WO2022237668A1 - 一种稠环化合物及其应用以及包含其的有机电致发光器件 - Google Patents

一种稠环化合物及其应用以及包含其的有机电致发光器件 Download PDF

Info

Publication number
WO2022237668A1
WO2022237668A1 PCT/CN2022/091381 CN2022091381W WO2022237668A1 WO 2022237668 A1 WO2022237668 A1 WO 2022237668A1 CN 2022091381 W CN2022091381 W CN 2022091381W WO 2022237668 A1 WO2022237668 A1 WO 2022237668A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
ring
substituted
unsubstituted
heteroaryl
Prior art date
Application number
PCT/CN2022/091381
Other languages
English (en)
French (fr)
Inventor
段炼
张跃威
张东东
李国孟
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to JP2023538057A priority Critical patent/JP2023554536A/ja
Priority to KR1020237023510A priority patent/KR20230113641A/ko
Publication of WO2022237668A1 publication Critical patent/WO2022237668A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/107Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1085Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with other heteroatoms

Definitions

  • the invention relates to the technical field of organic electroluminescence, in particular to a condensed ring compound and its application, and an organic electroluminescent device containing the compound.
  • OLED Organic Light Emission Diodes
  • OLED Organic Light Emission Diodes
  • MR-TADF material has the advantages of high color purity and high luminous efficiency, which has attracted extensive attention from the scientific research community and the industrial circle.
  • peripheral substituents have little effect on the S 1 energy level, it is difficult to control the luminescent color of the material, and its light color has always been limited to the blue-deep blue region, which greatly limits the high-resolution display of MR-TADF materials. , full-color display and further applications in the field of white lighting.
  • the present invention provides a fused ring compound with a new structure, which has the structure shown in the following formula (1) or formula (2):
  • Y 1 and Y 2 are independently represented as O, S, CR 1 or N;
  • a 1 and A 2 independently represent a single bond, O, S, CR 2 or NR 3 ;
  • Ring D represents hydrogen, or ring D represents any one of a substituted or unsubstituted C5-C20 aromatic ring, a substituted or unsubstituted C4-C60 heteroaromatic ring;
  • Ring E represents any one of a substituted or unsubstituted C5-C20 aromatic ring, a substituted or unsubstituted C4-C60 heteroaromatic ring;
  • Z 1 -Z 12 are independently represented as N atom or CR 4 , and two adjacent R 4 can be bonded to each other to form a ring;
  • R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen, deuterium, tritium, cyano, halogen, substituted or unsubstituted C1 ⁇ C10 alkyl, substituted or unsubstituted C3 ⁇ C10 cycloalkyl, Substituted or unsubstituted C1 ⁇ C10 alkoxy, substituted or unsubstituted C6 ⁇ C30 aryloxy, C6 ⁇ C30 arylamino, C3 ⁇ C30 heteroarylamino, substituted or unsubstituted C6 ⁇ C30 aryl , any one of substituted or unsubstituted C2-C30 heteroaryl groups;
  • the substituent groups are independently selected from deuterium, halogen, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1-C10 alkoxy , cyano, C6-C30 arylamino, C3-C30 heteroarylamino, C6-C60 single-ring aryl, C6-C60 fused-ring aryl, C6-C60 aryloxy, C5-C60 Any of monocyclic heteroaryl and C5-C60 condensed heteroaryl;
  • the substituent groups are independently selected from deuterium, halogen, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1 ⁇ C10 alkoxy, cyano, C6 ⁇ C30 arylamino, C3 ⁇ C30 heteroarylamino, C6 ⁇ C60 single-ring aryl, C6 ⁇ C60 fused ring aryl, C6 ⁇ C60 aryloxy Any of C5-C60 monocyclic heteroaryl, C5-C60 fused-ring heteroaryl.
  • the ring D represents hydrogen or represents a substituted or unsubstituted C 10 aromatic ring, a substituted or unsubstituted C 12 aromatic ring, a substituted or unsubstituted C 14 aromatic ring, substituted or unsubstituted C 16 aromatic ring, substituted or unsubstituted C 18 aromatic ring, substituted or unsubstituted C 20 aromatic ring, substituted or unsubstituted C 10 heteroaromatic ring, substituted or unsubstituted Substituted C 12 heteroaryl ring, substituted or unsubstituted C 14 heteroaryl ring, substituted or unsubstituted C 16 heteroaryl ring, substituted or unsubstituted C 18 heteroaryl ring, substituted or unsubstituted C Any of the heteroaryl rings of 22 ;
  • the ring E is represented as a substituted or unsubstituted C 10 aromatic ring, a substituted or unsubstituted C 12 aromatic ring, a substituted or unsubstituted C 14 aromatic ring, a substituted or unsubstituted C 16 aromatic ring, a substituted or unsubstituted C18 aromatic ring, substituted or unsubstituted C20 aromatic ring, substituted or unsubstituted C10 heteroaryl ring, substituted or unsubstituted C12 heteroaryl ring, substituted or unsubstituted C14 heteroaryl ring , any of a substituted or unsubstituted C16 heteroaryl ring, a substituted or unsubstituted C18 heteroaryl ring, a substituted or unsubstituted C22 heteroaryl ring;
  • substituents on the above-mentioned ring D and ring E are independently selected from deuterium, halogen, C1-C10 chain alkyl, C3-C10 cycloalkyl, C1-C8 alkoxy , cyano, C6-C20 arylamino, C3-C2 heteroarylamino, C6-C30 single-ring aryl, C6-C30 fused-ring aryl, C6-C30 aryloxy, C5-C30 Any of a monocyclic heteroaryl group and a C5-C30 condensed ring heteroaryl group.
  • the ring D represents hydrogen or represents a C4-C60 heteroaromatic ring
  • the heteroatoms in the heteroaromatic ring are selected from oxygen atoms, sulfur atoms, At least one of a boron atom or a nitrogen atom; preferably, the heteroatom in the aromatic ring is selected from at least one of a boron atom or a nitrogen atom;
  • the ring E is represented as a C4-C60 heteroaromatic ring, and the heteroatom in the heteroaromatic ring is selected from at least one of oxygen atom, sulfur atom, boron atom or nitrogen atom; preferably, the heteroatom in the aromatic ring is The heteroatom is selected from at least one of a boron atom or a nitrogen atom.
  • the ring D is represented by hydrogen or has a structure shown in the following formula (a) or formula (b), and the ring E is represented by the following formula (a) or The structure shown in formula (b):
  • Y 3 represents Y 1 and/or Y 2 in formula (1) and formula (2);
  • X 1 -X 11 are independently represented as N atom or CR 5 , and two adjacent R 5 can be bonded to each other to form a ring;
  • Y 4 represents Y 1 and/or Y 2 in formula (1) and formula (2), Y 5 represents O, S, CR 6 or N;
  • X 21 -X 35 are independently represented as N atom or CR 7 , and two adjacent R 7 can be bonded to each other to form a ring;
  • R 5 , R 6 and R 7 are independently selected from hydrogen, deuterium, tritium, cyano, halogen, substituted or unsubstituted C1 ⁇ C10 alkyl, substituted or unsubstituted C3 ⁇ C10 cycloalkyl, substituted or unsubstituted Substituted C1 ⁇ C10 alkoxy, substituted or unsubstituted C6 ⁇ C30 aryloxy, C6 ⁇ C30 arylamino, C3 ⁇ C30 heteroarylamino, substituted or unsubstituted C6 ⁇ C30 aryl, substituted or Any one of unsubstituted C2 ⁇ C30 heteroaryl groups;
  • the substituent groups are independently selected from deuterium, halogen, C1-C30 chain alkyl, C3-C30 cycloalkyl, C1-C10 Alkoxy, cyano, C6-C30 arylamino, C3-C30 heteroarylamino, C6-C60 single-ring aryl, C6-C60 fused-ring aryl, C6-C60 aryloxy, C5 Any of ⁇ C60 monocyclic heteroaryl groups and C5 ⁇ C60 condensed ring heteroaryl groups.
  • the fused ring compound of the present invention has the following formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), formula (1 -6), formula (1-7), formula (1-8), formula (1-9), formula (1-10), formula (2-1), formula (2-2), formula (2- 3), any structure shown in formula (2-4) or formula (2-5):
  • the X 1 -X 11 are each independently represented as CR 5
  • the X 21 -X 35 are each independently represented as CR 7 ;
  • the Z 1 -Z 5 are each independently represented as CR 4
  • the Z 9 -Z 12 are each independently represented as CR 4 .
  • the "substituted or unsubstituted” group may be substituted with one substituent, or may be substituted with multiple substituents. When there are multiple substituents, they may be selected from different substituents. When the same expression is involved in the invention, they all have the same meaning, and the selection range of the substituents is as shown above, and will not be repeated one by one.
  • Ca ⁇ Cb means that the group has a ⁇ b carbon atoms, and unless otherwise specified, generally speaking, the carbon number does not include the carbon number of the substituent.
  • each independently means that when there are plural subjects, they may be the same or different from each other.
  • the substituted or unsubstituted C6-C60 aryl group includes single-ring aryl group and condensed-ring aryl group, preferably C6-C30 aryl group, more preferably C6-C20 aryl group.
  • the so-called single-ring aryl group means that the molecule contains at least one phenyl group.
  • the phenyl groups are independent of each other and connected by a single bond, such as: phenyl, biphenyl , terphenyl, etc.
  • the biphenyl includes 2-biphenyl, 3-biphenyl and 4-biphenyl;
  • the terphenyl includes p-terphenyl-4-yl, p-terphenyl- 3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl.
  • a condensed ring aryl group refers to a group that contains at least two aromatic rings in the molecule, and the aromatic rings are not independent of each other but share two adjacent carbon atoms and are fused to each other.
  • Exemplary such as: naphthyl, anthracenyl, phenanthrenyl, indenyl, fluorenyl, fluoranthene, triphenylene, pyrenyl, perylenyl, group, tetraphenylene group and their derivative groups, etc.
