WO2022257817A1 - 一种有机电致发光器件和显示装置 - Google Patents

一种有机电致发光器件和显示装置 Download PDF

Info

Publication number
WO2022257817A1
WO2022257817A1 PCT/CN2022/096255 CN2022096255W WO2022257817A1 WO 2022257817 A1 WO2022257817 A1 WO 2022257817A1 CN 2022096255 W CN2022096255 W CN 2022096255W WO 2022257817 A1 WO2022257817 A1 WO 2022257817A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
formula
aryl
monocyclic
heteroaryl
Prior art date
Application number
PCT/CN2022/096255
Other languages
English (en)
French (fr)
Inventor
段炼
洪响晨
张跃威
张东东
李国孟
蔡明瀚
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to KR1020237006546A priority Critical patent/KR20230042736A/ko
Priority to JP2023514823A priority patent/JP2023540114A/ja
Publication of WO2022257817A1 publication Critical patent/WO2022257817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/326Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising gallium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the invention relates to an organic electroluminescent device and a display device, which has an organic electroluminescent device involving thermally activated delayed fluorescence using phosphorescent material sensitization as a luminescent dye, and belongs to the technical field of organic electroluminescence.
  • Organic Light Emitting Diode (Organic Light Emitting Diode, referred to as OLED) is a device that is driven by current to achieve the purpose of emitting light. Its main characteristics come from the organic light-emitting layer. When an appropriate voltage is applied, electrons and holes Excitons are combined in the organic light-emitting layer to emit light of different wavelengths according to the characteristics of the organic light-emitting layer. At present, the light-emitting layer is composed of host materials and doped dyes, and the dyes are mostly selected from traditional fluorescent materials and phosphorescent materials. Or thermally activated delayed fluorescence (Thermally Activated Delayed Fluorescence, referred to as: TADF) material.
  • TADF thermally activated delayed fluorescence
  • phosphorescent materials can achieve 100% energy use efficiency by introducing heavy metal atoms, such as iridium or platinum, to realize the transition from singlet excitons to triplet states, but Heavy metals such as iridium or platinum are very scarce, expensive and easily cause environmental pollution, so phosphorescent materials cannot be the first choice for dyes.
  • TADF Thermally Activated Delayed Fluorescence
  • TADF materials can realize reverse intersystem jumping from triplet excitons to singlet states by absorbing ambient heat, and then emit fluorescence from singlet states, thereby realizing 100% utilization of excitons. , and without the use of any heavy metals. Therefore, at present, 100% energy usage efficiency is mainly achieved by doping the TADF material with the host material. The transition to the singlet state, and the singlet excitons can return to the ground state to emit fluorescence, so as to achieve 100% utilization of the excitons without any heavy metal. At present, higher luminous efficiency is mainly achieved by doping TADF materials with host materials. However, most TADF materials also have certain defects, such as too wide luminescence spectrum, large device roll-off, and short lifetime.
  • the present invention provides an organic electroluminescent device using a phosphorescent material to sensitize a thermally activated delayed fluorescent material.
  • the organic electroluminescent device of the present invention adopts the method of co-doping phosphorescent materials and resonant thermally activated delayed fluorescent materials in the main body to achieve 100% exciton utilization rate, so that the prepared OLEDs have high efficiency and low roll-off features.
  • the invention provides an organic electroluminescent device, comprising a substrate, a first electrode, a second electrode and an organic functional layer, wherein the organic functional layer includes an organic light-emitting layer, and the organic light-emitting layer includes a host material and a luminescent dye , characterized in that, the luminescent layer includes a luminescent host material, a phosphorescent sensitizer, and a resonant thermally activated delayed fluorescent material used as a luminescent dye;
  • the triplet energy level of the host material in the light-emitting layer is higher than that of the phosphorescent sensitizer, and the triplet energy level of the host material is also higher than that of the resonant thermally activated delayed fluorescent material ;
  • the triplet energy level of the phosphorescent sensitizer is higher than the triplet energy level of the resonance thermally activated delayed fluorescent material, and the HOMO energy level of the phosphorescent sensitizer is deeper than the HOMO energy level of the resonance thermally activated delayed fluorescent material ;
  • the resonant thermally activated delayed fluorescent material is a compound whose core structure adopts boron atom and/or carbonyl to form a resonant molecular structure with nitrogen atom and/or oxygen atom respectively, and the singlet energy level (S1) and triplet state of the compound are
  • the energy level (T1) can satisfy the formula:
  • the Stokes shift of the compound satisfies: ⁇ 60nm.
  • the resonant thermally activated delayed fluorescent material is selected from the structures shown in the following formula (1) or formula (2):
  • ring A, ring B, ring C and ring D each independently represent a C5-C20 monocyclic aromatic ring or a fused aromatic ring, a C4-C20 monocyclic heterocyclic ring or a fused Any of the heterocycles;
  • ring E represents a C5-C20 aromatic ring; the ring A and ring B can be connected by a single bond, and the ring C and ring D can be connected by a single bond;
  • said Y 1 and Y 2 are independently N or B; said X 1 , X 2 , X 3 and X 4 are independently NR 1 or BR 2 ; when Y 1 and When Y 2 is all N, X 1 , X 2 , X 3 and X 4 are all BR 2 ;
  • the Y 1 and Y 2 are independently N or B; the X 1 , X 2 , X 3 and X 4 are independently NR 1 , BR 2 , O or S; when Y When both 1 and Y 2 are B, X 1 , X 2 , X 3 and X 4 are not NR 1 at the same time;
  • formula (2) said R 1 is respectively independently connected with adjacent ring A, ring B, ring C or ring D to form a ring or not connected to form a ring, and is connected to form a ring through a single bond phase connected; said R 2 is independently connected to its adjacent ring A, ring B, ring C or ring D to form a ring or not connected to form a ring, and when connected to form a ring, it is connected by a single bond; said R 1 , R 2 Each independently selected from one of the following substituted or unsubstituted groups: C6-C60 monocyclic aryl, C6-C60 condensed ring aryl, C5-C60 monocyclic heteroaryl or C5-C60 When there are substituents on R 1 and R 2 above, the substituents are independently selected from deuterium, halogen, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1 ⁇ C10 alkoxy, cyan
  • R a , R b , R c and R d independently represent a single substituent to the maximum permissible substituent, and are each independently selected from hydrogen, deuterium or the following groups One of the groups: halogen, substituted or unsubstituted C1-C36 chain alkyl, substituted or unsubstituted C3-C36 cycloalkyl, C1-C10 alkoxy, cyano, C6-C30 Arylamino, C3 ⁇ C30 heteroarylamino, substituted or unsubstituted C6-C60 monocyclic aryl, C6-C60 condensed ring aryl, C6-C60 aryloxy, C5-C60 monocyclic hetero One of aryl, C5-C60 fused ring heteroaryl, and trimethylsilyl; when there are substituents on the above-mentioned R a , R b , R c and R d , the substituents on the above-ment
  • the ring A, ring B, ring C and ring D each independently represent a C5-C10 single-ring aromatic ring or a condensed aromatic ring, a C4-C10 single-ring aromatic ring, Any one of ring heterocycle or fused heterocycle; more preferably, the ring A, ring B, ring C and ring D are each independently selected from any one of benzene ring, naphthalene ring or fluorene ring.
  • the resonant thermally activated delayed fluorescent material is selected from the structures shown in the following formula (3) or formula (4):
  • the R 21 to R 31 are each independently selected from hydrogen, deuterium, or one of the following substituted or unsubstituted groups: halogen, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1 ⁇ C10 alkoxy, C1 ⁇ C10 thioalkoxy, carbonyl, carboxyl, nitro, cyano, amino, C6 ⁇ C30 arylamino, C3 ⁇ C30 heteroarylamino, C6-C60 single Ring aryl, C6-C60 fused ring aryl, C6-C60 aryloxy, C5-C60 monocyclic heteroaryl or C5-C60 condensed ring heteroaryl, and R 21 ⁇ R 31 are adjacent
  • the two groups can be bonded to each other and together with the adjacent benzene ring to form one of a C5-C30 five-membered or six-membered aryl ring, a C5-C30 five-membered or six
  • the X 5 , X 6 , X 7 and X 8 are independently selected from NR, and the R can be connected to the adjacent The benzene ring is bonded, and the R and R' are independently selected from one of the following substituted or unsubstituted groups: C1-C30 chain alkyl, C3-C30 cycloalkyl, C1-C30 Haloalkyl, C1-C30 alkoxy, C2-C30 alkenyl, C3-C30 alkynyl, C6-C60 monocyclic aryl, C6-C60 fused ring aryl, C6-C60 aryloxy Group, C5-C60 monocyclic heteroaryl or C5-C60 fused ring heteroaryl;
  • ring F represents a group that is fused and connected to a six-membered ring structure composed of B and X 5 , or B and X 6 at the same time, and the ring F is selected from substituted or unsubstituted C5-C60 One of the monocyclic nitrogen heteroaromatic rings, substituted or unsubstituted C5-C60 fused nitrogen heteroaromatic rings;
  • the substituents are independently selected from deuterium, halogen, cyano, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1-C10 alkoxy, One of C6-C30 arylamino, C3-C30 heteroarylamino, C6-C30 aryl, and C3-C30 heteroaryl;
  • ring F represents one of a substituted or unsubstituted C13-C60 monocyclic nitrogen heteroaromatic ring, a substituted or unsubstituted C13-C60 fused nitrogen heteroaromatic ring;
  • R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 and R 31 are independently selected from From hydrogen, deuterium, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, Cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl, 2 ,2,2-Trifluoroethyl, phenyl, nap
  • the resonant thermally activated delayed fluorescent material is selected from the structures shown in any of the following formula (5), formula (6) or formula (7):
  • R 1 , R 3 , R 4 , R 6 , R 7 , R 9 , R 10 , R 12 , R 13 , R 14 , R 15 , R 17 , R 18 , R 20 , R 22 , and R 23 are each independently selected from hydrogen, deuterium, or substituted or unsubstituted one of the following groups: halogen, C1-C30 chain alkyl, C3 ⁇ C30 cycloalkyl, C1 ⁇ C10 alkoxy, C1 ⁇ C10 thioalkoxy, carbonyl, carboxyl, nitro, cyano, amino, C6 ⁇ C30 arylamino, C3 ⁇ C30 heteroaryl Amino, C6-C60 monocyclic aryl, C6-C60 condensed aryl, C6-C60 aryloxy, C5-C60 monocyclic heteroaryl or C5-C60 fused heteroaryl; R 2 , R 5
  • the substituents are independently selected from deuterium, halogen, cyano, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1-C10 alkoxy, One of C6-C30 arylamino, C3-C30 heteroarylamino, C6-C30 aryl, and C3-C30 heteroaryl.
