WO2022255226A1 - アルミナ粒子およびそれを用いた樹脂組成物 - Google Patents

アルミナ粒子およびそれを用いた樹脂組成物 Download PDF

Info

Publication number
WO2022255226A1
WO2022255226A1 PCT/JP2022/021614 JP2022021614W WO2022255226A1 WO 2022255226 A1 WO2022255226 A1 WO 2022255226A1 JP 2022021614 W JP2022021614 W JP 2022021614W WO 2022255226 A1 WO2022255226 A1 WO 2022255226A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
alumina particles
particles
resin composition
less
Prior art date
Application number
PCT/JP2022/021614
Other languages
English (en)
French (fr)
Inventor
邦彦 中田
一郎 有瀬
貴将 江川
泰治 島崎
上原 みちる 大門
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237044700A priority Critical patent/KR20240016998A/ko
Priority to CN202280039291.8A priority patent/CN117425622A/zh
Priority to EP22815976.0A priority patent/EP4349782A1/en
Publication of WO2022255226A1 publication Critical patent/WO2022255226A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/022Classification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present disclosure relates to alumina particles and resin compositions using the same.
  • Heat generated by energizing the electronic component is dissipated through the heat sink.
  • a technique of filling a space between an electronic component and a heat sink with a heat-dissipating material for the purpose of improving heat-dissipating efficiency is known.
  • the heat dissipating members there is a resin composition containing a resin and inorganic particles, and it is known that alumina particles can be used as the inorganic particles (for example, Patent Documents 1 to 3).
  • Patent Document 1 as alumina particles capable of improving the fluidity when highly filled in a resin, the ⁇ phase content is 40% or less, the average circularity is 0.95 or more, and the average particle size Alumina particles having a diameter of 100 ⁇ m or less are disclosed.
  • a method for producing alumina particles a technique is disclosed in which pulverized particles of electro-fused alumina are melted by a flame fusion method and water is sprayed into a furnace to rapidly cool the melt.
  • alumina particles capable of improving the viscosity and fluidity of a composition when blended with a resin or the like, the average sphericity is 0.93 or more and the ⁇ ratio of alumina is 95% or more.
  • Alumina particles are disclosed.
  • a method for producing alumina particles a method is disclosed in which metallic aluminum powder, alumina powder, or a mixture of both is used as a raw material, which is melted by flame fusion, cooled and solidified, and then reheated.
  • Patent Document 3 discloses a method of crushing electrofused alumina using a jet mill and removing edges of the electrofused alumina particles to obtain roundish electrofused alumina particles having an average particle diameter of 5 to 4000 ⁇ m.
  • Patent Documents 1 and 2 have not been studied for further improvement of the thermal conductivity of the resin composition.
  • the alumina particles of Patent Document 3 are mixed with a resin to form a resin composition, it cannot be said that the thermal conductivity is sufficient.
  • one embodiment of the present invention provides alumina particles used as a filler for a resin composition, which can improve the thermal conductivity of the resin composition more than before.
  • Another object of the present invention is to provide a resin composition using alumina particles.
  • Aspect 1 of the present invention is Alumina particles having a cumulative 50% particle diameter D50 of more than 100 ⁇ m from the fine particle side of the cumulative particle size distribution, an ⁇ conversion rate of 90% or more, and ⁇ -alumina being a single crystal.
  • Aspect 2 of the present invention is Alumina particles according to aspect 1, having a Na content of 800 ppm or less.
  • Aspect 3 of the present invention is The alumina particles according to aspect 1 or 2, wherein the cumulative 10% particle size D10 from the fine particle side of the cumulative particle size distribution is 70 to 135 ⁇ m.
  • Aspect 4 of the present invention is The alumina particles according to any one of aspects 1 to 3, wherein the cumulative 90% particle size D90 from the fine particle side of the cumulative particle size distribution is 130 to 200 ⁇ m.
  • Aspect 5 of the present invention is 5. Alumina particles according to any one of aspects 1-4, having a circularity of 0.90 to 1.00.
  • Aspect 6 of the present invention is Alumina particles according to any one of aspects 1 to 5, having a density of 3.80 g/cm 3 or more.
  • Aspect 7 of the present invention is A resin composition comprising a resin and the alumina particles according to any one of aspects 1-6.
  • a resin composition having high thermal conductivity can be obtained.
  • FIG. 1 is a schematic diagram showing an apparatus for carrying out a flame melting step in a method for producing alumina particles.
  • FIG. 2 is a conceptual diagram of a thermal diffusivity measuring apparatus for performing temperature wave thermal analysis (TWA method) on one alumina particle.
  • FIG. 3 is a schematic diagram for explaining the calculation method of the particle defect rate.
  • Alumina particles according to an embodiment of the present invention are used as a filler for a resin composition by being mixed with a resin.
  • the alumina particles have a cumulative 50% particle size D50 of more than 100 ⁇ m from the fine particle side of the cumulative particle size distribution, an ⁇ conversion rate of 90% or more, and ⁇ -alumina is a single crystal. By having these characteristics, the thermal conductivity of the resin composition can be improved. Each feature is described in detail below.
  • the cumulative 50% particle size D50 (hereinafter sometimes simply referred to as "D50") from the fine particle side of the cumulative particle size distribution exceeds 100 ⁇ m. It is presumed that when used as a filler for a resin composition, a resin composition with high thermal conductivity can be obtained for the following reasons.
  • the total surface area of the alumina particles per unit mass becomes small. Therefore, when producing a resin composition by mixing alumina particles and a resin at a predetermined ratio, by using alumina particles having a large average particle size, the total area (total area) of the interface between the alumina particles and the resin can be reduced to can be made smaller. Since the interface between the alumina particles and the resin scatters propagating phonons, it is considered that the thermal conductivity can be improved by reducing the total area of the interface.
  • the alumina particles according to the embodiment of the present invention have a D50 of more than 100 ⁇ m, the total area of the interface when mixed with a resin at a predetermined ratio can be reduced compared to when the D50 is 100 ⁇ m or less. , a resin composition with high thermal conductivity can be produced.
  • D50 of the alumina particles is preferably 105 ⁇ m or more, more preferably 110 ⁇ m or more, and particularly preferably 115 ⁇ m or more.
  • the upper limit is not particularly limited, it is preferably 160 ⁇ m or less, more preferably 155 ⁇ m or less, more preferably 150 ⁇ m or less, from the viewpoint of improving the kneadability with the resin and from the viewpoint of application to the filler for the resin composition. It is preferably 140 ⁇ m or less, particularly preferably 135 ⁇ m or less. If it exceeds 160 ⁇ m, it is highly likely that the circularity of the alumina particles will be low even in the embodiment of the present invention, which is not prefer
  • D50 of alumina particles is determined by measuring the particle size distribution of alumina particles based on the principle of dynamic image analysis conforming to ISO 13322-2, and using the cumulative particle size distribution obtained from the measurement results, the cumulative 50% from the fine particle side. Determine the particle size (D50).
  • a CAMSIZER manufactured by VERDER Scientific
  • samples are sequentially introduced into the device, and particles passing in front of the camera are measured while agglomerated particles are dispersed with dry air.
  • the thermal conductivity of the alumina particles can be increased by increasing the content of ⁇ -alumina in the alumina particles.
  • the alumina particles according to the embodiment of the present invention have a high ⁇ -conversion ratio of 90% or more, which is an index of the content of ⁇ -alumina. Therefore, alumina particles with high thermal conductivity can be obtained.
  • the ⁇ conversion rate of alumina particles is preferably 95% or more, most preferably 100%.
  • ⁇ -conversion rate refers to the content rate (% by volume) of ⁇ -alumina with respect to all alumina contained in the alumina particles.
  • Alpha conversion rate I25.6 /( I25.6 + I46 ) x 100 (%) (1)
  • alumina other than ⁇ -alumina is, for example, about 10% or less. It may be included and does not interfere with the object of the present invention.
  • Alumina other than ⁇ -alumina may be contained in any form.
  • one alumina particle may contain both ⁇ -alumina and alumina other than ⁇ -alumina.
  • one grain of alumina particles may consist of only ⁇ -alumina, another grain of alumina particles may consist of only alumina other than ⁇ -alumina, and these alumina particles may be mixed.
  • ⁇ -alumina is a single crystal
  • the production conditions are controlled so that the ⁇ -alumina contained in the alumina particles becomes a single crystal.
  • ⁇ -alumina has a high thermal conductivity, and particularly when it is a single crystal, it has a higher thermal conductivity than polycrystalline ⁇ -alumina. Therefore, by including ⁇ -alumina in the alumina particles as a single crystal, the thermal conductivity of the alumina particles can be further improved.
  • a small amount (for example, about 10% or less) of polycrystalline ⁇ -alumina may be included together with the single crystal ⁇ -alumina, which does not interfere with the object of the present invention.
  • phase MAP it is judged whether it is ⁇ -alumina or alumina other than ⁇ -alumina, and then in Image Quality (IQ) MAP, by the presence or absence of clear grain boundaries in the alumina particles, single It can be determined whether it is crystalline or polycrystalline. It may be confirmed by the Debye-Scherrer method that ⁇ -alumina is a single crystal.
  • the alumina particles preferably have a Na content of 800 ppm or less.
  • the Na content is high (for example, 1000 ppm or more), there is a risk of adversely affecting electronic components and the like arranged adjacent to the resin composition.
  • Na present in the alumina particles scatters propagating phonons, so if the Na content is, for example, 100 ppm or more, the thermal conductivity of the alumina particles is too low and is unsuitable as a filler for resin compositions. was thought.
  • the Na content must be less than 100 ppm.
  • the inventor of the present application has found that the D50 is more than 100 ⁇ m, the ⁇ conversion rate is 90% or more, and the Na content is 100 ppm or more because the ⁇ -alumina contained is a single crystal.
  • a thermal conductivity suitable for use as a filler for resin compositions can be achieved.
  • the Na content is 800 ppm or less, and the thermal conductivity of the alumina particles can be improved.
  • Na content is the content obtained in terms of oxide, and when the alumina contained in the alumina particles (converted as Al 2 O 3 ) is 100% by mass, it is contained in the alumina particles It is the Na 2 O content (mass ppm) when Na is converted to Na 2 O.
  • the Na content is more preferably 700 ppm or less, particularly preferably 600 ppm or less.
  • the lower limit of the Na content is not particularly limited, it is, for example, 1 ppm or more. Under the following circumstances, it is preferable to make the lower limit of the Na content higher (for example, more than 20 ppm).
  • Na may be contained in raw materials (alumina raw material particles) for producing alumina particles.
  • alumina raw material particles for producing alumina particles.
  • the alumina particles according to the embodiment of the present invention can be used as fillers for resin compositions even when the Na content is 100 ppm or more. Therefore, it is preferable to allow a certain amount of Na content in order to omit the treatment for Na removal.
  • the Na content is preferably greater than 20 ppm, greater than 30 ppm, greater than 50 ppm, or greater than 80 ppm, and more preferably greater than or equal to 100 ppm.
  • Na which may adversely affect electronic components, etc.
  • Na is mainly Na present on the surface of alumina particles.
  • an adverse effect on electronic components and the like can be reduced.
  • Na that can be removed by washing with water is only a very small amount of Na present near the surface of the alumina particles, even if the measured values of Na content of the alumina particles before and after washing with water are compared, the Na content will be greatly reduced. It is difficult to ascertain a significant decrease.
  • Na that lowers the thermal conductivity of alumina particles is mainly Na present inside the alumina particles, so even if the alumina particles are washed with water, the thermal conductivity of the alumina particles does not improve much. guessed.
  • the Na content of alumina particles is quantified by known methods such as glow discharge mass spectrometry, inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), and fluorometry.
  • ICP-AES inductively coupled Plasma atomic emission spectrometry
  • ICP-MS inductively coupled plasma mass spectrometry
  • fluorometry inductively Coupled Plasma Mass Spectrometry
  • the alumina particles preferably have a particle size D10 of 70 ⁇ m or more, more preferably 75 ⁇ m or more, or 80 ⁇ m or more, and particularly preferably 90 ⁇ m or more, in the cumulative 10% from the fine particle side of the cumulative particle size distribution.
  • D10 is preferably 135 ⁇ m or less, more preferably 125 ⁇ m or less, 120 ⁇ m or less, 115 ⁇ m or less, 110 ⁇ m or less, or 105 ⁇ m or less.
  • the alumina particles preferably have a particle size D90 of 130 to 200 ⁇ m at cumulative 90% from the fine particle side of the cumulative particle size distribution.
  • D90 is more preferably 130-190 ⁇ m, particularly preferably 130-180 ⁇ m.
  • Alumina particles having such a particle size are preferable because they have good fluidity, can be filled in a large amount in the resin, and are easy to handle.
  • the alumina particles have a sharp particle size distribution, and D90/D10 is preferably 3.0 or less, more preferably 2.0 or less.
  • D90/D10 is preferably 3.0 or less, more preferably 2.0 or less.
  • the sharper the particle size distribution of alumina particles the better the capture rate (recovery rate) of particles after the alumina particles are melted and produced, resulting in better productivity.
  • alumina particles with a sharp particle size distribution are preferable because they are easy to use as fillers for resin compositions and increase selectivity and flexibility when mixed with other particles.
  • the raw alumina particles or the alumina particles after production it is preferable to classify or screen the raw alumina particles or the alumina particles after production so that the alumina particles as the final product do not contain fine particles and coarse particles.
  • the alumina particles after manufacture may be classified or sieved to remove fines and coarses.
  • the cumulative 100% particle size D100 (that is, the maximum particle size of the particles) from the fine particle side of the cumulative particle size distribution is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, particularly preferably 300 ⁇ m or less.
  • alumina particles when alumina particles are produced using fine alumina raw material particles, they tend to become polycrystalline alumina particles, alumina particles with a low alpha conversion rate, or alumina particles with low density. Therefore, it is particularly preferable to remove fine particles of alumina raw material particles or to remove fine particles of alumina particles after production.
  • the D10, D90 and D100 of alumina particles can be measured by the same method and apparatus as for the measurement of D50 described above.
  • the particle size distribution of alumina particles is measured based on the principle of dynamic image analysis in accordance with ISO 13322-2, and the cumulative particle size distribution obtained from the measurement results is used to determine the cumulative 10% particle size (D10) from the fine particle side, Determine the cumulative 90% particle size (D90) and the cumulative 100% particle size (D100).
  • a CAMSIZER manufactured by VERDER Scientific
  • samples are sequentially introduced into the device, and particles passing in front of the camera are measured while agglomerated particles are dispersed with dry air.
  • the circularity of the alumina particles is preferably 0.90 to 1.00, so that the kneadability with the resin can be improved, and the fluidity of the composite after kneading can be improved. Wear of other members can also be reduced. Since alumina particles are generally hard particles, it is preferable that the circularity is 0.90 or more for use as a filler for a resin composition for electronic parts. It is difficult to obtain alumina particles with a circularity of 0.90 or more only by pulverizing alumina particles with low circularity. Furthermore, such collision and pulverization for a long period of time may generate a large amount of fine powder. In addition, there is a possibility that the new hydrophilic surface generated by the pulverization may reduce the miscibility with the resin.
  • SPHT Roundness
  • the alumina particles preferably have a density of 3.80 g/cm 3 or more.