  • the naphthyl includes 1-naphthyl or 2-naphthyl; the anthracenyl is selected from 1-anthracenyl, 2-anthracenyl and 9-anthracenyl; the fluorenyl is selected from 1-fluorenyl, 2-fluorenyl Base, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl; said pyrenyl is selected from 1-pyrenyl, 2-pyrenyl and 4-pyrenyl; said naphthacene is selected from 1-naphthacene Phenyl, 2-naphthacene and 9-naphthacene.
  • the derivative group of fluorene is selected from 9,9-dimethylfluorenyl, 9,9-diethylfluorenyl, 9,9-dipropylfluorenyl, 9,9-dibutylfluorenyl, 9 ,9-dipentylfluorenyl, 9,9-dihexylfluorenyl, 9,9-diphenylfluorenyl, 9,9-dinaphthylfluorenyl, 9,9'-spirobifluorene and benzofluorene base.
  • the C3-C60 heteroaryl mentioned in the present invention includes monocyclic heteroaryl and fused-ring heteroaryl, preferably C3-C30 heteroaryl, more preferably C4-C20 heteroaryl, more preferably C5-C12 heteroaryl.
  • Monocyclic heteroaryl means that the molecule contains at least one heteroaryl group. When the molecule contains a heteroaryl group and other groups (such as aryl, heteroaryl, alkyl, etc.), the heteroaryl group and other groups They are independent of each other and linked by a single bond. Examples of the monocyclic heteroaryl include furyl, thienyl, pyrrolyl, pyridyl and the like.
  • a condensed ring heteroaryl refers to a molecule containing at least one aromatic heterocycle and one aromatic ring (aromatic heterocycle or aromatic ring), and the two are not independent of each other but share two adjacent atoms with each other Fused groups.
  • fused-ring heteroaryl groups include: benzofuryl, benzothienyl, isobenzofuryl, indolyl, dibenzofuryl, dibenzothienyl, carbazolyl, acridinyl , isobenzofuryl, isobenzothienyl, benzocarbazolyl, azacarbazolyl, phenothiazinyl, phenazinyl, 9-phenylcarbazolyl, 9-naphthylcarbazolyl, Dibenzocarbazolyl, indolocarbazolyl, etc.
  • the heteroatoms generally refer to atoms or atomic groups selected from N, O, S, P, Si and Se, preferably N, O and S.
  • halogen examples include fluorine, chlorine, bromine, iodine and the like.
  • it is to provide an application of the above-mentioned compound, and the compound is applied to an organic electronic device.
  • the organic electronic devices include organic electroluminescent devices, optical sensors, solar cells, lighting elements, organic thin film transistors, organic field effect transistors, organic thin film solar cells, information labels, electronic artificial skin sheets, sheet-type A scanner or electronic paper, most preferably an organic electroluminescent device.
  • the compound provided by the present invention is preferably used as a light-emitting layer material in an organic electroluminescent device, more preferably as a material in a light-emitting layer in an organic electroluminescent device, and specifically can be used as a light-emitting material. dye.
  • the present invention also provides an organic electroluminescent device, comprising a substrate, including a first electrode, a second electrode, and one or more organic layers interposed between the first electrode and the second electrode, wherein the The organic layer contains any one of the above-mentioned condensed ring general formula compounds of the present invention.
  • an embodiment of the present invention provides an organic electroluminescent device, including a substrate, and an anode layer, a plurality of light-emitting functional layers, and a cathode layer sequentially formed on the substrate;
  • the light-emitting functional layer includes Hole injection layer, hole transport layer, light emitting layer, electron transport layer, the hole injection layer is formed on the anode layer, the hole transport layer is formed on the hole injection layer , the cathode layer is formed on the electron transport layer, and the light-emitting layer is between the hole transport layer and the electron transport layer;
  • the light-emitting layer contains the above-mentioned Formula (1), general formula (2), formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), formula (1- 6), formula (1-7), formula (1-8), formula (1-9), formula (1-10), formula (2-1), formula (2-2), formula (2-3 ), the general formula compound of the present invention shown in any one of formula (2-4) or formula (2-5).
  • MR-TADF material has the advantages of high color purity and high luminous efficiency, which has attracted extensive attention from the scientific research community and the industrial circle.
  • MR-TADF devices can achieve high-color-purity luminescence with a half-maximum width (FWHM) of less than 30 nanometers in the sky-blue light-deep blue region. 40 nm or more). This is because, in order to realize the effective red shift of MR-TADF spectrum, it is necessary to introduce a strong charge transfer state, which leads to a large change in the configuration of the ground state and the excited state of the molecule, so its half-peak width is often wide.
  • FWHM half-maximum width
  • the present invention has designed this kind of condensed ring compound (general formula is as follows) based on functional modular design, on the one hand BN parent core is responsible for narrow spectrum light emission; The aromatic fused ring is responsible for the red shift of the spectrum, which enables the extremely narrow half-width (less than 25 nm) of MR-TADF materials in the full light color range.
  • the condensed ring compound of the present invention has narrow half-peak width, high fluorescence quantum yield, and simultaneously has high glass transition temperature and molecular thermal stability, and has suitable HOMO and LUMO energy levels.
  • the electroluminescent spectrum of the OLED device prepared by adopting this kind of condensed ring compound of the present invention has narrow half-peak width and shows obvious multiple resonance effect, thereby greatly enriching the material system and material system of multiple resonance-thermally activated delayed fluorescence It has a range of luminous colors; and has low starting voltage, high luminous efficiency and better service life, which can meet the current requirements of panel manufacturers for high-performance materials, showing good application prospects.
  • Figure 1 Schematic diagram of the structure of the organic electroluminescent device prepared in the present invention, wherein: 1 is the substrate, 2 is the anode, 3 is the hole transport layer, 4 is the organic light-emitting layer, 5 is the electron transport layer, and 6 is the cathode.
  • Various chemicals used in the present invention such as petroleum ether, tert-butylbenzene, ethyl acetate, sodium sulfate, toluene, methylene chloride, potassium carbonate, boron tribromide, N, N-diisopropylethylamine, reaction Intermediates and other basic chemical raw materials were purchased from Shanghai Titan Technology Co., Ltd. and Xilong Chemical Co., Ltd.
  • the mass spectrometer used to determine the following compounds was a ZAB-HS mass spectrometer (manufactured by Micromass, UK).
  • a pentane solution of tert-butyllithium (6.06mL, 1.60M, 9.70mmol) was slowly added to a solution of 1-1 (2.00g, 4.85mmol) in tert-butylbenzene (60mL) at 0°C, and then the temperature was raised to 60 °C for 3 hours each. After the reaction was completed, the temperature was lowered to -30°C, boron tribromide (2.43 g, 9.70 mmol) was slowly added, and stirring was continued at room temperature for 0.5 hours.
  • N,N-diisopropylethylamine (1.88g, 14.55mmol) was added at room temperature, and the reaction was continued at 145°C for 5 hours, then cooled to room temperature, phenylmagnesium bromide (1.76g, 9.70mmol) was added dropwise, The reaction was stopped after 8 hours at room temperature.
  • MALDI-TOF-MS results Molecular ion peak: 419.45 Elemental analysis results: Theoretical value: C, 85.94; H, 4.33; B, 2.58; N, 3.34; O, 3.82 (%); Experimental value: C, 85.64; H , 4.45; B, 2.28; N, 3.74; O, 3.89 (%).
  • a pentane solution of tert-butyllithium (6.06mL, 1.60M, 9.70mmol) was slowly added to a solution of 23-1 (3.17g, 4.85mmol) in tert-butylbenzene (60mL) at 0°C, and then the temperature was raised to 60 °C for 3 hours each. After the reaction was completed, the temperature was lowered to -30°C, boron tribromide (2.43 g, 9.70 mmol) was slowly added, and stirring was continued at room temperature for 0.5 hours. N,N-Diisopropylethylamine (1.88 g, 14.55 mmol) was added at room temperature, and the reaction was continued at 145° C. for 5 hours and then stopped.
  • This embodiment is basically the same as the synthesis of compound 1, the difference is that in this example, 1-1 needs to be replaced with 34-1 of the same amount of substance, and phenylmagnesium bromide is replaced with 2,4 of the same amount of substance ,6-Trimethylbenzenemagnesium bromide.
  • the target compound 34 (1.55 g, 24% yield, HPLC analysis purity 99.66%), was a yellow solid.
  • This example is basically the same as the synthesis of compound 23, the difference is that in this example, 23-1 needs to be replaced with 41-1 in an equivalent amount.
  • the target compound 41 (0.74 g, 10% yield, HPLC analysis purity 99.36%) was a dark red solid.
  • MALDI-TOF-MS results Molecular ion peak: 758.45 Elemental analysis results: Theoretical value: C, 85.51; H, 4.25; B, 2.85; N, 7.39 (%); Experimental value: C, 85.61; H, 4.15; B , 2.95; N, 7.29 (%).
  • This example is basically the same as the synthesis of compound 23, the difference is that in this example, 23-1 needs to be replaced with 49-1 in an equivalent amount.
  • the target compound 49 (1.74 g, 25% yield, HPLC analysis purity 99.36%), was a red solid.
