5 mm upward from the raw material melt surface.
  • a method for producing a silicon single crystal in which the magnetic field strength of the cusp magnetic field at the intersection of a plane at the same height as the minimum magnetic field plane and the inner wall of a quartz crucible is 800 to 1200 G within the range of 800 to 1200 G.
  • the silicon single crystal has an oxygen concentration of 2 ⁇ 10 17 atoms/cm 3 or less based on ASTM'79, and an ROG of 8% or less in a crystal cross section perpendicular to the growth direction of the silicon single crystal. This method can be used to produce a silicon single crystal.
  • the method for producing a silicon single crystal according to the present invention can stably produce such a high quality silicon single crystal.
  • FIG. 1 is a diagram illustrating an example of a single crystal manufacturing apparatus.
  • the in-plane distribution of oxygen concentration obtained in the 100 cm straight body of Examples 1 and 2 is shown. This shows the crucible rotation speed dependence of oxygen concentration in a single crystal.
  • the in-plane distribution of oxygen concentration obtained with a straight body of 100 cm in Comparative Example 2 is shown.
  • the present inventors have developed a method for producing silicon single crystals by the CZ method using a cusp magnetic field formed by an upper coil and a lower coil installed in a pulling furnace.
  • the rotation speed of the silicon single crystal is set to 7 rpm or more and 12 rpm or less
  • the rotation speed of the quartz crucible is set to 1.0 rpm or less
  • the position of the minimum magnetic field of the cusp magnetic field is set from 10 mm downward to 5 mm above the raw material melt surface.
  • the magnetic field strength of the cusp magnetic field at the intersection of the plane at the same height as the minimum magnetic field plane and the inner wall of the quartz crucible was set to 800 to 1200 G, and the crucible rotation speed was made high by a silicon single crystal production method that pulled up the silicon single crystal.
  • the present invention was completed based on the discovery that it is possible to efficiently produce crystals.
  • the quality of low-oxygen crystals for power devices and RF devices has been required to be at a higher level than the conventional level.
  • the oxygen concentration is desirably 2 ⁇ 10 17 atoms/cm 3 (ASTM'79) or less in order to eliminate the influence of thermal donors generated during low-temperature heat treatment.
  • ROG Ring Oxygen Gradient
  • ROG Measured oxygen concentration at least at two locations: the center of the wafer and a predetermined position from the outer periphery of the wafer, The value is obtained by the formula (maximum value - minimum value) x 100/maximum value.
  • ROG has been required to have a higher level than the conventional level, and a good distribution that satisfies ROG ⁇ 8% is required.
  • a silicon melt (hereinafter also referred to as "raw material melt”) is stored in a quartz crucible, but during crystal pulling, oxygen is eluted from the quartz crucible and incorporated into the silicon melt.
  • the oxygen concentration in the crystal increases.
  • the silicon melt surface molten metal surface
  • convection is suppressed by the magnetic field acting in a direction parallel to the magnetic field lines, but convection is suppressed in the direction perpendicular to the magnetic field lines. Since there is almost no magnetic field acting on it, convection becomes active. Since regions where convection is locally active occur in this way, oxygen tends to be eluted from the quartz crucible in a horizontal magnetic field, resulting in a high oxygen concentration in the crystal.
  • the magnetic field acts over the entire circumference near the inner wall of the quartz crucible (hereinafter sometimes simply referred to as “crucible wall” or “inner crucible wall”), so convection near the crucible wall occurs over the entire circumference. suppressed.
  • the present invention provides a method for manufacturing a silicon single crystal by the CZ method using a cusp magnetic field, in which the crystal rotation speed of the single crystal in the straight body process is set to 7 rpm or more and 12 rpm or less, and the position of the minimum field surface of the magnetic field is adjusted to the raw material melt.
  • the rotation speed of the quartz crucible is set to 1.0 rpm or less, and the magnetic field strength of the cusp magnetic field at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the quartz crucible (hereinafter simply referred to as It is characterized by having a magnetic field strength (sometimes expressed as "magnetic field strength") of 800 to 1200G.
  • FIG. 1 shows an example of a single crystal manufacturing device (single crystal pulling device).
  • a heat shielding member 12 is disposed at the lower end of the cylindrical portion 11 so as to face the cylindrical portion 11 . It is equipped with a pulling furnace 1 having a central axis 10 and a magnetic field generator 30 provided around the pulling furnace 1 and having an upper coil 30a and a lower coil 30b.
  • the configuration is such that a cusp magnetic field is applied to pull the single crystal in the direction of the central axis.
  • seeding is performed by bringing the seed crystal 2 held by a seed holder 3 connected to a wire onto the central axis 10 of the pulling furnace 1 into contact with the raw material melt 5, and expanding the diameter of the silicon single crystal.
  • the structure is such that the silicon single crystal 4 is manufactured by pulling up the straight body part, which becomes the product part, in the pulling direction.
  • the magnetic field generator 30 is installed on a lifting device 30c that can move up and down in the vertical direction, and an upper coil 30a and a lower coil 30b are arranged so as to surround the side surface of the pulling furnace 1.
  • a cusp magnetic field currents in opposite directions are passed through the upper and lower coils to generate magnetic lines of force that repel the upper and lower coils.
  • a region (magnetic field minimum surface 32) where the magnetic field intensity is lowest near the central axis 10 between the upper coil 30a and the lower coil 30b is formed.
  • FIG. 1 shows a case where the height position of the minimum magnetic field surface 32 (that is, the height position of the surface 31 at the same height as the minimum magnetic field surface) and the height position of the raw material melt surface 33 are shown.
  • the black dotted arrows in Figure 1 indicate the actual magnetic field distribution
  • the white arrows on the central axis indicate that the vertical component of the magnetic field is dominant
  • the white arrows on the median line between the two coils indicate that the vertical component of the magnetic field is dominant. shows that the horizontal component of the magnetic field is dominant.
  • the magnetic field minimum surface 32 shifts downward compared to the case where the current values of the upper and lower coils are set to the same value
  • the magnetic field minimum surface 32 shifts upward compared to the case where the current values of the upper and lower coils are set to the same value
  • the position of the minimum magnetic field surface 32 is set within the range of 10 mm downward to 5 mm upward from the raw material melt surface 33 in the product section (direct body process); Before doing this, it is necessary to move the position of the minimum magnetic field surface.
  • the position of the minimum magnetic field surface may be moved by moving the magnetic field generator 30 up and down using the lifting device 30c, or the current of the upper and lower coils 30a, 30b may be changed.
  • the position of the minimum magnetic field surface may be moved by performing unbalanced excitation with different values.