  • the presence of internal voids in the alumina particles reduces the thermal conductivity of the alumina particles. Therefore, it is desirable that the alumina particles have few internal voids.
  • Methods for confirming internal voids include a method of direct observation by image analysis such as cross-sectional SEM images and X-ray fluoroscopic images, and a method of indirectly confirming by measuring the density of alumina particles.
  • the density of the alumina particles is preferably 3.80 g/cm 3 or more, and alumina particles with a small amount of internal voids (or no internal voids), that is, alumina particles with high thermal conductivity are obtained.
  • the density of the alumina particles is more preferably 3.85 g/cm 3 or more, 3.88 g/cm 3 or more, or 3.89 g/cm 3 or more, and particularly preferably 3.90 g/cm 3 or more.
  • the density of alumina particles is measured by the pycnometer method in accordance with JIS R 1620-1995.
  • the number of measurements shall be 5 or more.
  • Accupic 1330 (Micromeritics) can be used.
  • the thermal conductivity (W/mK) of one alumina particle can be increased.
  • the thermal conductivity of one alumina particle is preferably 25 W/mK or higher, more preferably 28 W/mK or higher, particularly preferably 30 W/mK or higher, most preferably 33 W/mK or higher.
  • Method for producing alumina particles A method for producing alumina particles according to an embodiment of the present invention will be described.
  • the raw material for the alumina particles alumina raw particles made of single-crystal ⁇ -alumina and having a cumulative 50% particle diameter D50 of more than 100 ⁇ m from the fine particle side of the cumulative particle size distribution are used. Then, alumina particles are produced from the alumina raw material particles by a flame fusion method.
  • the flame melting process for example, an apparatus as shown in FIG. 1 is used.
  • the flame melting step it is possible to obtain alumina particles having a conversion rate of 90% or more and a single crystal of ⁇ -alumina.
  • the particle size of the alumina raw material particles used and the supply of the alumina raw material particles into the flame melting furnace of the apparatus Control the speed, flame intensity, distance between the flame and the alumina raw material particles, etc.
  • alumina raw material particles with a D50 of more than 100 ⁇ m In order to produce alumina particles with a D50 of more than 100 ⁇ m, alumina raw material particles with a D50 of, for example, 110 ⁇ m or more are used. D50 of the alumina raw material particles is preferably 120 ⁇ m or more, for example 150 ⁇ m.
  • the D50 of the alumina raw material particles is, for example, 110 ⁇ m or more
  • individual alumina raw material particles may have a particle size of less than 110 ⁇ m. Therefore, the obtained alumina particles may contain polycrystalline ⁇ -alumina and/or alumina other than ⁇ -alumina.
  • the D50 of the alumina raw material particles is set to 110 ⁇ m or more, the content of polycrystalline ⁇ -alumina and/or alumina other than ⁇ -alumina can be suppressed to a small amount that is allowable in the present invention.
  • a method of producing alumina particles by a flame fusion method using granulated raw material particles is known, but the resulting alumina particles sometimes contain many internal voids.
  • the alumina raw material particles since ungranulated single-crystal ⁇ -alumina itself is used as the alumina raw material particles, alumina particles with few internal voids (or no internal voids) and high density can be obtained.
  • the D50 of the alumina raw material particles can be measured by the same method as the above-described method of measuring the D50 of the alumina particles. Whether the alumina raw material particles are single crystal ⁇ -alumina can be confirmed by the same method as the method for confirming that the ⁇ -alumina in the alumina particles is single crystal.
  • alumina raw material particles As the raw material for the alumina raw material particles, sapphire, single-crystal ⁇ -alumina produced by a melt growth method such as the CZ method, Bernoulli method, chiroporous method, Bridgman method, EFG method, etc. can be used. By pulverizing these raw materials and sieving them with a mesh having a desired opening, alumina raw material particles with a predetermined D50 can be prepared.
  • the alumina raw material particles may contain a small amount (for example, about 10% by mass or less) of alumina other than ⁇ -alumina ( ⁇ -alumina, ⁇ -alumina, etc.), and may also contain a small amount (for example, up to about 10% by weight) of polycrystalline ⁇ -alumina, none of which interferes with the objectives of the present invention.
  • the supply amounts of alumina raw material particles, fuel gas and oxygen gas satisfy the following formulas (2) and (3). 0.625 ⁇ R/F (kg/Nm 3 ) ⁇ 5.000 (2) 0.125 ⁇ R/S (kg/Nm 3 ) ⁇ 1.500 (3)
  • F is the fuel gas supply amount (Nm 3 /hour)
  • S is the oxygen gas supply amount (Nm 3 /hour)
  • R is the alumina raw material particle supply amount (kg/hour).
  • the oxygen gas supply amount (S) is the sum of the combustion oxygen gas supply amount and the carrier oxygen gas supply amount.
  • the carrier oxygen gas is oxygen gas whose main purpose is to transport the alumina raw material particles, but after the transport, it is used for combustion in the same manner as the combustion oxygen gas.
  • the ratio (R/F) of the amount of alumina raw material particles supplied to the amount of fuel gas supplied is preferably 0.625 kg/Nm 3 or more and 5.000 kg/Nm 3 or less.
  • the ratio (R/S) of the supply amount of alumina raw material particles to the supply amount of oxygen gas is 0.125 kg/Nm 3 or more and 1.500 kg/Nm 3 or less. is preferred.
  • the fuel gas supply rate F (Nm 3 /hour) and the oxygen gas supply rate S (Nm 3 /hour) are factors that determine the intensity of the flame in the furnace in the flame melting process.
  • Both R/F and R/S are indicators of the relationship between the flame strength in the furnace and the supply amount of alumina raw material particles in the flame melting process.
  • R/F and R/S are large, the supply amount of alumina raw material particles is large, and the amount of energy given from the flame to each alumina raw material particle is small (that is, the melting of the alumina raw material particles is suppressed).
  • R/F and R/S are small, the supply amount of alumina raw material particles is small, and the amount of energy given from the flame to each alumina raw material particle increases (that is, the melting of the alumina raw material particles is promoted). .
  • controlling R/F and R/S is one method of controlling the molten state of alumina raw material particles in the flame melting process.
  • the alumina raw material particles can be spheroidized while maintaining the crystal structure of the raw material particles in the flame melting step.
  • R/F is more preferably 0.625 kg/Nm 3 or more and 4.500 kg/Nm 3 or less, and particularly preferably 1.000 kg/Nm 3 or more and 4.500 kg/Nm 3 or less.
  • R/S is more preferably 0.125 kg/Nm 3 or more and 1.333 kg/Nm 3 or less, particularly preferably 0.125 kg/Nm 3 or more and 1.250 kg/Nm 3 or less, and most preferably 0.125 kg/Nm 3 or more and 1.250 kg/Nm 3 or less. It is 200 kg/Nm 3 or more and 1.000 kg/Nm 3 or less.
  • the supply amount F of the fuel gas is preferably less than 20 Nm 3 /hour.
  • the flame length can be changed by the amount of fuel gas supplied, and the larger the amount of fuel gas supplied, the longer the flame length and the longer the residence time of the particles in the flame. The smaller the amount of fuel gas supplied, the shorter the flame length and the shorter the residence time of the particles in the flame. That is, the retention time of the alumina raw material particles in the flame can be changed, and the degree of melting (time) of the alumina raw material particles in the flame can be changed.
  • the alpha conversion rate and density of the alumina particles can be increased while maintaining the crystal structure of the raw material particles of the alumina raw material particles.
  • fuel gas in the present invention examples include propane, butane, propylene, acetylene, and hydrogen.
  • propane eg, liquefied propane gas (LPG)
  • LPG liquefied propane gas
  • the Na content of the resulting alumina particles can be made lower than the Na content of the alumina raw material particles.
  • the temperature is in the range of 600 ° C. to 1500 ° C., preferably in the range of 800 ° C. to 1400 ° C., more preferably 1000 ° C. to 1300 ° C. may pass through the area of By passing through such a region and solidifying the spherical alumina particles, the alpha conversion rate can be increased.
  • a process of reheating the cooled and solidified alumina particles before collecting them may be added.
  • the temperature of the reheating step is, for example, preferably 900° C. or higher, more preferably 1000° C. or higher.
  • a method for reheating external heating using a heater or the like, heating by gas combustion for the second time, or the like can be applied.
  • a resin composition having high thermal conductivity can be obtained by using the alumina particles according to the embodiment of the present invention as a filler for a resin composition.
  • the resin composition contains a resin and alumina particles according to an embodiment of the present invention.
  • the blending ratio is 5 to 75% by volume of the resin with respect to the resin composition (composite).
  • the proportion of alumina particles is preferably 95 to 25% by volume.
  • a method for producing a resin composition will be described.
  • a resin composition can be obtained by mixing the alumina particles of the present invention with a resin using a commonly used known method.
  • the resin is liquid (for example, liquid epoxy resin)
  • the resin composition can be obtained by mixing the liquid resin, alumina particles, and a curing agent, and then curing the mixture with heat or ultraviolet rays.
  • the curing agent, mixing method, and curing method known ones and methods can be used.
  • the resin is solid (for example, polyolefin resin or acrylic resin)
  • the intended resin composition can be obtained by mixing the alumina particles and the resin and then kneading them by a known method such as melt kneading. can.
  • the resin used in the resin composition can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
  • resin may be used individually by 1 type, and may use 2 or more types together.
  • Thermoplastic resins include polyethylene, polypropylene, polyolefin resins such as ethylene-propylene copolymers, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymers, polyvinyl alcohol, polyvinyl Fluorinated polymers such as acetal, polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer (ABS ) resins, polyphenylene-ether copolymer (PPE) resins, modified PPE resins, aliphatic polyamides, aromatic polyamides, polyimides, polyamideimides, polymethacrylic
  • Thermoplastic elastomers include styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers. , polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and the like.
  • Thermosetting resins include crosslinked rubbers, epoxy resins, phenolic resins, polyimide resins, unsaturated polyester resins, diallyl phthalate resins, and the like.
  • Specific examples of crosslinked rubber include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, Chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluororubber, urethane rubber, and silicone rubber.
  • Polyolefin-based resins acrylic-based resins, polyimide-based resins, polyamide-based resins, polyamideimide-based resins, epoxy-based resins, phenol-based resins, and silicone resins are preferably used from the viewpoint of workability and properties.
  • these resin compositions may optionally contain plasticizers, curing accelerators, coupling agents, fillers, pigments, flame retardants, antioxidants, surfactants, Known additives such as a compatibilizer, a weathering agent, an antiblocking agent, an antistatic agent, a leveling agent, and a release agent may be used singly or in combination of two or more.
  • the alumina particles according to the present embodiment and the resin composition containing the alumina particles are particularly suitable for use as a heat dissipation material. Accordingly, in one aspect of the present disclosure, heat-dissipating alumina particles and a heat-dissipating resin composition can be provided.
  • the alumina particles and the resin composition according to the present embodiment can have low dielectric loss characteristics by further having the physical properties described in [Other physical properties] below. Therefore, in another aspect of the present disclosure, low dielectric loss alumina particles and a low dielectric loss resin composition can be provided. In yet another aspect of the present disclosure, it is also possible to provide heat dissipation/low dielectric loss alumina particles and heat dissipation/low dielectric loss resin compositions by taking advantage of both heat dissipation and low dielectric loss properties. .
  • the intra-particle defect rate of the alumina particles is preferably low, particularly preferably 20% or less, more preferably 15% or less. Thereby, the dielectric loss of the resin composition can be further reduced when the alumina particles are used as a filler for the resin composition.
  • the alumina particles may contain impurity particles (non-circular, elongated alumina particles).
  • the average aspect ratio of the impurity particles is preferably more than 1.2 and 5.0 or less, and particularly preferably 3 or less or 2.5 or less.
  • L2/L1 alumina particles with a small value of L2/L1 have a small boundary line content and a low dielectric loss. It can be said that it is a low alumina particle.
  • (L2/L1) (%) is preferably 100% or less, and when used as a filler for a resin composition, the dielectric loss of the resin composition can be further reduced.
  • (L2/L1) is more preferably 80% or less, still more preferably 50% or less, and particularly preferably 40% or less.
  • the “total length L2 of the boundary lines” is the sum of the boundary lines included inside the alumina particles and does not include the outer edges of the alumina particles.
  • the number of contacts between alumina particles in the resin composition is preferably 40 or less (equivalent to 82 or less per 1 mm 2 of the observation range) in the observation range of 650 ⁇ m ⁇ 750 ⁇ m.
  • the dielectric loss of the resin composition can be further reduced.
  • the number of contacts between alumina particles is more preferably 65/mm 2 or less, particularly preferably 50/mm 2 or less, or 30/mm 2 or less in terms of observation range of 1 mm 2 .
  • the number of contacts between alumina particles is preferably 1 or more (equivalent to 2 or more per 1 mm 2 of observation area) in an observation area of 650 ⁇ m ⁇ 750 ⁇ m.
  • the number of contacts between alumina particles can be an index of the degree of particle dispersion, and it can be said that the smaller the number of contacts, the more uniformly dispersed the alumina particles are in the resin.
  • the value of the N 2 -BET specific surface area is preferably 0.05 m 2 /g or less, 0.02 m 2 /g or less, more preferably 0.01 m 2 /g or less, and particularly preferably less than 0.01 m 2 /g.
  • test No. 3 to 6 alumina particles had a N 2 -BET specific surface area measurement of less than 0.01 m 2 /g. Therefore, by measuring the BET specific surface area using krypton gas (Kr) as an adsorption gas, the BET specific surface area of alumina particles having a low specific surface area can be measured more accurately.
  • Kr krypton gas
  • the alumina particles preferably have a BET specific surface area S1 (m 2 /g) using Kr gas of 0.10 m 2 /g or less. Dielectric loss can be further lowered.
  • the Kr-BET specific surface area S1 is more preferably 0.08 m 2 /g or less, particularly preferably 0.07 m 2 /g or less.
  • the Kr-BET specific surface area S1 may be 0.01 m 2 /g or more, or may be 0.02 m 2 /g or more.
  • Another indicator of the unevenness of the surface of the alumina particles is the ratio (S1/S2) (/g) of the BET specific surface area S1 (m 2 /g) using Kr gas to the ideal spherical area S2 (m 2 ).
  • (S1/S2) is preferably 95 ⁇ 10 5 /g or less, and when used as a filler for a resin composition, the dielectric loss of the resin composition can be further reduced.
  • (S1/S2) is more preferably 40 ⁇ 10 5 /g or less, particularly preferably 20 ⁇ 10 5 /g or less.
  • the ideal spherical area S2 (m 2 ) is the surface area of a perfectly spherical particle with a diameter of D50, and is obtained from the formula for the surface area of a sphere (4 ⁇ r 2 ).
  • pore distribution, pore volume, etc. may also be evaluated as another confirmation method for unevenness on the surface of particles.
  • the pore volume of alumina particles will be described later.
  • the amount of water brought into the alumina particles (the amount of water contained in the alumina particles) is large, the dielectric loss of the resin composition produced using the alumina particles increases. In addition, if the amount of water brought in by the alumina particles is large, the water may exude from the resin, which may adversely affect electronic components and the like arranged adjacent to the resin composition. Therefore, it is preferable that the amount of moisture brought in by the alumina particles is small.
  • a ratio ( ⁇ Ma/ ⁇ Mr) of the moisture content ⁇ Ma brought in by the alumina particles to the moisture content ⁇ Mr (ppm) brought in by the resin is introduced as an index of the moisture content brought in by the alumina particles.