  • MALDI-TOF-MS results Molecular ion peak: 608.35 Elemental analysis results: Theoretical value: C, 82.93; H, 3.65; B, 3.55; N, 4.61; O, 5.26 (%); Experimental value: C, 82.73; H , 3.65; B, 3.75; N, 4.41; O, 5.46.
  • This example is basically the same as the synthesis of compound 23, the difference is that in this example, 23-1 needs to be replaced with 73-1 in an equivalent amount.
  • the target compound 73 (1.69 g, 23% yield, HPLC analysis purity 99.63%) was a red solid.
  • MALDI-TOF-MS results Molecular ion peak: 758.35
  • Elemental analysis results Theoretical value: C, 85.51; H, 4.25; B, 2.85; N, 7.39 (%); Experimental value: C, 85.51; H, 4.25; B , 2.85; N, 7.39 (%).
  • This example is basically the same as the synthesis of compound 23, the difference is that in this example, 23-1 needs to be replaced with 73-1 in an equivalent amount.
  • the target compound 79 (1.69 g, 23% yield, HPLC analysis purity 99.23%) was a red solid.
  • MALDI-TOF-MS results Molecular ion peak: 758.35
  • Elemental analysis results Theoretical value: C, 85.51; H, 4.25; B, 2.85; N, 7.39 (%); Experimental value: C, 85.51; H, 4.25; B , 2.85; N, 7.39 (%).
  • This example is basically the same as the synthesis of compound 23, the difference is that in this example, 23-1 needs to be replaced with 85-1 in the same amount.
  • the target compound 85 (1.00 g, 13% yield, HPLC analysis purity 99.76%) was a red solid.
  • MALDI-TOF-MS results Molecular ion peak: 790.25 Elemental analysis results: Theoretical value: C, 82.05; H, 4.08; B, 2.73; N, 7.09; O, 4.05 (%); Experimental value: C, 82.35; H , 4.05; B, 2.43; N, 7.09; O, 4.08 (%).
  • This example is basically the same as the synthesis of compound 23, the difference is that in this example, 23-1 needs to be replaced with 93-1 in an equivalent amount.
  • the target compound 93 (1.20 g, 16% yield, HPLC analysis purity 99.25%) was a red solid.
  • MALDI-TOF-MS results Molecular ion peak: 774.25
  • Elemental analysis results Theoretical value: C, 83.74; H, 4.16; B, 2.79; N, 7.23; O, 2.07 (%); Experimental value: C, 83.84; H , 4.06; B, 2.99; N, 7.03; O, 2.07 (%).
  • An organic electroluminescence device includes a first electrode, a second electrode, and an organic material layer between the two electrodes.
  • the organic material can be divided into multiple regions.
  • the organic material layer can include a hole transport region, a light emitting layer, and an electron transport region.
  • the material of the anode can be oxide transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO2), zinc oxide (ZnO) and any combination thereof.
  • the cathode material can be magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag ) and other metals or alloys and any combination of them.
  • the hole transport region is located between the anode and the light emitting layer.
  • the hole transport region can be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole-transport layer containing only one compound and a single-layer hole-transport layer containing multiple compounds.
  • the hole transport region may also be a multilayer structure including at least one layer of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from but not limited to phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid (Pani/ DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly(4 - Styrene sulfonate) (Pani/PSS), aromatic amine derivatives, etc.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid (Pani/ DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-
  • the luminescent layer includes luminescent dyes (that is, dopant) that can emit different wavelength spectra, and can also include a host material (Host) at the same time.
  • the light-emitting layer may be a monochromatic light-emitting layer that emits a single color such as red, green, or blue.
  • a plurality of monochromatic light-emitting layers of different colors can be arranged planarly according to the pixel pattern, and can also be stacked together to form a colored light-emitting layer. When the light-emitting layers of different colors are stacked together, they can be separated from each other or connected to each other.
  • the light-emitting layer can also be a single color light-emitting layer capable of simultaneously emitting different colors such as red, green, and blue.
  • the electron transport region may be an electron transport layer (ETL) of a single-layer structure, including a single-layer electron-transport layer containing only one compound and a single-layer electron-transport layer containing a plurality of compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • an anode 2 a hole transport layer 3, an organic light-emitting layer 4, an electron transport layer 5, and a cathode 6 are sequentially deposited on a substrate 1, and then packaged.
  • the organic light-emitting layer 4 is formed by co-evaporating a wide bandgap material source, an electron donor type material source, an electron acceptor type material source and a resonance type TADF material source.
  • the preparation method of the organic electroluminescent device of the present invention comprises the following steps:
  • the evaporation rate is 0.1-0.5nm/s
  • the electron blocking layer is vacuum evaporated, and the evaporation rate is 0.1-0.5nm/s;
  • the organic light-emitting layer of the device is vacuum-evaporated on the electron blocking layer.
  • the organic light-emitting layer material includes the host material and TADF dye, and the evaporation rate of the host material and the sensitizer material are adjusted by the method of multi-source co-evaporation. The evaporation rate and the evaporation rate of the dye make the dye reach the preset doping ratio;
  • Vacuum-evaporating a hole-blocking layer on the organic light-emitting layer, and the evaporation rate is 0.1-0.5nm/s;
  • the electron transport material of the device is vacuum evaporated to form an electron transport layer, and the evaporation rate is 0.1-0.5nm/s;
  • An embodiment of the present invention also provides a display device, which includes the organic electroluminescent device as provided above.
  • the display device may be a display device such as an OLED display, and any product or component having a display function such as a TV, a digital camera, a mobile phone, a tablet computer, etc. including the display device.
  • the display device has the same advantages as that of the above-mentioned organic electroluminescent device over the prior art, which will not be repeated here.
  • the organic electroluminescence device of the present invention will be further introduced through specific examples below.
  • the anode material is ITO; the material of the hole injection layer is HI, and the general total thickness is 5-30nm, which is 10nm in this embodiment; the material of the hole transport layer is HT, and the total thickness is generally 5-500nm, and this embodiment is 40nm; Host is the host material of the wide band gap of the organic light-emitting layer, the compound P-4 of the present invention is a dye and the doping concentration is 3wt%, the thickness of the organic light-emitting layer is generally 1-200nm, and the present embodiment is 30nm; the electron transport layer The material is ET, and the thickness is generally 5-300nm, which is 30nm in this embodiment; LiF (0.5nm) and metal aluminum (150nm) are selected as materials for the electron injection layer and cathode.
  • the preparation method is the same as that of device example 1, the difference is that the wide bandgap host material Host used in the light-emitting layer is replaced by a TADF-type host TD, and the specific device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye used in the light-emitting layer is replaced by 23 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced by 23 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye in the light-emitting layer is replaced by 34 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced by 34 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye in the light-emitting layer is replaced by 41 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced by 41 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye in the light-emitting layer is replaced by 73 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced by 73 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye in the light-emitting layer is replaced by 79 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced from 1 to 79.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye in the light-emitting layer is replaced by 85 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced by 85 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the dye in the light-emitting layer is replaced by 93 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of Device Example 1, except that the wide bandgap host material Host in the light-emitting layer is replaced by a TADF host TD, and the dye is replaced by 93 from 1.
  • the device structure is as follows:
  • the preparation method is the same as that of device example 1, the difference is that the compound 1 of the present invention used in the light-emitting layer is replaced by compound P1 in the prior art, and the specific device structure is as follows:
  • the preparation method is the same as that of device example 2, the difference is that the compound 1 of the present invention used in the light-emitting layer is replaced by compound P1 in the prior art, and the specific device structure is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种稠环化合物及其应用以及包含其的有机电致发光器件,属于半导体技术领域。本发明的这类稠环化合物具有如下式(1)或式(2)所示的结构,其中以特定碳原子数的芳环或杂芳环为核心并稠合有两个相同的含硼基团,从而实现本发明的稠环化合物具有窄半峰宽、高荧光量子产率,并且同时具有高的玻璃化转变温度和分子热稳定性,以及具有合适的HOMO和LUMO能级。本发明化合物可用作有机电致发光器件的发光层掺杂材料,可实现提升器件的发光色纯度和寿命。

