WO2022258076A1 - 聚合物的净化工艺与净化系统 - Google Patents

聚合物的净化工艺与净化系统 Download PDF

Info

Publication number
WO2022258076A1
WO2022258076A1 PCT/CN2022/105018 CN2022105018W WO2022258076A1 WO 2022258076 A1 WO2022258076 A1 WO 2022258076A1 CN 2022105018 W CN2022105018 W CN 2022105018W WO 2022258076 A1 WO2022258076 A1 WO 2022258076A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
washing
eluate
particles
purification process
Prior art date
Application number
PCT/CN2022/105018
Other languages
English (en)
French (fr)
Inventor
林兴旺
张瑞军
吴开付
赵天宝
Original Assignee
山东海科创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海科创新研究院有限公司 filed Critical 山东海科创新研究院有限公司
Publication of WO2022258076A1 publication Critical patent/WO2022258076A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • C08G85/002Post-polymerisation treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the application belongs to the technical field of polymer impurity removal, and in particular relates to a polymer purification process and purification system.
  • Some high heat-resistant resins such as polysulfone resins, polyphenylene sulfide resins, polyether ether ketone resins, polyarylether nitrile resins, etc.
  • polysulfone resins such as polysulfone resins, polyphenylene sulfide resins, polyether ether ketone resins, polyarylether nitrile resins, etc.
  • This type of polycondensation usually requires the use of a high-boiling point solvent as a reaction medium, and the polymerization reaction will produce an equimolar ratio of alkali metal halide salts as by-products.
  • polysulfone resins usually use bisphenol monomers, alkali metal carbonates or other strong bases, and dichloro monomers containing sulfone groups (commonly dichlorodiphenyl sulfone) in the pole It is prepared by polycondensation reaction in a non-protic solvent (such as dimethylacetamide, sulfolane, etc.), and the polymer solution after polymerization contains high boiling point solvent and halide salt particles.
  • a non-protic solvent such as dimethylacetamide, sulfolane, etc.
  • polyphenylene sulfide (PPS) resin usually adopts a solution polymerization method, using a high boiling point solvent, such as common N-methylpyrrolidone or hexamethylphosphoric triamide as a reaction medium.
  • the main polymerizable monomers are dihalogenated aromatic compounds, such as common p-dichlorobenzene, and sulfur sources, such as common sodium sulfide and sodium hydrosulfide, and the polymerization reaction will generate a considerable molar ratio of by-product alkali salts, in the reaction medium crystallization out.
  • the polymerization medium such as N-methylpyrrolidone NMP
  • alkali salt such as sodium chloride
  • polymerization aids such as catalyst lithium chloride used, carboxylate, etc.
  • residual monomer oligomers, cyclopolymers and other solids
  • PEEK polyether ether ketone
  • the industrial process of polymer separation can generally be roughly divided into three steps: separation-washing-drying.
  • the industry has made various efforts. Taking polysulfone as an example, the industry uses thin-film evaporators, polymer solution spray precipitation, and various filtration technologies for desalination; these processes are faced with multiple repetitions. Washing, high water consumption, high cost, unclean washing, poor polymer performance and other difficulties; some technical solutions use aliphatic alkanes as detergents, which makes the whole washing process more complicated.
  • the separation and washing process of polyether ether ketone is similar to the washing process of polyphenylene sulfide resin.
  • low boiling point detergent to elute the high boiling point solvent diphenyl sulfone, and when sulfolane is used as solvent, it can be eluted with water.
  • the existing technical solution uses low-boiling-point alcohols or ketone detergents to assist elution in the process of preparing polyarylethernitrile, combined with multiple times of water washing and centrifugation, so as to achieve a polymer salt content of less than 150ppm.
  • CN102766255A flashes the polymer solution to remove the solvent, and pulverizes the polymer into powder by pulverizing and stirring at the same time; the obtained powder is eluted with detergent and subsequently deionized and cleaned to obtain polyarylether nitrile (PEEN).
  • PEEN polyarylether nitrile
  • the first separation step of the post-treatment of polyphenylene sulfide polymer solution is to add water or steam into the polymerization tank that has completed the reaction for stirring, and separate the polymer solution into high polymer particles that are dispersed in the reaction solvent and water.
  • the process of liquid slurry If the amount of oligomers produced during the polymerization process is too high, there will also be oligomer fine powder precipitated out.
  • Water is introduced in various ways, such as water in the polymerization process, pre-dehydration collection liquid, and external water vapor. After the "separation operation" polymerization system cools down, it forms a polymer solution slurry, and enters the next step after cooling down.
  • the industrial "separation operation” requires no caking in the kettle, and the filter cake is easy to filter and collect.
  • Some process optimization techniques can be used for reference, such as combining solvent flash evaporation and water vapor with solvent to optimize the filtration performance of the filter cake, reduce the post-treatment cost of the solvent, and improve the whiteness of the product.
  • the basic characteristics of various separation methods are precipitation in the polymerization kettle, and then centrifugal separation.
  • the filter cake enters the washing process; the filtrate is directly subjected to the solvent distillation process according to different formulas, or undergoes further separation operations.
  • the second washing step is to elute the solvents, salts, polymerization aids and possible oligomers and cyclopolymers in the polymer from the final product.
  • washing liquid prepared by acetone or methanol to elute oligomers and solvents
  • hot water or steam to wash salt and washing liquid
  • pickling to treat polymer by-products etc.
  • Patents on the process and device of the washing step such as the continuous washing device of CN108219135A and CN101429280A, the horizontal belt vacuum filter washing process of CN105983266A, the multi-stage solvent, acetone and deionized water washing process of CN105601925A, etc.
  • CN1326911C also has adopted steps such as acetone washing, deionized water washing and pickling.
  • steps such as acetone washing, deionized water washing and pickling.
  • the process requires that the washing liquid has a higher elution effect on the solvent; in order to ensure the performance and performance of the polymer , water washing and pickling require the lower the residual salt and by-products, the better.
  • the washing process usually requires a large amount of detergent, and forms the rectification load and cost of solvent recovery; the washing process requires multiple operations, consumes as much as 20 times the amount of deionized water and more than the product, and forms waste water treatment load and cost.
  • the third drying step is not technically difficult.
  • the difficulty lies in how to reduce the water content in the imported powder, thereby reducing the drying load and enhancing the drying capacity. This puts forward higher requirements on the filter operation of the filter cake after washing and the water content of the formed filter cake after filtration.
  • the PPS powder particles are loose, and the water content in the microstructure is high, and simple centrifugal filtration cannot further reduce the water content.
  • the present application provides a polymer purification process and purification system.
  • the present application provides a purification process of a polymer on the one hand, comprising the following steps:
  • the salt impurities are dissolved in the eluate;
  • the polymer includes one or more of polysulfone resins, polyphenylene sulfide resins, polyetheretherketone resins and ethylene-vinyl alcohol copolymers;
  • the content of the salt impurities in the purified polymer is not higher than 500ppm.
  • the polymer particles include polymer particles obtained after precipitation of the polymerization solution
  • the particle diameter of the polymer particles is 0.3-10mm
  • the salt impurities include salt impurities insoluble in the solvent of the polymerization solution
  • the polymerization solution includes one or more of a polymer solution obtained after the polymerization reaction, a polymer solution obtained after the polymerization reaction and pretreatment, and a polymer solution obtained after the polymer is redissolved in a solvent.
  • the solvent in the polymerization solution is dissolved in the eluate
  • the solvent of the polymerization solution includes methanol, ethanol, tert-butanol, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, sulfolane and N-methylpyrrolidone one or more;
  • the mass concentration of the polymerization solution is 5% to 50%;
  • the adding method includes dropwise addition.
  • the salt impurities include one or more of sodium chloride, potassium chloride, sodium acetate and potassium acetate;
  • the eluate includes one or more of water, deionized water, acetone, ethanol and methanol.
  • the extruding method includes extruding rollers extruding each other;
  • the distance between the squeeze rollers is 0.1-1mm;
  • the number of extrusions includes one or more times.
  • the multiple extrusion includes setting multiple sets of extrusion rollers to squeeze sequentially, and/or performing multiple extrusions by the following steps:
  • the number of sets of the multiple sets of squeezing rollers is 2 to 10 sets;
  • the number of repetitions is 1 to 10 times.
  • the specific steps of removing the eductate include:
  • the washing solution includes one or more of water, acetone, ethanol and methanol;
  • the way of wringing out includes wringing out with squeeze rollers.
  • the present application also provides a polymer purification system on the other hand, comprising:
  • the eductate tank that is arranged after the polymerization solution tank;