  • the strength of the convection suppression force near the inner wall of the quartz crucible is determined by the strength of the magnetic field near the inner wall of the quartz crucible, so the strength of the magnetic field near the inner wall of the quartz crucible determines the oxygen concentration in the MCZ method using a cusp magnetic field. This becomes an important element. Therefore, the magnetic field strength in the present invention is defined as 800 to 1200 G at the intersection 35 between the surface 31 at the same height as the minimum magnetic field surface and the inner wall of the quartz crucible.
  • the surface 31 at the same height as the minimum magnetic field surface is a surface that includes the minimum magnetic field surface 32, and the intersection 35 can be translated as a point at the same height as the minimum magnetic field surface 32 on the inner wall of the quartz crucible. Can be done.
  • the structure of the HZ (hot zone) other than the above can be the same as that of a general CZ silicon single crystal manufacturing apparatus. However, it is an essential condition that the rotation speed of the quartz crucible can be set to 1.0 rpm or less.
  • a single crystal is grown while rotating the single crystal, but in order to obtain a single crystal with a good in-plane distribution of oxygen concentration at a low oxygen concentration without impairing operability, in the present invention, a straight shell process is used.
  • the crystal rotation speed of the single crystal in is set to 7 rpm or more and 12 rpm or less.
  • a single crystal is grown while also rotating the quartz crucible, but in the cusp magnetic field, the magnetic field acts over the entire circumference near the crucible wall, so convection near the crucible wall is suppressed over the entire circumference. . Therefore, if the rotation speed of the quartz crucible is made too high in the cusp magnetic field, the relative speed between the quartz crucible and the raw material melt will become high, promoting the elution of oxygen, and raising the oxygen concentration in the single crystal. becomes.
  • the rotation speed of the quartz crucible is set to 1.0 rpm or less.
  • the lower limit of the rotational speed of the quartz crucible is not particularly limited, it can be set to, for example, 0.1 rpm or more.
  • the crystal rotation speed of the single crystal in the straight body process is set to 7 rpm or more and 12 rpm or less, and the position of the minimum magnetic field of the magnetic field is within the range of 10 mm downward to 5 mm upward from the raw material melt surface, and the quartz crucible is rotated.
  • the speed is set to 1.0 rpm or less and the magnetic field strength of the cusp field to 800 to 1200 G, a good in-plane oxygen concentration can be achieved while maintaining a low oxygen concentration of 2 ⁇ 10 17 atoms/cm 3 (ASTM'79) or less. distribution is obtained.
  • the lower limit of the oxygen concentration is not particularly limited, but is, for example, 5 ⁇ 10 15 atoms/cm 3 (ASTM'79) or more.
  • the lower limit of the in-plane distribution of oxygen concentration (ROG) is also not particularly limited, but is, for example, 0% or more.
  • ROG measures the oxygen concentration at two locations: the center of the wafer and a position 2 mm from the outer periphery of the wafer. The value was obtained by the formula (maximum value - minimum value) x 100/maximum value.
  • ROG in the table is the average value between 20 cm and 100 cm of the straight body position.
  • Example 1 and 2 silicon single crystals were manufactured under the conditions shown below.
  • Minimum magnetic field position 10mm below the melt surface
  • Unbalance between upper and lower coils 1.00 (vertical symmetrical excitation)
  • Magnetic field strength at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the crucible 1000G
  • Crucible rotation speed 0.5 rpm (Example 1), 1.0 rpm (Example 2)
  • Single crystal rotation speed 10 rpm
  • Example 1 in the straight body process, the position of the minimum magnetic field of the cusp magnetic field, the degree of imbalance between the upper and lower coils, the magnetic field strength, and the single crystal rotation speed were fixed, and the crucible rotation speed was 0.5 rpm (Example 1) , 1.00 rpm (Example 2), a total of two single crystals were manufactured.
  • the conditions and results of Examples 1 and 2 are shown in Table 1, and the in-plane distribution of oxygen concentration obtained in the 100 cm straight body of Examples 1 and 2 is shown in FIG.
  • Examples 3 and 4 silicon single crystals were manufactured under the conditions shown below.
  • Minimum magnetic field position 5mm above the melt surface
  • Unbalance degree 1.00 (vertical symmetrical excitation)
  • Magnetic field strength at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the crucible 800G (Example 3), 1200G (Example 4)
  • Example 3 the magnetic field minimum surface position, unbalance degree, crucible rotation speed, and single crystal rotation speed of the cusp magnetic field in the straight body process were fixed, and the magnetic field strengths were 800 G (Example 3) and 1200 G (Example 4).
  • Table 2 shows the conditions and results of Examples 3 and 4.
  • Example 5 silicon single crystals were manufactured under the conditions shown below.
  • Minimum magnetic field position 5mm above the melt surface
  • Unbalance degree 1.00 (vertical symmetrical excitation)
  • Magnetic field strength at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the crucible 1000G
  • Crucible rotation speed 1.00rpm
  • Single crystal rotation speed 7 rpm (Example 5), 12 rpm (Example 6)
  • Example 5 the magnetic field minimum surface position, unbalance degree, magnetic field strength, and crucible rotation speed of the cusp magnetic field in the straight body process were fixed, and the single crystal rotation speed was 7 rpm (Example 5) and 12 rpm (Example 6). ) A total of two single crystals were produced. Table 3 shows the conditions and results of Examples 5 and 6.
  • Example 7 and 8 silicon single crystals were manufactured under the conditions shown below.
  • Minimum magnetic field position 10mm below the melt surface
  • Unbalance degree 1.10 (unbalanced excitation)
  • Magnetic field strength at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the crucible 1000G
  • Crucible rotation speed 0.5 rpm (Example 7), 1.0 rpm (Example 8)
  • Single crystal rotation speed 10 rpm
  • Example 7 the excitation mode was changed to unbalanced excitation, the magnetic field minimum surface position, unbalance degree, magnetic field strength, and single crystal rotation speed in the straight body process were fixed, and the crucible rotation speed was set to 0.5 rpm. (Example 7) and 1.0 rpm (Example 8), a total of two single crystals were manufactured. Table 4 shows the conditions and results of Examples 7 and 8.
  • Example 9 and 10 silicon single crystals were manufactured under the conditions shown below.
  • Minimum magnetic field position 10mm below the melt surface
  • Unbalance degree 1.10 (unbalanced excitation)
  • Magnetic field strength at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the crucible 800G (Example 9), 1200G (Example 10)
  • Example 9 the excitation mode was changed to unbalanced excitation, the magnetic field minimum surface position, unbalance degree, crucible rotation speed, and single crystal rotation speed in the straight body process were fixed, and the magnetic field strength was set to 800 G (implemented). A total of two single crystals were manufactured as Example 9) and 1200G (Example 10). Table 5 shows the conditions and results of Examples 9 and 10.
  • Example 11 silicon single crystals were manufactured under the conditions shown below.