Description

一种稠环化合物及其应用以及包含其的有机电致发光器件 技术领域
本发明涉及有机电致发光技术领域,特别涉及一种稠环化合物及其应用、以及包含该化合物的有机电致发光器件。
背景技术
有机电致发光器件(OLED:Organic Light Emission Diodes)是一类具有类三明治结构的器件,包括正负电极膜层及夹在电极膜层之间的有机功能材料层。由于OLED器件具有亮度高、响应快、视角宽、工艺简单、可柔性化等优点,在新型显示技术领域和新型照明技术领域备受关注。目前,该技术已被广泛应用于新型照明灯具、智能手机及平板电脑等产品的显示面板,进一步还将向电视等大尺寸显示产品应用领域扩展,是一种发展快、技术要求高的新型显示技术。
随着OLED在照明和显示两大领域的不断推进,人们对于其核心材料的研究也更加关注,因为一个效率好、寿命长的OLED器件通常是器件结构以及各种有机材料的优化搭配的结果。为了制备驱动电压更低、发光效率更好、器件使用寿命更长的OLED发光器件,实现OLED器件的性能不断提升,不仅需要对OLED器件结构和制作工艺进行创新,更需要对OLED器件中的光电功能材料不断研究和创新,以制备出具有更高性能的功能材料。基于此,OLED材料界一直致力于开发新的有机电致发光材料以实现器件低启动电压、高发光效率和更优的使用寿命。
在OLED材料的选择上,单线态发光的荧光材料寿命好,价格低廉,但是效率低;三线态发光的磷光材料效率高,但是价格昂贵,而且蓝光材料的寿命问题一直没有解决。日本九州大学的Adachi提出了一类新的有机发光材料,即热活化延迟荧光(TADF)材料。该类材料的单线态-三线态能隙(ΔE ST)非常小(<0.3eV),三线态激子可以通过反向系间窜越(RISC)转变成单线态激子发光,因此器件的内量子效率可以达到100%。
MR-TADF材料具有高色纯度和高发光效率的优点,引起了科研界和产业界的广泛关注。但是,由于外围取代基对S 1能级影响很小,即很难对材料的发光颜色进行调控,其光色也一直局限在蓝光-深蓝光区域,大大限制了MR-TADF材料在高分辨显示、全彩显示以及白光照明领域等的进一步应用。
发明内容
为解决上述技术问题,本发提供了一种全新结构的稠环化合物,具有如下式(1)或式(2)所示的结构:
Figure PCTCN2022091381-appb-000001
式(1)、式(2)中,Y 1和Y 2分别独立地表示为O、S、CR 1或N;
A 1、A 2分别独立地表示单键、O、S、CR 2或NR 3
环D表示为氢,或者环D表示为取代或未取代的C5~C20的芳环、取代或未取代的C4~C60杂芳环中的任意一种;
环E表示为取代或未取代的C5~C20的芳环、取代或未取代的C4~C60杂芳环中的任意一种;
Z 1-Z 12分别独立地表示为N原子或CR 4,相邻的两个R 4之间可相互键结成环;
R 1、R 2、R 3和R 4分别独立地选自氢、氘、氚、氰基、卤素、取代或未取代的C1~C10烷基、取代或未取代的C3~C10环烷基、取代或未取代的C1~C10烷氧基、取代或未取代的C6~C30芳氧基、C6~C30的芳基氨基、C3~C30杂芳基氨基、取代或未取代的C6~C30芳基、取代或未取代的C2~C30杂芳基中的任意一种;
当上述环D、环E上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种;
当上述R 1、R 2、R 3和R 4上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种。
进一步的,上述式(1)、式(2)中,所述环D表示为氢或者表示为取代或未取代的C 10芳环、取代或未取代的C 12芳环、取代或未取代的C 14芳环、取代或未取代的C 16芳环、取代或未取代的C 18芳环、取代或未取代的C 20芳环、取代或未取代的C 10的杂芳环、取代或未取代的C 12杂芳环、取代或未取代的C 14的杂芳环、取代或未取代的C 16的杂芳环、取代或未取代的C 18的杂芳环、取代或未取代的C 22的杂芳环中的任一种;
所述环E表示为取代或未取代的C 10芳环、取代或未取代的C 12芳环、取代或未取代的C 14芳环、取代或未取代的C 16芳环、取代或未取代的C 18芳环、取代或未取代的C 20芳环、取代或未取代的C 10的杂 芳环、取代或未取代的C 12杂芳环、取代或未取代的C 14的杂芳环、取代或未取代的C 16的杂芳环、取代或未取代的C 18的杂芳环、取代或未取代的C 22的杂芳环中的任一种;
当上述环D、环E上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C10的链状烷基、C3~C10的环烷基、C1~C8的烷氧基、氰基、C6~C20的芳基氨基、C3~C2杂芳基氨基、C6~C30的单环芳基、C6~C30的稠环芳基、C6~C30的芳氧基、C5~C30的单环杂芳基、C5~C30的稠环杂芳基中的任一种。
再进一步的,上述式(1)、式(2)中,所述环D表示为氢或者表示为C4~C60杂芳环,所述杂芳环中的杂原子选自氧原子、硫原子、硼原子或氮原子中至少的一种;优选的,所述芳环中的杂原子选自硼原子或氮原子中至少的一种;
所述环E表示为C4~C60杂芳环,所述杂芳环中的杂原子选自氧原子、硫原子、硼原子或氮原子中至少的一种;优选的,所述芳环中的杂原子选自硼原子或氮原子中至少的一种。
更进一步的,上述式(1)、式(2)中,所述环D表示为氢或者为如下式(a)或式(b)所示的结构,环E表示为如下式(a)或式(b)所示的结构:
Figure PCTCN2022091381-appb-000002
式(a)、式(b)中,虚线代表与式(1)、式(2)的母核中的连接位置;
式(a)中,Y 3代表为式(1)、式(2)中的Y 1和/或Y 2
式(a)中,X 1-X 11分别独立地表示为N原子或CR 5,相邻的两个R 5之间可相互键结成环;
式(b)中,Y 4代表为式(1)、式(2)中的Y 1和/或Y 2,Y 5表示O、S、CR 6或N;
式(b)中,X 21-X 35分别独立地表示为N原子或CR 7,相邻的两个R 7之间可相互键结成环;
R 5、R 6和R 7分别独立地选自氢、氘、氚、氰基、卤素、取代或未取代的C1~C10烷基、取代或未取代的C3~C10环烷基、取代或未取代的C1~C10烷氧基、取代或未取代的C6~C30芳氧基、C6~C30的芳基氨基、C3~C30杂芳基氨基、取代或未取代的C6~C30芳基、取代或未取代的C2~C30杂芳基中的任意一种;
当上述R 5、R 6和R 7上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60 的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种。
优选的,本发明的稠环化合物,具有如下式(1-1)、式(1-2)、式(1-3)、式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)、式(1-9)、式(1-10)、式(2-1)、式(2-2)、式(2-3)、式(2-4)或式(2-5)中任一所示的结构:
Figure PCTCN2022091381-appb-000003
Figure PCTCN2022091381-appb-000004
式(1-1)、式(1-2)、式(1-3)、式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)、式(1-9)、式(1-10)、式(2-1)、式(2-2)、式(2-3)、式(2-4)、式(2-5)中,Y 1、Y 2、Z 1-Z 12的定义与在式(1)、式(2)中的定义相同,Y 3、Y 4、Y 5、X 1-X 11、X 21-X 35的定义与在式(a)、式(b)中的定义相同。
进一步的,上述通式中,所述X 1-X 11分别独立地表示为CR 5,所述X 21-X 35分别独立地表示为CR 7
进一步的,上述通式中,所述Z 1-Z 5分别独立地表示为CR 4,所述Z 9-Z 12分别独立地表示为CR 4
本发明中,所述的“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。
在本说明书中,Ca~Cb的表达方式代表该基团具有的碳原子数为a~b,除非特殊说明,一般而言该碳原子数不包括取代基的碳原子数。
在本说明书中,“各自独立地”表示其主语具有多个时,彼此之间可以相同也可以不同。
本发明中,所述取代或未取代的C6-C60芳基包括单环芳基和稠环芳基,优选C6-C30芳基,进一步优选C6-C20芳基。所谓单环芳基是指分子中含有至少一个苯基,当分子中含有至少两个苯基时,苯基之间相互独立,通过单键进行连接,示例性地如:苯基、联苯基、三联苯基等。具体而言,所述联苯基包括2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基。稠环芳基是指分子中含有至少两个芳环,且芳环之间并不相互独立而是共用两个相邻的碳原子互相稠合的基团。示例性地如:萘基、蒽基、菲基、茚基、芴基、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2022091381-appb-000005
基、并四苯基及它们的衍生基团等。所述萘基包括1-萘基或2-萘基;所述蒽基选自1-蒽基、2-蒽基和9-蒽基;所述芴基选自1-芴基、2-芴基、3-芴基、4-芴基和9-芴基;所述芘基选自1-芘基、2-芘基和4-芘基;所述并四苯基选自1-并四苯基、2-并四苯基和9-并四苯基。所述芴的衍生基团选自9,9-二甲基芴基、9,9-二乙基芴基、9,9-二丙基芴基、9,9-二丁基芴基、9,9-二戊基芴基、9,9-二己基芴基、9,9-二苯基芴基、9,9-二萘基芴基、9,9’-螺二芴和苯并芴基。
本发明中提到的C3~C60杂芳基包括单环杂芳基和稠环杂芳基,优选C3-C30的杂芳基,进一步优选为C4-C20杂芳基,更优选为C5-C12杂芳基。单环杂芳基是指分子中含有至少一个杂芳基,当分子中含有一个杂芳基和其他基团(如芳基、杂芳基、烷基等)时,杂芳基和其他基团之间相互独立,通过单键进行连接,单环杂芳基可举出例如:呋喃基、噻吩基、吡咯基、吡啶基等。稠环杂芳基是指分子中至少含有一个芳杂环和一个具有芳香性的环(芳杂环或芳环),且二者之间并不相互独立而是共用两个相邻的原子互相稠合的基团。稠环杂芳基的例子可以举出:苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基、吖啶基、异苯并呋喃基、异苯并噻吩基、苯并咔唑基、氮杂咔唑基、吩噻嗪基、吩嗪基、9-苯基咔唑基、9-萘基咔唑基、二苯并咔唑基、吲哚并咔唑基等。
本发明中,所述的杂原子通常指选自N、O、S、P、Si和Se中的原子或原子团,优选为N、O、S。
本说明书中,作为卤素的例子可举出:氟、氯、溴、碘等。
作为本发明涉及化合物的优选结构,可以举出以下具体化合物1至化合物112,这些化合物仅为代表性的:
Figure PCTCN2022091381-appb-000006
Figure PCTCN2022091381-appb-000007
Figure PCTCN2022091381-appb-000008
Figure PCTCN2022091381-appb-000009
Figure PCTCN2022091381-appb-000010
作为本发明的另一个方面,在于提供一种上述的化合物的应用,所述化合物应用于有机电子器件。
优选地,所述有机电子器件包括有机电致发光器件、光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸,最优选为有机电致发光器件。
具体说,本发明提供的化合物优选在有机电致发光器件中作为发光层材料的应用,更优选为在有机电致发光器件中的发光层中作为发光层中的材料,具体说可以应用作为发光染料。
本发明还提供一种有机电致发光器件,包括基板,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的一层或多层有机层,其中,所述有机层包含本发明如上所述的稠环通式化合物中的任一所示的化合物。