  • the periphery of the extrusion roller is provided with a precipitation liquid spraying device
  • the polymerization solution tank is connected to the eductate tank through a pipeline
  • a buffer device with a filter screen is also arranged between the eductate tank and the squeeze roller;
  • the distance between the squeeze rollers is 0.1-1mm;
  • the number of groups of the squeeze rollers includes 1 to 10 groups
  • the eductate spraying device is arranged obliquely above and/or above the squeezing roller;
  • the squeezing and liquid removal device includes squeezing rollers.
  • the present invention provides a kind of polymer purification process, comprising the following steps, first adding the polymerization solution containing salt impurities into the eluate to obtain polymer particles; then under the condition of spraying the eluate, the After the polymer particles obtained in the above steps are extruded, the salt impurities in the polymer are removed to obtain a washed polymer; the salt impurities are dissolved in the eluate; finally, the washed polymer obtained in the above steps is After removing the precipitated liquid, a purified polymer is obtained; the content of the salt impurities in the purified polymer is not higher than 500ppm.
  • the application of the present invention aims at the problems of complex operation, poor effect, high cost, and large pollution in the existing polymer impurity removal process, and is more aimed at the existing polymer impurity removal process although it also uses extrusion.
  • the impurity removal method is only aimed at membrane materials, but has limitations that cannot be applied to polymer particle materials.
  • This application creatively adopts a specific extrusion impurity removal process.
  • the polymer particle slurry is extruded by extrusion rollers to achieve washing, desalination and solvent removal. This process can be operated continuously, with high washing efficiency, low washing liquid consumption, and high washing efficiency. It is much better than various current washing methods.
  • the present application realizes the solid-liquid separation of the polymer particles by extrusion, and the liquid content of the polymer particles after extrusion will be significantly lower than the level that can be achieved by various industrial centrifugation processes, thus obviously reducing the separation of the precipitated liquid and
  • the cross-contamination between washing liquids can greatly reduce the processing cost and solvent loss of various washing liquids; the waste water and waste liquid of this application is less discharged, and the process can obviously reduce the back-mixing of solvent and water between each washing step, and has a higher Solvent reuse rate, in the case of ultra-low washing water consumption, it can even achieve full recovery of process water without process wastewater discharge, and no solvent loss with wastewater discharge, and this process can be applied to polysulfone, polyphenylsulfone, The production process of polyethersulfone and its copolymers, the production process of polyphenylene sulfide and its copolymers, the production process of polyether ether ketone, polyarylether nitrile and its copolymers.
  • Fig. 1 is a schematic flow diagram of the polymer particle purification system provided by the present application.
  • the purity of all raw materials in this application is not particularly limited. In some embodiments, industrial purity or conventional purity in the field of polymer polymerization can be used in this application.
  • Embodiments of the present application provide a polymer purification process, comprising the following steps:
  • the salt impurities are dissolved in the eluate;
  • the content of the salt impurities in the purified polymer is not higher than 500ppm.
  • the polymerization solution containing salt impurities is added to the eluate to obtain polymer particles.
  • the polymer particles include polymer particles obtained after precipitation from a polymerization solution.
  • the particle size of the polymer particles is 0.3-10 mm, optionally 2-8 mm, and further optionally 4-6 mm.
  • the salt impurities include salt impurities insoluble in the solvent of the polymerization solution.
  • the polymerization solution includes one of the polymer solution obtained after the polymerization reaction, the polymer solution obtained after the polymerization reaction and pretreatment, and the polymer solution obtained after the polymer is redissolved in a solvent.
  • the polymer solution obtained after the polymerization reaction includes one of the polymer solution obtained after the polymerization reaction, the polymer solution obtained after the polymerization reaction and pretreatment, and the polymer solution obtained after the polymer is redissolved in a solvent.
  • the solvent in the polymerization solution is dissolved in the eluate.
  • the solvent in the polymer solution is dissolved in the precipitation liquid, the polymer is insoluble in the precipitation liquid, and the insoluble salt is dissolved in the precipitation liquid; the polymer is insoluble in the washing liquid, and the salt and the solvent are dissolved in the washing liquid, and
  • the eluate is water or the washing liquid after the washing process operation, and the washing liquid is one or more of water, deionized water, acetone, ethanol and methanol.
  • the solvent of the polymerization solution includes methanol, ethanol, tert-butanol, N,N-dimethylacetamide, N,N-dimethylformamide, dimethyl sulfoxide, sulfolane and one or more of N-methylpyrrolidone, optionally methanol, ethanol, tert-butanol, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylmethylene Sulfone, sulfolane or N-methylpyrrolidone.
  • the mass concentration of the polymerization solution is 5%-50%, optionally 15%-40%, and further optionally 25%-30%.
  • the adding method includes dropwise addition.
  • the polymer includes one or more of polysulfone resins, polyphenylene sulfide resins, polyether ether ketone resins, and ethylene-vinyl alcohol copolymers, optionally polysulfone resins, polyphenylene sulfide resins, polyetheretherketone resins or ethylene-vinyl alcohol copolymers.
  • the eluate includes one or more of water, deionized water, acetone, ethanol and methanol, and is optionally water, deionized water, acetone, ethanol or methanol.
  • the polymer particles obtained in the above steps are then extruded under the condition of spraying the eluate, and the salt impurities in the polymer are removed to obtain a washed polymer.
  • the salt impurities are dissolved in the eluate.
  • the salt impurities are specifically insoluble salt impurities in the solvent of the polymer solution.
  • the extruding manner includes extruding rollers extruding each other.
  • the distance between the squeezing rollers is 0.1-1 mm, optionally 0.2-0.8 mm, and further optionally 0.3-0.6 mm.
  • the times of extrusion include one or more times.
  • the multiple extrusions include setting multiple sets of extrusion rollers to squeeze sequentially, and/or performing multiple extrusions by the following steps:
  • the number of sets of squeeze rollers is 2 to 10, optionally 3 to 9, further optionally 4 to 8, and still more optionally 5 ⁇ 7 groups.
  • the number of repetitions is 1-10 times, optionally 3-8 times, and further optionally 5-6 times.
  • the washed polymer obtained in the above steps is removed from the eluate to obtain a purified polymer.
  • the content of the salt impurities in the purified polymer is not higher than 500 ppm, optionally not higher than 400 ppm, and further optionally not higher than 300 ppm.
  • the specific steps of removing the eductate include:
  • the cleaning polymer is spray washed with washing liquid and squeezed dry.
  • the washing solution includes one or more of water, acetone, ethanol and methanol, and is optionally water, acetone, ethanol or methanol.
  • the way of squeezing includes squeezing with squeeze rollers.
  • the embodiment of the present application also provides a polymer purification system, including:
  • the eductate tank that is arranged after the polymerization solution tank;
  • the periphery of the squeeze roller is optionally provided with a precipitation liquid spraying device
  • the polymerization solution tank is connected to the eductate tank through a pipeline.
  • a buffer device with a filter screen is further provided between the eluate tank and the squeezing roller.
  • the distance between the squeezing rollers is 0.1-1 mm, optionally 0.2-0.8 mm, and further optionally 0.3-0.6 mm.
  • the number of groups of squeeze rollers includes 1-10 groups, optionally 3-8 groups, and further optionally 5-6 groups.
  • Fig. 1 is a schematic flow diagram of the polymer particle purification system provided by the present application.
  • 1 is a polymerization solution tank
  • 2 is a precipitation liquid tank
  • 3 is a buffer tank with a filter screen
  • the precipitation liquid spraying device 4 is a precipitation liquid nozzle
  • 5 is a squeeze roller
  • the squeezing liquid removal device 6 is a Mesh container.
  • the above steps of the embodiments of the present application provide a purification process and purification system for polymer particles.
  • the embodiment of this application adopts a specific extrusion impurity removal process, and the polymer particle slurry is extruded by extrusion rollers to achieve washing, desalination and solvent removal.
  • This process can be operated continuously, with high washing efficiency, low washing liquid consumption, and high washing efficiency. It is much better than various current washing methods. It can complete one-step washing with a few simple extrusions, and the washing is clean and the result is stable. It effectively solves the problem that the existing process cannot complete the impurity removal of polymer particles, and is more stable. , the removal effect is better.
  • the solid-liquid separation of polymer particles is realized by extrusion. After extrusion, the liquid content of polymer particles is significantly lower than the level that can be achieved by various industrial centrifugation processes, which significantly reduces the precipitation and washing.