  • the phosphorescent sensitizer in the light-emitting layer can be selected from the following compounds:
  • the host material includes at least one of carbazolyl, carbolinyl, spirofluorenyl, fluorenyl, silicon, and phosphineoxy.
  • the present invention does not limit the specific structure of the host material, and can be and is not limited to a compound selected from one of the following structures:
  • the "substituted or unsubstituted” group can be substituted with one substituent, or can be substituted with multiple substituents. When there are multiple substituents, they can be selected from different substituents. When the same expression is involved in the invention, they all have the same meaning, and the selection range of the substituents is as shown above, and will not be repeated one by one.
  • the expression of Ca ⁇ Cb means that the group has a ⁇ b carbon atoms, and unless otherwise specified, generally speaking, the carbon number does not include the carbon number of the substituent.
  • each independently means that when there are plural subjects, they may be the same or different from each other.
  • the substituted or unsubstituted C6-C60 aryl includes single-ring aryl and condensed-ring aryl, preferably C6-C30 aryl, more preferably C6-C20 aryl.
  • the so-called single-ring aryl group means that the molecule contains at least one phenyl group.
  • the phenyl groups are independent of each other and connected by a single bond, such as: phenyl, biphenyl , terphenyl, etc.
  • the biphenyl includes 2-biphenyl, 3-biphenyl and 4-biphenyl;
  • the terphenyl includes p-terphenyl-4-yl, p-terphenyl- 3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl.
  • a fused-ring aryl group refers to a group that contains at least two aromatic rings in the molecule, and the aromatic rings are not independent of each other but share two adjacent carbon atoms and are fused to each other.
  • Exemplary such as: naphthyl, anthracenyl, phenanthrenyl, indenyl, fluorenyl, fluoranthene, triphenylene, pyrenyl, perylenyl, group, tetraphenylene group and their derivative groups, etc.
  • the naphthyl includes 1-naphthyl or 2-naphthyl; the anthracenyl is selected from 1-anthracenyl, 2-anthracenyl and 9-anthracenyl; the fluorenyl is selected from 1-fluorenyl, 2-fluorenyl Base, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl; said pyrenyl is selected from 1-pyrenyl, 2-pyrenyl and 4-pyrenyl; said naphthacene is selected from 1-naphthacene Phenyl, 2-naphthacene and 9-naphthacene.
  • the derivative group of fluorene is selected from 9,9-dimethylfluorenyl, 9,9-diethylfluorenyl, 9,9-dipropylfluorenyl, 9,9-dibutylfluorenyl, 9 ,9-dipentylfluorenyl, 9,9-dihexylfluorenyl, 9,9-diphenylfluorenyl, 9,9-dinaphthylfluorenyl, 9,9'-spirobifluorene and benzofluorene base.
  • the C3-C60 heteroaryl mentioned in this specification includes monocyclic heteroaryl and fused-ring heteroaryl, preferably C3-C30 heteroaryl, more preferably C4-C20 heteroaryl, more preferably C5-C12 heteroaryl.
  • Monocyclic heteroaryl means that the molecule contains at least one heteroaryl group. When the molecule contains a heteroaryl group and other groups (such as aryl, heteroaryl, alkyl, etc.), the heteroaryl group and other groups They are independent of each other and linked by a single bond. Examples of the monocyclic heteroaryl include furyl, thienyl, pyrrolyl, pyridyl and the like.
  • a condensed ring heteroaryl refers to a molecule containing at least one aromatic heterocycle and one aromatic ring (aromatic heterocycle or aromatic ring), and the two are not independent of each other but share two adjacent atoms with each other Fused groups.
  • fused ring heteroaryl groups include: benzofuryl, benzothienyl, isobenzofuryl, indolyl, dibenzofuryl, dibenzothienyl, carbazolyl, acridinyl , isobenzofuryl, isobenzothienyl, benzocarbazolyl, azacarbazolyl, phenothiazinyl, phenazinyl, 9-phenylcarbazolyl, 9-naphthylcarbazolyl, Dibenzocarbazolyl, indolocarbazolyl, etc.
  • heteroatoms generally refer to atoms or atomic groups selected from N, O, S, P, Si and Se, preferably N, O and S.
  • halogen include fluorine, chlorine, bromine, iodine and the like.
  • the present invention also provides the application of the above-mentioned organic electroluminescent device of the present invention, and the application is an application in an organic electronic device, and the organic electronic device includes an optical sensor, a solar cell, a lighting element, an organic thin film transistor, an organic field Effect transistors, organic thin-film solar cells, information labels, electronic artificial skin sheets, sheet-type scanners or electronic paper.
  • the present invention also protects a display device including the above-mentioned organic electroluminescent device of the present invention, and the display device includes but not limited to display elements, lighting elements, information labels, electronic artificial skin sheets or electronic paper.
  • the organic electroluminescent device of the present invention it is particularly preferred to use the above-mentioned resonant heat-activated delayed fluorescent materials with specific structures such as general formula (1) to general formula (7) of the present invention.
  • the external heavy atom effect of the phosphorescent sensitizer can be used to directly enhance the reverse intersystem crossing rate of the MR-TADF dye; or realize the triplet state of the MR-TADF dye.
  • the up-conversion to the triplet state of the phosphorescent sensitizer, and the further up-conversion of the triplet state of the phosphorescent sensitizer to the singlet state of the MR-TADF dye finally also enhanced the reverse intersystem crossing rate of the MR-TADF dye.
  • the invention can effectively solve the problem of serious roll-off drop of the MR-TADF device under high luminance, and effectively enhance the stability performance of the organic electroluminescent device.
  • the phosphorescent sensitizer can capture high-energy triplet excitons, and due to its external heavy atom effect, the triplet excitons of the phosphorescent sensitizer can be quickly transferred to the MR -The singlet and triplet states of TADF dyes can also directly enhance the reverse intersystem crossing rate of MR-TADF dyes, thereby significantly reducing the concentration of triplet excitons and realizing low-efficiency roll-off and long-term MR-TADF devices. life.
  • FIG. 1 for a schematic diagram of the light-emitting mechanism in the light-emitting layer of the organic electroluminescent device of the present invention.
  • Fig. 1 is a diagram of the light-emitting mechanism of the organic electroluminescent device of the present invention, wherein FET is Forster energy transfer, DET is Dexter energy transfer, ISC is intersystem crossing, and RISC is reverse intersystem crossing.
  • Fig. 2 is a schematic structural view of an organic electroluminescent device prepared in an example of the present invention.
  • the organic electroluminescent device of the present invention includes an anode 2 , a hole transport region 3 , an organic light-emitting layer 4 , an electron transport region 5 and a cathode 6 sequentially deposited on a substrate 1 .
  • the substrate can be made of glass or polymer material with excellent mechanical strength, thermal stability, water resistance, and transparency.
  • a thin-film transistor (TFT) may be provided on a substrate for a display.
  • the anode can be formed by sputtering or depositing an anode material on the substrate, where the anode material can be indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO2), zinc oxide (ZnO), etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO2 tin dioxide
  • ZnO zinc oxide
  • the cathode can use magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In ), magnesium-silver (Mg-Ag) and other metals or alloys and any combination thereof.
  • the organic material layer of the hole transport region, the light-emitting layer, the electron transport region and the cathode can be sequentially prepared on the anode by vacuum thermal evaporation, spin coating, printing and other methods.
  • the compound used as the organic material layer may be small organic molecules, organic macromolecules, polymers, and combinations thereof.
  • the hole transport region 3, the electron transport region 5 and the cathode 6 of the present invention are introduced.
  • the hole transport region 3 is located between the anode 2 and the organic light-emitting layer 4 .
  • the hole transport region 3 can be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole-transport layer containing only one compound and a single-layer hole-transport layer containing multiple compounds.
  • the hole transport region 3 may also be a multilayer structure including at least one layer of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region 3 can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/ Dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani /CSA), polyaniline/poly(4-styrenesulfonate) (Pani/PSS), aromatic amine derivatives.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/ Dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styre
  • the aromatic amine derivatives are compounds shown in HT-1 to HT-34 below. If the material of the hole transport region 3 is an aromatic amine derivative, it may be one or more of the compounds shown in HT-1 to HT-34.
  • the hole injection layer is located between the anode 2 and the hole transport layer.
  • the hole injection layer can be a single compound material, or a combination of multiple compounds.
  • the hole injection layer can use one or more compounds of the above-mentioned HT-1 to HT-34, or one or more compounds in the following HI1-HI3; HT-1 to HT-34 can also be used One or more compounds of doped with one or more compounds in the following HI1-HI3.
  • the electron transport region 5 may be a single-layer electron transport layer (ETL), including a single-layer electron-transport layer containing only one compound and a single-layer electron-transport layer containing multiple compounds.
  • the electron transport region 5 may also be a multi-layer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport layer material can be selected from, but not limited to, one or more combinations of ET-1 to ET-57 listed below.
  • the structure of the light-emitting device may also include an electron injection layer between the electron transport layer and the cathode 6, and the materials of the electron injection layer include but are not limited to one or more combinations of the following: LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Li, Ca.
  • the thickness of each of the above-mentioned layers can adopt the conventional thickness of these layers in the art.
  • the organic light-emitting layer 4 is formed by co-evaporating the source of the wide bandgap host material, the source of the TADF dye and the source of the phosphorescent sensitizer material.
  • the organic electroluminescence device of the present invention will be further introduced through specific examples below.
  • the preparation method of the organic electroluminescence device of the present invention comprises the following steps:
  • the light emitting layer includes host material, TADF dye and phosphorescent sensitizer.
  • the method of multi-source co-evaporation adjust the evaporation rate of the main material, the evaporation rate of the TADF dye and the phosphorescent sensitizer material to make the dye reach the preset doping ratio;
  • the electron transport layer material of the device is vacuum evaporated on the organic light-emitting layer, and the evaporation rate is 0.1-0.5nm/s;
  • the anode is ITO; the material of the hole injection layer is HI-2, and the general total thickness is 5-30nm, and the present embodiment is 10nm; the material of the hole transport layer is HI-27, and the total thickness is generally 5-500nm, This embodiment is 40nm; the host material of the organic light-emitting layer is wide bandgap material W-7, the phosphorescence sensitizer material is PH-3 and the doping concentration is 10wt%, the dye is resonance type TADF material MR-82 and the doping concentration
  • the thickness of the organic light-emitting layer is generally 1-200nm, which is 30nm in this embodiment; the material of the electron transport layer is ET-53, and the thickness is generally 5-300nm, which is 30nm in this embodiment; the electron injection layer and the cathode material LiF (0.5nm) and metallic aluminum (150nm) were chosen.
  • Example 2 The significance of the device is roughly the same as in Example 1, the only difference being that the phosphorescent sensitizer is different.