  • ⁇ Ma/ ⁇ Mr is preferably 0.2 or less, more preferably 0.1 or less. Since the amount of moisture ⁇ Ma brought in by the alumina particles is extremely small compared to the amount of moisture brought in by the polyimide resin, the dielectric loss of the resin composition can be further reduced when the alumina particles are used as a filler for the resin composition.
  • the pore volume of the alumina particles is preferably 0.0003 cm 3 /g or less.
  • the pore volume serves as an indicator of the degree of irregularities on the particle surface.
  • the pore volume is more preferably 0.00009 cm 3 /g or less, particularly preferably 0.00007 cm 3 /g or less.
  • the lower limit of the pore volume is not particularly limited, it may be, for example, 0.000001 cm 3 /g or more, and may be 0.000005 cm 3 /g or more.
  • alumina raw material particles Preparation of alumina raw material particles
  • a raw material 1 raw material particles made of single crystal alumina were prepared.
  • the raw material 2 is raw material particles made of another single crystal alumina, and particles of 50 ⁇ m or less were removed by sieving. Both alumina raw material particles had an angular shape.
  • Table 1 shows the physical properties of raw materials 1 and 2.
  • the method for measuring the physical property values of the alumina raw material particles was the same as the method for measuring the physical property values of the alumina particles, which will be described later.
  • Alumina particles were prepared using an apparatus as shown in FIG.
  • Oxygen gas from the oxygen gas supply system 10 was branched, one (carrier oxygen gas 11) was supplied to the feeder 30, and the other (combustion oxygen gas 12) was supplied to the burner 41 of the flame melting furnace 40.
  • Alumina raw material particles supplied to the feeder 30 were transported to the burner 41 of the flame melting furnace 40 by the carrier oxygen gas 11 .
  • combustion gas (LPG) was supplied to the burner 41 from the gas supply system 20 .
  • a high-temperature flame of 2150° C. or higher was formed by the fuel gas and the combustion oxygen gas 12 , and alumina raw material particles dispersed in the carrier oxygen gas 11 were supplied thereto.
  • the alumina raw material particles were melted and spheroidized in the flame melting furnace 40 .
  • the spherical alumina particles were classified by the cyclone 50 to obtain alumina particles captured by the cyclone 50 .
  • R/F is the ratio of the fuel gas supply amount F (Nm 3 /hour), the oxygen gas supply amount S (Nm 3 /hour), and the alumina raw material particle supply amount R (kg/hour) in the flame melting process. and R/S are summarized in Table 2.
  • the supply amount of the oxygen gas S is the sum of the supply amount of the carrier oxygen gas 11 and the supply amount of the combustion oxygen gas 12 .
  • the fuel gas feed rate F was less than 20 Nm 3 /h.
  • the particle size distribution and circularity of the alumina particles were measured with a device CAMSIZER X2 (manufactured by VERDER Scientific) based on the principle of dynamic image analysis conforming to ISO 13322-2. The measurement was performed by a dry method, and the samples were sequentially put into the apparatus, and the particles passing in front of the camera were measured while the aggregated particles were dispersed with dry air of 50 kPa. 3 g of the measurement sample was weighed and measured once. The same measurement was repeated three times, and the particle size distribution and circularity were analyzed from the cumulative average of these results. The particle size was the equivalent circle particle size.
  • the circle-equivalent particle size is the particle size of a perfect circle having the same area as the projected particle image.
  • a sample for cross-sectional observation was prepared as follows. After embedding the alumina particles in the resin, the resin and the alumina particles were cut with a diamond cutter. After that, Pt was vapor-deposited on the cross section as a protective film, and the cross section was prepared by Ar ion milling. It was fixed to the SEM sample table with Cu double-sided tape, and EBSD measurement was performed without vapor deposition.
  • a powder sample (alumina particles) was measured in a sealed container, acid was added, pressure acid decomposition was performed, and after standing to cool, it was diluted with ultrapure water and used as an analysis sample. Then, the amount of Na in the analysis sample was measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer), and the content of Na contained in the powder sample (alumina powder) was calculated.
  • ICP-AES Inductively Coupled Plasma Atomic Emission Spectrometer
  • Epoxy resin main agent: room temperature curing embedding resin type 53 (manufactured by Sankei Co., Ltd.) 010-8140
  • curing agent room temperature curing embedding Resin 53 type (manufactured by Sankei Co., Ltd. 010-8143)
  • alumina particles raw material 1, sample Nos. 1 to 6
  • Awatori Mixer manufactured by Thinky Co., Ltd.
  • a glass cloth-filled tape was attached to a PET film to prepare a mold for determining the outer shape of the film, and the mold was placed on an aluminum plate.
  • the agitated and mixed composite was poured into a mold and overlaid with a PET film so as not to contain air.
  • another aluminum plate was placed thereon, heated to 50 to 70° C. and allowed to stand to cure the resin.
  • the curing time was about 3 hours at 50°C and about 1 hour at 70°C. After the curing was completed, it was allowed to cool, and when the temperature of the aluminum plate dropped to about room temperature, two PET films were peeled off from both sides of the composite after curing to obtain a composite sheet sample for measurement.
  • Thermal diffusivity, specific heat and density of the obtained sheet-like sample were measured to obtain thermal conductivity.
  • the thermal diffusivity is measured at room temperature by a temperature wave thermal analysis method (TWA method) by preparing a measurement sample piece of 10 mm length ⁇ 10 mm width ⁇ 0.1 mm thickness from the sheet-shaped sample of the resin composition described above. did.
  • TWA method temperature wave thermal analysis method
  • iPhase Mobile manufactured by iPhase was used as a measuring device.
  • the thermal diffusivity was measured at arbitrary three points for one measurement sample piece, and the average value was calculated as the measured value from the measurement results at the three points.
  • the measured values of the other measured samples were normalized based on the measured value of the composite sample of "epoxy resin + raw material 1".
  • a sheet-like sample made of epoxy resin alone was prepared and similar measurements and calculations were performed.
  • the specific heat was calculated from the compounding ratio of the resin and alumina particles, and the values in Table 5 were used.
  • the density was measured using an electronic hydrometer MDS-300 (Alpha Mirage Co., Ltd.). Density It was determined by the Archimedes method (solid density measurement) based on the following formula (4). Also, the specific gravity was obtained from the density.
  • A ⁇ (AB) ⁇ ( ⁇ 0 - ⁇ L ) + ⁇ L (4) here, ⁇ : Density of sample (composite) A: Weight of sample measured in air B: Weight of sample measured in replacement liquid (water) ⁇ 0 : Density of replacement liquid (water) (1.0000 g/cm 3 ) ⁇ L : Air density (0.0012 g/cm 3 ) is.
  • Thermal conductivity thermal diffusivity x specific heat x density
  • FIG. 2 shows a conceptual diagram of an apparatus for measuring the thermal diffusivity of one alumina particle.
  • thermoelectric microsensor was crimped to sample 70 (a single alumina particle).
  • the frequency dependence of the phase difference due to the propagation of the temperature wave generated by the alternating current heating of the resistive micro-heater from the function generator was measured by the two-phase lock-in amplifier 80 to determine the thermal diffusivity.
  • the diameter of the sample 70 was about 110 ⁇ m
  • the thickness of the sample 70 was 67 ⁇ m
  • the measurement frequency was 2.7 kHz to 4.9 kHz
  • the sensor size was 8 ⁇ m ⁇ 9 ⁇ m.
  • the thermal conductivity was determined using the following formula (5).
  • the specific heat was 0.779 kJ/kg ⁇ K, and the values shown in Table 4 were used for the density.
  • Thermal conductivity thermal diffusivity x specific heat x density (5)
  • Table 6 shows these measurement results and calculation results.
  • Sample No. Alumina particles 1 and 3-5 exhibited thermal diffusivities and thermal conductivities comparable to those measured for bulk single crystal ⁇ -alumina.
  • the thermal conductivity of the polycrystalline ⁇ -alumina particles in the preliminary experiment was measured and found to be 15 W/mK. It was found that the single crystal has approximately twice the thermal conductivity of polycrystalline ⁇ -alumina.
  • a particle defect is a void or an amorphous layer that exists inside the particle, and in an X-ray transmission image of the alumina particle, a defect-free portion in the alumina particle (non-defective portion: observed as a white portion ) is observed as a light gray part inside.
  • image processing software Image J manufactured by the National Institute of Health
  • An image processing method for obtaining the areas SA, SB and SC is described below.
  • the image processing software "Image J” the image of one alumina particle containing voids is cut out from the image obtained by the X-ray radiograph, binarized, and using the analysis of "Analyze Particles", the whole alumina particle was obtained.
  • the non-defective portions of the alumina grains are the least bright
  • the defects within the grains are the next brightest
  • the surrounding (background) portions of the alumina grains are the brightest. is high. Therefore, in the binarization process, it is necessary to perform image processing that converts the brightness of the defect portion and the background to the same degree.
  • Such image processing was performed by adjusting the contrast and adjusting the filter "Convolve”. As a result, the area of the range obtained by hollowing out the light gray portion, which is the defective portion, from the alumina particles (that is, the area SB of the non-defective portion) was measured.
  • a lower intra-particle defect ratio means fewer voids or amorphous layers in the alumina particles. Therefore, the intra-particle defect rate of the alumina particles is preferably low, particularly preferably 20% or less, more preferably 15% or less. Thereby, the dielectric loss of the resin composition can be further reduced when the alumina particles are used as a filler for the resin composition.
  • the impurity particles contained in the alumina particles to be evaluated were defined as the top 1% extracted from the alumina particles to be evaluated in descending order of aspect ratio. Then, the average value of the aspect ratios of the impurity particles was calculated.
  • the average aspect ratio of the impurity particles is preferably more than 1.2 and 5.0 or less, and particularly preferably 3 or less or 2.5 or less. Since the alumina particles contain a small amount of impurity particles (elongated particles having a high aspect ratio), the filling rate of the alumina particles can be improved when used as a filler for a resin composition, and the dielectric loss of the resin composition can be increased. can be lowered.
  • the outer edge length L1 of each alumina particle is calculated using image processing software Image J (manufactured by National Institute of Health). An average was calculated.
  • the total length L2 of the boundary lines was also calculated.
  • the “total length L2 of boundary lines” is the total sum of boundary lines included inside the alumina particles, and does not include the outer edges of the alumina particles.
  • the total length L2 of the boundary lines was determined by adding the total length of the grain boundaries inside the alumina particles and the total length of the inner walls of the cavities (if there were cavities inside the alumina particles).
  • the ratio (L2/L1) of the total length L2 of the boundary line to the length L1 of the outer edge was expressed as a percentage (%).
  • the L2/L1 ratio of the alumina particles is preferably 100% or less, and when used as a filler for a resin composition, the dielectric loss of the resin composition can be further reduced.
  • (L2/L1) is more preferably 80% or less, still more preferably 50% or less, and particularly preferably 40% or less.
  • the particles of the comparative example had voids of about several tens of ⁇ m, and in addition to fine voids of several ⁇ m, grain boundaries were also observed.
  • the particles of the example had fine voids of several ⁇ m.
  • the number of contacts between alumina particles in the resin composition was confirmed.
  • the alumina particles are observed as gray and the resin as white.
  • the number of contacts between alumina particles was counted as the number of points where the alumina particles shown in gray are in direct contact with each other.
  • the number of contacts can be an indicator of the degree of distribution of the particles, with uniform distribution resulting in fewer contacts between alumina particles.
  • an increase in the number of contact points between adjacent alumina particles that is, the number of interfaces between particles increases the dielectric loss of the resin composition.
  • the number of contacts between alumina particles is preferably 40 or less (equivalent to 82 or less per 1 mm 2 of observation range) in an observation range of 650 ⁇ m ⁇ 750 ⁇ m, and when used as a filler for a resin composition, The dielectric loss of the resin composition can be further reduced.
  • the number of contacts between alumina particles is more preferably 65/mm 2 or less, particularly preferably 50/mm 2 or less, or 30/mm 2 or less in terms of observation range of 1 mm 2 .
  • the ratio (S1/S2) of the Kr-BET specific surface area S1 (m 2 /g) to the ideal spherical area S2 ( ⁇ m 2 ) determined from D50 was determined.
  • the ideal spherical area is the surface area of a perfectly spherical particle having a diameter of D50, and was obtained from the formula for the surface area of a sphere (4 ⁇ r 2 ).
  • the BET specific surface area S1 by the Kr adsorption method is preferably 0.10 m 2 /g or less, and when used as a filler for a resin composition, the dielectric loss of the resin composition can be further reduced.
  • the Kr-BET specific surface area S1 is more preferably 0.08 m 2 /g or less, particularly preferably 0.07 m 2 /g or less.
  • the Kr-BET specific surface area S1 may be 0.01 m 2 /g or more, or may be 0.02 m 2 /g or more.
  • the ratio (S1/S2) of the Kr-BET specific surface area to the ideal spherical area is preferably 95 ⁇ 10 5 /g or less, and when used as a filler for a resin composition, the dielectric loss of the resin composition is can be lowered further.
  • (S1/S2) is more preferably 40 ⁇ 10 5 /g or less, particularly preferably 20 ⁇ 10 5 /g or less.
  • Table 11 shows the measurement results and calculation results.
  • the amount of water brought into the resin was determined as follows. Using a bar coater, a film was produced from a polyimide resin (Varnish A manufactured by Ube Industries), and the film was baked in an N2 atmosphere to produce a resin film having a thickness of about 300 ⁇ m. A 1 cm x 1 cm sample piece was cut from the resin film. After the sample piece was left in the atmosphere for 24 hours, the mass was measured and taken as the pre-measurement mass Mr1 (g). After that, the polyimide resin was dried in a vacuum dryer for 24 hours, and then the mass was measured, and the measured mass was taken as Mr2 (g). (Mass before measurement Mr1 ⁇ Mass after measurement Mra2)/(Mass before measurement Mr1) ⁇ 10 6 was defined as the moisture content ⁇ Mr (ppm) brought into the polyimide resin.
  • a ratio ( ⁇ Ma/ ⁇ Mr) of the amount of moisture ⁇ Ma brought in by the alumina particles to the amount of moisture ⁇ Mr brought in by the polyimide resin was obtained.
  • ⁇ Ma/ ⁇ Mr is preferably 0.2 or less, more preferably 0.1 or less. Since the amount of moisture ⁇ Ma brought in by the alumina particles is extremely small compared to the amount of moisture brought in by the polyimide resin, the dielectric loss of the resin composition can be further reduced when the alumina particles are used as a filler for the resin composition.
  • the dielectric loss of the composite was measured under the following measurement conditions.
  • ⁇ Measurement device Network analyzer HP8510C (manufactured by Agilent Technologies)
  • Sweep signal generator HP83651A, tHP8517B (both manufactured by Agilent Technologies)
  • Specimen size 110 mm ⁇ 60 mm
  • tHP8517B both manufactured by Agilent Technologies
  • No. Nos. 1 and 3 to 6 have low dielectric loss. 2 had high dielectric loss.
  • the pore volume of the alumina particles is measured by the krypton adsorption method, the pore volume is preferably 0.0003 cm 3 /g or less. Like the Kr-BET specific surface area, the pore volume serves as an indicator of the degree of irregularities on the particle surface. By controlling the pore volume of the first alumina particles within the above range, the moldability of the mixture can be further improved.
  • the pore volume is more preferably 0.00009 cm 3 /g or less, particularly preferably 0.00007 cm 3 /g or less.
  • the lower limit of the pore volume is not particularly limited, it may be, for example, 0.000001 cm 3 /g or more, and may be 0.000005 cm 3 /g or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂組成物用フィラーとして使用されるアルミナ粒子であって、樹脂組成物の熱伝導率を従来よりも向上することのできるアルミナ粒子を提供する。 累積粒度分布の微粒側から累積50%の粒径D50が100μm超で、α化率が90%以上であり、α-アルミナが単結晶であるアルミナ粒子である。アルミナ粒子は、Na含有量が800ppm以下であることが好ましい。また、アルミナ粒子は、累積粒度分布の微粒側から累積10%の粒径D10が70~135μmであることが好ましい。