  • the cross-contamination between liquids can greatly reduce the processing cost and solvent loss of various washing liquids; the waste water and waste liquids in the embodiment of the application are less discharged, and the process can obviously reduce the back-mixing of solvents and water between each washing step, and has a more High solvent reuse rate, in the case of ultra-low washing water consumption, it can even achieve full recovery of process water without process wastewater discharge, and no solvent loss with wastewater discharge, and this process can be applied to polysulfone, polyphenylene
  • the experimental results show that the use of the polymer purification process provided in the examples of the present application can greatly reduce the amount of eductate and washing liquid, which is more than 80% lower than the conventional boiling process, and the washing efficiency is high, which can make the salt of the polymer
  • the content of salt-like impurities is controlled below 500ppm.
  • the content of salt-like impurities in the polymer can be further reduced, and the optimal level can reach below 100ppm.
  • the polymerization solution tank is equipped with 10L of polysulfone polymer solution with a mass concentration of 25% of N,N-dimethylacetamide as the solvent, which is added dropwise at a constant speed through the connecting pipe to the eluate tank with 10L deionized water as the eluate , to obtain polysulfone polymer particles (by controlling the rate of addition and the stirring speed in the eluate tank, the particle size is controlled between 0.3 and 10 mm).
  • the extrusion roller speed is set at 100rpm, and the extrusion distance of each group of extrusion rollers is 0.6mm, the polysulfone particles are extruded by three groups of extrusion rollers successively, and the extruded
  • a spraying device is used to spray the eluate to the extruded polysulfone granules, extrude to remove salt impurities in the granules, and obtain washed polysulfone granules.
  • the washed polysulfone particles are subjected to the operation of removing the precipitated liquid. Specifically, the extruded polysulfone particles are introduced into 2L deionized water washing liquid for washing. Dry. The ash content of the finally purified and dried polysulfone particles was measured, and the results of multiple tests were all below 400ppm. The entire purification process used 12L of water.
  • the polymerization solution tank is equipped with 10L of polysulfone polymer solution with a mass concentration of 25% of N,N-dimethylacetamide as the solvent, which is added dropwise at a constant speed through the connecting pipe to the eluate tank with 10L deionized water as the eluate , to obtain polysulfone polymer particles (by controlling the rate of addition and the stirring speed in the eluate tank, the particle size is controlled between 0.3 and 10 mm).
  • the precipitated polysulfone particles are introduced into the extrusion rollers, the extrusion roller speed is set at 100rpm, and the extrusion distance of each group of extrusion rollers is 0.6mm, the polysulfone particles are extruded by six groups of extrusion rollers in turn, and the extruded At the same time, the extruded polysulfone particles are sprayed with a spray device to remove the salt impurities in the particles. After the polysulfone particles extruded once are mixed with the eluate, the extrusion is repeated five times, and spraying is also required during extrusion to obtain washed polysulfone particles.
  • the washed polysulfone particles are subjected to the operation of removing the precipitated liquid. Specifically, the extruded polysulfone particles are introduced into 2L deionized water washing liquid for washing. Dry. The ash content of the finally purified and dried polysulfone particles was measured, and the results of multiple tests were all below 300ppm. The entire purification process used 12L of water.
  • the precipitated polyphenylene sulfide particles are introduced into the squeeze rollers, the speed of the squeeze rollers is set at 100rpm, the extrusion distance of each set of squeeze rollers is 0.6mm, and the polyphenylene sulfide particles are squeezed through 6 sets of squeeze rollers in turn , While extruding, use a spray device to spray the precipitated liquid on the extruded polysulfone particles, and extrude to remove the salt impurities in the particles. After the polyphenylene sulfide particles extruded once are mixed with the eluate, the extrusion is repeated five times, and spraying is required during extrusion to obtain washed polyphenylene sulfide particles.
  • the washed polyphenylene sulfide particles are subjected to the operation of removing the precipitated liquid. Specifically, the extruded polyphenylene sulfide particles are sprayed with 2L of deionized water washing liquid for washing. Squeeze the rollers to squeeze dry. The ash content of the finally purified and dried polyphenylene sulfide particles was measured, and the results of multiple tests were all below 200ppm. The total amount of water and methanol used in the entire purification process was 8L.
  • EVOH ethylene-vinyl alcohol polymer
  • the squeeze roll speed is set at 100rpm, and the extrusion distance of each group of squeeze rolls is adjusted to 0.3mm, the EVOH particles are squeezed by 6 groups of squeeze rolls successively, and the Use a spray device to spray the eluate on the extruded EVOH particles, and extrude to remove the salt impurities in the particles.
  • the extrusion five times Spraying is required during extrusion to obtain cleaned EVOH particles.
  • the cleaned EVOH particles are subjected to the operation of removing the precipitated liquid. Specifically, the extruded EVOH particles are sprayed with 1L of deionized water washing solution for washing. . The ash content of the finally purified and dried EVOH particles was measured, and the results of multiple tests were all below 100ppm. The total amount of water and methanol used in the entire purification process was 7L.
  • the polymerization solution tank is equipped with 10L of polysulfone polymer solution whose solvent is N,N-dimethylacetamide with a mass concentration of 5%, and it is added dropwise at a constant speed through the connecting pipe to the eluate tank with 10L deionized water as the eluate , to obtain polysulfone polymer particles (by controlling the rate of addition and the stirring speed in the eluate tank, the particle size is controlled between 0.3 and 10 mm).
  • the precipitated polysulfone particles are introduced into the extrusion rollers, the extrusion roller speed is set at 100rpm, and the extrusion distance of each group of extrusion rollers is 0.1mm, the polysulfone particles are extruded by two groups of extrusion rollers successively, and the extruded At the same time, use a spray device to spray the eluate on the extruded polysulfone particles, extrude to remove the salt impurities in the particles, mix the extruded polysulfone particles with the eluate, and repeat the extrusion once. Spraying is also required during extrusion to obtain washed polysulfone particles.
  • the washed polysulfone particles are subjected to the operation of removing the precipitated liquid. Specifically, the extruded polysulfone particles are introduced into 2L deionized water washing liquid for washing. Dry. The ash content of the finally purified and dried polysulfone particles was measured, and the results of multiple tests were all below 500ppm, and the water volume used in the entire purification process was 2L.
  • the polymerization solution tank is equipped with 10L of polysulfone polymer solution with a mass concentration of 50% N, N-dimethylacetamide as the solvent, which is added dropwise at a constant speed through the connecting pipe to the eluate tank with 12L deionized water as the eluate , to obtain polysulfone polymer particles (by controlling the rate of addition and the stirring speed in the eluate tank, the particle size is controlled between 0.3 and 10 mm). Then the precipitated polysulfone particles are introduced into the squeeze rollers, the speed of the squeeze rollers is set at 100rpm, and the extrusion distance of each group of squeeze rollers is 1mm, and the polysulfone particles are squeezed through 10 groups of squeeze rollers in sequence.
  • the washed polysulfone particles are subjected to the operation of removing the precipitated liquid. Specifically, the extruded polysulfone particles are introduced into 3L deionized water washing liquid for washing. Dry. The ash content of the finally purified and dried polysulfone particles was measured, and the results of multiple tests could not be detected.
  • the water volume used in the entire purification process was 15L.
  • the polymerization solution tank is equipped with 10L of polysulfone polymer solution with a mass concentration of 25% of N,N-dimethylacetamide as the solvent, which is added dropwise to 20L of deionized water through the connecting pipe at a constant speed.
  • polysulfone polymer particles were obtained.
  • the precipitated polysulfone particles into a container filled with 20L of deionized water and heat to boiling. After boiling for 10 minutes, filter, then add 20L of fresh deionized water for cooking. After repeating this operation four times, purified polysulfone is obtained. Sulfone particles. After drying, the ash content of the obtained polysulfone particles was tested, and the results of multiple tests were all around 1000ppm, and the water volume used in the entire purification process was 100L.
  • the polymerization solution tank is equipped with 10L of polysulfone polymer solution with a mass concentration of 25% of N,N-dimethylacetamide as the solvent, which is added dropwise to 8L of deionized water through the connecting pipe at a constant speed.
  • polysulfone polymer particles were obtained.
  • the precipitated polysulfone particles into a container containing 2L of deionized water and heat to boiling, after boiling for 10 minutes, filter, then add 2L of fresh deionized water for cooking to obtain purified polysulfone particles. After drying, the ash content of the obtained polysulfone particles was tested, and the results of multiple tests were all around 10000ppm.
  • Table 1 is the test results and water consumption of the examples and comparative examples of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyethers (AREA)