具体而言,本发明的实施方案提供了一种有机电致发光器件,包括基板,以及依次形成在所述基板上的阳极层、多个发光功能层和阴极层;所述的发光功能层包括空穴注入层、空穴传输层、发光层、电子传输层,所述的空穴注入层形成在所述的阳极层上,所述的空穴传输层形成在所述的空穴注入层上,所述的阴极层形成在所述的电子传输层上,所述的空穴传输层与所述的电子传输层之间为发光层;其中,优选的,所述的发光层中含有上述通式(1)、通式(2)、式(1-1)、式(1-2)、式(1-3)、式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)、式(1-9)、式(1-10)、式(2-1)、式(2-2)、式(2-3)、式(2-4)或式(2-5)中任一所示的本发明的通式化合物。
上述本发明化合物用作有机电致发光器件中的发光层材料性能优异的具体原因尚不明确,推测可能是以下的原因:
MR-TADF材料具有高色纯度和高发光效率的优点,引起了科研界和产业界的广泛关注。目前MR-TADF器件在天蓝光-深蓝光区域能够实现半峰宽(FWHM)小于30纳米的高色纯度发光,然而在长波长(大于520纳米)区域其半峰宽往往较宽(FWHM一般在40纳米以上)。这是由于,为了实现MR—TADF光谱的有效红移,需要引入较强的电荷转移态,从而导致分子基态和激发态构型变化较大,因此其半峰宽往往较宽。为此,本发明基于功能模块化设计,设计了这类稠环化合物(通式如下),一方面BN母核负责窄光谱发光;另一方面,具有对位给体-Π-给体特征的芳香稠环负责光谱的红移,从而能够实现全光色范围内MR-TADF材料极窄的半峰宽(小于25纳米)。
Figure PCTCN2022091381-appb-000011
本发明的稠环化合物具有窄半峰宽、高荧光量子产率,并且同时具有高的玻璃化转变温度和分子热稳定性,以及具有合适的HOMO和LUMO能级。采用本发明的这类稠环化合物制备的OLED器件电致发光光谱,具有较窄的半峰宽,表现出明显的多重共振效果,从而极大地丰富了多重共振-热活 化延迟荧光的材料体系和发光颜色范围;并且具有低启动电压、高发光效率和更优的使用寿命,能够满足当前面板制造企业对高性能材料的要求,表现出良好的应用前景。
附图说明
图1:本发明所制备的有机电致发光器件的结构示意图,其中:1为基板、2为阳极、3为空穴传输层、4为有机发光层、5为电子传输层、6为阴极。
具体实施方式
下面将以多个合成实施例为例来详述本发明的上述新化合物的具体制备方法,但本发明的制备方法并不限于这些合成实施例。
本发明中所用的各种化学药品如石油醚、叔丁苯、乙酸乙酯、硫酸钠、甲苯、二氯甲烷、碳酸钾、三溴化硼、N,N-二异丙基乙胺、反应中间体等基础化工原料均购自上海泰坦科技股份有限公司和西陇化工股份有限公司。确定下述化合物所用的质谱仪采用的是ZAB-HS型质谱仪测定(英国Micromass公司制造)。
下面对本发明化合物的合成方法进行简要的说明,首先,利用正丁基锂或叔丁基锂等对X 1、X 2、X 3与X 4之间/上的氢、Cl原子进行邻位金属化。继而,添加三溴化硼进行锂-硼的金属交换后,添加N,N-二异丙基乙基胺等布朗斯特碱(Bronsted base),由此进行串联式硼杂弗里德-克拉夫茨反应(Tandem Bora-Friedel-Crafts Reaction),而可获得目标物。
合成实施例
合成实施例1:
Figure PCTCN2022091381-appb-000012
化合物1的合成
Figure PCTCN2022091381-appb-000013
将叔丁基锂的戊烷溶液(6.06mL,1.60M,9.70mmol)缓慢加入到0℃的1-1(2.00g,4.85mmol)的叔丁苯(60mL)溶液中,而后依次升温至60℃各反应3小时。反应结束后降温至-30℃,缓慢加入三溴化硼(2.43g,9.70mmol),室温继续搅拌0.5小时。室温下加入N,N-二异丙基乙胺(1.88g,14.55mmol),并在145℃下继续反应5小时后降至室温,滴加苯基溴化镁(1.76g,9.70mmol),室温反应8小时后停止。真空旋干溶剂,过硅胶柱(展开剂:乙酸乙酯:石油醚=50:1),得目标 化合物1(1.02g,25%收率,HPLC分析纯度99.46%),为绿色固体。MALDI-TOF-MS结果:分子离子峰:419.45元素分析结果:理论值:C,85.94;H,4.33;B,2.58;N,3.34;O,3.82(%);实验值:C,85.64;H,4.45;B,2.28;N,3.74;O,3.89(%)。
合成实施例2:
Figure PCTCN2022091381-appb-000014
化合物23的合成
Figure PCTCN2022091381-appb-000015
将叔丁基锂的戊烷溶液(6.06mL,1.60M,9.70mmol)缓慢加入到0℃的23-1(3.17g,4.85mmol)的叔丁苯(60mL)溶液中,而后依次升温至60℃各反应3小时。反应结束后降温至-30℃,缓慢加入三溴化硼(2.43g,9.70mmol),室温继续搅拌0.5小时。室温下加入N,N-二异丙基乙胺(1.88g,14.55mmol),并在145℃下继续反应5小时后后停止。真空旋干溶剂,过硅胶柱(展开剂:乙酸乙酯:石油醚=50:1),得目标化合物23(0.45g,16%收率,HPLC分析纯度99.26%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:583.46元素分析结果:理论值:C,86.45;H,4.49;B,1.85;N,7.20(%);实验值:C,86.75;H,4.41;B,1.55;N,7.28(%)。
合成实施例3:
Figure PCTCN2022091381-appb-000016
化合物34的合成
Figure PCTCN2022091381-appb-000017
本实施例与化合物1合成基本相同,其不同之处在于:本例中需将1-1换为等物质的量的34-1,基苯溴化镁替换为等物质的量的2,4,6-三甲基苯溴化镁。目标化合物34(1.55g,24%收率,HPLC分析纯度99.66%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:664.38元素分析结果:理论值:C,86.77;H,5.76;B,3.25;N,4.22(%);实验值:C,86.67;H,5.86;B,3.05;N,4.42(%)。
合成实施例4:
Figure PCTCN2022091381-appb-000018
化合物41的合成
Figure PCTCN2022091381-appb-000019
本实施例与化合物23合成基本相同,其不同之处在于:本例中需将23-1换为等物质的量的41-1。目标化合物41(0.74g,10%收率,HPLC分析纯度99.36%),为黯红色固体。MALDI-TOF-MS结果:分子离子峰:758.45元素分析结果:理论值:C,85.51;H,4.25;B,2.85;N,7.39(%);实验值:C,85.61;H,4.15;B,2.95;N,7.29(%)。
Elemental Analysis:C,85.51;H,4.25;B,2.85;N,7.39
合成实施例5:
Figure PCTCN2022091381-appb-000020
化合物49的合成
Figure PCTCN2022091381-appb-000021
本实施例与化合物23合成基本相同,其不同之处在于:本例中需将23-1换为等物质的量的49-1。目标化合物49(1.74g,25%收率,HPLC分析纯度99.36%),为红色固体。MALDI-TOF-MS结果:分子离子峰:608.35元素分析结果:理论值:C,82.93;H,3.65;B,3.55;N,4.61;O,5.26(%);实验值:C,82.73;H,3.65;B,3.75;N,4.41;O,5.46。
合成实施例6:
Figure PCTCN2022091381-appb-000022
化合物67的合成
Figure PCTCN2022091381-appb-000023
本实施例与化合物34合成基本相同,其不同之处在于:本例中需将34-1换为等物质的量的67-1。目标化合物67(0.84g,13%收率,HPLC分析纯度99.85%),为橙红色固体。MALDI-TOF-MS结果:分子离子峰:664.02元素分析结果:理论值:C,86.77;H,5.76;B,3.25;N,4.22(%);实验值:C,86.57;H,5.96;B,3.45;N,4.02(%)。
合成实施例7:
Figure PCTCN2022091381-appb-000024
化合物73的合成
Figure PCTCN2022091381-appb-000025
本实施例与化合物23合成基本相同,其不同之处在于:本例中需将23-1换为等物质的量的73-1。目标化合物73(1.69g,23%收率,HPLC分析纯度99.63%),为红色固体。MALDI-TOF-MS结果:分子离子峰:758.35元素分析结果:理论值:C,85.51;H,4.25;B,2.85;N,7.39(%);实验值:C,85.51;H,4.25;B,2.85;N,7.39(%)。
合成实施例8:
Figure PCTCN2022091381-appb-000026
化合物79的合成
Figure PCTCN2022091381-appb-000027
本实施例与化合物23合成基本相同,其不同之处在于:本例中需将23-1换为等物质的量的73-1。目标化合物79(1.69g,23%收率,HPLC分析纯度99.23%),为红色固体。MALDI-TOF-MS结果:分子离子峰:758.35元素分析结果:理论值:C,85.51;H,4.25;B,2.85;N,7.39(%);实验值:C,85.51;H,4.25;B,2.85;N,7.39(%)。
合成实施例9:
Figure PCTCN2022091381-appb-000028
化合物85的合成
Figure PCTCN2022091381-appb-000029
本实施例与化合物23合成基本相同,其不同之处在于:本例中需将23-1换为等物质的量的85-1。目标化合物85(1.00g,13%收率,HPLC分析纯度99.76%),为红色固体。MALDI-TOF-MS结果:分子离子峰:790.25元素分析结果:理论值:C,82.05;H,4.08;B,2.73;N,7.09;O,4.05(%);实验值:C,82.35;H,4.05;B,2.43;N,7.09;O,4.08(%)。
合成实施例10:
Figure PCTCN2022091381-appb-000030
化合物93的合成
Figure PCTCN2022091381-appb-000031
本实施例与化合物23合成基本相同,其不同之处在于:本例中需将23-1换为等物质的量的93-1。目标化合物93(1.20g,16%收率,HPLC分析纯度99.25%),为红色固体。MALDI-TOF-MS结果:分子离子峰:774.25元素分析结果:理论值:C,83.74;H,4.16;B,2.79;N,7.23;O,2.07(%);实验值:C,83.84;H,4.06;B,2.99;N,7.03;O,2.07(%)。
下通过将本发明的化合物具体应用到有机电致发光器件中测试实际使用性能来展示和验证本发明的技术效果和优点。
有机电致发光器件包括第一电极、第二电极,以及位于两个电极之间的有机材料层。该有机材料又可以分为多个区域,比如该有机材料层可以包括空穴传输区、发光层、电子传输区。
阳极的材料可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。阴极的材料可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构。
空穴传输区的材料可以选自但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物等。
发光层包括可以发射不同波长光谱的的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层 和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