Description

アルミナ粒子およびそれを用いた樹脂組成物
 本開示は、アルミナ粒子およびそれを用いた樹脂組成物に関する。
 電子部品に通電することにより発生する熱は、ヒートシンクを介して放熱される。放熱効率を向上する目的で、電子部品とヒートシンクとの間を放熱材料で充填する技術が知られている。
 放熱部材の1つとして、樹脂と無機粒子とを含む樹脂組成物があり、無機粒子としてはアルミナ粒子が利用できることが知られている(例えば特許文献1~3)。
 特許文献1には、樹脂中に高充填したときの流動性を改善することができるアルミナ粒子として、α相含有率が40%以下であり、平均円形度が0.95以上であり、平均粒径が100μm以下のアルミナ粒子が開示されている。アルミナ粒子を製造する方法としては、電融アルミナの粉砕物を火炎溶融法で溶融し、炉内に水を噴霧して急冷する手法が開示されている。
 特許文献2には、樹脂等に配合したときの組成物の粘性と流動性を改善することができるアルミナ粒子として、平均球形度が0.93以上でかつアルミナのα率が95%以上であるアルミナ粒子が開示されている。アルミナ粒子を製造する方法として、金属アルミニウム粉末、アルミナ粉末または両者の混合物を原料とし、それを火炎溶融法で溶融し冷却固化し、その後に再加熱処理を行う方法が開示されている。
 特許文献3には、電融アルミナをジェットミルを用いて破砕し、その電融アルミナ粒子のエッジを取り除くことで平均粒径が5~4000μmの丸味状電融アルミナ粒子を得る方法が開示されている。
国際公開第2009/133904号 国際公開第2008/053536号 特開2006-169090号公報
 近年、電子機器のIC高集積化によるICでの発熱量の増加、および電気自動車、航空機等の電動化により高電流駆動の電子部品が使用されるようになったことに起因する電子部品での発熱量の増加が問題となっている。より効果的な放熱を実現するために、樹脂組成物の熱伝導率をさらに向上することが求められている。より効果的な放熱を実現するために、樹脂組成物に用いられる樹脂とフィラー(アルミナ粒子)の界面をできるだけ少なくすること、すなわちアルミナ粒子の大粒径化も併せて求められている。
 しかしながら、特許文献1および2に開示されたアルミナ粒子は、樹脂組成物の熱伝導率のさらなる向上について検討されていない。
 特許文献3のアルミナ粒子は、樹脂と混合して樹脂組成物を形成した場合、熱伝導率の点で十分とは言い難い。
 このような状況を鑑みて、本発明の一実施形態は、樹脂組成物用フィラーとして使用されるアルミナ粒子であって、樹脂組成物の熱伝導率を従来よりも向上することのできるアルミナ粒子を提供することを目的とする。さらに、本発明の別の実施形態は、アルミナ粒子を用いた樹脂組成物の提供することを目的とする。
 本発明の態様1は、
 累積粒度分布の微粒側から累積50%の粒径D50が100μm超で、α化率が90%以上であり、α-アルミナが単結晶であるアルミナ粒子である。
 本発明の態様2は、
 Na含有量が800ppm以下である、態様1に記載のアルミナ粒子である。
 本発明の態様3は、
 累積粒度分布の微粒側から累積10%の粒径D10が70~135μmである、態様1または2に記載のアルミナ粒子である。
 本発明の態様4は、
 累積粒度分布の微粒側から累積90%の粒径D90が130~200μmである、態様1~3のいずれかに記載のアルミナ粒子である。
 本発明の態様5は、
 真円度が0.90~1.00である、態様1~4のいずれか1つに記載のアルミナ粒子である。
 本発明の態様6は、
 密度が3.80g/cm以上である、態様1~5のいずれか1つに記載のアルミナ粒子である。
 本発明の態様7は、
 樹脂と、態様1~6のいずれか1つに記載のアルミナ粒子とを含む樹脂組成物である。
 本発明の一実施形態に係るアルミナ粒子をフィラーとして使用することにより、高い熱伝導率を有する樹脂組成物を得ることができる。
図1は、アルミナ粒子の製造方法において、火炎溶融工程を実施するための装置を示す概略図である。 図2は、1粒のアルミナ粒子について温度波熱分析法(TWA法)を行うための熱拡散率測定装置の概念図である。 図3は、粒子欠陥率の計算方法を説明するための模式図である。
[アルミナ粒子]
 本発明の実施形態に係るアルミナ粒子は、樹脂組成物用フィラーとして、樹脂と混合して使用するためのものである。アルミナ粒子は、累積粒度分布の微粒側から累積50%の粒径D50が100μm超で、α化率が90%以上であり、α-アルミナが単結晶である。これらの特徴を有することにより、樹脂組成物の熱伝導率を向上することができる。各特徴について以下に詳しく説明する。
(累積粒度分布の微粒側から累積50%の粒径D50)
 本発明の実施形態に係るアルミナ粒子では、累積粒度分布の微粒側から累積50%の粒径D50(以下単に「D50」と記載することがある)は100μm超である。樹脂組成物用フィラーとして使用したときに、以下の理由から、熱伝導率の高い樹脂組成物を得られると推測される。
 アルミナ粒子のD50が大きいと、単位質量当たりのアルミナ粒子の表面積の合計(総表面積)が小さくなる。そのため、アルミナ粒子と樹脂とを所定の比率で混合して樹脂組成物を製造するとき、平均粒子が大きいアルミナ粒子を用いることにより、アルミナ粒子と樹脂との界面の面積の合計(総面積)を小さくすることができる。アルミナ粒子と樹脂との界面は、伝搬するフォノンを散乱させるため、界面の総面積を小さくすることにより、熱伝導率を向上することができると考えられる。
 本発明の実施形態に係るアルミナ粒子は、D50が100μm超であることにより、D50が100μm以下の場合に比べて、所定の比率で樹脂と混合したときの界面の総面積を小さくすることができ、熱伝導率の高い樹脂組成物を製造することができる。
 アルミナ粒子のD50は、好ましくは105μm以上、より好ましくは110μm以上、特に好ましくは115μm以上である。上限は特に限定されないが、樹脂との混錬性を良好にする観点、および樹脂組成物用フィラーへの適用の観点から、好ましくは160μm以下、より好ましくは155μm以下、より好ましくは150μm以下、さらに好ましくは140μm以下、特に好ましくは135μm以下である。160μmを超えると本発明の実施形態においてもアルミナ粒子の真円度が低くなる可能性が高いため好ましくない。
 アルミナ粒子のD50は、ISO 13322-2に準拠した動的画像解析の原理に基づいてアルミナ粒子の粒度分布を測定し、測定結果から得た累積粒度分布を用いて、微粒側から累積50%の粒径(D50)を求める。測定装置としては、例えば、CAMSIZER(VERDER Scientific製)を用い、装置内に試料を順次投入して、ドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定する。
(α化率)
 α-アルミナは熱伝導率が高いため、アルミナ粒子中のα-アルミナの含有量を高くすることにより、アルミナ粒子の熱伝導率を高くすることができる。本発明の実施形態に係るアルミナ粒子は、α-アルミナの含有量の指標であるα化率が、90%以上と高い。そのため、熱伝導率の高いアルミナ粒子を得ることができる。
 アルミナ粒子のα化率は、好ましくは95%以上、最も好ましくは100%である。
 本明細書において「α化率」とは、アルミナ粒子に含まれる全てのアルミナに対するα-アルミナの含有率(体積%)である。
 α化率は、アルミナ粒子を粉末X線回折法により測定し、得られた回折スペクトルから、2θ=25.6°の位置に現れるα相(012面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相のピーク高さ(I46)を求め、以下の式(1)により算出する。