Abstract

本申请属于聚合物除杂技术领域,提供了一种聚合物的净化工艺与净化系统,净化工艺包括以下步骤,首先将含盐类杂质的聚合溶液加入至析出液中,得到聚合物颗粒;然后在喷淋析出液的条件下,将上述步骤得到的聚合物颗粒通过挤压后,脱除聚合物中的盐类杂质,得到洗净的聚合物;所述盐类杂质溶于析出液;最后将上述步骤得到的洗净的聚合物除去析出液后,得到净化后的聚合物。本申请挤压后聚合物颗粒的含液率较低,减少了析出液与洗涤液之间的交叉污染,大大减少各种洗涤液的处理成本和溶剂损耗,废水废液排放。

Description

聚合物的净化工艺与净化系统
本申请要求在2021年12月23日提交中国专利局、申请号为202111588257.X、申请名称为“一种聚合物的净化工艺与净化系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于聚合物除杂技术领域,尤其涉及一种聚合物的净化工艺与净化系统。
背景技术
一些高耐热性树脂,比如聚砜类树脂、聚苯硫醚树脂、聚醚醚酮树脂、聚芳醚腈树脂等通常是采用缩聚反应制备的,这些材料是高性能树脂最为关键的几类树脂。这类缩聚聚合通常需采用高沸点溶剂作为反应介质,而且聚合反应会产生等量比的碱金属卤化物盐类副产物。
如聚砜类树脂(PSU、PPSU、PES)通常采用双酚单体,碱金属碳酸盐或者其他强碱,与含砜基团的二氯单体(常见为二氯二苯砜)在极性非质子溶剂(比如二甲基乙酰胺、环丁砜等)中进行缩聚反应而制备,聚合完成后的聚合物溶液中含高沸点溶剂和卤化物盐颗粒。如聚苯硫醚(PPS)树脂的生产通常采用溶液聚合的方法,使用高沸点溶剂,比如常见的N-甲基吡咯烷酮或六甲基磷酰三胺作为反应介质。主要聚合单体为二卤代芳香化合物,比如常见的对二氯苯,和硫源,比如常见的硫化钠和硫氢化钠,而且聚合反应会生成相当摩尔比的副产物碱盐,在反应介质中结晶析出。在聚合反应完成后,聚合反应介质(比如N-甲基吡咯烷酮NMP)和碱盐(比如氯化钠)、聚合助剂(比如用到的催化剂氯化锂,羧酸盐等)、残留单体、低聚物环聚物等 固形物都需要从聚合产物中分离。如聚醚醚酮(PEEK)的合成是以4,4-二氟二苯甲酮、对苯二酚和碳酸钠为原料,以二苯砜为溶剂,在氮气的保护下,在逐渐升温至接近聚合物熔点的温度(320℃)而制备。聚合完成后的聚合物溶液中含高沸点溶剂二苯砜和氟化物盐颗粒需要分离。中国专利CN100389138C采用环丁砜为溶剂合成聚醚醚酮,CN1884331A采用环丁砜为溶剂合成聚醚醚酮酮三元共聚物,类似的还有聚芳醚腈和聚砜类,聚醚砜类,聚醚醚酮类的各种共聚物。以上这些树脂的制备工艺上都有一个除溶剂和除盐的共性要求,有些树脂还需要洗去聚合过程用助剂和低聚物。
而聚合物分离的工业过程通常可以粗略的分为三步:分离-洗涤-干燥。在洗涤步骤,行业做出了各种各样的努力,以聚砜为例,业内采用薄膜蒸发器,聚合物溶液喷雾析出,和多种过滤技术进行除盐;这些工艺都面临着多次重复洗涤,洗涤用水量大,成本高,洗涤不干净,聚合物性能差等困难;还有的技术方案采用脂肪族烷烃作为洗涤剂,则使得整个洗涤过程更为复杂。其中,聚醚醚酮的分离洗涤工艺跟聚苯硫醚树脂洗涤工艺类似,需要采用低沸点洗涤剂洗脱高沸点溶剂二苯砜,而用环丁砜做溶剂时则可以用水来洗脱。现有的技术方案在制备聚芳醚腈工艺中采用低沸点醇类或者酮类洗涤剂辅助洗脱,结合多次的水洗和离心,以实现聚合物盐含量低于150ppm的水平。CN102766255A将聚合物溶液进行闪蒸脱溶剂,同时通过粉碎式搅拌将聚合物打成粉末;所得粉末经洗涤剂洗脱和后续去离子清洗而得到聚芳醚睛(PEEN)。聚苯硫醚树脂的制备工艺相对更为复杂,所以在洗涤工艺与设备方面的努力也更多。
聚苯硫醚聚合物溶液后处理的第一步分离步骤,即将水或者水蒸气加入已经完成反应的聚合釜中进行搅拌,将聚合物溶液分离成高聚物颗粒分散在 反应溶剂和水的混合液浆料的过程。如果聚合过程产生的低聚物量偏多,还会有低聚物细粉沉淀出来。水的引入方式多样,有聚合过程用水,前期脱水收集液,外加水蒸气等。经过“分离操作”的聚合体系降温后形成聚合物溶液浆料,降温后进入下一步。工业化的“分离操作”要求釜内不能结块,滤饼容易过滤收集。可以借鉴一些过程优化工艺,比如结合溶剂闪蒸和水蒸气带溶剂优化滤饼的过滤性能,减少溶剂的后处理成本,改善产品白度。各种分离方法的基本特点就是在聚合釜里进行沉淀,然后进行离心分离。滤饼进入洗涤工序;滤液根据配方的不同或直接进行溶剂精馏工艺,或进行进一步的分离操作。第二步洗涤步骤,即将聚合物中的溶剂、盐、聚合助剂和可能含有的低聚物环聚物等从最终产品中洗脱出来。能否洗净这些杂质直接关系到产品的性能和使用性能。根据洗涤目标物的不同还需要分为多步进行,比如丙酮或者甲醇配制的洗涤液洗脱低聚物和溶剂,热水或者水蒸气洗脱盐和洗涤液,酸洗处理聚合副产物等。洗涤步骤的工艺和装置专利很多,比如CN108219135A和CN101429280A的连续洗涤装置,CN105983266A的水平带式真空过滤机洗涤工艺,CN105601925A的多级溶剂、丙酮和去离子水洗涤工艺等。CN1326911C也是采用了丙酮洗涤,去离子水洗涤和酸洗等步骤。为了减少溶剂的损耗,避免废水化学需氧量(COD)的升高而增加废水生物降解的难度,工艺要求洗涤液对溶剂的洗脱效果越高越好;为了保证聚合物的性能和使用性能,水洗和酸洗要求盐和副产物的残留越低越好。为了保证洗涤效果,洗涤过程通常需要大量的洗涤剂,并形成溶剂回收的精馏负荷和成本;洗涤过程需要多道操作,耗费多达产品20倍量及以上的去离子水,并形成废水处理负荷和成本。而且如此多道操作,工艺控制困难,容易造成产品的性能波动。第三步干燥步骤,本身技术难度不高,难点在于如何降低 入口粉料中水的含量,从而降低干燥负荷,增强干燥处理能力。这就对洗涤完成后滤饼的过滤操作和过滤后所形成滤饼的含水量提出更高的要求。PPS粉颗粒疏松,微结构中含水量高,单纯的离心过滤不能进一步降低含水量。
聚苯硫醚树脂的生产工艺中分离、洗涤和干燥几个步骤整体上设备复杂,操作复杂,溶剂回收量大,废水量大,溶剂损耗大,成本高,而且产品质量控制困难。业界持续努力优化工艺与设备,但是基本上都是在原有工艺路线上优化,进步不大,效果不明显。
因此,如何找到一种聚合物的净化方法,特别是聚合物颗粒的净化方法,解决这一类缩聚反应的后处理过程在实际生产中面临的挑战,如洗脱溶剂和洗出盐分都需要大量的洗涤液,反复的洗涤与分离,操作复杂,效果差,成本高,污染大等问题,以及那些需要额外引进洗涤液帮助洗脱溶剂,比如聚苯硫醚、聚醚醚酮和聚芳醚腈,则整个洗涤过程就更为复杂的问题,已成为领域内相关生产企业亟待解决的问题之一。
发明内容
为解决现有技术中存在的至少一个问题,本申请提供一种聚合物的净化工艺与净化系统。
本申请一方面提供了一种聚合物的净化工艺,包括以下步骤:
1)将含盐类杂质的聚合溶液加入至析出液中,得到聚合物颗粒;
2)在喷淋析出液的条件下,将上述步骤得到的聚合物颗粒通过挤压后,脱除聚合物中的盐类杂质,得到洗净的聚合物;
所述盐类杂质溶于析出液;
3)将上述步骤得到的洗净的聚合物除去析出液后,得到净化后的聚合物;
所述聚合物包括聚砜类树脂、聚苯硫醚树脂、聚醚醚酮树脂和乙烯-乙烯 醇共聚物中的一种或多种;
所述净化后的聚合物中所述盐类杂质的含量不高于500ppm。
在本申请的一些实施例中,所述聚合物颗粒包括聚合溶液沉淀析出后得到聚合物颗粒;
所述聚合物颗粒的粒径为0.3~10mm;
所述盐类杂质包括不溶于聚合溶液的溶剂中的盐类杂质;
所述聚合溶液包括聚合反应后得到的聚合物溶液、聚合反应后并经预处理后的聚合物溶液和聚合物再溶于溶剂后得到的聚合物溶液中的一种或多种。
在本申请的一些实施例中,所述聚合溶液中溶剂溶于析出液;