  • Example 2 The significance of the device is roughly the same as in Example 1, the only difference being that the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 1, the only difference is that the main body is different.
  • the meaning of the device is roughly the same as that of Example 4, the only difference being that the phosphorescence sensitizer is different.
  • the meaning of the device is roughly the same as that of Example 4, the only difference being that the phosphorescence sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 1, the only difference is that the main body is different.
  • Example 7 The meaning of the device is roughly the same as that of Example 7, the only difference being that the phosphorescent sensitizer is different.
  • Example 7 The meaning of the device is roughly the same as that of Example 7, the only difference being that the phosphorescent sensitizer is different.
  • Example 2 The meaning of the device is roughly the same as that of Example 1, the only difference being the type of the resonant thermally activated delayed fluorescent material.
  • the meaning of the device is roughly the same as that of Example 10, the only difference being that the phosphorescence sensitizer is different.
  • the meaning of the device is roughly the same as that of Example 10, the only difference being that the phosphorescence sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 10, the only difference is that the main body is different.
  • Example 13 The meaning of the device is roughly the same as that of Example 13, the only difference being that the phosphorescent sensitizer is different.
  • Example 13 The meaning of the device is roughly the same as that of Example 13, the only difference being that the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 10, the only difference is that the main body is different.
  • Example 16 The meaning of the device is roughly the same as that of Example 16, the only difference being that the phosphorescent sensitizer is different.
  • Example 16 The meaning of the device is roughly the same as that of Example 16, the only difference being that the phosphorescent sensitizer is different.
  • Example 2 The meaning of the device is roughly the same as that of Example 1, the only difference being the type of the resonant thermally activated delayed fluorescent material.
  • Example 19 The meaning of the device is roughly the same as that of Example 19, the only difference being that the phosphorescent sensitizer is different.
  • Example 19 The meaning of the device is roughly the same as that of Example 19, the only difference being that the phosphorescent sensitizer is different.
  • Example 22 The meaning of the device is roughly the same as that of Example 22, the only difference being that the phosphorescent sensitizer is different.
  • Example 22 The meaning of the device is roughly the same as that of Example 22, the only difference being that the phosphorescent sensitizer is different.
  • Example 24 The meaning of the device is roughly the same as that of Example 24, the only difference being that the phosphorescent sensitizer is different.
  • Example 25 The meaning of the device is roughly the same as that of Example 25, the only difference being that the phosphorescent sensitizer is different.
  • Example 2 The meaning of the device is roughly the same as that of Example 1, the only difference being the type of the resonant thermally activated delayed fluorescent material.
  • Example 28 The meaning of the device is roughly the same as that of Example 28, the only difference being that the phosphorescent sensitizer is different.
  • Example 28 The meaning of the device is roughly the same as that of Example 28, the only difference being that the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 28, the only difference being that the main body is different.
  • Example 31 The meaning of the device is roughly the same as that of Example 31, the only difference is that the phosphorescent sensitizer is different.
  • Example 31 The meaning of the device is roughly the same as that of Example 31, the only difference is that the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 28, the only difference being that the main body is different.
  • Example 33 The meaning of the device is roughly the same as that of Example 33, the only difference is that the phosphorescence sensitizer is different.
  • Example 34 The meaning of the device is roughly the same as that of Example 34, the only difference is that the phosphorescent sensitizer is different.
  • Example 2 The meaning of the device is roughly the same as that of Example 1, the only difference being the type of the resonant thermally activated delayed fluorescent material.
  • Example 37 The meaning of the device is roughly the same as that of Example 37, the only difference is that the phosphorescent sensitizer is different.
  • Example 37 The meaning of the device is roughly the same as that of Example 37, the only difference is that the phosphorescent sensitizer is different.
  • Example 40 The meaning of the device is roughly the same as that of Example 40, the only difference is that the phosphorescent sensitizer is different.
  • Example 40 The meaning of the device is roughly the same as that of Example 40, the only difference is that the phosphorescent sensitizer is different.
  • Example 43 The meaning of the device is roughly the same as that of Example 43, the only difference being that the phosphorescence sensitizer is different.
  • Example 43 The meaning of the device is roughly the same as that of Example 43, the only difference being that the phosphorescence sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 1, the only difference is that the doping concentration of the resonant thermally activated delayed fluorescent material is different.
  • the meaning of the device is roughly the same as that of Example 1, the only difference is that the doping concentration of the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 10, the only difference is that the doping concentration of the resonant thermally activated delayed fluorescent material is different.
  • the meaning of the device is roughly the same as that of Example 10, the only difference is that the doping concentration of the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Example 19, the only difference is that the doping concentration of the resonant thermally activated delayed fluorescent material is different.
  • the meaning of the device is roughly the same as that of Example 19, the only difference is that the doping concentration of the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Embodiment 28, the only difference is that the doping concentration of the resonant thermally activated delayed fluorescent material is different.
  • the meaning of the device is roughly the same as that of Example 28, the only difference is that the doping concentration of the phosphorescent sensitizer is different.
  • the meaning of the device is roughly the same as that of Example 37, the only difference is that the doping concentration of the resonant thermally activated delayed fluorescent material is different.
  • the meaning of the device is roughly the same as that of Example 37, the only difference is that the doping concentration of the phosphorescent sensitizer is different.
  • the device structure of this comparison example is as follows:
  • Example 2 The meaning of the device is roughly the same as that of Example 1, the only difference being that there is no phosphorescent sensitizer.
  • the device structure of this comparison example is as follows:
  • Example 10 The meaning of the device is roughly the same as that of Example 10, the only difference is that there is no phosphorescent sensitizer.
  • the device structure of this comparison example is as follows:
  • Example 19 The meaning of the device is roughly the same as that of Example 19, the only difference is that there is no phosphorescent sensitizer.
  • the device structure of this comparison example is as follows:
  • Example 28 The meaning of the device is roughly the same as that of Example 28, the only difference is that there is no phosphorescent sensitizer.
  • the device structure of this comparison example is as follows:
  • Example 37 The meaning of the device is roughly the same as that of Example 37, the only difference is that there is no phosphorescent sensitizer.
  • the device structure of this comparison example is as follows:
  • the meaning of the device is roughly the same as that of Comparative Example 1, the only difference is that the light-emitting layer is replaced by a traditional fluorescent dye.
  • the device structure of this comparison example is as follows:
  • the meaning of the device is roughly the same as that of Comparative Example 1, the only difference is that the light-emitting layer is replaced by a traditional fluorescent dye.
  • the device structure of this comparison example is as follows:
  • the meaning of the device is roughly the same as that of Comparative Example 1, the only difference is that the light-emitting layer is replaced by a traditional fluorescent dye.
  • the device structure of this comparison example is as follows:
  • the meaning of the device is roughly the same as that of Comparative Example 1, the only difference is that the light-emitting layer is replaced by a traditional fluorescent dye.
  • the organic electroluminescent device prepared by the above process is measured as follows:
  • the devices prepared in Examples 1-55 and Comparative Examples 1-9 were subjected to the following performance measurements: the properties such as current, voltage, brightness, luminescence spectrum, current efficiency, and external quantum efficiency of the prepared device were measured using a PR 655 spectral scanning luminance meter and The Keithley K 2400 digital source meter system is synchronously tested, and the life is completed by the MC-6000 test.
  • Turn-on voltage Increase the voltage at a rate of 0.1V per second, and measure the voltage when the brightness of the organic electroluminescent device reaches 1cd/m2, which is the turn - on voltage;
  • the life test of LT90 is as follows: By setting different test brightness, the brightness and life decay curve of the organic electroluminescent device can be obtained, so as to obtain the life value of the device under the required decay brightness. That is, set the test brightness to 1000cd/m 2 , maintain a constant current, and measure the time for the brightness of the organic electroluminescent device to drop to 900cd/m 2 , in hours;
  • the electroluminescent external quantum efficiency of the organic electroluminescent device structure of the present invention is about 30%, and the efficiency roll-off is small under high brightness, and the half-peak width is narrow, which indicates that the color purity is good.
  • the device of the invention has a longer service life, showing overall superiority.
  • An embodiment of the present invention also provides a display device, which includes the organic electroluminescent device as provided above.
  • the display device may be a display device such as an OLED display, and any product or component having a display function such as a TV, a digital camera, a mobile phone, a tablet computer, etc. including the display device.