  α化率=I25.6/(I25.6+I46)×100(%)   (1)
 なお、本発明の実施形態に係るアルミナ粒子は、α化率が100%であることが最も望ましいものの、α-アルミナ以外のアルミナ(δ-アルミナ、θ-アルミナ等)を例えば約10%以下で含んでいてもよく、本発明の目的の妨げにならない。
 また、α-アルミナ以外のアルミナは、どのような態様で含まれていてもよい。例えば、1粒のアルミナ粒子の内部に、α-アルミナと、α-アルミナ以外のアルミナとが共に含まれていてもよい。また、とある粒のアルミナ粒子はα-アルミナのみからなり、別の粒のアルミナ粒子はα-アルミナ以外のアルミナのみからなり、それらのアルミナ粒子が混在していてもよい。
(α-アルミナが単結晶)
 本発明の実施形態では、アルミナ粒子に含まれるα-アルミナが単結晶となるように、製造条件を制御している。上述の通り、α-アルミナは熱伝導率が高いが、特に単結晶であると、多結晶のα-アルミナよりも熱伝導率が高い。よって、アルミナ粒子中のα-アルミナを単結晶として含有することにより、アルミナ粒子の熱伝導率をさらに向上することができる。
 なお、単結晶のα-アルミナと共に、少量(例えば約10%以下)の多結晶のα-アルミナを含んでいてもよく、本発明の目的の妨げにならない。
 アルミナ粒子中のα-アルミナが単結晶であることは、SEM-EBSD法により確認することができる。Phase MAPにて、α-アルミナであるか、α-アルミナ以外のアルミナであるかを判断し、次いで、Image Quality(IQ)MAPにて、アルミナ粒子中の明確な結晶粒界の有無により、単結晶であるか、多結晶であるかを判断することができる。
 α-アルミナが単結晶であることは、デバイ・シェラー法により確認しても良い。
 本発明に係る実施形態では、アルミナ粒子は、Na含有量が800ppm以下であることが好ましい。
 アルミナ粒子を樹脂組成物用フィラーとして使用する場合、Na含有量が多い(例えば1000ppm以上)と、樹脂組成物に隣接して配置される電子部品等に悪影響を及ぼす恐れがある。また、アルミナ粒子中に存在するNaは、伝搬するフォノンを散乱させるため、Na含有量が例えば100ppm以上であると、アルミナ粒子の熱伝導率が低すぎて樹脂組成物用フィラーには不適であると考えられていた。これらのことから、従来は、アルミナ粒子を樹脂組成物用フィラーとして使用する場合には、Na含有量を100ppm未満とする必要があるとされていた。
 これに対して、本願発明者は、D50が100μm超であり、α化率が90%以上であり、含まれているα-アルミナが単結晶であることにより、Na含有量が100ppm以上であっても、樹脂組成物用フィラーとして使用するのに適した熱伝導率を達成し得ることを見出した。特に、Na含有量が800ppm以下であることが好ましく、アルミナ粒子の熱伝導率を向上することができる。
 本明細書において「Na含有量」とは、酸化物換算で求めた含有量であり、アルミナ粒子に含まれるアルミナ(Alとして換算)を100質量%としたとき、アルミナ粒子に含まれるNaをNaOとして換算したときのNaO含有量(質量ppm)のことである。
 Na含有量は、より好ましくは700ppm以下、特に好ましくは600ppm以下である。
 Na含有量の下限は特に限定されないが、例えば1ppm以上である。以下のような状況下では、Na含有量の下限をより高く(例えば20ppm超)することが好ましい。
 Naはアルミナ粒子を製造するための原料(アルミナ原料粒子)に含まれることがある。アルミナ粒子のNa含有量を極めて低くするためには、原料由来のNaを、アルミナ粒子全体(アルミナ粒子の表面および内部)から除去するための処理を行う必要がある。本発明の実施形態に係るアルミナ粒子は、緻密であるため、後述するようなアルミナ粒子の水洗浄では、アルミナ粒子の内部からNaを除去することは難しい。
 しかしながら、本発明の実施形態に係るアルミナ粒子は、上述したように、Na含有量が100ppm以上であっても、樹脂組成物用フィラーとして使用することができる。よって、Na除去のための処理を省略するために、ある程度のNa含有量を許容することが好ましい。
 Na含有量は、20ppm超、30ppm超、50ppm超、または80ppm超であることが好ましく、100ppm以上であることがより好ましい。
 アルミナ粒子に含まれるNaのうち、表面に存在するNaは、水で洗浄することにより容易に洗い流すことができる。電子部品等に悪影響を及ぼすおそれのあるNaは、主に、アルミナ粒子の表面に存在するNaであるので、樹脂組成物用フィラーとして樹脂と混合する前に、アルミナ粒子を水で洗浄することにより、電子部品等に悪影響を低減することができる。但し、水洗浄により除去できるNaは、アルミナ粒子の表面近傍に存在するごく微量のNaだけなので、水洗浄の前後でアルミナ粒子のNa含有量の測定値を比較しても、Na含有量の大幅な減少を確認することは困難である。
 また、アルミナ粒子の熱伝導率を低下させるNaは、主に、アルミナ粒子の内部に存在するNaであるので、アルミナ粒子を水洗浄したとしても、アルミナ粒子の熱伝導率は、それほど向上しないと推測される。
 アルミナ粒子のNa含有量は、グロー放電質量分析法、誘導結合プラズマ発光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)、蛍光光度法などの公知の方法で定量化することができるが、特に誘導結合プラズマ質量分析法(ICP-AES)が好ましい。
 アルミナ粒子は、累積粒度分布の微粒側から累積10%の粒径D10が、70μm以上であることが好ましく、75μm以上、または80μm以上であることがより好ましく、90μm以上であることが特に好ましい。D10は、135μm以下であることが好ましく、125μm以下、120μm以下、115μm以下、110μm以下、または105μm以下であることがより好ましい。
 また、アルミナ粒子は、累積粒度分布の微粒側から累積90%の粒径D90が130~200μmであることが好ましい。D90は、より好ましくは130~190μm、特に好ましくは130~180μmである。
 このような粒径を有するアルミナ粒子は、流動性がよく、樹脂中の充填量も多くでき、ハンドリングもしやすいので好ましい。
 また、アルミナ粒子の粒度分布がシャープであることが好ましく、D90/D10は3.0以下が好ましく、2.0以下がより好ましい。シャープな粒度分布を持つアルミナ粒子である程、そのアルミナ粒子を溶融製造した後の粒子の補足率(回収率)を向上でき、生産性が良くなる。また、粒度分布がシャープなアルミナ粒子は、樹脂組成物用フィラーとして使用しやすく、他の粒子と混合する際の選択性および自由度が増えるので好ましい。
 なお、最終製品としてのアルミナ粒子が微粒および粗粒を含まないように、アルミナ原料粒子または製造後のアルミナ粒子を分級または篩別することが好ましい。例えば、アルミナ原料粒子を分級または篩別して微粒および粗粒を除去してから、アルミナ粒子の製造に用いると、得られるアルミナ粒子中の微粒および粗粒を減少することができる。あるいは、製造後のアルミナ粒子を、分級または篩別して微粒および粗粒を除去してもよい。
 粗粒を含まないアルミナ粒子では真円度向上の観点からも、累積粒度分布の微粒側から累積100%の粒径D100(つまり、粒子の最大粒径)は、好ましくは500μm以下、より好ましくは400μm以下、特により好ましくは300μm以下である。
 本発明の実施形態では、微粒のアルミナ原料粒子を用いてアルミナ粒子を製造すると、多結晶アルミナ粒子になったり、α化率の低いアルミナ粒子になったり、または低密度のアルミナ粒子になりやすい。よって、アルミナ原料粒子の微粒を除去、または製造後のアルミナ粒子の微粒を除去することが特に好ましい。
 アルミナ粒子のD10、D90およびD100の測定は、上述したD50の測定と同様の方法、装置によって行うことができる。ISO 13322-2に準拠した動的画像解析の原理に基づいてアルミナ粒子の粒度分布を測定し、測定結果から得た累積粒度分布を用いて、微粒側から累積10%の粒径(D10)、累積90%の粒径(D90)および累積100%の粒径(D100)を求める。測定装置としては、例えば、CAMSIZER(VERDER Scientific製)を用い、装置内に試料を順次投入して、ドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定する。
 アルミナ粒子の真円度は0.90~1.00であることが好ましく、樹脂との混錬性を良好にでき、かつ、混練後のコンポジットの流動性を高めることができ、さらにアルミナ粒子による他の部材の摩耗を低減することもできる。
 アルミナ粒子は一般的に硬い粒子であるため、電子部品の樹脂組成物用フィラーに使用するには真円度が0.90以上であることが好ましいが、真円度の低いアルミナ粒子同士を衝突させたり、または真円度の低いアルミナ粒子を粉砕するだけでは、真円度が0.90以上のアルミナ粒子を得ることは困難である。さらには、そのような衝突および粉砕を長時間行うことにより、微粉が多量に生じるおそれがある。また、粉砕により生じた新たな親水面が樹脂との混和性を低下させるおそれがある。
 真円度(SPHT)はISO 9276-6に準拠して解析した。SPHT=4πA/Pから求められる。式中のAは投影粒子画像の面積の測定値であり、Pは粒子投影画像の外周長の測定値である。
 アルミナ粒子の真円度は、ISO 13322-2に準拠した動的画像解析の原理に基づく測定装置(例えば、CAMSIZER X2(VERDER Scientific製))により測定する。
 アルミナ粒子は、密度が3.80g/cm以上であることが好ましい。
 アルミナ粒子の中に内部空隙が存在すると、アルミナ粒子の熱伝導率は低くなる。そのため、アルミナ粒子は、内部空隙が少ないことが望ましい。内部空隙を確認する手法としては、断面SEM像、X線透視像などの画像解析により直接的に観察する方法と、アルミナ粒子の密度を測定して間接的に確認する方法がある。
 アルミナ粒子の密度としては、3.80g/cm以上であることが好ましく、内部空隙の量が少ない(または内部空隙が存在しない)アルミナ粒子、つまり、熱伝導率の高いアルミナ粒子が得られる。
 アルミナ粒子の密度は、より好ましくは、3.85g/cm以上、3.88g/cm以上、または3.89g/cm以上であり、特に好ましくは3.90g/cm以上である。
 アルミナ粒子の密度は、JIS R 1620-1995に準拠してピクノメータ法により測定する。測定回数は5回以上とする。測定には、例えばアキュピック1330(Micromeritics社)を用いることができる。
 本発明に係る実施形態では、アルミナ粒子1個の熱伝導率(W/mK)を高くすることができる。アルミナ粒子1個の熱伝導率は、好ましくは25W/mK以上であり、より好ましくは28W/mK以上であり、特に好しくは30W/mK以上であり、最も好ましくは33W/mK以上である。
[アルミナ粒子の製造方法]
 本発明の実施形態に係るアルミナ粒子の製造方法について説明する。
 アルミナ粒子の原料には、単結晶α-アルミナから成り、累積粒度分布の微粒側から累積50%の粒径D50が100μm超のアルミナ原料粒子を使用する。そして、火炎溶融法により、アルミナ原料粒子からアルミナ粒子を製造する。
 これまでは、原料粒子を火炎に入れると溶融されて、原料粒子の結晶構造がリセットされるので、原料粒子の結晶構造の素性は、火炎で球状化した後の粒子の結晶構造に影響を及ぼすことはない、というのが通説だった。しかしながら、原料粒子として単結晶粒子を用いると、球状化後も原料粒子の結晶構造の素性が引き継がれ得ることを思いがけなく見出した。
 火炎溶融工程では、例えば、図1に示すような装置を用いる。火炎溶融工程により、α化率が90%以上で、α-アルミナが単結晶のアルミナ粒子を得ることができる。
 単結晶アルミナの原料粒子を使用し、球状化後も、単結晶アルミナの結晶構造の素性を活かすために、使用するアルミナ原料粒子の粒径、装置の火炎溶融炉内へのアルミナ原料粒子の供給速度、火炎の強さ、火炎とアルミナ原料粒子との距離などを制御する。
 D50が100μm超のアルミナ粒子を製造するためには、D50が、例えば110μm以上のアルミナ原料粒子を用いる。アルミナ原料粒子のD50は、好ましくは120μm以上であり、例えば150μmである。
 なお、アルミナ原料粒子のD50が例えば110μm以上であっても、個々のアルミナ原料粒子としては、110μm未満の粒径のものも含まれ得る。そのため、得られたアルミナ粒子には、多結晶のα-アルミナおよび/またはα-アルミナ以外のアルミナなどを含み得る。しかしながら、アルミナ原料粒子のD50を110μm以上とすることにより、多結晶のα-アルミナおよび/またはα-アルミナ以外のアルミナの含有量を、本発明で許容される程度の少量に抑えることができる。
 また、従来から、造粒した原料粒子を用いて火炎溶融法でアルミナ粒子を製造する方法が知られているが、得られるアルミナ粒子の内部に内部空隙が多く含まれることがある。本発明では、アルミナ原料粒子として、造粒を行っていない単結晶α-アルミナそのものを使用するので、内部空隙の少ない(または内部空隙のない)、密度の高いアルミナ粒子を得ることができる。
 アルミナ原料粒子のD50は、上述のアルミナ粒子のD50の測定方法と同じ方法で測定できる。
 アルミナ原料粒子が単結晶のα-アルミナであることは、上述のアルミナ粒子中のα-アルミナが単結晶であることを確認する方法と同じ方法で確認できる。
 アルミナ原料粒子の原材料としては、サファイア、およびCZ法、ベルヌーイ法、カイロポーラス法、ブリッジマン法、EFG法等の融液成長法で作製した単結晶のα-アルミナ等を用いることができる。それらの原材料を粉砕して、所望の目開きのメッシュで篩別することで、所定のD50のアルミナ原料粒子を準備することができる。
 アルミナ原料粒子は、α-アルミナ以外のアルミナ(δ-アルミナ、θ-アルミナ等)を少量(例えば約10質量%以下)含んでいてもよく、また、単結晶のα-アルミナと共に、少量(例えば約10質量%以下)の多結晶のα-アルミナを含んでいてもよく、いずれも本発明の目的の妨げにならない。
 火炎溶融工程において、アルミナ原料粒子、燃料ガスおよび酸素ガスの供給量が以下の式(2)および式(3)を満たすことが好ましい。

  0.625≦R/F(kg/Nm)≦5.000   (2)
  0.125≦R/S(kg/Nm)≦1.500   (3)