所述聚合溶液的溶剂包括甲醇、乙醇、叔丁醇、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜、环丁砜和N-甲基吡咯烷酮中的一种或多种;
所述聚合溶液的质量浓度为5%~50%;
所述加入的方式包括滴加。
在本申请的一些实施例中,所述盐类杂质包括氯化钠、氯化钾、醋酸钠和醋酸钾中的一种或多种;
所述析出液包括水、去离子水、丙酮、乙醇和甲醇中的一种或多种。
在本申请的一些实施例中,所述挤压的方式包括挤压辊相互挤压;
所述挤压辊的间距为0.1~1mm;
所述挤压的次数包括一次或多次。
在本申请的一些实施例中,所述多次挤压包括设置多组挤压辊依次挤压,和/或,由以下步骤进行多次挤压:
将挤压后的聚合物颗粒,与析出液再次混合后,在喷淋析出液的条件下,再次进行挤压;
重复上述步骤,脱除聚合物中的盐类杂质,最后得到洗净的聚合物。
在本申请的一些实施例中,所述多组挤压辊的组数为2~10组;
所述重复的次数为1~10次。
在本申请的一些实施例中,所述除去析出液的具体步骤包括:
将所述洗净聚合物导入至洗涤液中进行洗涤,然后进行挤干;或者
用洗涤液对所述洗净聚合物进行喷淋洗涤并进行挤干;
所述洗涤液包括水、丙酮、乙醇和甲醇中的一种或多种;
所述挤干的方式包括挤压辊挤干。
本申请另一方面还提供了一种聚合物的净化系统,包括:
聚合溶液罐;
设置在聚合溶液罐之后的析出液罐;
设置在析出液罐之后的挤压辊;
所述挤压辊周边设置有析出液喷淋装置;
设置在挤压辊之后的挤干除液装置。
在本申请的一些实施例中,所述聚合溶液罐与所述析出液罐通过管路相连接;
所述析出液罐和挤压辊之间还设置有带有滤网的缓冲装置;
所述挤压辊的间距为0.1~1mm;
所述挤压辊的组数包括1~10组;
所述析出液喷淋装置设置在所述挤压辊的斜上方和/或上方;
所述挤干除液装置包括挤压辊。
与现有技术相比,本发明的优点和积极效果在于:
(1)本发明提供了一种聚合物的净化工艺,包括以下步骤,首先将含盐 类杂质的聚合溶液加入至析出液中,得到聚合物颗粒;然后在喷淋析出液的条件下,将上述步骤得到的聚合物颗粒通过挤压后,脱除聚合物中的盐类杂质,得到洗净的聚合物;所述盐类杂质溶于析出液;最后将上述步骤得到的洗净的聚合物除去析出液后,得到净化后的聚合物;所述净化后的聚合物中所述盐类杂质的含量不高于500ppm。与现有技术相比,本发明申请针对现有的聚合物除杂工艺存在操作复杂,效果差,成本高,污染大等问题,更针对现有的聚合物除杂工艺虽然也有利用挤压的除杂方式,但是只是针对于膜材料,而对于聚合物颗粒材料无法应用的局限性。本申请创造性的采用了特定的挤压除杂工艺,将聚合物颗粒浆料经挤压辊的挤压实现洗涤脱盐脱溶剂,该工艺可以连续操作,洗涤效率高,洗涤液用量低,洗涤效率大大优于各种现用的洗涤方式,简单的几次挤压即完成一步洗涤,而且洗涤干净,结果稳定,有效的解决了现有的工艺无法完成聚合物颗粒除杂的问题,而且更加稳定,除杂效果更好。
(2)本申请通过挤压来实现聚合物颗粒的固液分离,挤压后聚合物颗粒的含液率要明显低于各种工业离心过程能够实现的水平,这样明显地减少了析出液与洗涤液之间的交叉污染,可以大大减少各种洗涤液的处理成本和溶剂损耗;本申请废水废液排放少,该工艺明显减少溶剂和水在各个洗涤步骤间的返混,有着更高的溶剂回用率,在超低的洗涤水用量的情况下甚至可以做到过程用水全回收而无工艺废水排放,也无溶剂随废水排放损失,且该工艺可以应用于聚砜、聚苯砜、聚醚砜及其共聚物的生产过程,聚苯硫醚及其共聚物的生产过程,聚醚醚酮、聚芳醚腈及其共聚物的生产过程。
(3)实验结果表明,采用本申请提供的聚合物净化工艺,能够大幅降低析出液和洗涤液的用量,相比于常规的水煮工艺降低80%以上,洗涤效率高, 可使聚合物的盐类杂质含量控制在500ppm以下,另外随着挤压辊组数和重复挤压次数的增多,挤压辊间距的减小,聚合物的盐类杂质含量可进一步降低,最优可达到100ppm以下。
附图说明
图1为本申请提供的聚合物颗粒净化系统的流程示意简图。
具体实施方式
为了进一步了解本申请,下面结合实施例对本申请的部分实施方案进行描述,但是应当理解,这些描述只是为进一步说明本申请的特征和优点而不是对本申请专利要求的限制。
本申请所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法制备的即可。
本申请所有原料,对其纯度没有特别限制,在一些实施例中,本申请采用工业纯或高分子聚合领域常规的纯度即可。
本申请所有名词表达和简称均属于本领域常规名词表达和简称,每个名词表达和简称在其相关应用领域内均是清楚明确的,本领域技术人员根据名词表达和简称,能够清楚准确唯一的进行理解。
本申请实施例一方面提供了一种聚合物的净化工艺,包括以下步骤:
1)将含盐类杂质的聚合溶液加入至析出液中,得到聚合物颗粒;
2)在喷淋析出液的条件下,将上述步骤得到的聚合物颗粒通过挤压后,脱除聚合物中的盐类杂质,得到洗净的聚合物;
所述盐类杂质溶于析出液;
3)将上述步骤得到的洗净的聚合物除去析出液后,得到净化后的聚合物;
所述净化后的聚合物中所述盐类杂质的含量不高于500ppm。
本申请上述实施例首先将含盐类杂质的聚合溶液加入至析出液中,得到聚合物颗粒。
在本申请一些实施例中,所述聚合物颗粒包括聚合溶液沉淀析出后得到聚合物颗粒。
在本申请一些实施例中,所述聚合物颗粒的粒径为0.3~10mm,可选地为2~8mm,进一步可选地为4~6mm。
在本申请一些实施例中,所述盐类杂质包括不溶于聚合溶液的溶剂中的盐类杂质。
在本申请一些实施例中,所述聚合溶液包括聚合反应后得到的聚合物溶液、聚合反应后并经预处理后的聚合物溶液和聚合物再溶于溶剂后得到的聚合物溶液中的一种或多种,可选地为聚合反应后得到的聚合物溶液、聚合反应后并经预处理后的聚合物溶液或聚合物再溶于溶剂后得到的聚合物溶液。
在本申请一些实施例中,所述聚合溶液中溶剂溶于析出液。
在本申请一些实施例中,聚合物溶液中的溶剂溶于析出液,聚合物不溶于析出液,不溶性盐溶于析出液;聚合物不溶于洗涤液,而盐和溶剂溶于洗涤液,且析出液为水或者洗涤工艺操作后的洗涤液,洗涤液为水、去离子水、丙酮、乙醇和甲醇中的一种或多种。
在本申请一些实施例中,所述聚合溶液的溶剂包括甲醇、乙醇、叔丁醇、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜、环丁砜和N-甲基吡咯烷酮中的一种或多种,可选地为甲醇、乙醇、叔丁醇、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜、环丁砜或N-甲基吡咯烷酮。
在本申请一些实施例中,所述聚合溶液的质量浓度为5%~50%,可选地 为15%~40%,更进一步可选地为25%~30%。
在本申请一些实施例中,所述加入的方式包括滴加。
在本申请一些实施例中,所述聚合物包括聚砜类树脂、聚苯硫醚树脂、聚醚醚酮树脂和乙烯-乙烯醇共聚物中的一种或多种,可选地为聚砜类树脂、聚苯硫醚树脂、聚醚醚酮树脂或乙烯-乙烯醇共聚物。
在本申请一些实施例中,所述析出液包括水、去离子水、丙酮、乙醇和甲醇中的一种或多种,可选地为水、去离子水、丙酮、乙醇或甲醇。
本申请一些实施例中,随后在喷淋析出液的条件下,将上述步骤得到的聚合物颗粒通过挤压后,脱除聚合物中的盐类杂质,得到洗净的聚合物。
在本申请一些实施例中,所述盐类杂质溶于析出液。具体的,所述盐类杂质具体的为不溶于聚合物溶液的溶剂中的不溶性盐类杂质。
在本申请一些实施例中,所述挤压的方式包括挤压辊相互挤压。
在本申请一些实施例中,所述挤压辊的间距为0.1~1mm,可选地为0.2~0.8mm,进一步可选地为0.3~0.6mm。
在本申请一些实施例中,所述挤压的次数包括一次或多次。
在本申请一些实施例中,所述多次挤压包括设置多组挤压辊依次挤压,和/或,由以下步骤进行多次挤压:
将挤压后的聚合物颗粒,与析出液再次混合后,在喷淋析出液的条件下,再次进行挤压;