  • the display device has the same advantages as that of the above-mentioned organic electroluminescent device over the prior art, which will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机电致发光器件和显示装置,属于有机电致发光技术领域。有机电致发光器件包括有机发光层,有机发光层包括主体材料和掺杂染料,主体材料为宽带隙材料,有机发光层由磷光敏化剂和包含共振型热活化延迟荧光材料客体掺杂的主体发光材料构成,器件采用磷光材料和共振型热活化延迟荧光材料共同掺杂在主体中的方法,实现了100%激子利用率,使制备的OLEDs具有高效率和低滚降的特点。

Description

一种有机电致发光器件和显示装置 技术领域
本发明涉及一种有机电致发光器件和显示装置,具有涉及采用磷光材料敏化作为发光染料的热活化延迟荧光的有机电致发光器件,属于有机电致发光技术领域。
背景技术
有机电致发光二极管(Organic Light Emitting Diode,简称:OLED),是一种通过电流驱动而达到发光目的的器件,其主要特性来自于其中的有机发光层,当施加适当电压后,电子和空穴会在有机发光层中结合产生激子并根据有机发光层的特性发出不同波长的光。现阶段中,发光层由主体材料和掺杂染料构成,而染料多选自传统荧光材料、磷光材料。或者热活化延迟荧光(Thermally Activated Delayed Fluorescence,简称:TADF)材料。
具体地,传统荧光材料具有无法利用三重态激子的缺陷,磷光材料虽然可以通过引入重金属原子,例如铱或铂,实现单重态激子跃迁至三重态而达到100%的能量使用效率,但是铱或铂等重金属非常稀缺,成本昂贵且极易造成环境污染,因此磷光材料也无法成为染料的首选。
热活化延迟荧光(Thermally Activated Delayed Fluorescence,简称:TADF)材料。TADF材料与磷光材料和传统荧光材料相比,能够通过吸收环境热量实现三重态激子向单重态的反向系间窜跃,进而从单重态发出荧光,从而实现激子的100%利用,并且无需借助任何重金属。因此,目前主要通过主体材料掺杂TADF材料来实现100%的能量使用效率。向单重态的跃迁,并且单重态激子能够返回基态发出荧光,从而实现激子的100%利用,并且无需借助任何重金属。目前主要通过主体材料掺杂TADF材料来实现较高的发光效率。但是,大多数TADF材料自身也存在一定的缺陷,例如发光光谱过宽、器件滚降大、寿命短等问题。
发明内容
为解决上述技术问题,本发明提供了一种采用磷光材料敏化热活化延迟荧光材料的有机电致发光器件。本发明这种有机电致发光器件采用磷光材料和共振型热活化延迟荧光材料共同掺杂在主体中的方法,实现了100%激子利用率,使制备的OLEDs具有高效率和低滚降的特点。
本发明提供一种有机电致发光器件,包括衬底、第一电极、第二电极和有机功能层,所述有机功能层中包括有机发光层,所述有机发光层中包括主体材料和发光染料,其特征在于,所述发光层中包括发光主体材料、磷光敏化剂和用作发光染料的共振型热活化延迟荧光材料;
所述发光层中的主体材料的三线态能级高于磷光敏化剂的三线态能级,且所述主体材料的三线态能级也高于共振型热活化延迟荧光材料的三线态能级;
所述磷光敏化剂的三线态能级高于共振型热活化延迟荧光材料的三线态能级,且所述磷光敏化剂的HOMO能级深于共振型热活化延迟荧光材料的HOMO能级;
所述共振型热活化延迟荧光材料为核心结构采用硼原子和/或羰基分别与氮原子和/或氧原子形成共振分子结构的化合物,所述化合物的单重态能级(S1)和三重态能级(T1)可以满足公式:
ΔEst=S1-T1≤0.4eV;
所述化合物的斯托克斯位移满足:λ≤60nm。
具体讲,本发明的有机电致发光器件中,所述共振型热活化延迟荧光材料选自如下式(1)或式(2)所示的结构:
Figure PCTCN2022096255-appb-000001
式(1)、式(2)中:环A、环B、环C和环D各自独立地表示C5~C20的单环芳环或稠合芳环、C4~C20单环杂环或稠合杂环中的任意一种;
式(2)中:环E表示C5~C20的芳环;所述环A与环B之间可通过单键连接,所述环C与环D之间可通过单键连接;
式(1)中:所述Y 1和Y 2分别独立分别独立地为N或B;所述X 1、X 2、X 3和X 4分别独立地为NR 1或BR 2;当Y 1和Y 2均为N时,X 1、X 2、X 3和X 4均为BR 2
式(2)中:所述Y 1和Y 2分别独立地为N或B;所述X 1、X 2、X 3和X 4分别独立地为NR 1、BR 2、O或S;当Y 1和Y 2均为B时,X 1、X 2、X 3和X 4不同时为NR 1
式(1)、式(2)中:所述R 1分别独立地与其相邻的环A、环B、环C或者环D连接成环或不连接成环,连接成环时通过单键相连接;所述R 2分别独立地与其相邻的环A、环B、环C或者环D连接成环或不连接成环,连接成环时通过单键相连接;所述R 1、R 2分别独立地选自取代或未取代的下述基团中的一种:C6-C60的单环芳基、C6-C60的稠环芳基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基;当上述R 1、R 2上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种;
式(1)、式(2)中:所述R a、R b、R c和R d分别独立地表示单取代基到最大允许取代基,并且各自独立地选自氢、氘或者下述基团中的一种:卤素、取代或未取代的C1~C36的链状烷基、取代或未取代的C3~C36的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、取代或未取代的C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基、C5-C60的稠环杂芳基、三甲基硅基中的一种;当上述R a、R b、R c和R d上存在取代基时,所述取代基团分别独立选自卤素、C1~C30的链状烷基、氰基、C6~C60的单环芳基中的任一种;
优选的,式(1)、式(2)中,所述环A、环B、环C和环D各自独立地表示C5~C10的单环芳环或稠合芳环、C4~C10的单环杂环或稠合杂环中的任意一种;再优选的,所述环A、环B、环C和环D各自独立地选自苯环、萘环或芴环中的任意一种。
或者,本发明的有机电致发光器件中,所述共振型热活化延迟荧光材料选自如下式(3)或式(4)所示的结构:
Figure PCTCN2022096255-appb-000002
式(3)、式(4)中:
所述R 21~R 31分别独立地选自氢、氘或者取代或未取代的下述基团中的一种:卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C1~C10的硫代烷氧基、羰基、羧基、硝基、氰基、氨基、C6~C30的芳基氨基、C3~C30杂芳基氨 基、C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基,并且R 21~R 31中相邻的两个基团彼此可以键合并与相邻的苯环一同形成C5~C30的五元或六元的芳基环、C5~C30的五元或六元的杂芳基环中的一种,且所形成环中的至少一个氢可被C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C1~C10的硫代烷氧基、羰基、羧基、硝基、氰基、氨基中的任一种所取代;
所述X 5、X 6、X 7和X 8分别独立地选自NR,所述R可通过-O-、-S-、-C(-R’)2-或单键而与相邻的苯环键结,所述R和R’分别独立地选自取代或未取代的下述基团中的一种:C1-C30的链状烷基、C3-C30的环烷基、C1-C30的卤代烷基、C1-C30的烷氧基、C2-C30的烯基、C3-C30的炔基、C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基;
式(3)中,环F表示同时分别与由B和X 5、由B和X 6组成的六元环结构稠合连接的基团,所述环F选自取代或未取代的C5-C60的单环氮杂芳环、取代或未取代的C5-C60的稠合氮杂芳环中的一种;
当上述基团存在取代基时,所述取代基团分别独立选自氘、卤素、氰基、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6-C30的芳基、C3-C30的杂芳基中的一种;
优选的,式(3)中,环F表示取代或未取代的C13-C60的单环氮杂芳环、取代或未取代的C13-C60的稠合氮杂芳环中的一种;
优选的,式(3)、式(4)中,R 21、R 22、R 23、R 24、R 25、R 26、R 27、R 28、R 29、R 30及R 31分别独立地选自氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、9,9-二甲基吖啶基、(多)卤代苯、(多)氰基苯、(多)三氟甲基苯等中的一种,或选自以上两种基团的组合。
再或者,本发明的有机电致发光器件中,所述共振型热活化延迟荧光材料选自如下式(5)、式(6)或式(7)任一所示的结构:
Figure PCTCN2022096255-appb-000003
式(5)、式(6)、式(7)中:所述R 1、R 3、R 4、R 6、R 7、R 9、R 10、R 12、R 13、R 14、R 15、R 17、R 18、R 20、R 22、R 23分别独立地选自氢、氘或者取代或未取代的下述基团中的一种:卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C1~C10的硫代烷氧基、羰基、羧基、硝基、氰基、氨基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基;所述R 2、R 5、R 8、R 11、R 16、R 19各自独立地选自氢原子或者取代或未取代的下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、环己基、氟原子、三氟甲基、氰基、叔丁苯、甲基苯基、苯基、三芳胺基、咔唑基、吡啶基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、金刚烷、四氢吡咯、哌啶、硅基、甲氧基、9,9-二甲基吖啶基、吩噻嗪基、吩恶嗪基、咪唑基、咔唑并呋喃;所述R 21选自氢、氟、氰基或者取代或未取代的下述取代基团:吡啶基、苯基、氟代苯基、甲基苯基、三甲基苯基、氰基苯基、三氟甲基、三芳胺基、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、环己基、金刚烷、四氢吡咯、哌啶、硅基、甲氧基、9,9-二甲基吖啶基、吩噻嗪基、吩恶嗪基、咪唑基、咔唑并呋喃、三芳胺基、咔唑基、氟原子、三氟甲基、氰基、吡啶基、呋喃基;
当上述基团存在取代基时,所述取代基团分别独立选自氘、卤素、氰基、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6-C30的芳基、C3-C30的杂芳基中的一种。
上述如式(1)、式(2)所述共振型热活化延迟荧光材料,可以优选出下述具体结构化合物,这些化合物仅为代表性的:
Figure PCTCN2022096255-appb-000004
Figure PCTCN2022096255-appb-000005
Figure PCTCN2022096255-appb-000006
Figure PCTCN2022096255-appb-000007
Figure PCTCN2022096255-appb-000008
Figure PCTCN2022096255-appb-000009
Figure PCTCN2022096255-appb-000010
Figure PCTCN2022096255-appb-000011
Figure PCTCN2022096255-appb-000012
Figure PCTCN2022096255-appb-000013
Figure PCTCN2022096255-appb-000014
Figure PCTCN2022096255-appb-000015
Figure PCTCN2022096255-appb-000016
Figure PCTCN2022096255-appb-000017
Figure PCTCN2022096255-appb-000018
Figure PCTCN2022096255-appb-000019
Figure PCTCN2022096255-appb-000020
Figure PCTCN2022096255-appb-000021
Figure PCTCN2022096255-appb-000022
Figure PCTCN2022096255-appb-000023
Figure PCTCN2022096255-appb-000024
Figure PCTCN2022096255-appb-000025
Figure PCTCN2022096255-appb-000026
Figure PCTCN2022096255-appb-000027
Figure PCTCN2022096255-appb-000028
Figure PCTCN2022096255-appb-000029
Figure PCTCN2022096255-appb-000030
Figure PCTCN2022096255-appb-000031
Figure PCTCN2022096255-appb-000032
Figure PCTCN2022096255-appb-000033
Figure PCTCN2022096255-appb-000034
Figure PCTCN2022096255-appb-000035
Figure PCTCN2022096255-appb-000036
Figure PCTCN2022096255-appb-000037
Figure PCTCN2022096255-appb-000038
Figure PCTCN2022096255-appb-000039
Figure PCTCN2022096255-appb-000040
Figure PCTCN2022096255-appb-000041
Figure PCTCN2022096255-appb-000042
Figure PCTCN2022096255-appb-000043
Figure PCTCN2022096255-appb-000044
Figure PCTCN2022096255-appb-000045
Figure PCTCN2022096255-appb-000046
Figure PCTCN2022096255-appb-000047
Figure PCTCN2022096255-appb-000048
Figure PCTCN2022096255-appb-000049
Figure PCTCN2022096255-appb-000050
Figure PCTCN2022096255-appb-000051
Figure PCTCN2022096255-appb-000052
Figure PCTCN2022096255-appb-000053
Figure PCTCN2022096255-appb-000054
Figure PCTCN2022096255-appb-000055
Figure PCTCN2022096255-appb-000056
Figure PCTCN2022096255-appb-000057
上述如式(3)、式(4)所述共振型热活化延迟荧光材料,可以优选出下述具体结构化合物,这些化合物仅为代表性的:
Figure PCTCN2022096255-appb-000058
Figure PCTCN2022096255-appb-000059
Figure PCTCN2022096255-appb-000060
Figure PCTCN2022096255-appb-000061
Figure PCTCN2022096255-appb-000062
Figure PCTCN2022096255-appb-000063
Figure PCTCN2022096255-appb-000064
Figure PCTCN2022096255-appb-000065
Figure PCTCN2022096255-appb-000066
Figure PCTCN2022096255-appb-000067
Figure PCTCN2022096255-appb-000068
Figure PCTCN2022096255-appb-000069
Figure PCTCN2022096255-appb-000070
Figure PCTCN2022096255-appb-000071
Figure PCTCN2022096255-appb-000072
Figure PCTCN2022096255-appb-000073
Figure PCTCN2022096255-appb-000074
Figure PCTCN2022096255-appb-000075
Figure PCTCN2022096255-appb-000076
Figure PCTCN2022096255-appb-000077
Figure PCTCN2022096255-appb-000078
Figure PCTCN2022096255-appb-000079
Figure PCTCN2022096255-appb-000080
Figure PCTCN2022096255-appb-000081
Figure PCTCN2022096255-appb-000082
上述如式(5)、式(6)或式(7)所述共振型热活化延迟荧光材料,可以优选出下述具体结构化合物,这些化合物仅为代表性的:
Figure PCTCN2022096255-appb-000083
Figure PCTCN2022096255-appb-000084
Figure PCTCN2022096255-appb-000085
Figure PCTCN2022096255-appb-000086