结合附图1说明有机电致发光器件制备过程如下:在基板1上依次沉积阳极2、空穴传输层3、有机发光层4、电子传输层5、阴极6,然后封装。其中,在制备有机发光层4时,通过宽带隙材料源、电子给体型材料源、电子受体型材料源和共振型TADF材料源共同蒸镀的方法形成有机发光层4。
具体地,本发明的有机电致发光器件的制备方法包括以下步骤:
1、将涂布了阳极材料的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
2、把上述带有阳极的玻璃板置于真空腔内,抽真空至1×10 -5~9×10 -3Pa,在上述阳极层膜上真空蒸镀空穴注入材料形成空穴注入层,蒸镀速率为0.1-0.5nm/s;
3、在空穴注入层之上真空蒸镀空穴传输材料形成空穴传输层,蒸镀速率为0.1-0.5nm/s,
4、在空穴传输层之上真空蒸镀电子阻挡层,蒸镀速率为0.1-0.5nm/s;
5、在电子阻挡层之上真空蒸镀器件的有机发光层,有机发光层材料中包括主体材料和TADF染料,利用多源共蒸的方法,调节主体材料的蒸镀速率、敏化剂材料的蒸镀速度和染料的蒸镀速率使染料达到预设掺杂比例;
6、在有机发光层之上真空蒸镀空穴阻挡层,其蒸镀速率为0.1-0.5nm/s;
7、在空穴阻挡层之上真空蒸镀器件的电子传输材料形成电子传输层,其蒸镀速率为0.1-0.5nm/s;
8、在电子传输层上以0.1-0.5nm/s真空蒸镀LiF作为电子注入层,以0.5-1nm/s真空蒸镀Al层作为器件的阴极。
本发明实施例还提供一种显示装置,所述显示装置包括如上述提供的有机电致发光器件。该显示装置具体可以为OLED显示器等显示器件,以及包括该显示器件的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置与上述有机电致发光器件相对于现有技术所具有的优势相同,在此不再赘述。
以下通过具体实施例对本发明的有机电致发光器件进行进一步的介绍。
器件实施例1
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%1(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为10nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为40nm;Host为有机发光 层宽带隙的主体材料,本发明化合物P-4为染料且掺杂浓度为3wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
针对本实施例制备得到的有机电致发光器件D1施加直流电压,测定10cd/m 2发光时的特性,可获得波长450nm、半峰宽22nm、CIE色坐标(x,y)=(0.12,0.09)、外量子效率EQE为28.8%的蓝色发光(驱动电压为2.6V)。
器件实施例2
与器件实施例1的制备方法相同,区别在于,将发光层中采用的宽带隙型主体材料Host替换为TADF型主体TD,具体器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%1(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D2测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长450nm、半峰宽22nm、CIE色坐标(x,y)=(0.13,0.09)、外量子效率EQE为34.8%的蓝色发光(驱动电压为2.4V)。
器件实施例3
与器件实施例1的制备方法相同,区别在于,将发光层中所采用的染料由1替换为23。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%23(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D3测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长466nm、半峰宽23nm、CIE色坐标(x,y)=(0.12,0.11)、外量子效率EQE为27.3%的蓝色发光(驱动电压为2.6V)。
器件实施例4
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为23。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%23(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D4测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长466nm、半峰宽23nm、CIE色坐标(x,y)=(0.12,0.10)、外量子效率EQE为33.5%的蓝色发光(驱动电压为2.4V)。
器件实施例5
与器件实施例1的制备方法相同,区别在于,将发光层中的染料由1替换为34。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%34(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D5测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长520nm、半峰宽25nm、CIE色坐标(x,y)=(0.21,0.72)、外量子效率EQE为29.3%的绿色发光(驱动电压为2.3V)。
器件实施例6
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为34。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%34(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D6测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长520nm、半峰宽25nm、CIE色坐标(x,y)=(0.21,0.72)、外量子效率EQE为34.6%的绿色发光(驱动电压为2.2V)。
器件实施例7
与器件实施例1的制备方法相同,区别在于,将发光层中的染料由1替换为41。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%41(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D7测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长600nm、半峰宽27nm、CIE色坐标(x,y)=(0.36,0.64)、外量子效率EQE为23.3%的橙色发光(驱动电压为2.4V)。
器件实施例8
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为41。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%41(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D8测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长600nm、半峰宽27nm、CIE色坐标(x,y)=(0.36,0.64)、外量子效率EQE为30.3%的橙色发光(驱动电压为2.4V)。
器件实施例9
与器件实施例1的制备方法相同,区别在于,将发光层中的染料由1替换为73。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%73(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D9测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长590nm、半峰宽26nm、CIE色坐标(x,y)=(0.32,0.62)、外量子效率EQE为25.3%的橙色发光(驱动电压为2.5V)。
器件实施例10
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为73。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%73(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D10测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长590nm、半峰宽26nm、CIE色坐标(x,y)=(0.32,0.62)、外量子效率EQE为31.3%的橙色发光(驱动电压为2.5V)。
器件实施例11
与器件实施例1的制备方法相同,区别在于,将发光层中的染料由1替换为79。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%79(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D11测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长570nm、半峰宽26nm、CIE色坐标(x,y)=(0.34,0.60)、外量子效率EQE为28.3%的橙色发光(驱动电压为2.5V)。
器件实施例12
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为79。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%79(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D12测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长570nm、半峰宽26nm、CIE色坐标(x,y)=(0.34,0.60)、外量子效率EQE为32.3%的橙色发光(驱动电压为2.5V)。
器件实施例13
与器件实施例1的制备方法相同,区别在于,将发光层中的染料由1替换为85。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%85(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D13测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长630nm、半峰宽28nm、CIE色坐标(x,y)=(0.70,0.30)、外量子效率EQE为24.6%的红色发光(驱动电压为2.3V)。
器件实施例14
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为85。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%85(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D14测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长630nm、半峰宽28nm、CIE色坐标(x,y)=(0.70,0.30)、外量子效率EQE为31.6%的红色发光(驱动电压为2.3V)。
器件实施例15
与器件实施例1的制备方法相同,区别在于,将发光层中的染料由1替换为93。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/Host:3wt%93(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D15测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长620nm、半峰宽28nm、CIE色坐标(x,y)=(0.69,0.31)、外量子效率EQE为23.6%的红色发光(驱动电压为2.3V)。
器件实施例16