重复上述步骤,脱除聚合物中的盐类杂质,最后得到洗净的聚合物。
在本申请一些实施例中,所述多组挤压辊的组数为2~10组,可选地为3~9组,进一步可选地为4~8组,更进一步可选地为5~7组。
在本申请一些实施例中,所述重复的次数为1~10次,可选地为3~8次, 进一步可选地为5~6次。
在本申请一些实施例中,最后将上述步骤得到的洗净的聚合物除去析出液后,得到净化后的聚合物。
在本申请一些实施例中,所述净化后的聚合物中所述盐类杂质的含量不高于500ppm,可选地不高于400ppm,进一步可选地不高于300ppm。
在本申请一些实施例中,所述除去析出液的具体步骤包括:
将所述洗净聚合物导入至洗涤液中进行洗涤,然后进行挤干;或者
用洗涤液对所述洗净聚合物进行喷淋洗涤并进行挤干。
在本申请一些实施例中,所述洗涤液包括水、丙酮、乙醇和甲醇中的一种或多种,可选地为水、丙酮、乙醇或甲醇。
在本申请一些实施例中,所述挤干的方式包括挤压辊挤干。
本申请实施例另一方面还提供了一种聚合物的净化系统,包括:
聚合溶液罐;
设置在聚合溶液罐之后的析出液罐;
设置在析出液罐之后的挤压辊;
所述挤压辊周边可选地设置有析出液喷淋装置;
设置在挤压辊之后的挤干除液装置。
在本申请一些实施例中,所述聚合溶液罐与所述析出液罐通过管路相连接。
在本申请一些实施例中,所述析出液罐和挤压辊之间还设置有带有滤网的缓冲装置。
在本申请一些实施例中,所述挤压辊的间距为0.1~1mm,可选地为0.2~0.8mm,进一步可选地为0.3~0.6mm。
在本申请一些实施例中,所述挤压辊的组数包括1~10组,可选地为3~8组,进一步可选地为5~6组。
参见图1,图1为本申请提供的聚合物颗粒净化系统的流程示意简图。
其中,1为聚合溶液罐,2为析出液罐,3为带有滤网的缓冲罐,析出液喷淋装置4为析出液喷头,5为挤压辊,挤干除液装置6为带有筛网的容器。
本申请实施例的上述步骤提供了一种聚合物颗粒的净化工艺和净化系统。本申请实施例采用了特定的挤压除杂工艺,将聚合物颗粒浆料经挤压辊的挤压实现洗涤脱盐脱溶剂,该工艺可以连续操作,洗涤效率高,洗涤液用量低,洗涤效率大大优于各种现用的洗涤方式,简单的几次挤压即完成一步洗涤,而且洗涤干净,结果稳定,有效的解决了现有的工艺无法完成聚合物颗粒除杂的问题,而且更加稳定,除杂效果更好。
本申请实施例通过挤压来实现聚合物颗粒的固液分离,挤压后聚合物颗粒的含液率要明显低于各种工业离心过程能够实现的水平,这样明显地减少了析出液与洗涤液之间的交叉污染,可以大大减少各种洗涤液的处理成本和溶剂损耗;本申请实施例的废水废液排放少,该工艺明显减少溶剂和水在各个洗涤步骤间的返混,有着更高的溶剂回用率,在超低的洗涤水用量的情况下甚至可以做到过程用水全回收而无工艺废水排放,也无溶剂随废水排放损失,且该工艺可以应用于聚砜、聚苯砜、聚醚砜及其共聚物的生产过程,聚苯硫醚及其共聚物的生产过程,聚醚醚酮、聚芳醚腈及其共聚物的生产过程。
实验结果表明,采用本申请实施例提供的聚合物净化工艺,能够大幅降低析出液和洗涤液的用量,相比于常规的水煮工艺降低80%以上,洗涤效率高,可使聚合物的盐类杂质含量控制在500ppm以下,另外随着挤压辊组数和重复挤压次数的增多,挤压辊间距的减小,聚合物的盐类杂质含量可进一 步降低,最优可达到100ppm以下。
为了进一步说明本申请,以下结合实施例对本申请提供的一种聚合物的净化工艺与净化系统进行详细描述,但是应当理解,这些实施例是在以本申请技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,只是为进一步说明本申请的特征和优点,而不是对本申请权利要求的限制,本申请的保护范围也不限于下述的实施例。
实施例1
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度25%的聚砜聚合物溶液10L,将其通过连接管道匀速滴加到10L去离子水为析出液的析出液罐中,得到聚砜聚合物颗粒(通过控制滴加速度以及析出液罐中的搅拌速度,控制颗粒粒径在0.3~10mm之间)。然后将析出的聚砜颗粒导入挤压辊,挤压辊转速设定100rpm,每组挤压辊的挤压间距为0.6mm,聚砜颗粒依次通过3组挤压辊进行挤压,挤压的同时用喷淋装置向被挤压的聚砜颗粒喷淋析出液,挤压脱除颗粒中的盐类杂质,得到洗净的聚砜颗粒。
洗净后的聚砜颗粒进行除析出液操作,具体是将挤压后的聚砜颗粒,导入2L去离子水洗涤液中洗涤,洗涤完成后通过挤干除液装置中的挤干辊进行挤干。将最终已经净化干燥的聚砜颗粒测灰分,多次测试结果均在400ppm以下,整个净化流程使用水量为12L。
实施例2
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度25%的聚砜聚合物溶液10L,将其通过连接管道匀速滴加到10L去离子水为析出液的析出液罐中,得到聚砜聚合物颗粒(通过控制滴加速度以及析出液罐中的搅拌速度,控制颗粒粒径在0.3~10mm之间)。然后将析出的聚砜颗粒导入挤压辊,挤压 辊转速设定100rpm,每组挤压辊的挤压间距为0.6mm,聚砜颗粒依次通过6组挤压辊进行挤压,挤压的同时用喷淋装置向被挤压的聚砜颗粒喷淋析出液,挤压脱除颗粒中的盐类杂质。将一次挤压后的聚砜颗粒与析出液进行混合后,重复挤压五次,挤压时也需要喷淋,得到洗净的聚砜颗粒。
洗净后的聚砜颗粒进行除析出液操作,具体是将挤压后的聚砜颗粒,导入2L去离子水洗涤液中洗涤,洗涤完成后通过挤干除液装置中的挤干辊进行挤干。将最终已经净化干燥的聚砜颗粒测灰分,多次测试结果均在300ppm以下,整个净化流程使用水量为12L。
实施例3
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度25%的聚苯硫醚聚合物溶液10L,将其通过连接管道匀速滴加到6L去离子水和甲醇混合液(水:甲醇=1:1)为析出液的析出液罐中,得到聚苯硫醚聚合物颗粒(通过控制滴加速度以及析出液罐中的搅拌速度,控制颗粒粒径在0.3~10mm之间)。然后将析出的聚苯硫醚颗粒导入挤压辊,挤压辊转速设定100rpm,每组挤压辊的挤压间距为0.6mm,聚苯硫醚颗粒依次通过6组挤压辊进行挤压,挤压的同时用喷淋装置向被挤压的聚砜颗粒喷淋析出液,挤压脱除颗粒中的盐类杂质。将一次挤压后的聚苯硫醚颗粒与析出液进行混合后,重复挤压五次,挤压时需要喷淋,得到洗净的聚苯硫醚颗粒。
洗净后的聚苯硫醚颗粒进行除析出液操作,具体是将挤压后的聚苯硫醚颗粒,喷淋2L去离子水洗涤液进行洗涤,洗涤完成后通过挤干除液装置中的挤干辊进行挤干。将最终已经净化干燥的聚苯硫醚颗粒测灰分,多次测试结果均在200ppm以下,整个净化流程使用的水和甲醇总量为8L。
实施例4
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度25%的乙烯-乙烯醇聚合物(EVOH)溶液10L,将其通过连接管道匀速滴加到6L去离子水和甲醇混合液(水:甲醇=1:1)为析出液的析出液罐中,得到EVOH颗粒(通过控制滴加速度以及析出液罐中的搅拌速度,控制颗粒粒径在0.3~10mm之间)。然后将析出的EVOH颗粒导入挤压辊,挤压辊转速设定100rpm,每组挤压辊的挤压间距调整为0.3mm,EVOH颗粒依次通过6组挤压辊进行挤压,挤压的同时用喷淋装置向被挤压的EVOH颗粒喷淋析出液,挤压脱除颗粒中的盐类杂质。将一次挤压后的EVOH颗粒与析出液进行混合后,重复挤压五次,挤压时需要喷淋,得到洗净的EVOH颗粒。
洗净后的EVOH颗粒进行除析出液操作,具体是将挤压后的EVOH颗粒,喷淋1L去离子水洗涤液进行洗涤,洗涤完成后通过挤干除液装置中的挤干辊进行挤干。将最终已经净化干燥的EVOH颗粒测灰分,多次测试结果均在100ppm以下,整个净化流程使用的水和甲醇总量为7L。