Figure PCTCN2022096255-appb-000087
Figure PCTCN2022096255-appb-000088
Figure PCTCN2022096255-appb-000089
Figure PCTCN2022096255-appb-000090
Figure PCTCN2022096255-appb-000091
Figure PCTCN2022096255-appb-000092
Figure PCTCN2022096255-appb-000093
Figure PCTCN2022096255-appb-000094
Figure PCTCN2022096255-appb-000095
Figure PCTCN2022096255-appb-000096
Figure PCTCN2022096255-appb-000097
Figure PCTCN2022096255-appb-000098
Figure PCTCN2022096255-appb-000099
Figure PCTCN2022096255-appb-000100
Figure PCTCN2022096255-appb-000101
Figure PCTCN2022096255-appb-000102
Figure PCTCN2022096255-appb-000103
Figure PCTCN2022096255-appb-000104
Figure PCTCN2022096255-appb-000105
Figure PCTCN2022096255-appb-000106
Figure PCTCN2022096255-appb-000107
Figure PCTCN2022096255-appb-000108
Figure PCTCN2022096255-appb-000109
Figure PCTCN2022096255-appb-000110
本发明的有机电致发光器件中,所述发光层中的磷光敏化剂可以选自下述化合物:
Figure PCTCN2022096255-appb-000111
Figure PCTCN2022096255-appb-000112
Figure PCTCN2022096255-appb-000113
Figure PCTCN2022096255-appb-000114
Figure PCTCN2022096255-appb-000115
Figure PCTCN2022096255-appb-000116
Figure PCTCN2022096255-appb-000117
Figure PCTCN2022096255-appb-000118
Figure PCTCN2022096255-appb-000119
Figure PCTCN2022096255-appb-000120
Figure PCTCN2022096255-appb-000121
Figure PCTCN2022096255-appb-000122
Figure PCTCN2022096255-appb-000123
Figure PCTCN2022096255-appb-000124
Figure PCTCN2022096255-appb-000125
Figure PCTCN2022096255-appb-000126
Figure PCTCN2022096255-appb-000127
Figure PCTCN2022096255-appb-000128
Figure PCTCN2022096255-appb-000129
Figure PCTCN2022096255-appb-000130
Figure PCTCN2022096255-appb-000131
Figure PCTCN2022096255-appb-000132
Figure PCTCN2022096255-appb-000133
Figure PCTCN2022096255-appb-000134
Figure PCTCN2022096255-appb-000135
Figure PCTCN2022096255-appb-000136
本发明的有机电致发光器件中,主体材料包括咔唑基、咔啉基、螺芴基、芴基、硅基、膦氧基的至少一种。
本发明不限制主体材料的具体结构,可以并且不限于选自以下结构之一所示的化合物:
Figure PCTCN2022096255-appb-000137
Figure PCTCN2022096255-appb-000138
Figure PCTCN2022096255-appb-000139
Figure PCTCN2022096255-appb-000140
Figure PCTCN2022096255-appb-000141
Figure PCTCN2022096255-appb-000142
Figure PCTCN2022096255-appb-000143
Figure PCTCN2022096255-appb-000144
Figure PCTCN2022096255-appb-000145
Figure PCTCN2022096255-appb-000146
Figure PCTCN2022096255-appb-000147
Figure PCTCN2022096255-appb-000148
Figure PCTCN2022096255-appb-000149
Figure PCTCN2022096255-appb-000150
本说明书中,所述的“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。在本说明书中,Ca~Cb的表达方式代表该基团具有的碳原子数为a~b,除非特殊说明,一般而言该碳原子数不包括取代基的碳原子数。
在本说明书中,“各自独立地”表示其主语具有多个时,彼此之间可以相同也可以不同。
本说明书中,所述取代或未取代的C6-C60芳基包括单环芳基和稠环芳基,优选C6-C30芳基,进一步优选C6-C20芳基。所谓单环芳基是指分子中含有至少一个苯基,当分子中含有至少两个苯基时,苯基之间相互独立,通过单键进行连接,示例性地如:苯基、联苯基、三联苯基等。具体而言,所述联苯基包括2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联 苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基。稠环芳基是指分子中含有至少两个芳环,且芳环之间并不相互独立而是共用两个相邻的碳原子互相稠合的基团。示例性地如:萘基、蒽基、菲基、茚基、芴基、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2022096255-appb-000151
基、并四苯基及它们的衍生基团等。所述萘基包括1-萘基或2-萘基;所述蒽基选自1-蒽基、2-蒽基和9-蒽基;所述芴基选自1-芴基、2-芴基、3-芴基、4-芴基和9-芴基;所述芘基选自1-芘基、2-芘基和4-芘基;所述并四苯基选自1-并四苯基、2-并四苯基和9-并四苯基。所述芴的衍生基团选自9,9-二甲基芴基、9,9-二乙基芴基、9,9-二丙基芴基、9,9-二丁基芴基、9,9-二戊基芴基、9,9-二己基芴基、9,9-二苯基芴基、9,9-二萘基芴基、9,9’-螺二芴和苯并芴基。
本说明书中提到的C3~C60杂芳基包括单环杂芳基和稠环杂芳基,优选C3-C30的杂芳基,进一步优选为C4-C20杂芳基,更优选为C5-C12杂芳基。单环杂芳基是指分子中含有至少一个杂芳基,当分子中含有一个杂芳基和其他基团(如芳基、杂芳基、烷基等)时,杂芳基和其他基团之间相互独立,通过单键进行连接,单环杂芳基可举出例如:呋喃基、噻吩基、吡咯基、吡啶基等。稠环杂芳基是指分子中至少含有一个芳杂环和一个具有芳香性的环(芳杂环或芳环),且二者之间并不相互独立而是共用两个相邻的原子互相稠合的基团。稠环杂芳基的例子可以举出:苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基、吖啶基、异苯并呋喃基、异苯并噻吩基、苯并咔唑基、氮杂咔唑基、吩噻嗪基、吩嗪基、9-苯基咔唑基、9-萘基咔唑基、二苯并咔唑基、吲哚并咔唑基等。
本说明书中,所述的杂原子通常指选自N、O、S、P、Si和Se中的原子或原子团,优选为N、O、S。作为卤素的例子可举出:氟、氯、溴、碘等。
本发明还提供上述本发明这种有机电致发光器件的应用,所述应用为在有机电子装置中的应用,所述有机电子装置包括光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸。
本发明同时保护一种显示装置,包括本发明上述的有机电致发光器件,所述显示装置包括但不限于显示元件、照明元件、信息标签、电子人工皮肤片材或电子纸。
本发明的有机电致发光器件,发光层中包括发光主体材料、磷光敏化剂和用作发光染料的共振型热活化延迟荧光材料,共振型热活化延迟荧光材料为核心结构采用硼原子和/或羰基分别与氮原子和/或氧原子形成共振分子结构的化合物,共振型热活化延迟荧光材料的单重态能级(S1)和三重态能级(T1)可以满足公式:ΔEst=S1-T1≤0.4eV;共振型热活化延迟荧光材料的斯托克斯位移满足:λ≤60nm。本发明的有机电致发光器件中,特别优选采用本发明上述的具有特定结构的如通式(1)至通式(7)的共振型热活化延迟荧光材料。本发明的有机电致发光器件在受到电激发后,利用磷光敏化剂的外部重原子效应,能够直接增强MR-TADF染料的反向系间窜越速率;或者实现MR-TADF染料的三重态上转换为磷光敏化剂三重态,磷光敏化剂三重态进一步上转化为MR-TADF染料的单线态,最终同样增强了MR-TADF染料的反向系间窜越速率。因此本发明能够有效解决高亮度下MR-TADF器件roll-off下降严重的问题,有效地增强了有机电致发光器件的稳定性能。此外,本发明的有机电致发光器件在受到电激发后,磷光敏化剂能够捕获高能的三线态激子,由于其外部重原子效应,磷光敏化剂的三线态激子能够快速传递给MR-TADF染料的单线态和三线态,同时也可以直接增强MR-TADF染料的反向系间窜越速率,从而显著降低三线态激子的浓度,实现MR-TADF器件的低效率滚降、长寿命。本发明有机电致发光器件中的发光层中的发光机制示意图请参照图1所示。
附图说明
图1为本发明的有机电致发光器件的发光机制图,其中FET为Forster能量传递,DET为Dexter能量传递,ISC为系间穿越,RISC为反向系间穿越。
图2为本发明实施例中制备的有机电致发光器件的结构示意图。
具体实施方式
如图2所示,本发明的有机电致发光器件包括在基板1上依次沉积的阳极2、空穴传输区3、有机发光层4、电子传输区5以及阴极6。
具体地,基板可以采用具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
阳极可以通过在基板上溅射或者沉积阳极材料的方式来形成,其中,阳极材料可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧 化锡(SnO2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合;阴极可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
空穴传输区、发光层、电子传输区以及阴极的有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法依次制备于阳极之上。其中,用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。
对本发明的空穴传输区3、电子传输区5以及阴极6进行介绍。空穴传输区3位于阳极2和有机发光层4之间。空穴传输区3可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也3可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构。
空穴传输区3的材料(包括HIL、HTL以及EBL)可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物。
其中,芳香胺衍生物如下面HT-1至HT-34所示的化合物。若空穴传输区3的材料为芳香胺衍生物,可以为HT-1至HT-34所示的化合物的一种或多种。
Figure PCTCN2022096255-appb-000152
Figure PCTCN2022096255-appb-000153
空穴注入层位于阳极2和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用上述HT-1至HT-34的一种或多种化合物,或者采用下述HI1-HI3中的一种或多种化合物;也可以采用HT-1至HT-34的一种或多种化合物掺杂下述HI1-HI3中的一种或多种化合物。
Figure PCTCN2022096255-appb-000154
电子传输区5可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区5也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。本发明的一方面,电子传输层材料可以选自、但不限于以下所罗列的ET-1至ET-57的一种或多种的组合。
Figure PCTCN2022096255-appb-000155
Figure PCTCN2022096255-appb-000156
Figure PCTCN2022096255-appb-000157
发光器件的结构中还可以包括位于电子传输层与阴极6之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:LiQ,LiF,NaCl,CsF,Li 2O,Cs 2CO 3,BaO,Na,Li,Ca。
上述各层的厚度可以采用本领域中的这些层的常规厚度。
以下,对发光层进行详细的介绍。在制备有机发光层4时,通过宽带隙主体材料源、TADF染料源和磷光敏化剂材料源共同蒸镀的方法形成有机发光层4。
以下通过具体实施例对本发明的有机电致发光器件进行进一步的介绍。
本发明的有机电致发光器件的制备方法包括以下步骤:
1、将涂布了阳极材料的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
2、把上述带有阳极的玻璃板置于真空腔内,抽真空至1×10 -5~9×10 -3Pa,在上述阳极层膜上真空蒸镀空穴注入层,蒸镀速率为0.1-0.5nm/s;
3、在空穴注入层之上真空蒸镀空穴传输层,蒸镀速率为0.1-0.5nm/s,
4、在空穴传输层之上真空蒸镀器件的发光层,发光层包括主体材料、TADF染料和磷光敏化剂。利用多源共蒸的方法,调节主体材料的蒸镀速率、TADF染料和磷光敏化剂材料的蒸镀速度的蒸镀速率使染料达到预设掺杂比例;
5、在有机发光层之上真空蒸镀器件的电子传输层材料,其蒸镀速率为0.1-0.5nm/s;
6、在电子传输层上以0.1-0.5nm/s真空蒸镀LiF作为电子注入层,以0.5-1nm/s真空蒸镀Al层作为器件的阴极。
本发明实施例中采用的一些有机材料结构式如下:
Figure PCTCN2022096255-appb-000158
实施例1
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极为ITO;空穴注入层的材料为HI-2,一般总厚度为5-30nm,本实施例为10nm;空穴传输层的材料为HI-27, 总厚度一般为5-500nm,本实施例为40nm;有机发光层的主体材料为宽带隙材料W-7,磷光敏化剂材料为PH-3且掺杂浓度为10wt%,染料为共振型TADF材料MR-82且掺杂浓度为1wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET-53,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
按照上述的制备步骤和测试方法完成了本发明的器件实施例1-55和对比例1-9,具体发光层的设计方案详见下述实施例及表1内容。
实施例2
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-67:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为磷光敏化剂不同。
实施例3
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-5:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为磷光敏化剂不同。
实施例4
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-3:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为主体不同。
实施例5
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-67:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例4大致相同,唯一区别为磷光敏化剂不同。
实施例6
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-5:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例4大致相同,唯一区别为磷光敏化剂不同。
实施例7
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-3:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为主体不同。
实施例8
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-67:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例7大致相同,唯一区别为磷光敏化剂不同。
实施例9