  • Minimum magnetic field position 10mm below the melt surface
  • Unbalance degree 1.10 (unbalanced excitation)
  • Magnetic field strength at the intersection of the surface at the same height as the minimum magnetic field surface and the inner wall of the crucible 1000G
  • Crucible rotation speed 1.0 rpm
  • Single crystal rotation speed 7 rpm (Example 11), 12 rpm (Example 12)
  • Example 11 the excitation mode was changed to unbalanced excitation, the magnetic field minimum surface position, unbalance degree, magnetic field strength, and crucible rotation speed in the straight shell process were fixed, and the single crystal rotation speed was set at 7 rpm (implemented).
  • Example 11) and 12 rpm Example 12 were used to produce a total of two single crystals.
  • Table 6 shows the conditions and results of Examples 11 and 12.
  • Comparative Example 1 In Comparative Example 1, a single crystal was manufactured under the same conditions as Example 1, with the crucible rotation speed in the straight body process (product section) being 1.5 rpm, and all other conditions being the same as in Example 1. Table 7 shows the conditions and results of Comparative Example 1.
  • the crucible rotation speed was varied between 1.0 and 2.2 rpm, and the other conditions were the same as in Comparative Example 1 to produce a single crystal.
  • the crucible rotation speed was The result was that the oxygen concentration monotonically increased with increasing . Therefore, in order to obtain a single crystal with a low oxygen concentration and a good in-plane distribution of oxygen concentration that satisfies the required quality for power devices and RF devices, the method for producing silicon single crystals according to the present invention is required. It can be seen that the rotation speed of the crucible needs to be 1.0 rpm or less.
  • Comparative Examples 2 and 3 In Comparative Examples 2 and 3, the crystal rotation speed in the straight body process (product section) was set to 6 rpm (Comparative Example 2) or 13 rpm (Comparative Example 3), and the other conditions were the same as in Example 1, and the single crystal was pulled. carried out.
  • the conditions and results of Comparative Examples 2 and 3 are shown in Table 8, and the in-plane distribution of oxygen concentration obtained in the 100 cm straight body of Comparative Example 2 is shown in FIG.
  • the crystal rotation speed in the straight body process (product part) was set to 6 rpm, it was possible to pull the single crystal without forming any dislocations during the straight body process, but the in-plane distribution of oxygen deteriorated. Therefore, it was not possible to satisfy ROG ⁇ 8%. Further, when the crystal rotation speed in the straight body process (product section) was set to 13 rpm, the crystal deformation became strong during pulling, making it difficult to continue the operation. Therefore, in order to obtain a single crystal with a low oxygen concentration and a good in-plane distribution of oxygen concentration that satisfies the required quality for power devices and RF devices, the method for producing silicon single crystals according to the present invention is required. It can be seen that the crystal rotation speed in the straight body process (product section) needs to be 7 rpm or more and 12 rpm or less.
  • Comparative Example 4-7 In Comparative Example 4-7, the magnetic field strength in the straight body process (product part) was set to 700G (Comparative Example 4) or 1300G (Comparative Example 5), and the position of the magnetic field minimum surface in the straight body process was set higher than the melt surface by unbalanced excitation. The single crystal was pulled 10 mm above (Comparative Example 6) or 15 mm below the melt surface (Comparative Example 7), and other conditions were the same as in Example 2. Table 9 shows the conditions and results of Comparative Examples 4 to 7.