实施例5
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度5%的聚砜聚合物溶液10L,将其通过连接管道匀速滴加到10L去离子水为析出液的析出液罐中,得到聚砜聚合物颗粒(通过控制滴加速度以及析出液罐中的搅拌速度,控制颗粒粒径在0.3~10mm之间)。然后将析出的聚砜颗粒导入挤压辊,挤压辊转速设定100rpm,每组挤压辊的挤压间距为0.1mm,聚砜颗粒依次通过2组挤压辊进行挤压,挤压的同时用喷淋装置向被挤压的聚砜颗粒喷淋析出液,挤压脱除颗粒中的盐类杂质,将一次挤压后的聚砜颗粒与析出液进行混合后,重复挤压一次,挤压时也需要喷淋,得到洗净的聚砜颗粒。
洗净后的聚砜颗粒进行除析出液操作,具体是将挤压后的聚砜颗粒,导 入2L去离子水洗涤液中洗涤,洗涤完成后通过挤干除液装置中的挤干辊进行挤干。将最终已经净化干燥的聚砜颗粒测灰分,多次测试结果均在500ppm以下,整个净化流程使用水量为2L。
实施例6
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度50%的聚砜聚合物溶液10L,将其通过连接管道匀速滴加到12L去离子水为析出液的析出液罐中,得到聚砜聚合物颗粒(通过控制滴加速度以及析出液罐中的搅拌速度,控制颗粒粒径在0.3~10mm之间)。然后将析出的聚砜颗粒导入挤压辊,挤压辊转速设定100rpm,每组挤压辊的挤压间距为1mm,聚砜颗粒依次通过10组挤压辊进行挤压,挤压的同时用喷淋装置向被挤压的聚砜颗粒喷淋析出液,挤压脱除颗粒中的盐类杂质,将一次挤压后的聚砜颗粒与析出液进行混合后,重复挤压十次,挤压时也需要喷淋,得到洗净的聚砜颗粒。
洗净后的聚砜颗粒进行除析出液操作,具体是将挤压后的聚砜颗粒,导入3L去离子水洗涤液中洗涤,洗涤完成后通过挤干除液装置中的挤干辊进行挤干。将最终已经净化干燥的聚砜颗粒测灰分,多次测试结果均无法检测到,整个净化流程使用水量为15L。
对比例1
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度25%的聚砜聚合物溶液10L,将其通过连接管道匀速滴加到20L去离子水为析出液的析出液罐中,得到聚砜聚合物颗粒。然后将析出的聚砜颗粒放入盛有20L去离子水的容器中加热至沸腾,沸腾10min后过滤,过滤后再加入20L新鲜的去离子水蒸煮,重复此操作四次后,得到净化的聚砜颗粒。干燥后测试所得聚砜颗粒的灰分,多次测试结果均在1000ppm左右,整个净化流程使用水量为100L。
对比例2
聚合溶液罐中装有溶剂为N,N-二甲基乙酰胺的质量浓度25%的聚砜聚合物溶液10L,将其通过连接管道匀速滴加到8L去离子水为析出液的析出液罐中,得到聚砜聚合物颗粒。然后将析出的聚砜颗粒放入盛有2L去离子水的容器中加热至沸腾,沸腾10min后过滤,过滤后再加入2L新鲜的去离子水蒸煮,得到净化的聚砜颗粒。干燥后测试所得聚砜颗粒的灰分,多次测试结果均在10000ppm左右。
参见表1,表1为本申请实施例和对比例的检测结果和用水量。
表1
项目 灰分/ppm 用水量/L
实施例1 335 12
实施例2 214 12
实施例3 108 8
实施例4 67 7
实施例5 500 2
实施例6 0 15
对比例1 1450 100
对比例2 9866 12
以上对本申请提供的一种聚合物颗粒的净化工艺与净化系统进行了详细的介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本申请,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。本申请 专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种聚合物的净化工艺,其特征在于,包括以下步骤:
    1)将含盐类杂质的聚合溶液加入至析出液中,得到聚合物颗粒;
    2)在喷淋析出液的条件下,将上述步骤得到的聚合物颗粒通过挤压后,脱除聚合物中的盐类杂质,得到洗净的聚合物;
    所述盐类杂质溶于析出液;
    将上述步骤得到的洗净的聚合物除去析出液后,得到净化后的聚合物;
    所述聚合物包括聚砜类树脂、聚苯硫醚树脂、聚醚醚酮树脂和乙烯-乙烯醇共聚物中的一种或多种;
    所述净化后的聚合物中所述盐类杂质的含量不高于500ppm。
  2. 根据权利要求1所述的净化工艺,其特征在于,所述聚合物颗粒包括聚合溶液沉淀析出后得到聚合物颗粒;
    所述聚合物颗粒的粒径为0.3~10mm;
    所述盐类杂质包括不溶于聚合溶液的溶剂中的盐类杂质;
    所述聚合溶液包括聚合反应后得到的聚合物溶液、聚合反应后并经预处理后的聚合物溶液和聚合物再溶于溶剂后得到的聚合物溶液中的一种或多种。
  3. 根据权利要求2所述的净化工艺,其特征在于,所述聚合溶液中溶剂溶于析出液;
    所述聚合溶液的溶剂包括甲醇、乙醇、叔丁醇、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜、环丁砜和N-甲基吡咯烷酮中的一种或多种;
    所述聚合溶液的质量浓度为5%~50%;
    所述加入的方式包括滴加。
  4. 根据权利要求1所述的净化工艺,其特征在于,所述盐类杂质包括氯 化钠、氯化钾、醋酸钠和醋酸钾中的一种或多种;
    所述析出液包括水、去离子水、丙酮、乙醇和甲醇中的一种或多种。
  5. 根据权利要求1所述的净化工艺,其特征在于,所述挤压的方式包括挤压辊相互挤压;
    所述挤压辊的间距为0.1~1mm;
    所述挤压的次数包括一次或多次。
  6. 根据权利要求5所述的净化工艺,其特征在于,所述多次挤压包括设置多组挤压辊依次挤压,和/或,由以下步骤进行多次挤压:
    将挤压后的聚合物颗粒,与析出液再次混合后,在喷淋析出液的条件下,再次进行挤压;
    重复上述步骤,脱除聚合物中的盐类杂质,最后得到洗净的聚合物。
  7. 根据权利要求6所述的净化工艺,其特征在于,所述多组挤压辊的组数为2~10组;
    所述重复的次数为1~10次。
  8. 根据权利要求1所述的净化工艺,其特征在于,所述除去析出液的具体步骤包括:
    将所述洗净聚合物导入至洗涤液中进行洗涤,然后进行挤干;或者
    用洗涤液对所述洗净聚合物进行喷淋洗涤并进行挤干;
    所述洗涤液包括水、丙酮、乙醇和甲醇中的一种或多种;
    所述挤干的方式包括挤压辊挤干。
  9. 一种如权利要求1~8任意一项所述的聚合物的净化工艺所使用的净化系统,其特征在于,包括:
    聚合溶液罐;
    设置在聚合溶液罐之后的析出液罐;
    设置在析出液罐之后的挤压辊;
    所述挤压辊周边设置有析出液喷淋装置;
    设置在挤压辊之后的挤干除液装置。
  10. 根据权利要求9所述的净化系统,其特征在于,所述聚合溶液罐与所述析出液罐通过管路相连接;
    所述析出液罐和挤压辊之间还设置有带有滤网的缓冲装置;
    所述挤压辊的间距为0.1~1mm;
    所述挤压辊的组数包括1~10组;
    所述析出液喷淋装置设置在所述挤压辊的斜上方和/或上方;
    所述挤干除液装置包括挤压辊。
PCT/CN2022/105018 2021-12-23 2022-07-12 聚合物的净化工艺与净化系统 WO2022258076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111588257.X 2021-12-23
CN202111588257.XA CN113980288B (zh) 2021-12-23 2021-12-23 一种聚合物的净化工艺与净化系统