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-5:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例7大致相同,唯一区别为磷光敏化剂不同。
实施例10
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为共振型热活化延迟荧光材料的种类不同。
实施例11
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-67:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为磷光敏化剂不同。
实施例12
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-5:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为磷光敏化剂不同。
实施例13
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-3:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为主体不同。
实施例14
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-67:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例13大致相同,唯一区别为磷光敏化剂不同。
实施例15
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-5:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例13大致相同,唯一区别为磷光敏化剂不同。
实施例16
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-3:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为主体不同。
实施例17
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-67:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例16大致相同,唯一区别为磷光敏化剂不同。
实施例18
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-5:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例16大致相同,唯一区别为磷光敏化剂不同。
实施例19
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为共振型热活化延迟荧光材料的种类不同。
实施例20
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-67:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为磷光敏化剂不同。
实施例21
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-5:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为磷光敏化剂不同。
实施例22
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-3:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为主体不同。
实施例23
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-67:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例22大致相同,唯一区别为磷光敏化剂不同。
实施例24
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-5:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例22大致相同,唯一区别为磷光敏化剂不同。
实施例25
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-3:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为主体不同。
实施例26
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-67:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例24大致相同,唯一区别为磷光敏化剂不同。
实施例27
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-5:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例25大致相同,唯一区别为磷光敏化剂不同。
实施例28
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为共振型热活化延迟荧光材料的种类不同。
实施例29
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-67:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为磷光敏化剂不同。
实施例30
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-5:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为磷光敏化剂不同。
实施例31
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-3:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为主体不同。
实施例32
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-67:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例31大致相同,唯一区别为磷光敏化剂不同。
实施例33
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-5:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例31大致相同,唯一区别为磷光敏化剂不同。
实施例34
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-3:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为主体不同。
实施例35
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-67:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例33大致相同,唯一区别为磷光敏化剂不同。
实施例36
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-5:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例34大致相同,唯一区别为磷光敏化剂不同。
实施例37
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为共振型热活化延迟荧光材料的种类不同。
实施例38
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-67:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为磷光敏化剂不同。
实施例39
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-5:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为磷光敏化剂不同。
实施例40
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-3:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为主体不同。
实施例41
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-67:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例40大致相同,唯一区别为磷光敏化剂不同。
实施例42
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-1:10wt%PH-5:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例40大致相同,唯一区别为磷光敏化剂不同。
实施例43
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-3:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为主体不同。
实施例44
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-67:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例43大致相同,唯一区别为磷光敏化剂不同。
实施例45
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-19:10wt%PH-5:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例43大致相同,唯一区别为磷光敏化剂不同。
实施例46
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:0.5wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为共振型热活化延迟荧光材料的掺杂浓度不同。
实施例47
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:15wt%PH-3:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为磷光敏化剂的掺杂浓度不同。
实施例48
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1.5wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为共振型热活化延迟荧光材料的掺杂浓度不同。
实施例49
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:5wt%PH-3:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为磷光敏化剂的掺杂浓度不同。
实施例50
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:2wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为共振型热活化延迟荧光材料的掺杂浓度不同。
实施例51
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:20wt%PH-3:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为磷光敏化剂的掺杂浓度不同。
实施例52
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:0.3wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为共振型热活化延迟荧光材料的掺杂浓度不同。
实施例53
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:25wt%PH-3:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为磷光敏化剂的掺杂浓度不同。
实施例54
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:10wt%PH-3:1.5wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为共振型热活化延迟荧光材料的掺杂浓度不同。
实施例55
本实施例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:30wt%PH-3:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为磷光敏化剂的掺杂浓度不同。
对比例1
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%MR-802(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例1大致相同,唯一区别为没有磷光敏化剂。
对比例2
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%MR-82(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例10大致相同,唯一区别为没有磷光敏化剂。
对比例3
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%MR-1217(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例19大致相同,唯一区别为没有磷光敏化剂。
对比例4
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%MR-199(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例28大致相同,唯一区别为没有磷光敏化剂。
对比例5
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%MR-1084(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与实施例37大致相同,唯一区别为没有磷光敏化剂。
对比例6
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%TBPe(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与对比例1大致相同,唯一区别为将发光层更换为传统荧光染料。
对比例7
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%TTPA(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与对比例1大致相同,唯一区别为将发光层更换为传统荧光染料。
对比例8
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%TBRb(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与对比例1大致相同,唯一区别为将发光层更换为传统荧光染料。
对比例9
本对比例的器件结构如下所示:
ITO/HI-2(10nm)/HT-27(40nm)/W-7:1wt%DBP(30nm)/ET-53(30nm)/LiF(0.5nm)/Al(150nm)
其器件意义与对比例1大致相同,唯一区别为将发光层更换为传统荧光染料。
对由上述过程制备的有机电致发光器件进行如下性能测定:
对实施例1-55、对比例1-9制备得到的器件进行如下性能测定:制备得到器件的电流、电压、亮度、发光光谱、电流效率、外量子效率等特性采用PR 655光谱扫描亮度计和Keithley K 2400数字源表系统同步测试,寿命通过MC-6000测试完成。
1、开启电压:以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到1cd/m 2时的电压即开启电压;
2、LT90的寿命测试如下:通过设定不同的测试亮度,得出有机电致发光器件的亮度与寿命衰减曲线,从而取得器件在要求衰减亮度下的寿命数值。即设定测试亮度为1000cd/m 2,保持恒定的电流,测量有机电致发光器件的亮度降为900cd/m 2的时间,单位为小时;
上述具体测试结果见表1。
表1:
Figure PCTCN2022096255-appb-000159
Figure PCTCN2022096255-appb-000160
Figure PCTCN2022096255-appb-000161
Figure PCTCN2022096255-appb-000162
本发明的有机电致发光器件结构的电致发光外量子效率都在30%左右,且在高亮度下效率滚降小,半峰宽较窄进而表明其色纯度好。此外该发明的器件寿命较长,表现出整体的优越性。