  • the method for producing silicon single crystals according to the present invention is required. It can be seen that in the straight body process (product department), the absolute value of the magnetic field strength must be 800 G or more and 1200 G or less, and the magnetic field minimum surface position must be within the range of 10 mm downward to 5 mm upward from the raw material melt surface. .
  • Comparative Example 8 In Comparative Example 8, a single crystal was manufactured under the same conditions as Example 7 (unbalanced excitation), with the crucible rotation speed in the straight body process (product section) being 1.5 rpm, and all other conditions being the same as in Example 7. Table 10 shows the conditions and results of Comparative Example 8.
  • Comparative Examples 9 and 10 In Comparative Examples 9 and 10, the crystal rotation speed in the body process (product section) was set to 6 rpm (Comparative Example 9) or 13 rpm (Comparative Example 10), and the other conditions were the same as in Example 7, and the single crystal was pulled. carried out. Table 11 shows the conditions and results of Comparative Examples 9 and 10.
  • the absolute value of the magnetic field strength is set at 800 G or more and 1200 G or less, and the magnetic field minimum surface position is set at a distance of 10 mm from 10 mm downward to above from the surface of the raw material melt. It can be seen that the distance needs to be within the range of 5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、引き上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、直胴工程において、シリコン単結晶の回転速度を7rpm以上12rpm以下、石英ルツボの回転速度を1.0rpm以下、前記カスプ磁場の磁場極小面の位置を原料融液表面から下方に10mm~上方に5mmの範囲内、磁場極小面と同じ高さの面と石英ルツボ内壁の交点における前記カスプ磁場の磁場強度を800~1200Gとしてシリコン単結晶を引き上げることを特徴とするシリコン単結晶の製造方法である。これにより、従来技術に比べてより低い酸素濃度でかつ良好な酸素濃度の面内分布のシリコン単結晶を効率よく製造する方法を提供する。

Description

シリコン単結晶の製造方法
 本発明は、引き上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法に関する。
 近年、省電力を実現するためのデバイスとしてパワーデバイスが注目されている。パワーデバイスにおける電流が流れる領域は、表層から数十~数百μm程度の厚さ範囲のものや、場合によってはウェーハ全体に電流が流れるものもある。この電流が流れる領域に酸素析出物やBMD(Bulk Micro Defect)が存在すると、耐圧不良やリーク不良が発生する場合がある。
 上記の不良を発生させないためにも、パワーデバイス向けのシリコン単結晶ウェーハでは、酸素析出物が発生しない程度の低い酸素濃度であること、酸素濃度の面内分布がフラットであることが要求されている。また、スマートフォンなど通信用に用いられるRF(高周波)デバイスでは酸素ドナーが存在すると高周波特性が悪化するため、RFデバイス向けのシリコン単結晶ウェーハにおいても低い酸素濃度であることや酸素濃度の面内分布がフラットであることが要求されている。
 パワーデバイス向けやRFデバイス向けのシリコン単結晶を製造する代表的な手法の一つに、チョクラルスキー(Czochralski:CZ)法がある。CZ法を用いたシリコン単結晶の製造を行う場合、原料融液に磁場を印加して単結晶の引き上げを行う磁場印加CZ(MCZ)法を用いるのが主流となっている。パワーデバイス向けの低酸素結晶の育成方法として、水平磁場を用いた方法とカスプ磁場を用いた方法が知られている。
 水平磁場を用いた方法として、例えば、特許文献1には水平磁場下では結晶回転数とルツボ回転数を規定して低酸素結晶を得る手法、特許文献2には磁場強度を2000G以上とし、石英ルツボ回転数を0.2rpm以下、結晶回転数を5rpm以下とする手法が開示されている。
 他方、カスプ磁場を用いた方法として、例えば、特許文献3に記載のシリコン融液の減少量に応じてカスプ磁場の磁場中心位置(=磁場極小面位置)を温度が安定する位置に移動させる手法がある。
 また、特許文献4には、磁場中心位置(=磁場極小面位置)を液面より上方10~100mmに設定し、結晶回転を15~20rpmとする方法、特許文献5には、熱遮蔽材の下端から融液表面の距離を50~120mm、磁場中心位置を融液表面~融液深さの1/2の間に設定し、結晶回転を13rpm以上とする方法が開示されている。
 特許文献6には、カスプ磁場の磁場強度を0.05T~0.12T、磁場中心位置を融液面に対し0mm~-30mm(下方に30mm)、結晶回転を8~14rpm、ルツボ回転数を1.3~2.2rpmとする方法が開示されている。
特開2009-18984号公報 国際公開第2009/025340号 特開2001-89289号公報 特開2020-33200号公報 特許第3783495号公報 特開2019-31436号公報
 特許文献1や特許文献2に記載の手法では、結晶回転数を5rpm程度(特許文献1)もしくはそれ以下の回転数(特許文献2)とするが、結晶回転数を低速にすると抵抗率や酸素の面内分布が悪化し、デバイス不良の要因となることが問題となる。
 特許文献3に記載の手法では単結晶の固化率の上昇とともにカスプ磁場の磁場極小面位置を上昇させるが、製品部で磁場極小面位置を変化させると製品部における酸素濃度の変化量が大きくなってしまい、酸素濃度の規格幅が狭い結晶や低酸素結晶を製造する場合は歩留まりが著しく低下することが問題となる。
 直径200mm以下の小直径の単結晶を製造する際には特許文献4、5に記載されている結晶回転の速度で問題はないが、直径300mm以上の大直径の単結晶を製作する際に結晶回転を13rpm以上とすると、単結晶引き上げ時に直径変動が大きくなり操業を継続できなくなることが問題となる。
 特許文献6に記載されている酸素濃度は数値解析に基づいたモデル予想の結果となっており、酸素濃度は中心付近の1点のみとなっている。直径300mm以上の大直径の単結晶の製造において、特許文献6に記載されているように石英ルツボの回転数≧1.3rpmと高速にすると、酸素濃度の値が上昇、酸素濃度の面内分布が悪化することが問題となる。
 本発明は、上記問題を解決するためになされたものであり、従来技術に比べてより低い酸素濃度でかつ良好な酸素濃度の面内分布のシリコン単結晶を効率よく製造する方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、引き上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、直胴工程において、シリコン単結晶の回転速度を7rpm以上12rpm以下、石英ルツボの回転速度を1.0rpm以下、前記カスプ磁場の磁場極小面の位置を原料融液表面から下方に10mm~上方に5mmの範囲内、磁場極小面と同じ高さの面と石英ルツボ内壁の交点における前記カスプ磁場の磁場強度を800~1200Gとしてシリコン単結晶を引き上げるシリコン単結晶の製造方法を提供する。