与器件实施例1的制备方法相同,区别在于,将发光层中的宽带隙型主体材料Host替换为TADF型主体TD、将染料由1替换为93。器件结构如下:
ITO/HI(10nm)/HT(30nm)/EBL(10nm)/TD:3wt%93(30nm)/HBL(10nm)ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件D16测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长620nm、半峰宽28nm、CIE色坐标(x,y)=(0.69,0.31)、外量子效率EQE为32.4%的红色发光(驱动电压为2.2V)。
对比器件实施例1
与器件实施例1的制备方法相同,区别在于,将发光层中采用的本发明的化合物1替换为现有技术中的化合物P1,具体器件结构如下:
ITO/HI(10nm)/HT(40nm)/Host:3wt%P1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件DD1测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长520nm、半峰宽43nm、CIE色坐标(x,y)=(0.22,0.68)、外量子效率EQE为26.8%的蓝色发光(驱动电压为2.5V)。
对比器件实施例2
与器件实施例2的制备方法相同,区别在于,将发光层中采用的本发明的化合物1替换为现有技术中的化合物P1,具体器件结构如下:
ITO/HI(10nm)/HT(40nm)/TD:3wt%P1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
针对本实施例制备得到的有机电致发光器件DD2测定器件性能结果如下:施加直流电压,测定10cd/m 2发光时的特性,可获得波长520nm、半峰宽45nm、CIE色坐标(x,y)= (0.22,0.68)、外量子效率EQE为30.2%的蓝色发光(驱动电压为2.5V)。
上述各个实施例中所采用的各类有机材料的结构式如下:
Figure PCTCN2022091381-appb-000032
Figure PCTCN2022091381-appb-000033
上述各个器件实施例所制备的的有机电致发光器件D1至器件D16以及器件DD1和DD2的具体性能数据详见下表1。
表1:
Figure PCTCN2022091381-appb-000034
Figure PCTCN2022091381-appb-000035
以上实验数据表明,本发明的化合物通过对经典MR-TADF材料共轭骨架进行扩增、引入更多的氮原子或硼原子,在保持BN刚性骨架较大HOMO、LUMO轨道重叠的同时,实现目标MR-TADF材料明显的红移行为。从电致发光光谱的半峰宽可以看到,实施例中确认具有有效的多重共振效果,从而极大地丰富了多重共振-热活化延迟荧光的材料体系和发光颜色范围,具有良好的应用前景。
尽管结合实施例对本发明进行了说明,但本发明并不局限于上述实施例,应当理解,在本发明构思的引导下,本领域技术人员可进行各种修改和改进,所附权利要求概括了本发明的范围。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种稠环化合物,具有如下式(1)或式(2)所示的结构:
    Figure PCTCN2022091381-appb-100001
    式(1)、式(2)中,Y 1和Y 2分别独立地表示为O、S、CR 1或N;
    A 1、A 2分别独立地表示单键、O、S、CR 2或NR 3
    环D表示为氢,或者环D表示为取代或未取代的C5~C20的芳环、取代或未取代的C4~C60杂芳环中的任意一种;
    环E表示为取代或未取代的C5~C20的芳环、取代或未取代的C4~C60杂芳环中的任意一种;
    Z 1-Z 12分别独立地表示为N原子或CR 4,相邻的两个R 4之间可相互键结成环;
    R 1、R 2、R 3和R 4分别独立地选自氢、氘、氚、氰基、卤素、取代或未取代的C1~C10烷基、取代或未取代的C3~C10环烷基、取代或未取代的C1~C10烷氧基、取代或未取代的C6~C30芳氧基、C6~C30的芳基氨基、C3~C30杂芳基氨基、取代或未取代的C6~C30芳基、取代或未取代的C2~C30杂芳基中的任意一种;
    当上述环D、环E上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种;
    当上述R 1、R 2、R 3和R 4上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种。
  2. 根据权利要求1所述的稠环化合物,所述环D表示为氢或者表示为取代或未取代的C 10芳环、取代或未取代的C 12芳环、取代或未取代的C 14芳环、取代或未取代的C 16芳环、取代或未取代的C 18芳 环、取代或未取代的C 20芳环、取代或未取代的C 10的杂芳环、取代或未取代的C 12杂芳环、取代或未取代的C 14的杂芳环、取代或未取代的C 16的杂芳环、取代或未取代的C 18的杂芳环、取代或未取代的C 22的杂芳环中的任一种;
    所述环E表示为取代或未取代的C 10芳环、取代或未取代的C 12芳环、取代或未取代的C 14芳环、取代或未取代的C 16芳环、取代或未取代的C 18芳环、取代或未取代的C 20芳环、取代或未取代的C 10的杂芳环、取代或未取代的C 12杂芳环、取代或未取代的C 14的杂芳环、取代或未取代的C 16的杂芳环、取代或未取代的C 18的杂芳环、取代或未取代的C 22的杂芳环中的任一种;
    当上述环D、环E上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C10的链状烷基、C3~C10的环烷基、C1~C8的烷氧基、氰基、C6~C20的芳基氨基、C3~C2杂芳基氨基、C6~C30的单环芳基、C6~C30的稠环芳基、C6~C30的芳氧基、C5~C30的单环杂芳基、C5~C30的稠环杂芳基中的任一种。
  3. 根据权利要求1所述的稠环化合物,所述环D表示为氢或者表示为C4~C60杂芳环,所述杂芳环中的杂原子选自氧原子、硫原子、硼原子或氮原子中至少的一种;优选的,所述芳环中的杂原子选自硼原子或氮原子中至少的一种;
    所述环E表示为C4~C60杂芳环,所述杂芳环中的杂原子选自氧原子、硫原子、硼原子或氮原子中至少的一种;优选的,所述芳环中的杂原子选自硼原子或氮原子中至少的一种。
  4. 根据权利要求1所述的稠环化合物,所述环D表示为氢或者为如下式(a)或式(b)所示的结构,环E表示为如下式(a)或式(b)所示的结构:
    Figure PCTCN2022091381-appb-100002
    式(a)、式(b)中,虚线代表与式(1)或式(2)的母核中的连接位置;
    式(a)中,Y 3代表为式(1)或式(2)中的Y 1和/或Y 2
    式(a)中,X 1-X 11分别独立地表示为N原子或CR 5,相邻的两个R 5之间可相互键结成环;
    式(b)中,Y 4代表为式(1)或式(2)中的Y 1和/或Y 2,Y 5表示O、S、CR 6或N;
    式(b)中,X 21-X 35分别独立地表示为N原子或CR 7,相邻的两个R 7之间可相互键结成环;
    R 5、R 6和R 7分别独立地选自氢、氘、氚、氰基、卤素、取代或未取代的C1~C10烷基、取代或未取代的C3~C10环烷基、取代或未取代的C1~C10烷氧基、取代或未取代的C6~C30芳氧基、C6~C30的芳基氨基、C3~C30杂芳基氨基、取代或未取代的C6~C30芳基、取代或未取代的C2~C30杂芳基中的任意一种;
    当上述R 5、R 6和R 7上存在取代基时,所述取代基团分别独立选自氘、卤素、C1~C30的链状烷基、C3~C30的环烷基、C1~C10的烷氧基、氰基、C6~C30的芳基氨基、C3~C30杂芳基氨基、C6~C60的单环芳基、C6~C60的稠环芳基、C6~C60的芳氧基、C5~C60的单环杂芳基、C5~C60的稠环杂芳基中的任一种。
  5. 根据权利要求1或4所述的稠环化合物,具有如下式(1-1)、式(1-2)、式(1-3)、式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)、式(1-9)、式(1-10)、式(2-1)、式(2-2)、式(2-3)、式(2-4)或式(2-5)中任一所示的结构:
    Figure PCTCN2022091381-appb-100003
    Figure PCTCN2022091381-appb-100004
    式(1-1)、式(1-2)、式(1-3)、式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)、式(1-9)、式(1-10)、式(2-1)、式(2-2)、式(2-3)、式(2-4)、式(2-5)中,Y 1、Y 2、Z 1-Z 12的定义与在式(1)、式(2)中的定义相同,Y 3、Y 4、Y 5、X 1-X 11、X 21-X 35的定义与在式(a)、式(b)中的定义相同。
  6. 根据权利要求5所述的稠环化合物,所述X 1-X 11分别独立地表示为CR 5,和/或,所述X 21-X 35分别独立地表示为CR 7
  7. 根据权利要求1或5所述的稠环化合物,所述Z 1-Z 5分别独立地表示为CR 4,和/或,所述Z 9-Z 12分别独立地表示为CR 4
  8. 根据权利要求1所述的稠环化合物,选自下述具体结构化合物:
    Figure PCTCN2022091381-appb-100005
    Figure PCTCN2022091381-appb-100006
    Figure PCTCN2022091381-appb-100007
    Figure PCTCN2022091381-appb-100008
    Figure PCTCN2022091381-appb-100009
  9. 权利要求1-8中任一所述的化合物的应用,所述应用为在有机电子器件中作为功能材料,所述有机电子器件包括有机电致发光器件、光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸;
    进一步,所述应用为在有机电致发光器件中作为发光层材料。
  10. 一种有机电致发光器件,该器件包括第一电极、第二电极和插入所述第一电极和第二电极之间的一层或多层有机层,其特征在于,所述有机层中包括至少一种由权利要求1-8中任一所述的化合物;
    进一步,所述的发光功能层包括空穴传输区、发光层、电子传输区,所述的空穴传输区形成在所述的阳极层上,所述的阴极层形成在所述的电子传输区上,所述的空穴传输区与所述的电子传输区之间为发光层,其中,所述发光层中含有权利要求1-8任一所述的化合物。
PCT/CN2022/091381 2021-05-10 2022-05-07 一种稠环化合物及其应用以及包含其的有机电致发光器件 WO2022237668A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023538057A JP2023554536A (ja) 2021-05-10 2022-05-07 縮合環化合物及びその応用、並びに該縮合環化合物を含む有機電界発光素子
KR1020237023510A KR20230113641A (ko) 2021-05-10 2022-05-07 축합 고리 화합물, 이의 응용 및 이를 포함하는 유기전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110506028.2A CN113173943A (zh) 2021-05-10 2021-05-10 一种稠环化合物及其应用以及包含其的有机电致发光器件
CN202110506028.2 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022237668A1 true WO2022237668A1 (zh) 2022-11-17