本发明实施例还提供一种显示装置,所述显示装置包括如上述提供的有机电致发光器件。该显示装置具体可以为OLED显示器等显示器件,以及包括该显示器件的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置与上述有机电致发光器件相对于现有技术所具有的优势相同,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种有机电致发光器件,包括衬底、第一电极、第二电极和有机功能层,所述有机功能层中包括有机发光层,所述有机发光层中包括主体材料和发光染料,其特征在于,所述发光层中包括发光主体材料、磷光敏化剂和用作发光染料的共振型热活化延迟荧光材料;
    所述发光层中的主体材料的三线态能级高于磷光敏化剂的三线态能级,且所述主体材料的三线态能级也高于共振型热活化延迟荧光材料的三线态能级;
    所述磷光敏化剂的三线态能级高于共振型热活化延迟荧光材料的三线态能级,且所述磷光敏化剂的HOMO能级深于共振型热活化延迟荧光材料的HOMO能级;
    所述共振型热活化延迟荧光材料为核心结构采用硼原子和/或羰基分别与氮原子和/或氧原子形成共振分子结构的化合物,所述化合物的单重态能级(S1)和三重态能级(T1)可以满足公式:
    ΔEst=S1-T1≤0.4eV;
    所述化合物的斯托克斯位移满足:λ≤60nm。
  2. 根据权利要求1所述的有机电致发光器件,所述共振型热活化延迟荧光材料选自如下式(1)或式(2)所示的结构:
    Figure PCTCN2022096255-appb-100001
    式(1)、式(2)中:环A、环B、环C和环D各自独立地表示C5~C20的单环芳环或稠合芳环、C4~C20单环杂环或稠合杂环中的任意一种;
    式(2)中:环E表示C5~C20的芳环;所述环A与环B之间可通过单键连接,所述环C与环D之间可通过单键连接;
    式(1)中:所述Y 1和Y 2分别独立分别独立地为N或B;所述X 1、X 2、X 3和X 4分别独立地为NR 1或BR 2;当Y 1和Y 2均为N时,X 1、X 2、X 3和X 4均为BR 2
    式(2)中:所述Y 1和Y 2分别独立地为N或B;所述X 1、X 2、X 3和X 4分别独立地为NR 1、BR 2、O或S;当Y 1和Y 2均为B时,X 1、X 2、X 3和X 4不同时为NR 1
    式(1)、式(2)中:所述R 1分别独立地与其相邻的环A、环B、环C或者环D连接成环或不连接成环,连接成环时通过单键相连接;所述R 2分别独立地与其相邻的环A、环B、环C或者环D连接成环或不连接成环,连接成环时通过单键相连接;所述R 1、R 2分别独立地选自取代或未取代的下述基团中的一种:C6-C60的单环芳基、C6-C60的稠环芳基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基;当上述R 1、R 2上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种;
    式(1)、式(2)中:所述R a、R b、R c和R d分别独立地表示单取代基到最大允许取代基,并且各自独立地选自氢、氘或者下述基团中的一种:卤素、取代或未取代的C1~C36的链状烷基、取代或未取代的C3~C36的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、取代或未取代的C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基、C5-C60的稠环杂芳基、三甲基硅基中的一种;当上述R a、R b、R c和R d上存在取代基时,所述取代基团分别独立选自卤素、C1~C30的链状烷基、氰基、C6~C60的单环芳基中的任一种;
    优选的,式(1)、式(2)中,所述环A、环B、环C和环D各自独立地表示C5~C10的单环芳环或稠合芳环、C4~C10的单环杂环或稠合杂环中的任意一种;
    再优选的,所述环A、环B、环C和环D各自独立地选自苯环、萘环或芴环中的任意一种。
  3. 根据权利要求1所述的有机电致发光器件,所述共振型热活化延迟荧光材料选自如下式(3)或式(4)所示的结构:
    Figure PCTCN2022096255-appb-100002
    式(3)、式(4)中:
    所述R 21~R 31分别独立地选自氢、氘或者取代或未取代的下述基团中的一种:卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C1~C10的硫代烷氧基、羰基、羧基、硝基、氰基、氨基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基,并且R 21~R 31中相邻的两个基团彼此可以键合并与相邻的苯环一同形成C5~C30的五元或六元的芳基环、C5~C30的五元或六元的杂芳基环中的一种,且所形成环中的至少一个氢可被C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C1~C10的硫代烷氧基、羰基、羧基、硝基、氰基、氨基中的任一种所取代;
    所述X 5、X 6、X 7和X 8分别独立地选自NR,所述R可通过-O-、-S-、-C(-R’)2-或单键而与相邻的苯环键结,所述R和R’分别独立地选自取代或未取代的下述基团中的一种:C1-C30的链状烷基、C3-C30的环烷基、C1-C30的卤代烷基、C1-C30的烷氧基、C2-C30的烯基、C3-C30的炔基、C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基;
    式(3)中,环F表示同时分别与由B和X 5、由B和X 6组成的六元环结构稠合连接的基团,所述环F选自取代或未取代的C5-C60的单环氮杂芳环、取代或未取代的C5-C60的稠合氮杂芳环中的一种;
    当上述基团存在取代基时,所述取代基团分别独立选自氘、卤素、氰基、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6-C30的芳基、C3-C30的杂芳基中的一种;
    优选的,式(3)中,环F表示取代或未取代的C13-C60的单环氮杂芳环、取代或未取代的C13-C60的稠合氮杂芳环中的一种;
    优选的,式(3)、式(4)中,R 21、R 22、R 23、R 24、R 25、R 26、R 27、R 28、R 29、R 30及R 31分别独立地选自氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟 乙基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、9,9-二甲基吖啶基、(多)卤代苯、(多)氰基苯、(多)三氟甲基苯等中的一种,或选自以上两种基团的组合。
  4. 根据权利要求1所述的有机电致发光器件,所述共振型热活化延迟荧光材料选自如下式(5)、式(6)或式(7)任一所示的结构:
    Figure PCTCN2022096255-appb-100003
    式(5)、式(6)、式(7)中:
    所述R 1、R 3、R 4、R 6、R 7、R 9、R 10、R 12、R 13、R 14、R 15、R 17、R 18、R 20、R 22、R 23分别独立地选自氢、氘或者取代或未取代的下述基团中的一种:卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C1~C10的硫代烷氧基、羰基、羧基、硝基、氰基、氨基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6-C60的单环芳基、C6-C60的稠环芳基、C6-C60的芳氧基、C5-C60的单环杂芳基或C5-C60的稠环杂芳基;
    所述R 2、R 5、R 8、R 11、R 16、R 19各自独立地选自氢原子或者取代或未取代的下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、环己基、氟原子、三氟甲基、氰基、叔丁苯、甲基苯基、苯基、三芳胺基、咔唑基、吡啶基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、金刚烷、四氢吡咯、哌啶、硅基、甲氧基、9,9-二甲基吖啶基、吩噻嗪基、吩恶嗪基、咪唑基、咔唑并呋喃;
    所述R 21选自氢、氟、氰基或者取代或未取代的下述取代基团:吡啶基、苯基、氟代苯基、甲基苯基、三甲基苯基、氰基苯基、三氟甲基、三芳胺基、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、环己基、金刚烷、四氢吡咯、哌啶、硅基、甲氧基、9,9-二甲基吖啶基、吩噻嗪基、吩恶嗪基、咪唑基、咔唑并呋喃、三芳胺基、咔唑基、氟原子、三氟甲基、氰基、吡啶基、呋喃基;
    当上述基团存在取代基时,所述取代基团分别独立选自氘、卤素、氰基、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6-C30的芳基、C3-C30的杂芳基中的一种。
  5. 根据权利要求1所述的有机电致发光器件,所述共振型热活化延迟荧光材料选自下述具体结构化合物,这些化合物仅为代表性的:
    Figure PCTCN2022096255-appb-100004
    Figure PCTCN2022096255-appb-100005
    Figure PCTCN2022096255-appb-100006
    Figure PCTCN2022096255-appb-100007
    Figure PCTCN2022096255-appb-100008
    Figure PCTCN2022096255-appb-100009
    Figure PCTCN2022096255-appb-100010
    Figure PCTCN2022096255-appb-100011
    Figure PCTCN2022096255-appb-100012
    Figure PCTCN2022096255-appb-100013
    Figure PCTCN2022096255-appb-100014
    Figure PCTCN2022096255-appb-100015
    Figure PCTCN2022096255-appb-100016
    Figure PCTCN2022096255-appb-100017
    Figure PCTCN2022096255-appb-100018
    Figure PCTCN2022096255-appb-100019
    Figure PCTCN2022096255-appb-100020
    Figure PCTCN2022096255-appb-100021
    Figure PCTCN2022096255-appb-100022
    Figure PCTCN2022096255-appb-100023
    Figure PCTCN2022096255-appb-100024
    Figure PCTCN2022096255-appb-100025
    Figure PCTCN2022096255-appb-100026
    Figure PCTCN2022096255-appb-100027
    Figure PCTCN2022096255-appb-100028
    Figure PCTCN2022096255-appb-100029
    Figure PCTCN2022096255-appb-100030
    Figure PCTCN2022096255-appb-100031
    Figure PCTCN2022096255-appb-100032
    Figure PCTCN2022096255-appb-100033
    Figure PCTCN2022096255-appb-100034
    Figure PCTCN2022096255-appb-100035
    Figure PCTCN2022096255-appb-100036
    Figure PCTCN2022096255-appb-100037
    Figure PCTCN2022096255-appb-100038
    Figure PCTCN2022096255-appb-100039
    Figure PCTCN2022096255-appb-100040
    Figure PCTCN2022096255-appb-100041
    Figure PCTCN2022096255-appb-100042
    Figure PCTCN2022096255-appb-100043
    Figure PCTCN2022096255-appb-100044
    Figure PCTCN2022096255-appb-100045
    Figure PCTCN2022096255-appb-100046
    Figure PCTCN2022096255-appb-100047
    Figure PCTCN2022096255-appb-100048
    Figure PCTCN2022096255-appb-100049
    Figure PCTCN2022096255-appb-100050
    Figure PCTCN2022096255-appb-100051
    Figure PCTCN2022096255-appb-100052
    Figure PCTCN2022096255-appb-100053
    Figure PCTCN2022096255-appb-100054
    Figure PCTCN2022096255-appb-100055
    Figure PCTCN2022096255-appb-100056
    Figure PCTCN2022096255-appb-100057
    Figure PCTCN2022096255-appb-100058
    Figure PCTCN2022096255-appb-100059
    Figure PCTCN2022096255-appb-100060
    Figure PCTCN2022096255-appb-100061
    Figure PCTCN2022096255-appb-100062
    Figure PCTCN2022096255-appb-100063
    Figure PCTCN2022096255-appb-100064
    Figure PCTCN2022096255-appb-100065
    Figure PCTCN2022096255-appb-100066
    Figure PCTCN2022096255-appb-100067
    Figure PCTCN2022096255-appb-100068
    Figure PCTCN2022096255-appb-100069
    Figure PCTCN2022096255-appb-100070
    Figure PCTCN2022096255-appb-100071
    Figure PCTCN2022096255-appb-100072
    Figure PCTCN2022096255-appb-100073
    Figure PCTCN2022096255-appb-100074
    Figure PCTCN2022096255-appb-100075
    Figure PCTCN2022096255-appb-100076
    Figure PCTCN2022096255-appb-100077
    Figure PCTCN2022096255-appb-100078
    Figure PCTCN2022096255-appb-100079
    Figure PCTCN2022096255-appb-100080
    Figure PCTCN2022096255-appb-100081
    Figure PCTCN2022096255-appb-100082
    Figure PCTCN2022096255-appb-100083
    Figure PCTCN2022096255-appb-100084
    Figure PCTCN2022096255-appb-100085
    Figure PCTCN2022096255-appb-100086
    Figure PCTCN2022096255-appb-100087
    Figure PCTCN2022096255-appb-100088
    Figure PCTCN2022096255-appb-100089
    Figure PCTCN2022096255-appb-100090
    Figure PCTCN2022096255-appb-100091
    Figure PCTCN2022096255-appb-100092
    Figure PCTCN2022096255-appb-100093
    Figure PCTCN2022096255-appb-100094
    Figure PCTCN2022096255-appb-100095
    Figure PCTCN2022096255-appb-100096
    Figure PCTCN2022096255-appb-100097
    Figure PCTCN2022096255-appb-100098
    Figure PCTCN2022096255-appb-100099
    Figure PCTCN2022096255-appb-100100
    Figure PCTCN2022096255-appb-100101
    Figure PCTCN2022096255-appb-100102
    Figure PCTCN2022096255-appb-100103