 このようなシリコン単結晶の製造方法によれば、ルツボ回転数を高速とした時の酸素濃度の上昇や酸素濃度の面内分布の悪化といった問題がなくなるため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を効率よく製造することが可能となる。
 このとき、前記シリコン単結晶として、ASTM’79に基づく酸素濃度が2×1017atoms/cm以下であり、かつ、前記シリコン単結晶の成長方向と直交する結晶断面内のROGが8%以下のものを製造するシリコン単結晶の製造方法とすることができる。
 本発明に係るシリコン単結晶の製造方法は、このような高品質のシリコン単結晶を安定して製造することができる。
 以上のように、本発明のシリコン単結晶の製造方法によれば、ルツボ回転数を高速とした時の酸素濃度の上昇や酸素濃度の面内分布の悪化といった問題がなくなるため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を効率よく製造することが可能となる。
単結晶製造装置の一例を説明する図である。 実施例1、2の直胴100cmで得られた酸素濃度の面内分布を示す。 単結晶における酸素濃度のルツボ回転数依存性を示す。 比較例2の直胴100cmで得られた酸素濃度の面内分布を示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、従来技術に比べてより低い酸素濃度でかつ良好な酸素濃度の面内分布の単結晶を効率よく製造するシリコン単結晶の製造方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、引き上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、直胴工程において、シリコン単結晶の回転速度を7rpm以上12rpm以下、石英ルツボの回転速度を1.0rpm以下、前記カスプ磁場の磁場極小面の位置を原料融液表面から下方に10mm~上方に5mmの範囲内、磁場極小面と同じ高さの面と石英ルツボ内壁の交点における前記カスプ磁場の磁場強度を800~1200Gとしてシリコン単結晶を引き上げるシリコン単結晶の製造方法により、ルツボ回転速度を高速とした時の酸素濃度の上昇や酸素濃度の面内分布の悪化といった問題がなくなるため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を効率よく製造することが可能となることを見出し、本発明を完成した。
 上述のように、近年、パワーデバイス向けやRFデバイス向けの低酸素結晶の品質については、従来のレベルよりも高いレベルが求められている。特に、酸素濃度については、低温熱処理で発生するサーマルドナーの影響をなくすために、2×1017atoms/cm(ASTM’79)以下であることが望ましいとされている。加えて、酸素濃度の面内分布に関しても、チップ間の品質ばらつきをなくすためにも均一化することが望ましい。例えば、ウェーハ外周側の酸素濃度が低い場合、熱処理中に外周部でスリップ転位が発生しデバイスプロセスの歩留に悪影響を及ぼすケースがある。
 このケースに対する対策として、面内の酸素濃度を均一化することが重要である。以後、酸素濃度の面内分布の良好さを図る指標として、ROG(Radial Oxygen Gradient:酸素濃度勾配)を用いる。ROGは、少なくともウェーハ中心及びウェーハ外周から所定の位置の2箇所の酸素濃度を測定し、
 (最大値-最小値)×100/最大値
の式で得られる値とする。近年、ROGについても従来のレベルよりも高いレベルが求められており、ROG<8%を満たした良好な分布が要求されている。
 ところで、CZ法では、結晶引き上げ中に結晶を回転させながら単結晶の育成を行う。カスプ磁場を用いたCZ法で直径300mm以上の大直径の単結晶を引き上げる場合、結晶回転速度を極端な高速回転とすると単結晶引き上げ時に直径変動が大きくなり、操業を継続できなくなることが問題となる。逆に、結晶回転速度を極端な低速にすると抵抗率や酸素濃度の面内分布が悪化し、デバイス不良の要因となることも問題となる。これらの問題を回避するために、カスプ磁場を用いたCZ法では、結晶回転速度が極端に高速となる条件や極端に低速となる条件は避ける必要がある。
 また、MCZ法では石英ルツボ中にシリコン融液(以下、「原料融液」ともいう)が収容されるが、結晶引き上げ中に石英ルツボから酸素が溶出しシリコン融液中に取り込まれることで単結晶中の酸素濃度が上昇してしまう。シリコン融液表面(湯面)を鉛直方向から俯瞰すると、水平磁場を用いたMCZ法では磁力線と平行な方向には磁場が作用することで対流が抑制されるが、磁力線と垂直な方向にはほとんど磁場が作用していないため対流が活発になってしまう。このように局所的に対流が活発になっている領域が生じるため水平磁場では石英ルツボから酸素が溶出しやすくなってしまい、その結果として結晶の高酸素濃度化を招いてしまう。
 他方、カスプ磁場の場合、石英ルツボ内壁(以下、単に「ルツボ壁」又は「ルツボ内壁」と表現する場合がある)付近は全周にわたって磁場が作用するため、ルツボ壁付近の対流は全周にわたって抑制される。このため、カスプ磁場では、ルツボ回転速度が十分速くかつ磁場強度が強磁場になると石英ルツボと原料融液間の相対速度が高速となり酸素の溶出が促進されるが、逆にルツボ回転速度が十分遅くかつ磁場強度が弱磁場になると石英ルツボと原料融液間の相対速度が低速となり酸素の溶出が抑制される。
 上記に加えて、カスプ磁場中の磁場極小面位置を単結晶とシリコン融液間の固液界面に近い条件ないし上方位置にすることで、カスプ磁場固有の自然対流によりシリコン融液表面の酸素濃度が低い層から単結晶側に酸素が取り込まれやすくなる。よって、カスプ磁場を用いてルツボ回転速度を十分遅くし、磁場強度を弱磁場、磁場極小面位置を単結晶-シリコン融液間の固液界面に近い位置ないし上方位置にすることで、初めて結晶の低酸素濃度化を実現することが可能となる。
 すなわち、本発明は、カスプ磁場を用いたCZ法によるシリコン単結晶の製造方法において、直胴工程における単結晶の結晶回転速度を7rpm以上12rpm以下とし、前記磁場の磁場極小面の位置を原料融液表面から下方に10mm~上方に5mmの範囲内、石英ルツボの回転速度を1.0rpm以下、磁場極小面と同じ高さの面と石英ルツボ内壁の交点におけるカスプ磁場の磁場強度(以下、単に「磁場強度」と表現する場合がある)を800~1200Gとすることを特徴とする。
 以下では、本発明に係るシリコン単結晶の製造方法に好適に使用される単結晶製造装置の一例を、図を参照しながら説明する。なお、従来装置と同じものについては説明を適宜省略することがある。
 図1に単結晶製造装置(単結晶引き上げ装置)の一例を示す。図1の単結晶製造装置(単結晶引き上げ装置)100は、断熱材9と、その内部の加熱ヒーター8と、黒鉛ルツボ7内に配置された石英ルツボ6に収容されたシリコンの原料融液5と対向するように熱遮蔽部材12が筒部11の下端に配置されている。中心軸10を有する引き上げ炉1と引き上げ炉1の周囲に設けられ、上コイル30aと下コイル30bを有する磁場発生装置30とを備え、上コイル30aと下コイル30bに通電することによりシリコン融液にカスプ磁場を印加して単結晶を中心軸方向に引き上げる構成となっている。また、引き上げ炉1の中心軸10上であって、ワイヤーに接続された種ホルダ3で保持された種結晶2を原料融液5に接触させて種付けを行い、シリコン単結晶を拡径し、製品部となる直胴部を引上げ方向に引き上げてシリコン単結晶4を製造する構成となっている。
 磁場発生装置30は鉛直方向に上下移動可能な昇降装置30cの上に設置されており、引き上げ炉1の側面を取り囲むように上コイル30aと下コイル30bが配置されている。カスプ磁場では、上下2本のコイルに対し互いに反対方向の電流を流すことにより上下で反発する磁力線を発生させる。このとき、上コイル30aと下コイル30bのそれぞれが形成する磁場分布の作用により、上コイル30aと下コイル30bの間で、中心軸10近傍に磁場強度が最も小さくなる領域(磁場極小面32)が形成される。例えば、上コイル30aと下コイル30bの電流値を同じ値に設定し上下2本のコイルに対し互いに反対方向の電流を流すことで上下対称かつ左右対称な磁場分布となる。この時、中心軸10と磁場極小面32との交点の磁場強度が最も弱くなる。なお、図1では、磁場極小面32の高さ位置(すなわち磁場極小面と同じ高さの面31の高さ位置)と原料融液表面33の高さ位置とが同じ場合を示している。なお、図1中の黒点線の矢印が実際の磁場分布を示しており、中心軸上の白矢印は磁場の鉛直方向の成分が支配的であること、2コイル間の中線上にある白矢印は磁場の水平方向の成分が支配的であることを示したものである。
 また、上コイル30aと下コイル30bの電流値を互いに異なる値に設定し、上下2本のコイルに対し互いに反対方向の電流を流す不平衡励磁を行うことで、上下非対称かつ左右対称な磁場分布となり(以後、「不平衡励磁」と称する)、上下コイルの電流値を同じ値に設定した場合と比べて磁場極小面32の位置が変化する。例えば、
 上コイル電流値>下コイル電流値
とすると磁場極小面32は上下コイルの電流値を同じ値に設定した場合に比べて下側にシフトし、
 上コイル電流値<下コイル電流値
とすると磁場極小面32は上下コイルの電流値を同じ値に設定した場合に比べて上側にシフトする。
 本発明では、製品部(直胴工程)において、磁場極小面32の位置を原料融液表面33から下方に10mm~上方に5mmの範囲内に設定するが、製品部の引き上げ(直胴工程)を行う前に磁場極小面位置の移動を行う必要がある。この時の磁場極小面を移動させる手段については、昇降装置30cを用いて磁場発生装置30を上下に移動させることで磁場極小面の位置を移動させても良いし、上下コイル30a、30bの電流値を異なる値とした不平衡励磁を行うことで磁場極小面の位置を移動させても良い。
 また、前述した通り、石英ルツボ内壁付近の磁場強度によって石英ルツボ内壁付近の対流抑制力の強さが決まるため、石英ルツボ内壁付近の磁場強度はカスプ磁場を用いたMCZ法において酸素濃度を決定する重要な要素となる。よって、本発明における磁場強度は、磁場極小面と同じ高さの面31と石英ルツボ内壁との交点35における値を800~1200Gと規定することとする。なお、磁場極小面と同じ高さの面31は磁場極小面32を含む面であり、交点35は、石英ルツボ内壁における磁場極小面32の高さ位置と同じ高さの位置の点と言い換えることができる。
 なお、上記以外のHZ(ホットゾーン)の構造は、一般的なCZシリコンの単結晶製造装置と同じ構造とすることができる。ただし、石英ルツボの回転速度を1.0rpm以下に設定可能とすることが必須の条件となる。
 CZ法では単結晶を回転させながら単結晶の育成を行うが、操業性を損なうことなく低酸素濃度で良好な酸素濃度の面内分布の単結晶を得るために、本発明では、直胴工程における単結晶の結晶回転速度を7rpm以上12rpm以下とする。
 また、CZ法では石英ルツボも回転させながら単結晶の育成を行うが、カスプ磁場ではルツボ壁付近は全周にわたって磁場が作用するため、ルツボ壁付近の対流は全周にわたって抑制されることになる。このため、カスプ磁場中で石英ルツボの回転速度を高速にしすぎると、石英ルツボと原料融液間の相対速度が高速となり酸素の溶出が促進され、単結晶中の酸素濃度が上昇することが問題となる。
 上記の問題に加えて、特に大直径、例えば直径300mm以上の単結晶の製造において石英ルツボの回転速度を高速にしすぎると、酸素濃度の面内分布が悪化してしまうことも問題となる。これらの問題を解決するために、本発明では、石英ルツボの回転速度を1.0rpm以下とする。石英ルツボの回転速度の下限値は特に限定されないが、例えば0.1rpm以上とすることができる。
 このように、直胴工程における単結晶の結晶回転速度を7rpm以上12rpm以下とし、前記磁場の磁場極小面の位置を原料融液表面から下方に10mm~上方に5mmの範囲内、石英ルツボの回転速度を1.0rpm以下、カスプ磁場の磁場強度を800~1200Gとすることで、2×1017atoms/cm(ASTM’79)以下の低い酸素濃度を維持したまま良好な酸素濃度の面内分布が得られる。なお、酸素濃度の下限値は特に限定されないが、例えば、5×1015atoms/cm(ASTM’79)以上である。酸素濃度の面内分布(ROG)の下限値も特に限定されないが、例えば、0%以上である。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 CZ引き上げ機中の32インチ(約800mm)のルツボに360kgの原料を溶融し、カスプ磁場を印加して、直径300mmの単結晶の引き上げを行った。本実施例及び比較例では、カスプ磁場の上下コイルの電流値を同一とした上下対称励磁と、上下コイル間の電流値を異なる値とした不平衡励磁を行った。なお、製品部で不平衡励磁を行う場合は、予め磁場極小面位置を原料融液表面よりも70mm下方となるように昇降装置を用いて磁場位置を設定しておき、その後、非製品部で不平衡度を所定の値に設定し製品部に移行する。
 この時、上下コイル間の不平衡度は、
 不平衡度=下コイル電流値/上コイル電流値
なる式で得られる値とする。
 引き上げ後の単結晶について、直胴20cm、50cm、75cm、100cmからサンプルを切り出し、FT-IRを用いて酸素濃度の面内分布を検証した。以下に示す酸素濃度の値はウェーハ中心の値を示す。
 また、ROGはウェーハ中心及びウェーハ外周から2mmの位置の2箇所の酸素濃度を測定し、
 (最大値-最小値)×100/最大値
なる式で得られる値とした。加えて、表中のROGは直胴位置20cm~100cm間の平均値とする。
 (実施例1、2)
 実施例1及び実施例2では、以下に示す条件でシリコン単結晶の製造を行った。
[直胴工程(製品部)]
 磁場極小面位置:融液表面よりも下方10mm
 上下コイル間の不平衡度:1.00(上下対称励磁)
 磁場極小面と同じ高さの面とルツボ内壁の交点における磁場強度:1000G
 ルツボ回転速度:0.5rpm(実施例1)、1.0rpm(実施例2)
 単結晶回転速度:10rpm
 実施例1、2では直胴工程において、カスプ磁場の磁場極小面位置、上下コイル間の不平衡度、磁場強度、単結晶回転速度を固定し、ルツボ回転速度を0.5rpm(実施例1)、1.00rpm(実施例2)として計2本の単結晶の製造を実施した。実施例1、2の条件及び結果を表1に、実施例1、2の直胴100cmで得られた酸素濃度の面内分布を図2に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明に係るシリコン単結晶製造方法の実施例1、2の条件とした場合は、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功した。製品部の結晶品質についても、酸素濃度2×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<8%が得られている。操業性を損なうことなく低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を引き上げることに成功した。
 (実施例3、4)
 実施例3及び実施例4では、以下に示す条件でシリコン単結晶の製造を行った。
[直胴工程(製品部)]
 磁場極小面位置:融液表面よりも上方5mm
 不平衡度:1.00(上下対称励磁)
 磁場極小面と同じ高さの面とルツボ内壁の交点における磁場強度:800G(実施例3)、1200G(実施例4)
 ルツボ回転速度:1.00rpm
 単結晶回転速度:10rpm
 実施例3、4では、直胴工程におけるカスプ磁場の磁場極小面位置、不平衡度、ルツボ回転速度、単結晶回転速度を固定し、磁場強度800G(実施例3)、1200G(実施例4)として計2本の単結晶の製造を実施した。実施例3、4の条件及び結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明に係るシリコン単結晶製造方法の実施例3、4の条件とした場合も、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功した。製品部の結晶品質についても、全ての場合で、酸素濃度2×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<8%が得られている。操業性を損なうことなく低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を引き上げることに成功した。
 (実施例5、6)
 実施例5、6では、以下に示す条件でシリコン単結晶の製造を行った。
[直胴工程(製品部)]
 磁場極小面位置:融液表面よりも上方5mm
 不平衡度:1.00(上下対称励磁)
 磁場極小面と同じ高さの面とルツボ内壁の交点における磁場強度:1000G
 ルツボ回転速度:1.00rpm
 単結晶回転速度:7rpm(実施例5)、12rpm(実施例6)
 実施例5、6では、直胴工程におけるカスプ磁場の磁場極小面位置、不平衡度、磁場強度、ルツボ回転速度を固定し、単結晶回転速度を7rpm(実施例5)、12rpm(実施例6)として計2本の単結晶の製造を実施した。実施例5、6の条件及び結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明に係るシリコン単結晶製造方法の実施例5、6の条件とした場合も、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功した。製品部の結晶品質についても、全ての場合で、酸素濃度2×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<8%が得られている。操業性を損なうことなく低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を引き上げることに成功した。
 (実施例7、8)
 実施例7、8では、以下に示す条件でシリコン単結晶の製造を行った。
[直胴工程(製品部)]
 磁場極小面位置:融液表面よりも下方10mm
 不平衡度:1.10(不平衡励磁)
 磁場極小面と同じ高さの面とルツボ内壁の交点における磁場強度:1000G
 ルツボ回転速度:0.5rpm(実施例7)、1.0rpm(実施例8)
 単結晶回転速度:10rpm
 実施例7、8では、励磁形態を不平衡励磁に変更した上で、直胴工程における磁場極小面位置、不平衡度、磁場強度、単結晶回転速度を固定し、ルツボ回転速度を0.5rpm(実施例7)、1.0rpm(実施例8)として計2本の単結晶の製造を実施した。実施例7、8の条件及び結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明に係るシリコン単結晶製造方法の実施例7、8の条件とした場合も、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功した。製品部の結晶品質についても、全ての場合で、酸素濃度2×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<8%が得られている。操業性を損なうことなく低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を引き上げることに成功した。
 (実施例9、10)
 実施例9、10では、以下に示す条件でシリコン単結晶の製造を行った。
[直胴工程(製品部)]
 磁場極小面位置:融液表面よりも下方10mm
 不平衡度:1.10(不平衡励磁)
 磁場極小面と同じ高さの面とルツボ内壁の交点における磁場強度:800G(実施例9)、1200G(実施例10)
 ルツボ回転速度:1.0rpm
 単結晶回転速度:10rpm
 実施例9、10では、励磁形態を不平衡励磁に変更した上で、直胴工程における磁場極小面位置、不平衡度、ルツボ回転速度、単結晶回転速度を固定し、磁場強度を800G(実施例9)、1200G(実施例10)として計2本の単結晶の製造を実施した。実施例9、10の条件及び結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明に係るシリコン単結晶製造方法の実施例9、10の条件とした場合も、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功した。製品部の結晶品質についても、全ての場合で、酸素濃度2×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<8%が得られている。操業性を損なうことなく低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を引き上げることに成功した。
 (実施例11、12)
 実施例11、12では、以下に示す条件でシリコン単結晶の製造を行った。
[直胴工程(製品部)]
 磁場極小面位置:融液表面よりも下方10mm
 不平衡度:1.10(不平衡励磁)
 磁場極小面と同じ高さの面とルツボ内壁の交点における磁場強度:1000G
 ルツボ回転速度:1.0rpm
 単結晶回転速度:7rpm(実施例11)、12rpm(実施例12)
 実施例11、12では、励磁形態を不平衡励磁に変更した上で、直胴工程における磁場極小面位置、不平衡度、磁場強度、ルツボ回転速度を固定し、単結晶回転速度を7rpm(実施例11)、12rpm(実施例12)として計2本の単結晶の製造を実施した。実施例11、12の条件及び結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 本発明に係るシリコン単結晶製造方法の実施例11、12の条件とした場合も、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功した。製品部の結晶品質についても、全ての場合で、酸素濃度2×1017atoms/cm(ASTM’79)以下で、なおかつ、ROG<8%が得られている。操業性を損なうことなく低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を引き上げることに成功した。
 (比較例1)
 比較例1では、直胴工程(製品部)のルツボ回転速度を1.5rpmとして、その他の条件は全て実施例1と同条件として単結晶の製造を行った。比較例1の条件及び結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 比較例1の条件とした場合、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功したが、酸素濃度が2×1017atoms/cmよりも高くなり、ROG>8%となっている。
 念のため、ルツボ回転速度を1.0~2.2rpmの範囲で振って、その他の条件は比較例1と同条件として単結晶の製造を行ったところ、図3に示す通り、ルツボ回転数の増加とともに酸素濃度が単調に増加する結果となった。このため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を得るには、本発明に係るシリコン単結晶の製造方法のように、ルツボの回転数を1.0rpm以下とする必要があることがわかる。
 (比較例2、3)
 比較例2、3では、直胴工程(製品部)の結晶回転速度を6rpm(比較例2)もしくは13rpm(比較例3)とし、その他の条件は実施例1と同条件として単結晶の引き上げを実施した。比較例2、3の条件及び結果を表8に、比較例2の直胴100cmで得られた酸素濃度の面内分布を図4に示す。
Figure JPOXMLDOC01-appb-T000008
 直胴工程(製品部)の結晶回転速度を6rpmとした場合は、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功したものの、酸素の面内分布が悪化してしまい、ROG≦8%を満たすことができなかった。また、直胴工程(製品部)の結晶回転速度を13rpmとした場合は、引き上げ中に結晶変形が強くなり、操業を継続することが困難であった。このため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を得るには、本発明に係るシリコン単結晶の製造方法のように、直胴工程(製品部)の結晶回転速度を7rpm以上12rpm以下とする必要があることがわかる。
 (比較例4-7)
 比較例4-7では、直胴工程(製品部)の磁場強度を700G(比較例4)もしくは1300G(比較例5)、直胴工程における磁場極小面位置を不平衡励磁により融液表面よりも上方10mm(比較例6)もしくは融液表面よりも下方15mm(比較例7)とし、その他の条件は実施例2と同条件として単結晶の引き上げを実施した。比較例4~7の条件及び結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 直胴工程(製品部)の磁場強度を700Gとした場合は、引き上げ中に結晶変形が強くなり、操業を継続することが困難であった。他方、直胴工程(製品部)の磁場強度を1300Gとした場合は、酸素濃度が2×1017atoms/cmよりも高くなってしまった。また、直胴工程(製品部)の磁場極小面位置を融液表面よりも上方10mmとした場合、融液表面よりも下方15mmとした場合においても、酸素濃度が2×1017atoms/cmよりも高くなってしまった。このため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を得るには、本発明に係るシリコン単結晶の製造方法のように、直胴工程(製品部)においては磁場強度の絶対値を800G以上1200G以下、磁場極小面位置を原料融液表面から下方に10mm~上方に5mmの範囲内とする必要があることがわかる。
 (比較例8)
 比較例8では、直胴工程(製品部)のルツボ回転速度を1.5rpmとして、その他の条件は全て実施例7と同条件(不平衡励磁)として単結晶の製造を行った。比較例8の条件及び結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 比較例8の条件とした場合、直胴工程中に1回も有転位化することなく単結晶を引き上げることに成功したが、酸素濃度が2×1017atoms/cmよりも高くなり、ROG>8%となっている。このため、励磁形態を不平衡励磁とした場合においても、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を得るには、本発明に係るシリコン単結晶の製造方法のように、ルツボの回転数は1.0rpm以下とする必要があることがわかる。
 (比較例9、10)
 比較例9、10では、直胴工程(製品部)の結晶回転速度を6rpm(比較例9)もしくは13rpm(比較例10)とし、その他の条件は実施例7と同条件として単結晶の引き上げを実施した。比較例9、10の条件及び結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 直胴工程(製品部)の結晶回転速度を6rpmとした場合は、直胴工程中にクランクが発生してしまい操業を継続することが困難であった。また、直胴工程(製品部)の結晶回転速度を13rpmとした場合は、引き上げ中に結晶変形が強くなり操業を継続することが困難であった。このため、励磁形態を不平衡励磁とした場合においても、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を得るには、本発明に係るシリコン単結晶の製造方法のように、直胴工程(製品部)の結晶回転速度を7rpm以上12rpm以下とする必要があることがわかる。