Family

ID=76928565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091381 WO2022237668A1 (zh) 2021-05-10 2022-05-07 一种稠环化合物及其应用以及包含其的有机电致发光器件

Country Status (4)

Country Link
JP (1) JP2023554536A (zh)
KR (1) KR20230113641A (zh)
CN (1) CN113173943A (zh)
WO (1) WO2022237668A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174992B (zh) * 2020-09-30 2023-05-02 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN116438184A (zh) * 2020-10-20 2023-07-14 日铁化学材料株式会社 发光材料、及有机电场发光元件
CN116368201A (zh) * 2020-10-23 2023-06-30 国立大学法人九州大学 含硼化合物、发光材料和使用该发光材料而得的发光元件
CN113173943A (zh) * 2021-05-10 2021-07-27 清华大学 一种稠环化合物及其应用以及包含其的有机电致发光器件
CN113402537A (zh) * 2021-07-15 2021-09-17 清华大学 一种有机化合物及其应用
CN114195809B (zh) * 2021-12-27 2023-11-14 中国科学院长春应用化学研究所 一种硼杂或磷杂稠环化合物及其制备方法和应用
CN114573597B (zh) * 2022-03-23 2024-01-26 浙江虹舞科技有限公司 一种具有多个大位阻基团围绕的含氮杂环化合物、发光材料及有机发光元件
WO2024090353A1 (ja) * 2022-10-27 2024-05-02 東レ株式会社 化合物、発光素子材料、発光素子、表示装置および照明装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031990A1 (de) * 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
CN108409762A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种通过能量共振形成的有机发光材料及其应用
CN108409761A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种有机发光材料及其应用
CN110407859A (zh) * 2019-07-18 2019-11-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN110407858A (zh) * 2019-07-18 2019-11-05 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN111153919A (zh) * 2020-01-08 2020-05-15 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111333671A (zh) * 2020-03-16 2020-06-26 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111377954A (zh) * 2018-12-29 2020-07-07 江苏三月光电科技有限公司 一种含硼的有机化合物及其在有机电致发光器件上的应用
CN111620897A (zh) * 2020-06-12 2020-09-04 合肥畅想照明科技有限公司 一种化合物及其应用
CN111662312A (zh) * 2020-06-08 2020-09-15 武汉天马微电子有限公司 一种化合物、热激活延迟荧光材料及其应用
JP2021020857A (ja) * 2019-07-24 2021-02-18 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
CN113173943A (zh) * 2021-05-10 2021-07-27 清华大学 一种稠环化合物及其应用以及包含其的有机电致发光器件
WO2022085714A1 (ja) * 2020-10-23 2022-04-28 国立大学法人九州大学 ホウ素含有化合物、発光材料およびそれを用いた発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835351A (zh) * 2018-08-15 2020-02-25 江苏三月光电科技有限公司 一种以吡咯亚甲基硼络合物为核心的有机化合物及其制备和应用
CN111423460B (zh) * 2020-03-31 2023-04-28 武汉天马微电子有限公司 一种化合物、显示面板和显示装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031990A1 (de) * 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
CN108409762A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种通过能量共振形成的有机发光材料及其应用
CN108409761A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种有机发光材料及其应用
CN111377954A (zh) * 2018-12-29 2020-07-07 江苏三月光电科技有限公司 一种含硼的有机化合物及其在有机电致发光器件上的应用
CN110407859A (zh) * 2019-07-18 2019-11-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN110407858A (zh) * 2019-07-18 2019-11-05 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
JP2021020857A (ja) * 2019-07-24 2021-02-18 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
CN111153919A (zh) * 2020-01-08 2020-05-15 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111333671A (zh) * 2020-03-16 2020-06-26 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111662312A (zh) * 2020-06-08 2020-09-15 武汉天马微电子有限公司 一种化合物、热激活延迟荧光材料及其应用
CN111620897A (zh) * 2020-06-12 2020-09-04 合肥畅想照明科技有限公司 一种化合物及其应用
WO2022085714A1 (ja) * 2020-10-23 2022-04-28 国立大学法人九州大学 ホウ素含有化合物、発光材料およびそれを用いた発光素子
CN113173943A (zh) * 2021-05-10 2021-07-27 清华大学 一种稠环化合物及其应用以及包含其的有机电致发光器件

Also Published As

Publication number Publication date
CN113173943A (zh) 2021-07-27
KR20230113641A (ko) 2023-07-31
JP2023554536A (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2022237668A1 (zh) 一种稠环化合物及其应用以及包含其的有机电致发光器件
CN110872316B (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN110407859B (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
CN112174992B (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
WO2022257817A1 (zh) 一种有机电致发光器件和显示装置
CN111153919B (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
WO2021008374A1 (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
WO2008069586A1 (en) New fluorene derivatives and organic electronic device using the same
CN113788852A (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
CN112778253B (zh) 有机化合物及含有其的有机电致发光器件
WO2023284103A1 (zh) 一种有机化合物及其应用
CN115197252A (zh) 一种有机化合物及其应用
CN114773210A (zh) 一种有机化合物及其应用
Rai et al. White organic light-emitting diodes based on blue fluorescent bis (2-(2-hydroxyphenyl) benzoxazolate) zinc [Zn (hpb) 2] doped with DCM dye
CN113861042A (zh) 一种化合物及其应用
WO2023093094A1 (zh) 一种有机电致发光器件及显示装置
WO2023273997A1 (zh) 一种有机化合物及其应用
WO2023273998A1 (zh) 一种化合物及其应用、一种有机电致发光器件
CN113402504A (zh) 一种有机化合物及其应用及采用该化合物的有机电致发光器件
CN115594596A (zh) 一种化合物及其应用
CN114478267A (zh) 用于发光器件的有机化合物及有机电致发光器件
CN113929646A (zh) 有机化合物及有机电致发光器件
CN112079786B (zh) 一种化合物、包含其的有机电子发光器件及其应用
CN112300179A (zh) 一种化合物、包含其的有机电子发光器件及其应用
CN116332977A (zh) 一种有机化合物及其应用以及包含其的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538057

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237023510

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806634

Country of ref document: EP

Kind code of ref document: A1