ここで、Fは燃料ガスの供給量(Nm/時間)、Sは酸素ガスの供給量(Nm/時間)、Rはアルミナ原料粒子の供給量(kg/時間)である。
 なお、酸素ガスの供給量(S)は、燃焼酸素ガスの供給量と、キャリア酸素ガスの供給量の合計である。キャリア酸素ガスは、アルミナ原料粒子を運搬することを主目的とする酸素ガスであるが、運搬した後は、燃焼酸素ガスと同様に燃焼に利用される。
 式(2)で規定したように、燃料ガスの供給量に対するアルミナ原料粒子の供給量の比率(R/F)は、0.625kg/Nm以上5.000kg/Nm以下であることが好ましい。また、式(3)で規定したように、酸素ガスの供給量に対するアルミナ原料粒子の供給量の比率(R/S)は、0.125kg/Nm以上1.500kg/Nm以下であることが好ましい。
 燃料ガスの供給量F(Nm/時間)と、酸素ガスの供給量S(Nm/時間)は、火炎溶融工程において、炉内の火炎の強さを決定する因子である。R/FおよびR/Sはいずれも、火炎溶融工程において、炉内における火炎の強さとアルミナ原料粒子の供給量との関係性の指標となる。
 R/FおよびR/Sが大きくなる場合、アルミナ原料粒子の供給量が多く、各アルミナ原料粒子に対して火炎から与えられるエネルギー量が小さくなる(つまり、アルミナ原料粒子の溶融が抑制される)。
 R/FおよびR/Sが小さくなる場合、アルミナ原料粒子の供給量が少なく、各アルミナ原料粒子に対して火炎から与えられるエネルギー量が大きくなる(つまり、アルミナ原料粒子の溶融が促進される)。
 よって、R/FおよびR/Sを制御することは、火炎溶融工程におけるアルミナ原料粒子の溶融状態を制御する1つの手法である。R/FおよびR/Sの各々が好ましい範囲内にあると、火炎溶融工程において、アルミナ原料粒子の原料粒子の結晶構造を維持したまま球状化することができる。
 R/Fは、より好ましくは0.625kg/Nm以上4.500kg/Nm以下であり、特に好ましくは1.000kg/Nm以上4.500kg/Nm以下である。
 R/Sは、より好ましくは0.125kg/Nm以上1.333kg/Nm以下であり、特に好ましくは0.125kg/Nm以上1.250kg/Nm以下であり、最も好ましくは0.200kg/Nm以上1.000kg/Nm以下である。
 さらに、燃料ガスの供給量Fは、20Nm/時間未満であることが好ましい。燃料ガスの供給量により、火炎長を変えることができ、燃料ガスの供給量が多くなるほど、火炎長が長くなり、粒子の火炎中の滞留時間が長くなる。燃料ガスの供給量が小さくなるほど、火炎長が短くなり、粒子の火炎中の滞留時間が短くできる。すなわち、アルミナ原料粒子の火炎中の滞留時間を変えることができ、アルミナ原料粒子の火炎中の溶融度合い(時間)を変化させることができる。また、アルミナ原料粒子の原料粒子の結晶構造を維持したままアルミナ粒子のα化率および密度をより高くすることができる。
 本発明における燃料ガスとしては、例えば、プロパン、ブタン、プロピレン、アセチレン、水素などが挙げられる。特に、プロパン(例えば、液化プロパンガス(LPG)〕が好ましい。
 また、このような火炎溶融工程を経てアルミナ粒子を製造することで、得られるアルミナ粒子のNa含有量を、アルミナ原料粒子のNa含有量よりも低減することもできる。
 火炎溶融工程において、溶融されたアルミナ原料粒子を固化させる際、冷却速度を遅くするために、600℃~1500℃の領域、好ましくは800℃~1400℃の領域、より好ましくは1000℃~1300℃の領域を通過させてもよい。このような領域を通過させて、球状化したアルミナ粒子を固化させることにより、α化率をより高くすることができる。
 上述の火炎溶融工程の後工程として、冷却固化されたアルミナ粒子を、回収する前に再加熱する工程を入れてもよい。冷却固化されたアルミナ粒子を再加熱することで、α-アルミナ以外のアルミナの割合を低減でき、α化率をより高くすることができる。再加熱する工程の温度としては、例えば900℃以上が好ましく、1000℃以上がより好ましい。再加熱する方法としては、ヒーター等を使った外部からの加熱、再度のガス燃焼による加熱などが適用できる。
[樹脂組成物]
 本発明の実施形態に係るアルミナ粒子を樹脂組成物用フィラーとして使用することにより、熱伝導率の高い樹脂組成物を得ることができる。樹脂組成物は、樹脂と、本発明の実施形態に係るアルミナ粒子とを含んでいる。
 本発明の実施形態に係るアルミナ粒子は、樹脂特有のしなやかさを損なうことなく熱伝導率を向上させることができるため、その配合比率は樹脂組成物(コンポジット)に対して樹脂5~75体積%、アルミナ粒子95~25体積%の割合であることが好ましい。
 樹脂組成物の製造方法について説明する。
 一般的に用いられる公知の方法を使用して、本発明のアルミナ粒子と樹脂を混合することにより樹脂組成物を得ることができる。例えば、樹脂が液状の場合(例えば液状エポキシ樹脂など)は、液状樹脂とアルミナ粒子と硬化剤とを混合した後、熱または紫外線などで硬化させることにより樹脂組成物を得ることができる。硬化剤や混合方法、硬化方法は公知のものおよび方法を用いることができる。一方、樹脂が固体状の場合(例えばポリオレフィン樹脂やアクリル樹脂など)は、アルミナ粒子と樹脂を混合した後に、溶融混練などの公知の方法により混練することで目的とする樹脂組成物を得ることができる。
 樹脂組成物に使用する樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。なお、樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
 熱可塑性エラストマーとしては、スチレン- ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
 加工性や特性の観点から、ポリオレフィン系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、フェノール系樹脂、シリコーン樹脂が好ましく用いられる。
 さらに、これらの樹脂組成物には、必要に応じて、発明の効果を損なわない範囲で可塑剤、硬化促進剤、カップリング剤、充填剤、顔料、難燃剤、酸化防止剤、界面活性剤、相溶化剤、耐候剤、抗ブロッキング剤、帯電防止剤、レベリング剤、離型剤などの公知の添加剤を単独または二種以上を適宜配合しても良い。
 本実施の形態に係るアルミナ粒子、および当該アルミナ粒子を含む樹脂組成物は、特に、放熱材料用途に好適である。よって、本開示の一態様では、放熱性アルミナ粒子および放熱性樹脂組成物を提供することができる。
 しかしながら、本実施の形態に係るアルミナ粒子および樹脂組成物は、以下の[その他の物性]で説明する物性をさらに備えることにより、低誘電損失の特性を備えうる。よって、本開示の別の形態では、低誘電損失のアルミナ粒子および低誘電損失の樹脂組成物を提供することができる。本開示のさらに別の態様では、放熱性と低誘電損失の両方の特性を生かして、放熱性・低誘電損失のアルミナ粒子、および放熱性・低誘電損失の樹脂組成物を提供することもできる。
[その他の物性]
 本実施の形態に係るアルミナ粒子、および当該アルミナ粒子を含む樹脂組成物は、以下のような特性をさらに有することにより、低誘電損失の樹脂組成物を得ることができる。以下に説明する「その他の物性」は、実施例に記載した測定方法を用いて測定することができる。
(粒子内欠陥率)
 アルミナ粒子の内部に空隙または非晶質層(これらを「粒子の欠陥」と称する)が含まれると、誘電損失を増加させる原因となる。そのため、アルミナ粒子の粒子内欠陥率が低いことが好ましく、特に、20%以下であることが好ましく、15%以下であることがより好ましい。これにより、アルミナ粒子を樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
(不純物粒子の平均アスペクト比)
 アルミナ粒子は、不純物粒子(円形ではない、細長いアルミナ粒子のこと)を含んでいてもよい。不純物粒子の平均アスペクト比が1.2超5.0以下であることが好ましく、3以下、または2.5以下が特に好ましい。アルミナ粒子がそのような不純物粒子を少量含むことにより、樹脂組成物用フィラーとして使用したときに、アルミナ粒子の充填率を向上でき、樹脂組成物の誘電損失をより低下させ得る。
(アルミナ粒子の外縁の長さL1に対する粒子内部の境界線の合計長さL2の比)
 アルミナ粒子内部の粒界および空洞が少ないほど、アルミナ粒子の誘電損失が低くなる。そこで、アルミナ粒子内部の粒界の含有量の指標として、外縁の長さL1に対する境界線の合計長さL2の比(L2/L1)を導入する。
 1粒のアルミナ粒子の外縁の長さL1、そのアルミナ粒子が有する境界線の合計長さL2としたとき、L2/L1の値が小さいアルミナ粒子は、境界線の含有量が少なく、誘電損失の低いアルミナ粒子といえる。特に、(L2/L1)(%)が100%以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。(L2/L1)は、より好ましくは80%以下、さらに好ましくは50%以下、特に好ましくは40%以下である。
 なお、「境界線の合計長さL2」は、アルミナ粒子の内部に含まれる境界線の総和であり、アルミナ粒子の外縁を含まない。境界線の合計長さL2は、アルミナ粒子内部の粒界の合計長さL3と、(アルミナ粒子の内部に空洞がある場合は)その空洞の内壁の合計長さL4とを加算したものとする(つまり、L2=L3+L4)。
 L1、L2、L3およびL4の測定は、α-アルミナからなるアルミナ粒子で行うことが好ましい。
(樹脂組成物中におけるアルミナ粒子間の接点の数)
 樹脂組成物中において、隣接するアルミナ粒子間の接点の数(すなわち粒子間の界面の数)が増えると、樹脂組成物の誘電損失を増加させる。そのため、樹脂組成物中におけるアルミナ粒子間の接点の数は650μm×750μmの観察範囲中で、40個以下(観察範囲1mm当たり82個以下に相当)であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
 アルミナ粒子間の接点の数は、観察範囲1mm換算で、65個/mm以下であることがより好ましく、50個/mm以下、または30個/mm以下であることが特に好ましい。放熱特性のために、アルミナ粒子間の接点の数は、650μm×750μmの観察範囲中で、1個以上(観察範囲1mm当たり2個以上に相当)であることが好ましい。
 また、アルミナ粒子間の接点の数は、粒子の分散度合いの指標となり得、接点の数が少ないほど、アルミナ粒子が樹脂中に均一分散しているといえる。
(アルミナ粒子のBET比表面積)
 本実施の形態に係るアルミナ粒子は、粒子表面の凹凸が少なく、比表面積が低いため、Nガス吸着法では正確なBET比表面積を測定することが困難である。N-BET比表面積の値としては0.05m/g以下、0.02m/g以下が好ましく、0.01m/g以下がより好ましく、0.01m/g未満が特に好ましい。なお試験No.3~6のアルミナ粒子はN-BET比表面積測定では0.01m/g未満であった。そこで、クリプトンガス(Kr)を吸着ガスとして用いたBET比表面積を測定することにより、比表面積が低いアルミナ粒子のBET比表面積をより正確に測定することができる。
 アルミナ粒子の表面の凹凸が少ないと、樹脂組成物用フィラーとして使用したときに、樹脂との界面が少なくなり、結果として樹脂組成物の誘電損失を低くできる。そのため、アルミナ粒子は、Krガスを用いたBET比表面積S1(m/g)が0.10m/g以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。Kr-BET比表面積S1は、0.08m/g以下であることがより好ましく、0.07m/g以下であることが特に好ましい。
 Kr-BET比表面積S1は、0.01m/g以上であってもよく、0.02m/g以上であってもよい。
 アルミナ粒子の表面の凹凸の別の指標として、理想球面積S2(m)に対する、Krガスを用いたBET比表面積S1(m/g)の比(S1/S2)(/g)がある。(S1/S2)が95×10/g以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。(S1/S2)は40×10/g以下であることがより好ましく、20×10/g以下であることが特に好ましい。
 理想球面積S2(m)は、直径D50の真球状の粒子の表面積のことであり、球の表面積の公式(4πr)から求める。
 また、粒子の表面の凹凸の別の確認方法として、細孔分布、細孔体積等でも評価してもよい。アルミナ粒子の細孔体積については後述する。
(アルミナ粒子および樹脂の持ち込み水分量)
 アルミナ粒子の持ち込み水分量(アルミナ粒子に含まれる水分量)が多いと、そのアルミナ粒子を用いて作製した樹脂組成物の誘電損失が大きくなる。また、アルミナ粒子の持ち込み水分量が多いと、樹脂から水分が滲出して、樹脂組成物に隣接して配置される電子部品等に悪影響を及ぼす恐れがある。そのため、アルミナ粒子の持ち込み水分量は少ない方が好ましい。
 アルミナ粒子の持ち込み水分量の指標として、樹脂の持ち込み水分量ΔMr(ppm)に対するアルミナ粒子の持ち込み水分量ΔMaの比(ΔMa/ΔMr)を導入する。
 ΔMa/ΔMrが0.2以下であることが好ましく、0.1以下であることがより好ましい。アルミナ粒子の持ち込み水分量ΔMaが、ポリイミド樹脂の持ち込み水分量に対して極めて小さいので、アルミナ粒子を樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
(アルミナ粒子の細孔体積)
 アルミナ粒子の細孔体積をクリプトン吸着法により測定したとき、細孔体積が0.0003cm/g以下であることが好ましい。
 細孔体積は、Kr-BET比表面積と同様に、粒子表面の凹凸の程度を知る指標となる。第1のアルミナ粒子の細孔体積を上記範囲に制御することにより、混合物の成形性をさらに向上することができる。
 上記細孔体積は、0.00009cm/g以下であることがより好ましく、0.00007cm/g以下であることが特に好ましい。上記細孔体積の下限は特に限定されないが、例えば0.000001cm/g以上であってもよく、さらには0.000005cm/g以上であってもよい。
(アルミナ原料粒子の調製)
 原料1として単結晶のアルミナからなる原料粒子を準備した。原料2は別の単結晶のアルミナからなる原料粒子であり、50μm以下の粒子は篩別除去した。なお、どちらのアルミナ原料粒子も角ばった形状をしていた。
 原料1、原料2の各物性値を表1に示す。なお、アルミナ原料粒子の各物性値の測定方法は、後述するアルミナ粒子の物性値の測定方法と同じであった。
Figure JPOXMLDOC01-appb-T000001
(アルミナ粒子の製造)
 図1に示すような装置を用いて、アルミナ粒子を調製した。酸素ガス供給システム10からの酸素ガスを分岐して、一方(キャリア酸素ガス11)をフィーダ30に、他方(燃焼酸素ガス12)を火炎溶融炉40のバーナー41に供給した。フィーダ30に供給されたアルミナ原料粒子は、キャリア酸素ガス11によって火炎溶融炉40のバーナー41まで運搬された。また、ガス供給システム20から燃焼ガス(LPG)をバーナー41に供給した。バーナー41では、燃料ガスと燃焼酸素ガス12によって2150℃以上の高温火炎が形成され、そこに、キャリア酸素ガス11中に分散させたアルミナ原料粒子を供給した。これにより、火炎溶融炉40内において、アルミナ原料粒子を溶融して球状化した。その後、球状化したアルミナ粒子をサイクロン50にて分級を行い、サイクロン50に補足したアルミナ粒子を得た。
 試料No.1~4では、得られたアルミナ粒子をそのまま各種測定に使用した。試料No.5および6では、追加で以下の処理を行った。
 試料No.5では、アルミナ原料粒子(原料1)を、目開き132μmの篩で篩別し、篩上分のアルミナ原料粒子を原料として用いた。さらに、得られたアルミナ粒子について、Na除去のために酸洗浄を行った後に各種測定に使用した。
 試料No.6では、得られたアルミナ粒子を、目開き70μmの篩と135μmの篩とを用いて分級して、各種測定に使用した。
 火炎溶融工程における燃料ガスの供給量F(Nm/時間)、酸素ガスの供給量S(Nm/時間)、およびアルミナ原料粒子の供給量R(kg/時間)の比であるR/FおよびR/Sを表2にまとめた。なお、酸素ガスSの供給量は、キャリア酸素ガス11の供給量と燃焼酸素ガス12の供給量の合計である。燃料ガスの供給量Fは20Nm/時間未満であった。
Figure JPOXMLDOC01-appb-T000002
(1)アルミナ粒子の粒径D10、D50、D90、および真円度の測定
 試料No.1~6のアルミナ粒子の粒度分布を測定し、アルミナ粒子の平均値、累積10%の粒径D10、累積50%の粒径D50および累積90%の粒径D90を求めた。
 アルミナ粒子の粒度分布および真円度は、ISO 13322-2に準拠した動的画像解析の原理に基づく装置CAMSIZER X2(VERDER Scientific製)により測定した。測定は乾式とし、装置内に試料を順次投入して、50kPaのドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定した。測定試料は3g秤量し、1回測定とした。同じ測定を3回繰返し行い、これらの結果の積算平均から粒度分布および真円度を解析した。粒子径は円相当粒子径とした。円相当粒子径とは投影粒子画像と同じ面積となる真円の粒子径のことである。また、粒子径の基準は体積とした。
 真円度(SPHT)はISO 9276-6に準拠して解析した。SPHT=4πA/Pから求めた。式中のAは投影粒子画像の面積の測定値であり、Pは粒子投影画像の外周長の測定値である。
 これらの測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(2)アルミナ粒子の密度の測定
 試料No.1~6のアルミナ粒子の密度を測定した。測定結果を表4に示す。
 密度は、JIS R 1620-1995に準拠して測定した。測定方法、測定条件は以下の通りとした。
・測定方法:気体置換法
・試料の乾燥:200℃、8時間以上
・使用装置:アキュピック1330(Micromeritics社)
・測定条件
 パージ回数10回
 パージ充填圧力:15.0psig
 測定回数:5回
 測定充填圧力:15.0psig
 平衡圧:0.005psig/分
 精度を設定しての測定:Yes
 バラつき許容誤差:0.05%
 試料セル寸法:10cm
(3)アルミナ粒子の結晶状態の確認
 EBSD(後方散乱電子回折測定)により、試料No.1~6のアルミナ粒子の結晶状態の確認を行った。測定方法、測定条件は以下の通りとした。
・使用機器
 イオンミリング装置:IM-4000(株式会社日立製作所製)
 イオンスパッタ装置:E-1030(株式会社日立製作所製)
 超高分解能電界放出形走査電子顕微鏡:JSM-7800F Prime(日本電子株式会社製)
 後方散乱電子回折装置:Digiview V(TSL製)
・測定条件
 加速電圧:20.0kV(EBSD分析)
・測定手順
 断面観察用試料は、以下のように作製した。アルミナ粒子を樹脂包埋後、樹脂とアルミナ粒子をダイヤモンドカッターにて切断した。その後、断面に保護膜としてPtを蒸着し、Arイオンミリングにて断面を調製した。SEM試料台にCu両面テープにて固定し、無蒸着にてEBSD測定を行った。
 EBSDの測定において、少なくとも400×250μmの同じ領域におけるPhase MAPとImage Quality(IQ)MAPにて、測定視野中のアルミナ粒子全体に対して、α-アルミナ粒子中に粒界が観察されない粒子の割合が8割以上である場合を〇とし、α-アルミナ粒子中に粒界が観察されない粒子の割合が8割未満である場合を×とした。
(4)アルミナ粒子のNa含有量の測定
 試料No.1~6のアルミナ粒子のNa含有量を測定した。詳しい測定方法、測定条件は以下の通りとした。
・試料および試料数:アルミナ粒子、計2検体
・分析、試験項目
 Naの定量分析
・分析、試験方法
 Na定量分析:酸溶解/ICP-AES法
 密封容器に粉末試料(アルミナ粒子)を測りとり、酸を加え、加圧酸分解処理を行い、放冷後、超純水で希釈して分析試料とした。そして、ICP-AES(高周波誘導結合プラズマ発光分光分析装置)により、前記分析試料中のNaの量を測定し、粉末試料(アルミナ粉体)中に含まれているNaの含有量を算出した。
(5)アルミナ粒子のα化率の測定
 試料No.1~6のアルミナ粒子のα化率を測定した。測定結果を表4に示す。
 α化率は、アルミナ粒子の試料を、粉末X線回折装置(理学電機製)により測定して、回折スペクトルを得た。測定条件は、X線源:CuKα、X線出力:45kV、200mA、走査速度:10deg/分で行った。
 得られた回折スペクトルから、2θ=25.6°の位置に現れるα相(012面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相のピーク高さ(I46)を求め、以下の式(1)により算出した。