 (比較例11-14)
 比較例11-14では、直胴工程(製品部)の磁場強度を700G(比較例11)もしくは1300G(比較例12)、直胴工程(製品部)における磁場極小面位置を融液表面よりも上方10mm(比較例13)もしくは融液表面よりも下方15mm(比較例14)とし、その他の条件は実施例8と同条件として単結晶の引き上げを実施した。比較例11~14の条件及び結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 直胴工程(製品部)の磁場強度を700Gとした場合は、引き上げ中に結晶変形が強くなり操業を継続することが困難であった。他方、直胴工程(製品部)の磁場強度を1300Gとした場合は、酸素濃度が2×1017atoms/cmよりも高くなってしまった。また、直胴工程(製品部)の磁場極小面位置を融液表面よりも上方10mmとした場合、融液表面よりも下方15mmとした場合においても、酸素濃度が2×1017atoms/cmよりも高くなってしまった。このため、励磁形態を不平衡励磁とした場合においても、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ酸素濃度の面内分布が良好な単結晶を得るには、本発明に係るシリコン単結晶の製造方法のように、直胴工程(製品部)においては磁場強度の絶対値を800G以上1200G以下、磁場極小面位置を原料融液表面から下方に10mm~上方に5mmの範囲内とする必要があることがわかる。
 以上の通り、本発明の実施例によれば、ルツボ回転数を高速とした時の酸素濃度の上昇や酸素濃度の面内分布の悪化といった問題がなくなるため、パワーデバイス向けやRFデバイス向けの要求品質を満たした低酸素濃度で、かつ良好な酸素濃度の面内分布の単結晶を効率よく製造することができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (2)

  1.  引き上げ炉に備えられた上側コイル及び下側コイルで形成するカスプ磁場を用いたCZ法によるシリコン単結晶の製造方法であって、
     直胴工程において、シリコン単結晶の回転速度を7rpm以上12rpm以下、石英ルツボの回転速度を1.0rpm以下、前記カスプ磁場の磁場極小面の位置を原料融液表面から下方に10mm~上方に5mmの範囲内、磁場極小面と同じ高さの面と石英ルツボ内壁の交点における前記カスプ磁場の磁場強度を800~1200Gとしてシリコン単結晶を引き上げることを特徴とするシリコン単結晶の製造方法。
  2.  前記シリコン単結晶として、ASTM’79に基づく酸素濃度が2×1017atoms/cm以下であり、かつ、前記シリコン単結晶の成長方向と直交する結晶断面内のROGが8%以下のものを製造することを特徴とする請求項1に記載のシリコン単結晶の製造方法。
PCT/JP2023/019599 2022-06-17 2023-05-26 シリコン単結晶の製造方法 WO2023243357A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098299A JP2023184253A (ja) 2022-06-17 2022-06-17 シリコン単結晶の製造方法
JP2022-098299 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243357A1 true WO2023243357A1 (ja) 2023-12-21

Family

ID=89191217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019599 WO2023243357A1 (ja) 2022-06-17 2023-05-26 シリコン単結晶の製造方法

Country Status (2)

Country Link
JP (1) JP2023184253A (ja)
WO (1) WO2023243357A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535917A (ja) * 2015-12-04 2018-12-06 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. 低酸素含有シリコンを生産するシステム及び方法
JP2019517454A (ja) * 2016-06-08 2019-06-24 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. 改善された機械的強度を有する高抵抗率単結晶シリコンインゴット及びウェハ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535917A (ja) * 2015-12-04 2018-12-06 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. 低酸素含有シリコンを生産するシステム及び方法
JP2019517454A (ja) * 2016-06-08 2019-06-24 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. 改善された機械的強度を有する高抵抗率単結晶シリコンインゴット及びウェハ

Also Published As

Publication number Publication date
JP2023184253A (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
KR100558177B1 (ko) 결정결함을가지지않는실리콘단결정제조방법과장치,및이에의해제조된실리콘단결정과실리콘웨이퍼
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
JP5150875B2 (ja) 高品質シリコン単結晶インゴット製造方法,成長装置及び前記方法及び装置から製造されたインゴット,ウエハ
EP2083098B1 (en) Apparatus for manufacturing semiconductor single crystal ingot and method using the same
US7282095B2 (en) Silicon single crystal pulling method
KR100793950B1 (ko) 실리콘 단결정 잉곳 및 그 성장방법
JP5240191B2 (ja) シリコン単結晶引上装置
US6174364B1 (en) Method for producing silicon monocrystal and silicon monocrystal wafer
US7780783B2 (en) Apparatus and method for producing single crystal, and silicon single crystal
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
JPH11199386A (ja) シリコン単結晶の製造方法およびシリコン単結晶ウエーハ
JP2005162599A (ja) 均一なベイカンシ欠陥を有するシリコン単結晶インゴット、シリコンウエハ、シリコン単結晶インゴットの製造装置、及びシリコン単結晶インゴットの製造方法
JP2024517314A (ja) 単結晶シリコンロッドの引張方法及び単結晶シリコンロッド
JP3601328B2 (ja) シリコン単結晶の製造方法およびこの方法で製造されたシリコン単結晶とシリコンウエーハ
JP2013023415A (ja) 単結晶引上方法
WO2023243357A1 (ja) シリコン単結晶の製造方法
WO1999037833A1 (fr) Appareil de tirage de cristal unique
JP7124938B1 (ja) シリコン単結晶の製造方法
JP2018523626A (ja) 単結晶インゴット成長装置及びその成長方法
JP2000239096A (ja) シリコン単結晶の製造方法
EP1365048B1 (en) Method for fabricating silicon single crystal
JP4953386B2 (ja) シリコン単結晶の引上げ方法
KR100558156B1 (ko) 실리콘 단결정의 육성 방법
JP2007210820A (ja) シリコン単結晶の製造方法
JP4501507B2 (ja) シリコン単結晶育成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823656

Country of ref document: EP

Kind code of ref document: A1