Publications (1)

Publication Number Publication Date
WO2022258076A1 true WO2022258076A1 (zh) 2022-12-15

Family

ID=79734140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105018 WO2022258076A1 (zh) 2021-12-23 2022-07-12 聚合物的净化工艺与净化系统

Country Status (2)

Country Link
CN (1) CN113980288B (zh)
WO (1) WO2022258076A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113648678B (zh) * 2021-07-30 2023-04-07 珠海健科医用材料有限公司 一种聚砜类聚合物及其纯化方法
CN113980288B (zh) * 2021-12-23 2022-05-13 山东海科创新研究院有限公司 一种聚合物的净化工艺与净化系统
CN115806670B (zh) * 2022-12-02 2024-06-21 常州大学 一种聚苯硫醚组合后处理纯化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306170A (ja) * 1993-04-27 1994-11-01 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂の溶融押し出し方法
US5360890A (en) * 1991-08-14 1994-11-01 Tosoh Corporation Refining of polyarylene sulfides
CN107325286A (zh) * 2017-07-27 2017-11-07 山东浩然特塑股份有限公司 一种砜类树脂分散洗涤的后处理方法
CN111939628A (zh) * 2020-07-21 2020-11-17 内蒙古三爱富万豪氟化工有限公司 连续过滤洗涤方法及过滤系统
CN112239540A (zh) * 2020-12-21 2021-01-19 富海(东营)新材料科技有限公司 聚砜类树脂材料的工业化提纯工艺及其提纯装置
CN113980288A (zh) * 2021-12-23 2022-01-28 山东海科创新研究院有限公司 一种聚合物的净化工艺与净化系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084214B2 (en) * 2002-02-15 2006-08-01 Toyo Boseki Kabushiki Kaisha Polyester resin composition for profile extrusion molding and molded article comprising the same
US7960503B2 (en) * 2009-05-26 2011-06-14 Solutia, Inc. Continuous washing of poly(vinyl butyral)
AP2015008798A0 (en) * 2013-04-26 2015-10-31 Xyleco Inc Processing hydroxy-carboxylic acids to polymers
CN107189044B (zh) * 2017-06-28 2019-03-15 树业环保科技股份有限公司 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法
CN109206548A (zh) * 2017-06-29 2019-01-15 久裕电子科技(江苏)有限公司 一种环保型橡胶的生产工艺
CN109569491A (zh) * 2018-12-18 2019-04-05 江阴长盛化工有限公司 Pes聚醚砜生产用洗涤反应釜及其生产方法
CN110327794B (zh) * 2019-06-28 2021-10-26 杭州天创环境科技股份有限公司 一种纳滤膜的制备方法
CN111925647A (zh) * 2020-08-19 2020-11-13 界首市鸿鑫塑业有限公司 一种阻燃耐磨塑料颗粒及其生产工艺
CN112552528B (zh) * 2020-11-19 2022-07-12 万华化学集团股份有限公司 一种祛除耐高温聚合物溶液中溶剂的方法
CN113773632B (zh) * 2021-09-06 2023-11-14 洛阳理工学院 一种含可固化聚苯醚树脂的组合物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360890A (en) * 1991-08-14 1994-11-01 Tosoh Corporation Refining of polyarylene sulfides
JPH06306170A (ja) * 1993-04-27 1994-11-01 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂の溶融押し出し方法
CN107325286A (zh) * 2017-07-27 2017-11-07 山东浩然特塑股份有限公司 一种砜类树脂分散洗涤的后处理方法
CN111939628A (zh) * 2020-07-21 2020-11-17 内蒙古三爱富万豪氟化工有限公司 连续过滤洗涤方法及过滤系统
CN112239540A (zh) * 2020-12-21 2021-01-19 富海(东营)新材料科技有限公司 聚砜类树脂材料的工业化提纯工艺及其提纯装置
CN113980288A (zh) * 2021-12-23 2022-01-28 山东海科创新研究院有限公司 一种聚合物的净化工艺与净化系统

Also Published As

Publication number Publication date
CN113980288A (zh) 2022-01-28
CN113980288B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022258076A1 (zh) 聚合物的净化工艺与净化系统
CN111072965B (zh) 一种聚砜类树脂聚合物材料及其制备方法
CN103626999A (zh) 一种聚芳醚砜树脂的工业化合成方法
CN111253574B (zh) 低环二聚体含量的聚砜类树脂材料的制备方法
CN110102192B (zh) 一种聚芳醚羧酸盐-羧基聚芳醚共混紧致超滤膜及其制备方法和应用
CN112239540B (zh) 聚砜类树脂材料的工业化提纯工艺及其提纯装置
CN210001701U (zh) 一种处理高悬浮物高矿化度矿井水的系统
CN105289338B (zh) 具有支撑层的聚醚砜/聚偏氟乙烯共混膜及其制备方法
CN103723736B (zh) 一种白炭黑生产工艺中资源回收的方法
CN109721733B (zh) 一种聚砜类树脂的制备方法
CN107325286B (zh) 一种砜类树脂分散洗涤的后处理方法
CN102626646A (zh) 一种氧化段钴锰催化剂回收利用装置及其方法
CN111363139A (zh) 一种聚芳醚酮聚合物的后处理方法
CN113680128B (zh) 一种聚芳硫醚树脂的连续洗涤净化系统及净化方法
CN110548331A (zh) 淤浆法聚乙烯生产工艺中聚合物的分离方法和分离装置
CN114436293B (zh) 一种低浓度卤水直接生产溴化钠的方法
CN112159526B (zh) 降低ppsu管材吸水率的工业化制备方法
CN114163642A (zh) 一种节能环保型聚砜类树脂的提纯工艺及提纯设备
CN113461932A (zh) 一种聚芳醚酮制备方法
CN109970612A (zh) 一种己内酰胺浓缩液分离的工艺
CN114273098B (zh) 在丙烯腈生产流程中分离聚合物的系统及方法
WO2015070606A1 (zh) 一种催化四氢呋喃开环聚合的催化体系
CN219251766U (zh) 一种降低液体聚氯化铝产品浊度的压滤系统
CN110078912B (zh) 一种聚苯醚连续加压过滤洗涤方法
CN220745639U (zh) 一种含高氨氮硫酸氨盐废水的零排放系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819672

Country of ref document: EP

Kind code of ref document: A1