  α化率=I25.6/(I25.6+I46)×100(%)   (1)
 これらの測定結果、確認結果および計算結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
(6)樹脂組成物(コンポジット)の熱拡散率および熱伝導率の測定
 エポキシ樹脂(主剤:常温硬化型埋込樹脂53型(三啓社製)010-8140、硬化剤:常温硬化型埋込樹脂53型(三啓社製)010-8143)と、アルミナ粒子(原料1、試料No.1~6)とを、表5に示す配合比で混合し、泡とり練太郎(株式会社シンキー製)を用いて攪拌混合して、エポキシ樹脂-フィラー(アルミナ粒子)のコンポジットを得た。
 PETフィルムにガラスクロス入りテープを貼って、フィルムの外形を決めるための型枠を作製し、アルミ板の上に設置した。撹拌混合したコンポジットを型枠内に注ぎ込み、その上に、空気を含まないようにPETフィルムを重ねた。さらにその上に別のアルミ板を乗せ、50~70℃に加熱して静置して樹脂を硬化させた。硬化時間は、50℃なら3時間程度、70℃なら1時間程度であった。
 硬化完了後に放冷し、アルミ板の温度が室温程度まで下がったら、硬化後のコンポジットの両面からPETフィルム2枚を剥離し、測定用のコンポジットのシート状試料を得た。
 得られたシート状試料について、熱拡散率、比熱および密度を測定し、熱伝導率を求めた。
 熱拡散率は、上述の樹脂組成物のシート状試料から、縦10mm×横10mm×厚さ0.1mmの測定用試料片を作製し、温度波熱分析法(TWA法)により、室温で測定した。測定装置としては、アイフェイズ社製のアイフェイズ・モバイルを用いた。
 熱拡散率については、1つの測定用試料片について、任意の3点で測定し、その3点の測定結果から、平均値を測定値として算出した。熱伝導率については、「エポキシ樹脂+原料1」のコンポジット試料の測定値を基準として、他の測定試料の測定値を規格化した。
 なお、比較として、エポキシ樹脂のみからなるシート状試料を作製して同様の測定および計算を行った。
 比熱は、樹脂とアルミナ粒子の配合比から計算し、表5の値を用いた。
 密度の測定は、電子比重計MDS-300(アルファーミラージュ株式会社)を用いて行った。
 密度アルキメデス法(固体密度測定)により、以下の式(4)に基づいて求めた。また、密度から比重を求めた。

  ρ=A÷(A-B)×(ρ-ρ)+ρ   (4)

 ここで、
ρ:試料(コンポジット)の密度
A:大気中で測定した試料の重量
B:置換液(水)中で測定した試料の重量
ρ:置換液(水)の密度(1.0000g/cm
ρ:大気の密度(0.0012g/cm
である。
 測定した熱拡散率、比熱および密度の結果を、以下の式(5)に代入して、熱伝導率を求めた。

  熱伝導率=熱拡散率×比熱×密度   (5)
 これらの測定結果および計算結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 測定結果について、以下に検討する。
 本願実施形態の要件を満たす試料No.1、3~6のアルミナ粒子を用いたコンポジットは、優れた熱特性(熱拡散率、熱伝導率)を示した。一方、本願実施形態の要件を満たさなかった試料No.2のアルミナ粒子を用いたコンポジットは、熱特性に劣っていた。
(7)アルミナ粒子の熱拡散率および熱伝導率
 試料No.1および3~5について、さらに1粒のアルミナ粒子の熱拡散率と熱伝導率の測定を行った。本明細書の実施例では、1粒のアルミナ粒子の熱拡散率の測定に成功した。
 1粒のアルミナ粒子の熱拡散率を測定する方法は、温度波熱分析法(TWA法)をミクロスケール測定へ適用したものである。1粒のアルミナ粒子の熱拡散率を測定するための装置の概念図を図2に示す。
 熱起電力型ミクロセンサーを、試料70(1粒のアルミナ粒子)に圧着した。ファンクションジェネレータから抵抗型ミクロヒーターの交流通電加熱により発生させた温度波の伝播による位相差の周波数依存性を、2位相ロックインアンプ80により測定し、熱拡散率を決定した。試料70の直径:約110μm、試料70の厚さ67μm、測定周波数2.7kHz~4.9kHz、センサーサイズ:8μm×9μmであった。
 また、測定した熱拡散率から、下記の式(5)を用いて熱伝導率を求めた。比熱は0.779kJ/kg・Kとして、密度は表4に記載の値を用いた。

  熱伝導率=熱拡散率×比熱×密度   (5)
 これらの測定結果および計算結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 試料No.1および3~5のアルミナ粒子は、単結晶のα-アルミナのバルクについて測定した熱拡散率および熱伝導率と同程度の値を示した。なお、予備実験で行った多結晶のα-アルミナの粒子について熱伝導率測定を行ったところ、15W/mKであった。単結晶とすることにより、多結晶のα-アルミナに比べて、約2倍の熱伝導率を有していることがわかった。
(8)粒子内欠陥率の測定
 試料No.1~4および6のアルミナ粒子の粒子内欠陥率を測定した。
 基板上に薄く分散させた状態のアルミナ粒子を、株式会社リガク製高感度X線CTスキャン(形式:nano3DX)を用いて0.7mm×0.7mmの範囲におけるX線透過像を撮影した。得られたX線透過像内の20個以上の全てのアルミナ粒子について、粒子の欠陥を確認した。粒子の欠陥とは、粒子内部に存在する空隙または非晶質層のことであり、アルミナ粒子のX線透過像において、アルミナ粒子内で欠陥のない部分(非欠陥部分:白色部分として観察される)の内部に、薄灰色部として観察される。
 X線透過写真を画像処理ソフトImage J(National Institute of Health製)により、アルミナ粒子全体の面積SAと、アルミナ粒子内の非欠陥部分の面積SBと、アルミナ粒子内の欠陥部分の面積SCとを求めた。なお、各面積の間には、SA=SB+SCとの式が成立する。
 そして、SC/SAを百分率で表し、粒子内欠陥率(%)とした。
 面積SA、SBおよびSCを求めるための画像処理方法を以下に説明する。
 画像処理ソフト「Image J」を用い、X線透過写真で得られた画像から、空隙を含むアルミナ粒子1粒の画像を切り出して二値化し、「Analyze Particles」の解析を用いて、アルミナ粒子全体の面積SAを求めた。X線透過写真で得られた画像では、アルミナ粒子の非欠陥部分が最も輝度が低く、次に、粒子内の欠陥の部分の輝度が高く、そしてアルミナ粒子の周囲(背景)の部分は最も輝度が高い。そこで、二値化の処理に際して、欠陥部分と背景の輝度を同程度に変換する画像処理が必要となる。そのような画像処理は、コントラストの調整とフィルター「Convolve」の調整により行った。これにより、アルミナ粒子から、欠陥部分である薄灰色部をくりぬいた範囲の面積(つまり、非欠陥部分の面積SB)を測定した。
 粒子解析コマンドにおいて、アルミナ粒子のうち、アルミナ粒子内部の非欠陥部分(面積SB)と欠陥部分(面積SC)の両方を含む場合の面積SA(Include holesのチェックをONにする)と、アルミナ粒子内部の欠陥部分を含まない場合の面積(つまり、非欠陥部分の面積SB)(Include holesのチェックをOFFにする)を計測した。得られた面積SA、SBから、面積SC(=SA-SB)を計算した。
 粒子内欠陥率(SC/SA)が低いほど、アルミナ粒子内の空隙または非晶質層が少ないことを意味する。よって、アルミナ粒子の粒子内欠陥率が低いことが好ましく、特に、20%以下であることが好ましく、15%以下であることがより好ましい。これにより、アルミナ粒子を樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
 計算結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
(9)不純物粒子のアスペクト比の測定
 試料No.1~6のアルミナ粒子を、株式会社リガク製高感度X線CTスキャン(形式:nano3DX)を用いて0.7mm×0.7mmの範囲におけるX線透過像を撮影した。
 X線透過像を画像処理ソフトImage J(National Institute of Health製)により、X線透過像内の全てのアルミナ粒子を評価対象とし、評価対象の全てのアルミナ粒子のアスペクト比を求めた。なお、アスペクト比は、アルミナ粒子の最大直径と直交する方向における粒径を最小直径とし、最小直径に対する最大直径の比として求めた。
 評価対象のアルミナ粒子に含まれる不純物粒子は、評価対象のアルミナ粒子から、アスペクト比の高い順に上位1%を抽出したものと定義した。そして、不純物粒子のアスペクト比の平均値を算出した。
 不純物粒子の平均アスペクト比は、1.2超5.0以下であることが好ましく、3以下、または2.5以下が特に好ましい。アルミナ粒子が少量の不純物粒子(高いアスペクト比を有する、細長い粒子)を含むことにより、樹脂組成物用フィラーとして使用したときに、アルミナ粒子の充填率を向上でき、樹脂組成物の誘電損失をより低下させ得る。
 測定結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
(10)アルミナ粒子の外縁の長さL1と粒子内部の境界線の合計長さL2の測定
 試料No.1~6のアルミナ粒子を用いて断面観察用試料を作製した。断面観察用試料の作製では、アルミナ粒子を樹脂包埋後、樹脂とアルミナ粒子をダイヤモンドカッターにて切断した。その後、断面に保護膜としてPtを蒸着し、Arイオンミリングにて断面調製を行い、SEM試料台にCu両面テープにて固定し、無蒸着にてSEM-EBSD測定を行った。観察領域内に2粒以上のアルミナ粒子が完全に入るように(つまり、2粒以上のアルミナ粒子が、観察領域の枠と接触しないように)、観察位置を決定した。測定はα-アルミナ粒子で行った。
 サンプルの前処理およびEBSD測定には、以下の機器を使用した。
・使用機器
 イオンミリング装置:IM-4000(株式会社日立製作所製)
 イオンスパッタ装置:E-1030(株式会社日立製作所製)
 超高分解能電界放出形走査電子顕微鏡:JSM-7800F Prime(日本電子株式会社製)
 後方散乱電子回折装置:Digiview V (TSL製)
 EBSD測定の条件は以下の通りとした。
・測定領域:500.0μm×400.0μm
・加速電圧:20.0kV
・倍率:×500
・低真空度:30Pa
 得られたEBSD像において、観察領域の枠と接触していないアルミナ粒子を2粒以上選択して、各アルミナ粒子の外縁の長さL1を、画像処理ソフトImage J(National Institute of Health製)の平均を算出した。また境界線の合計長さL2についても算出した。「境界線の合計長さL2」は、アルミナ粒子の内部に含まれる境界線の総和であり、アルミナ粒子の外縁を含まないものとした。境界線の合計長さL2は、アルミナ粒子内部の粒界の合計長さと、(アルミナ粒子の内部に空洞がある場合は)その空洞の内壁の合計長さとを加算して求めた。
 外縁の長さL1に対する境界線の合計長さL2の比(L2/L1)を百分率(%)で表した。アルミナ粒子内部の粒界および/または空洞が多いほど、L2/L1(%)の値が大きくなる。
 アルミナ粒子内部の粒界および空洞が少ないほど、アルミナ粒子の誘電損失が低くなる。つまり、L2/L1の値が小さいほど、誘電損失の低いアルミナ粒子といえる。特に、アルミナ粒子のL2/L1が100%以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。(L2/L1)は、より好ましくは80%以下、さらに好ましくは50%以下、特に好ましくは40%以下である。
 粒子内部の観察結果から、比較例の粒子は、数十μm程度の空隙があり、さらに数μmの微細な空隙に加えて粒界も観察された。実施例の粒子は、数μmの微細な空隙があった。
 測定結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
(11)樹脂組成物(コンポジット)中におけるアルミナ粒子間の接点の数の測定
 ポリイミド樹脂(宇部興産製 ワニスA)と、試料No.2~5のアルミナ粒子とを、体積%で20:80の配合比で混合した。バーコーターを用いて、その混合物からフィルムを作製し、そのフィルムをN雰囲気で焼成して、アルミナ-樹脂のコンポジットを作製した。Arイオンミリングで、コンポジットの厚さ方向に沿った断面を露出させ、その断面を観察した。
 断面の切り出しおよび断面観察は、以下の装置及び条件で行った。
・断面の切り出し:ミリング装置による断面作成
 装置:E-3500(日立製)
・断面観察:レーザー顕微鏡(LSM;Laser Scanning Microscopy)により観察
 装置:OLS4000(オリンパス製)
 測定モード:倍率20倍
 解像度:1024×1942
 測定範囲:x方向 約650μm×y方向 約750μm
 断面LSM像から、樹脂組成物中におけるアルミナ粒子間の接点の数を確認した。断面LSM像では、アルミナ粒子が灰色、樹脂が白色として観察される。灰色に写っているアルミナ粒子同士が直接接触している点の数をアルミナ粒子間の接点の数として、接点の数を数えた。
 接点の数は、粒子の分散度合いの指標となり得、均一分散していると、アルミナ粒子間の接点の数が少なくなる。
 また、樹脂組成物中において、隣接するアルミナ粒子間の接点の数(すなわち粒子間の界面の数)が増えると、樹脂組成物の誘電損失を増加させる。
 アルミナ粒子間の接点の数が、650μm×750μmの観察範囲中で、40個以下(観察範囲1mm当たり82個以下に相当)であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
 アルミナ粒子間の接点の数は、観察範囲1mm換算で、65個/mm以下であることがより好ましく、50個/mm以下、または30個/mm以下であることが特に好ましい。
 測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
(12)アルミナ粒子のBET比表面積の測定
 試料No.1~6のアルミナ粒子のBET比表面積を測定した。
 ガス吸着による粉体(固体)の比表面積測定法はJIS Z 8830:2013に準拠し、吸着ガスとしてKrを用いた。測定に際し、1gのアルミナ粒子をサンプル管にいれて、吸脱着等温線を取得し、多点プロット法により、Kr-BET比表面積S1(m/g)を算出した。
 また、D50から求めた理想球面積S2(μm)に対する、Kr-BET比表面積S1(m/g)の比(S1/S2)を求めた。理想球面積は、直径がD50の真球状の粒子の表面積のことであり、球の表面積の公式(4πr)から求めた。
 アルミナ粒子の表面の凹凸が少ないと、樹脂組成物用フィラーとして使用したときに、樹脂との界面が少なくなり、結果として樹脂組成物の誘電損失を低くできる。BET比表面積、および理想球面積に対するKr-BET比表面積の比(S1/S2)は、いずれも、粒子の凹凸の程度を示す指標となる。
 Kr吸着法によるBET比表面積S1が0.10m/g以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。Kr-BET比表面積S1は、0.08m/g以下であることがより好ましく、0.07m/g以下であることが特に好ましい。
 Kr-BET比表面積S1は、0.01m/g以上であってもよく、0.02m/g以上であってもよい。
 また、理想球面積に対するKr-BET比表面積の比(S1/S2)は95×10/g以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。(S1/S2)は40×10/g以下であることがより好ましく、20×10/g以下であることが特に好ましい。
 測定結果および計算結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
(13)アルミナ粒子および樹脂の持ち込み水分量の測定
 試料No.2~3、および5~6のアルミナ粒子の持ち込み水分量を、次のように求めた。あらかじめ1g秤量したアルミナ粒子を大気中で24h放置した後に質量を測定し、測定前質量Ma1(g)とした。その後、アルミナ粒子を真空乾燥機にて24h乾燥した後に質量を測定し、測定後質量Ma2(g)とした。(測定前質量Ma1-測定後質量Ma2)/(測定前質量Ma1)×10を、アルミナ粒子の持ち込み水分量ΔMa(ppm)として定義した。
 樹脂の持ち込み水分量は、次のように求めた。
 バーコーターを用いて、ポリイミド樹脂(宇部興産製 ワニスA)からフィルムを作製し、そのフィルムをN雰囲気で焼成して、厚さ約300μmの樹脂フィルムを作製した。樹脂フィルムから1cm×1cmの試料片を切り取った。試料片を大気中で24h放置した後に質量を測定し、測定前質量Mr1(g)とした。その後、ポリイミド樹脂を真空乾燥機にて24h乾燥した後に質量を測定し、測定後質量Mr2(g)とした。(測定前質量Mr1-測定後質量Mra2)/(測定前質量Mr1)×10をポリイミド樹脂の持ち込み水分量ΔMr(ppm)として定義した。
 ポリイミド樹脂の持ち込み水分量ΔMrに対する、アルミナ粒子の持ち込み水分量ΔMaの比(ΔMa/ΔMr)を求めた。ΔMa/ΔMrが0.2以下であることが好ましく、0.1以下であることがより好ましい。アルミナ粒子の持ち込み水分量ΔMaが、ポリイミド樹脂の持ち込み水分量に対して極めて小さいので、アルミナ粒子を樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
 計算結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
(14)樹脂組成物(コンポジット)の誘電損失の測定
 ポリイミド樹脂(宇部興産製 ワニスA)と、試料No.1~6のアルミナ粒子とを、体積%で20:80の配合比で混合した。バーコーターを用いて、その混合物からフィルムを作製し、そのフィルムをN雰囲気で焼成して、厚さ800μmのアルミナ-樹脂のコンポジットを作製した。
 以下の測定条件にて、コンポジットの誘電損失を測定した。
・測定装置:ネットワークアナライザーHP8510C(アジレント・テクノロジー製)
・掃引信号発生器:HP83651A、t HP8517B(いずれもアジレント・テクノロジー製)
・試験片寸法 :110mm×60mm
・測定周波数 :10GHz 
・試験環境:22℃/59%RH
 測定結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 No.1、3~6は誘電損失が低く、No.2は誘電損失が高かった。
(15)アルミナ粒子の細孔体積の測定
 試料No.1~6のアルミナ粒子の細孔体積を測定した。
 ガス吸着による粉体(固体)の比表面積測定法はJIS Z 8830:2013に準拠し、吸着ガスとしてKrを用いた。測定に際し、1gのアルミナ粒子をサンプル管にいれて、吸脱着等温線を取得し、多点プロット法により、細孔体積分布解析を行い、細孔体積を求めた。
 アルミナ粒子の細孔体積をクリプトン吸着法により測定したとき、細孔体積が0.0003cm/g以下であることが好ましい。
 細孔体積は、Kr-BET比表面積と同様に、粒子表面の凹凸の程度を知る指標となる。第1のアルミナ粒子の細孔体積を上記範囲に制御することにより、混合物の成形性をさらに向上することができる。
 上記細孔体積は、0.00009cm/g以下であることがより好ましく、0.00007cm/g以下であることが特に好ましい。上記細孔体積の下限は特に限定されないが、例えば0.000001cm/g以上であってもよく、さらには0.000005cm/g以上であってもよい。
 測定結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
  10 酸素ガス供給システム
  11 キャリア酸素ガス
  12 燃焼酸素ガス
  20 燃料ガス供給システム
  30 フィーダ
  40 火炎溶融炉
  50 サイクロン
  60 ファンクションジェネレータ
  70 試料
  80 2位相ロックインアンプ

Claims (7)

  1.  累積粒度分布の微粒側から累積50%の粒径D50が100μm超で、α化率が90%以上であり、α-アルミナが単結晶であるアルミナ粒子。
  2.  Na含有量が800ppm以下である、請求項1に記載のアルミナ粒子。
  3.  累積粒度分布の微粒側から累積10%の粒径D10が70~135μmである、請求項1に記載のアルミナ粒子。
  4.  累積粒度分布の微粒側から累積90%の粒径D90が130~200μmである、請求項1に記載のアルミナ粒子。
  5.  真円度が0.90~1.00である、請求項1に記載のアルミナ粒子。
  6.  密度が3.80g/cm以上である、請求項1に記載のアルミナ粒子。
  7.  樹脂と、請求項1~6のいずれか1項に記載のアルミナ粒子とを含む樹脂組成物。
PCT/JP2022/021614 2021-06-04 2022-05-26 アルミナ粒子およびそれを用いた樹脂組成物 WO2022255226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237044700A KR20240016998A (ko) 2021-06-04 2022-05-26 알루미나 입자 및 그것을 이용한 수지 조성물
CN202280039291.8A CN117425622A (zh) 2021-06-04 2022-05-26 氧化铝粒子和使用其的树脂组合物
EP22815976.0A EP4349782A1 (en) 2021-06-04 2022-05-26 Alumina particles and resin composition using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021094726 2021-06-04
JP2021-094726 2021-06-04
JP2022031333 2022-03-01
JP2022-031333 2022-03-01

Publications (1)

Publication Number Publication Date
WO2022255226A1 true WO2022255226A1 (ja) 2022-12-08

Family

ID=84324367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021614 WO2022255226A1 (ja) 2021-06-04 2022-05-26 アルミナ粒子およびそれを用いた樹脂組成物

Country Status (5)

Country Link
EP (1) EP4349782A1 (ja)
JP (1) JP2022186630A (ja)
KR (1) KR20240016998A (ja)
TW (1) TW202313472A (ja)
WO (1) WO2022255226A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169090A (ja) 2004-03-15 2006-06-29 Showa Denko Kk 丸味状電融アルミナ粒子、その製造方法およびそれを含有する樹脂組成物
WO2008053536A1 (fr) 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Poudre d'alumine, son procédé de fabrication et son utilisation
WO2009017170A1 (ja) * 2007-07-31 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha アルミナ粉末、その製造方法及びそれを用いた組成物
WO2009133904A1 (ja) 2008-04-30 2009-11-05 電気化学工業株式会社 アルミナ粉末、その製造方法、及びそれを用いた樹脂組成物
JP2012067205A (ja) * 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 高放熱絶縁樹脂シート及びその製造方法
JP2015078306A (ja) * 2013-10-17 2015-04-23 大阪瓦斯株式会社 熱伝導体及びその製造方法
JP2015166294A (ja) * 2014-03-04 2015-09-24 日本軽金属株式会社 粘度特性に優れた低ソーダαアルミナ粉体及びその製造方法
JP2019167283A (ja) * 2018-03-26 2019-10-03 河合石灰工業株式会社 α−アルミナ及び結晶粒子の内部に複数の空孔を有するα−アルミナの製造方法
WO2020153505A1 (ja) * 2019-01-25 2020-07-30 デンカ株式会社 フィラー組成物、シリコーン樹脂組成物及び放熱部品
WO2020170307A1 (ja) * 2019-02-18 2020-08-27 株式会社アドマテックス 粒子材料及び熱伝導物質

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169090A (ja) 2004-03-15 2006-06-29 Showa Denko Kk 丸味状電融アルミナ粒子、その製造方法およびそれを含有する樹脂組成物
WO2008053536A1 (fr) 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Poudre d'alumine, son procédé de fabrication et son utilisation
WO2009017170A1 (ja) * 2007-07-31 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha アルミナ粉末、その製造方法及びそれを用いた組成物
WO2009133904A1 (ja) 2008-04-30 2009-11-05 電気化学工業株式会社 アルミナ粉末、その製造方法、及びそれを用いた樹脂組成物
JP2012067205A (ja) * 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 高放熱絶縁樹脂シート及びその製造方法
JP2015078306A (ja) * 2013-10-17 2015-04-23 大阪瓦斯株式会社 熱伝導体及びその製造方法
JP2015166294A (ja) * 2014-03-04 2015-09-24 日本軽金属株式会社 粘度特性に優れた低ソーダαアルミナ粉体及びその製造方法
JP2019167283A (ja) * 2018-03-26 2019-10-03 河合石灰工業株式会社 α−アルミナ及び結晶粒子の内部に複数の空孔を有するα−アルミナの製造方法
WO2020153505A1 (ja) * 2019-01-25 2020-07-30 デンカ株式会社 フィラー組成物、シリコーン樹脂組成物及び放熱部品
WO2020170307A1 (ja) * 2019-02-18 2020-08-27 株式会社アドマテックス 粒子材料及び熱伝導物質

Also Published As

Publication number Publication date
JP2022186630A (ja) 2022-12-15
TW202313472A (zh) 2023-04-01
KR20240016998A (ko) 2024-02-06
EP4349782A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
KR102258544B1 (ko) 구상 질화붕소 미립자 및 그 제조 방법
EP2868641B1 (en) Sintered spherical bn particles with concave part, method for producing same, and polymer material comprising them
El Hage et al. Flame retardancy of ethylene vinyl acetate (EVA) using new aluminum-based fillers
US20220388845A1 (en) Boron nitride powder and production method therefor, boron carbonitride powder, composite material, and heat dissipating member
WO2022255226A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
US20230142330A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
WO2024116955A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116956A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116957A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
CN117425622A (zh) 氧化铝粒子和使用其的树脂组合物
JP7140939B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
WO2024116954A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116958A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2023210492A1 (ja) 樹脂組成物およびそれに用いるアルミナ粉末
WO2023210493A1 (ja) 樹脂組成物およびそれに用いるアルミナ粉末
JP7119440B2 (ja) 複合材料シートの製造方法
JP7203290B2 (ja) シート状の六方晶窒化ホウ素焼結体、及びその製造方法
WO2023153352A1 (ja) 無機質粉末
EP4269343A1 (en) Oxide composite particles, method for producing same and resin composition
WO2023153356A1 (ja) 球状シリカ粉末
WO2023153351A1 (ja) 無機質粉末
WO2023153353A1 (ja) 無機質粉末
WO2023068076A1 (ja) 球状シリカ粒子の製造方法
WO2023153357A1 (ja) 球状シリカ粉末
WO2023286565A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280039291.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044700

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022815976

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022815976

Country of ref document: EP

Effective date: 20240104