    Figure PCTCN2022096255-appb-100104
    Figure PCTCN2022096255-appb-100105
    Figure PCTCN2022096255-appb-100106
    Figure PCTCN2022096255-appb-100107
    Figure PCTCN2022096255-appb-100108
    Figure PCTCN2022096255-appb-100109
  6. 根据权利要求1所述的有机电致发光器件,所述发光层中的磷光敏化剂选自如下化合物中的任一种:
    Figure PCTCN2022096255-appb-100110
    Figure PCTCN2022096255-appb-100111
    Figure PCTCN2022096255-appb-100112
    Figure PCTCN2022096255-appb-100113
    Figure PCTCN2022096255-appb-100114
    Figure PCTCN2022096255-appb-100115
    Figure PCTCN2022096255-appb-100116
    Figure PCTCN2022096255-appb-100117
    Figure PCTCN2022096255-appb-100118
    Figure PCTCN2022096255-appb-100119
    Figure PCTCN2022096255-appb-100120
    Figure PCTCN2022096255-appb-100121
    Figure PCTCN2022096255-appb-100122
    Figure PCTCN2022096255-appb-100123
    Figure PCTCN2022096255-appb-100124
    Figure PCTCN2022096255-appb-100125
    Figure PCTCN2022096255-appb-100126
    Figure PCTCN2022096255-appb-100127
    Figure PCTCN2022096255-appb-100128
    Figure PCTCN2022096255-appb-100129
    Figure PCTCN2022096255-appb-100130
    Figure PCTCN2022096255-appb-100131
    Figure PCTCN2022096255-appb-100132
    Figure PCTCN2022096255-appb-100133
    Figure PCTCN2022096255-appb-100134
    Figure PCTCN2022096255-appb-100135
  7. 根据权利要求1所述的有机电致发光器件,所述共振型热活化延迟荧光材料在发光层中的掺杂浓度为0.1wt%至30wt%,所述磷光敏化剂在发光层中的掺杂浓度为1wt%至50wt%;
    优选的,所述共振型热活化延迟荧光材料在发光层中的掺杂浓度为0.5wt%至10wt%,所述磷光敏化剂在发光层中的掺杂浓度为3wt%至30wt%;
    更优选的,所述共振型热活化延迟荧光材料在发光层中的掺杂浓度为0.5-2wt%,所述磷光敏化剂在发光层中的掺杂浓度为5-15wt%。
  8. 根据权利要求1所述的有机电致发光器件,其特征在于,作为发光层中的主体材料的选自咔唑类衍生物、咔啉类衍生物、螺芴类衍生物、芴类衍生物、含硅基类衍生物、含膦氧基类衍生物、含砜基类衍生物中的至少一种化合物。
  9. 一种根据权利要求1所述的有机电致发光器件的应用,其特征在于,所述应用为在有机电子装置中的应用,所述有机电子装置包括光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸。
  10. 一种显示装置,其特征在于,包括权利要求1所述的有机电致发光器件,所述显示装置为显示元件、照明元件、信息标签、电子人工皮肤片材或电子纸。
PCT/CN2022/096255 2021-06-07 2022-05-31 一种有机电致发光器件和显示装置 WO2022257817A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237006546A KR20230042736A (ko) 2021-06-07 2022-05-31 유기 전계 발광 소자 및 디스플레이 장치
JP2023514823A JP2023540114A (ja) 2021-06-07 2022-05-31 有機エレクトロルミネッセンスデバイスおよび表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110632193.2 2021-06-07
CN202110632193.2A CN113540371B (zh) 2021-06-07 2021-06-07 一种有机电致发光器件和显示装置

Publications (1)

Publication Number Publication Date
WO2022257817A1 true WO2022257817A1 (zh) 2022-12-15

Family

ID=78124621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096255 WO2022257817A1 (zh) 2021-06-07 2022-05-31 一种有机电致发光器件和显示装置

Country Status (4)

Country Link
JP (1) JP2023540114A (zh)
KR (1) KR20230042736A (zh)
CN (1) CN113540371B (zh)
WO (1) WO2022257817A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540371B (zh) * 2021-06-07 2022-12-09 清华大学 一种有机电致发光器件和显示装置
CN114230594B (zh) * 2021-11-15 2024-02-27 深圳大学 一种含重原子的硼氮杂化合物及其制备方法、有机电致发光器件
CN114044785A (zh) * 2021-12-01 2022-02-15 上海八亿时空先进材料有限公司 一种含硼化合物和有机电致发光元件、有机电致发光材料
KR20230102196A (ko) * 2021-12-30 2023-07-07 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20230102195A (ko) * 2021-12-30 2023-07-07 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
CN114373877B (zh) * 2021-12-31 2023-08-29 昆山国显光电有限公司 一种有机电致发光器件和显示装置
WO2023140130A1 (ja) * 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子
CN114478604B (zh) * 2022-02-24 2024-02-13 中国科学院长春应用化学研究所 含有两个硼原子和一个或三个氧族原子的稠环化合物及有机电致发光器件
CN114349777B (zh) * 2022-02-24 2024-02-13 中国科学院长春应用化学研究所 含有两个硼原子和四个氧族原子的稠环化合物及有机电致发光器件
CN114920758A (zh) * 2022-04-02 2022-08-19 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN115368393A (zh) * 2022-08-29 2022-11-22 哈尔滨工业大学 一种基于三芳基硼并嘧啶有机化合物及其应用
WO2024048691A1 (ja) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
WO2024048692A1 (ja) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 発光層用材料、有機電界発光素子、有機el表示装置、有機el照明、組成物、及び、有機電界発光素子の製造方法
WO2024048690A1 (ja) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 発光層用材料、有機電界発光素子、有機el表示装置、有機el照明、組成物、及び、有機電界発光素子の製造方法
WO2024048693A1 (ja) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 有機電界発光素子、有機el表示装置、有機el照明、及び、有機電界発光素子の製造方法
WO2024053709A1 (ja) * 2022-09-09 2024-03-14 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2024055196A1 (zh) * 2022-09-14 2024-03-21 苏州大学 一种a-d-a型有机化合物及其制备方法
CN115811890A (zh) * 2022-11-14 2023-03-17 昆山国显光电有限公司 有机电致发光器件及显示装置
CN115811891A (zh) * 2022-11-14 2023-03-17 昆山国显光电有限公司 有机电致发光器件及显示装置
WO2024104473A1 (zh) * 2022-11-17 2024-05-23 浙江光昊光电科技有限公司 化合物及其在光电领域的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092320A (ja) * 2014-11-10 2016-05-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び照明装置
CN109192874A (zh) * 2018-08-31 2019-01-11 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109817837A (zh) * 2019-01-31 2019-05-28 云谷(固安)科技有限公司 一种有机电致发光器件和显示装置
CN110335951A (zh) * 2019-06-20 2019-10-15 华南理工大学 一种磷光敏化荧光有机发光二极管
CN110407858A (zh) * 2019-07-18 2019-11-05 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN110407859A (zh) * 2019-07-18 2019-11-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111153919A (zh) * 2020-01-08 2020-05-15 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111333671A (zh) * 2020-03-16 2020-06-26 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN112174992A (zh) * 2020-09-30 2021-01-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN112820834A (zh) * 2019-11-15 2021-05-18 乐金显示有限公司 有机发光装置和使用该有机发光装置的显示装置
CN113540371A (zh) * 2021-06-07 2021-10-22 清华大学 一种有机电致发光器件和显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803543A (zh) * 2017-01-20 2017-06-06 瑞声科技(南京)有限公司 有机发光显示器件
CN109411634B (zh) * 2018-08-31 2019-12-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN111864098B (zh) * 2020-08-14 2022-07-12 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092320A (ja) * 2014-11-10 2016-05-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び照明装置
CN109192874A (zh) * 2018-08-31 2019-01-11 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109817837A (zh) * 2019-01-31 2019-05-28 云谷(固安)科技有限公司 一种有机电致发光器件和显示装置
CN110335951A (zh) * 2019-06-20 2019-10-15 华南理工大学 一种磷光敏化荧光有机发光二极管
CN110407858A (zh) * 2019-07-18 2019-11-05 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN110407859A (zh) * 2019-07-18 2019-11-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN112820834A (zh) * 2019-11-15 2021-05-18 乐金显示有限公司 有机发光装置和使用该有机发光装置的显示装置
CN111153919A (zh) * 2020-01-08 2020-05-15 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111333671A (zh) * 2020-03-16 2020-06-26 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN112174992A (zh) * 2020-09-30 2021-01-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN113540371A (zh) * 2021-06-07 2021-10-22 清华大学 一种有机电致发光器件和显示装置

Also Published As

Publication number Publication date
KR20230042736A (ko) 2023-03-29
JP2023540114A (ja) 2023-09-21
CN113540371A (zh) 2021-10-22
CN113540371B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2022257817A1 (zh) 一种有机电致发光器件和显示装置
CN110317139B (zh) 一种化合物及其应用以及包含该化合物的有机电致发光器件
CN110872316B (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
WO2022237668A1 (zh) 一种稠环化合物及其应用以及包含其的有机电致发光器件
JP7429055B2 (ja) 新規化合物及びその応用、並びにこの化合物を使用する有機エレクトロルミネッセンスデバイス
CN111320612A (zh) 化合物及有机电致发光器件
CN112778253B (zh) 有机化合物及含有其的有机电致发光器件
WO2023284103A1 (zh) 一种有机化合物及其应用
WO2022242584A1 (zh) 一种有机电致发光器件和显示装置
WO2023125276A1 (zh) 一种有机化合物及其应用
CN112142605A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN115197252A (zh) 一种有机化合物及其应用
CN113861041A (zh) 一种化合物及其应用
WO2022042737A1 (zh) 用于有机电致发光器件的有机化合物及有机电致发光器件
CN113636945A (zh) 一种化合物及其应用
CN113861042A (zh) 一种化合物及其应用
WO2023273998A1 (zh) 一种化合物及其应用、一种有机电致发光器件
WO2023273997A1 (zh) 一种有机化合物及其应用
CN114478267A (zh) 用于发光器件的有机化合物及有机电致发光器件
CN114437006A (zh) 一种有机化合物及其应用
CN115594596A (zh) 一种化合物及其应用
CN113880848A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN113929646A (zh) 有机化合物及有机电致发光器件
CN113444090A (zh) 一种化合物及其应用
CN112661760B (zh) 用于有机电子材料的化合物及含有其的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006546

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023514823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE