WO2023286565A1 - 酸化物複合粒子及びその製造方法、並びに樹脂組成物 - Google Patents

酸化物複合粒子及びその製造方法、並びに樹脂組成物 Download PDF

Info

Publication number
WO2023286565A1
WO2023286565A1 PCT/JP2022/025298 JP2022025298W WO2023286565A1 WO 2023286565 A1 WO2023286565 A1 WO 2023286565A1 JP 2022025298 W JP2022025298 W JP 2022025298W WO 2023286565 A1 WO2023286565 A1 WO 2023286565A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite particles
oxide composite
mass
particles
oxide
Prior art date
Application number
PCT/JP2022/025298
Other languages
English (en)
French (fr)
Inventor
俊彦 恒吉
元晴 深澤
拓人 岡部
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020247000485A priority Critical patent/KR20240018601A/ko
Priority to EP22841909.9A priority patent/EP4353681A1/en
Priority to JP2023535207A priority patent/JPWO2023286565A1/ja
Priority to CN202280049458.9A priority patent/CN117651694A/zh
Publication of WO2023286565A1 publication Critical patent/WO2023286565A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to oxide composite particles, a method for producing the same, and a resin composition.
  • silica As a high-frequency ceramic material, silica (SiO 2 ) has a low dielectric constant (3.7), a quality factor index Qf (value obtained by multiplying the reciprocal of the dielectric loss tangent by the measurement frequency) of about 120,000, and a low dielectric constant. It is a promising filler material with low dielectric constant and low dielectric loss tangent. In addition, the closer the shape of the filler to a sphere, the better, in order to facilitate the blending in the resin and to reduce the viscosity to improve moldability. Spherical silica can be easily synthesized (eg Patent Document 1) and has already been used in many applications. Therefore, it is expected to be widely used in high-frequency dielectric devices and the like.
  • the spherical silica is generally amorphous and has a low thermal conductivity of about 1 W/m ⁇ K, and the resin composition filled with spherical silica may have insufficient heat dissipation.
  • the resin composition filled with spherical silica may have insufficient heat dissipation.
  • Patent Literatures 2 and 3 propose to heat-treat amorphous spherical silica to crystallize it into quartz or cristobalite.
  • Patent Document 4 discloses a silica powder having a coating made of an aluminum oxide-based ceramic formed using Aerosil.
  • JP-A-58-138740 Japanese Patent No. 6207753 WO2018/186308 JP-A-10-251042
  • An object of the present invention is to provide oxide composite particles that are more spherical and exhibit low dielectric constant and dielectric loss tangent in a resin composition obtained by mixing with a resin, a method for producing the same, and the resin composition.
  • the present invention includes the following embodiments.
  • Oxide composite particles containing oxides of silica and aluminum (single oxide or composite oxide, or both), The oxide composite particles contain 10 to 90% by mass of an ⁇ -cristobalite crystal phase, 50% by mass or less of an ⁇ -alumina crystal phase, and more than 10% by mass of a mullite crystal phase, Oxide composite particles having an elemental ratio of aluminum to silicon (aluminum/silicon) of 0.1 or more as detected by X-ray photoelectron spectroscopy.
  • the step of obtaining the mixture includes using a tumbling fluidized bed apparatus to spray an alumina slurry containing the alumina particles into an air current in which the silica particles are dancing, so that the alumina particles adhere to the surfaces of the silica particles.
  • a resin composition comprising the oxide composite particles according to any one of [1] to [5] and a resin.
  • oxide composite particles that are more spherical and exhibit low dielectric constant and dielectric loss tangent in a resin composition obtained by mixing with a resin, a method for producing the same, and the resin composition. can be done.
  • FIG. 1 is a diagram showing an X-ray diffraction pattern of oxide composite particles of Example 1.
  • the oxide composite particles according to this embodiment contain oxides of silica and aluminum.
  • “aluminum oxide” refers to a single oxide of aluminum, a composite oxide of aluminum, or both.
  • the oxide composite particles contain 10 to 90% by mass of an ⁇ -cristobalite crystal phase, 50% by mass or less of an ⁇ -alumina crystal phase, and more than 10% by mass of a mullite crystal phase.
  • the element ratio of aluminum to silicon (aluminum/silicon) detected by X-ray photoelectron spectroscopy (hereinafter also referred to as XPS) is 0.1 or more.
  • the oxide composite particles according to the present embodiment contain a crystal phase of ⁇ -cristobalite, a crystal phase of ⁇ -alumina, and a crystal phase of mullite within the above content range, thereby achieving high sphericity and a resin composition.
  • a low dielectric constant and dielectric loss tangent can be achieved at
  • the oxide composite particles according to the present embodiment since the element ratio of aluminum/silicon detected by XPS is 0.1 or more, there is a certain amount of aluminum oxide on the surface of the oxide composite particles, and oxidation It has a structure in which at least part of the surface of the composite particles is covered with a layer of aluminum oxide.
  • the layer of aluminum oxide having a relatively high melting point prevents fusion between the oxide composite particles, so that high sphericity can be exhibited in this embodiment. Furthermore, since the crystal phase of ⁇ -cristobalite contained in the oxide composite particles exhibits low dielectric constant and dielectric loss tangent, high sphericity as a whole and low dielectric constant and dielectric loss tangent can be achieved.
  • the oxide composite particles contain 10 to 90% by mass of the ⁇ -cristobalite crystal phase based on the total mass of the oxide composite particles (that is, the mass of the entire oxide composite particles is 100% by mass). If the content of the crystal phase of ⁇ -cristobalite is less than 10% by mass, the dielectric properties required for the resin composition for high frequency substrates cannot be ensured. In addition, when the content exceeds 90% by mass, fusion between oxide composite particles proceeds due to lack of the aluminum oxide component that forms the layer made of aluminum oxide, and high circularity cannot be maintained. Gone. Said content can be, for example, 20 to 85% by weight, can be 30 to 85% by weight, can be 50 to 85% by weight, can be 60 to 85% by weight.
  • the crystal phase is identified and quantified by X-ray powder diffraction/Rietveld method. Attribution of crystals can be performed, for example, using an X-ray database or the like. Specifically, it can be analyzed by the method described later.
  • the oxide composite particles contain 50% by mass or less of the ⁇ -alumina crystal phase based on the total mass of the oxide composite particles (that is, the total mass of the oxide composite particles is 100% by mass). If the content exceeds 50% by weight, an increase in dielectric properties, in particular the dielectric constant, occurs.
  • the content can be, for example, 0.1 to 50% by weight, can be 0.3 to 30% by weight, can be 0.3 to 20% by weight, and can be 0.5 to 10% by weight. % by weight, can be from 0.5 to 5% by weight, and can be from 0.5 to 3% by weight.
  • Identification and quantification of the crystalline phase and attribution of the crystal can be performed by the same method as for the crystalline phase of ⁇ -cristobalite described above. Specifically, it can be analyzed by the method described later.
  • the oxide composite particles contain more than 10% by mass of the mullite crystal phase based on the total weight of the oxide composite particles (that is, the total weight of the oxide composite particles is 100% by weight).
  • the content of the mullite crystal phase is 10% by mass or less, fusion between oxide composite particles proceeds due to lack of the aluminum oxide component that forms the layer of aluminum oxide, resulting in high circularity. can no longer be maintained.
  • the content of the crystalline phase of mullite can be 11-80% by weight, can be 11-60% by weight, can be 11-40% by weight, and can be 11-30% by weight. It can be from 11 to 25 mass %. Identification and quantification of the crystalline phase and attribution of the crystal can be performed by the same method as for the crystalline phase of ⁇ -cristobalite described above. Specifically, it can be analyzed by the method described later.
  • the oxide composite particles can contain 50% by mass or less of amorphous silica based on the total weight of the oxide composite particles (that is, the total weight of the oxide composite particles is 100% by weight), 30 mass % or less can be included.
  • the amorphous silica content is 10% by mass or less, the value of the dielectric loss tangent can be kept low.
  • the oxide composite particles according to the present embodiment may not contain amorphous silica.
  • Amorphous silica can be identified and quantified by the same method as for the crystalline phase of ⁇ -cristobalite described above. Specifically, it can be analyzed by the method described later.
  • the oxide composite particles contain other crystal phases and other amorphous phases. may further include: Other crystal phases include, for example, ⁇ -alumina, ⁇ -alumina, and quartz. Other amorphous phases include, for example, amorphous alumina.
  • the content of other crystalline phases is based on the mass of the entire oxide composite particles (that is, the mass of the entire oxide composite particles is 100% by mass), for example, 0 to 8% by mass, It can be from 0 to 4% by weight.
  • the content of other amorphous phases is based on the mass of the entire oxide composite particles (that is, the mass of the entire oxide composite particles is 100% by mass), for example 0 to 8% by mass. can be from 0 to 4% by weight.
  • the oxide composite particles may not contain the other crystal phases or other amorphous phases.
  • the aluminum single oxide (Al 2 O 3 ) conversion content of aluminum contained in the oxide composite particles (the mass of the entire oxide composite particles is 100% by mass) is 5 to 60% by mass. is preferred. When the content is 5% by mass or more, a certain level or more of heat dissipation performance can be secured as a resin composition. Moreover, since the content is 60% by mass or less, it is possible to secure a low dielectric constant and dielectric loss tangent that can be used in high frequency devices.
  • the content can be, for example, 5 to 40% by weight, and can be 5 to 30% by weight.
  • aluminum as used herein means any compound that exists as a single oxide of aluminum typified by ⁇ -alumina in the oxide composite particles or a composite oxide of aluminum typified by mullite. refers to the aluminum elemental component of
  • the aluminum single oxide (Al 2 O 3 ) conversion content of aluminum contained in the oxide composite particles can be measured by ICP (Inductively Coupled Plasma) analysis. Specifically, it can be analyzed by the method described later.
  • the content of silica in the oxide composite particles (assuming the total mass of the oxide composite particles is 100% by mass) is preferably 40 to 95% by mass. When the content is 40% by mass or more, it is possible to secure a low dielectric constant and dielectric loss tangent that can be used even in high frequency devices.
  • the content of silica can also be measured by ICP analysis in the same manner as the content of aluminum oxide. Specifically, it can be analyzed by the same method as the method for measuring the aluminum oxide component, which will be described later.
  • the oxide composite particles may contain other components besides silica and aluminum oxides, and may consist of silica and aluminum oxides.
  • the oxide composite particles have an aluminum/silicon element ratio of 0.1 or more as detected by XPS (X-ray Photoelectron Spectroscopy). Since XPS can obtain information on the elements present in the surface several nanometers or less of the measurement sample, in the oxide composite particles according to the present embodiment in which the element ratio is 0.1 or more, the surface of the oxide composite particles A certain amount of aluminum oxide is present in the oxide composite particles, and at least a part of the surface of the oxide composite particles is covered with a layer of aluminum oxide.
  • the element ratio is preferably 0.3 or more, more preferably 0.5 or more, and even more preferably 0.8 or more.
  • the element ratio is preferably high, but the range of the element ratio can be, for example, 10 or less. .
  • the aluminum/silicon element ratio detected by XPS can be measured by the method described later.
  • the average particle size of the oxide composite particles is preferably 0.5 to 70 ⁇ m.
  • the average particle diameter is 0.5 ⁇ m or more, it is possible to secure a certain heat radiation property as a resin composition. Further, when the average particle diameter is 70 ⁇ m or less, it becomes possible to fill between materials as a heat dissipation filler for high frequency devices.
  • the average particle size can be, for example, 1-50 ⁇ m, 3-45 ⁇ m, 5-35 ⁇ m.
  • the average particle size is measured using a laser diffraction particle size distribution analyzer. Specifically, it can be measured by the method described later.
  • the average circularity of the oxide composite particles is preferably 0.85 or more. When the average circularity is 0.85 or more, a low viscosity of the resin composition can be achieved.
  • the average circularity is more preferably 0.87 or more, still more preferably 0.88 or more, and particularly preferably 0.90 or more.
  • the upper limit of the range of the average circularity is not particularly limited, but the average circularity is preferably higher, and may be 1.
  • the average circularity is a value indicating how close the oxide composite particles are to a spherical shape. Average circularity is measured by the following method. The projected area (S) and the projected peripheral length (L) of the oxide composite particles photographed using an electron microscope are obtained, and the circularity is calculated by applying the following formula (1).
  • the average value of the circularities of all the oxide composite particles included in a certain projected area circle (area including 100 or more oxide composite particles) is calculated, and the average value is taken as the average circularity.
  • the oxide composite particles according to the present embodiment can exhibit high sphericity, high thermal conductivity of the resin composition when mixed with a resin, and low dielectric constant and dielectric loss tangent, these physical properties are required. It is useful as a filler to be filled in a resin composition (for example, a resin composition for high-frequency substrates, etc.).
  • the method for producing oxide composite particles according to the present embodiment includes the following steps.
  • a step of mixing silica particles having an average particle size of 0.5 to 10 ⁇ m and alumina particles to obtain a mixture (hereinafter also referred to as a mixture production step); heating the mixture at 1300 to 1700 ° C. for 2 to 8 hours
  • the step of heating (hereinafter also referred to as the heating step).
  • the oxide composite particles according to this embodiment can be produced easily and efficiently.
  • silica particles having an average particle size of 0.5 to 10 ⁇ m and alumina particles are mixed to obtain a mixture.
  • Silica particles used as a raw material are not particularly limited in crystal system such as amorphous, quartz, cristobalite, etc., and the method for producing silica particles is not particularly limited, but SiO2 containing 90% by mass or more of an amorphous phase is used. It is preferable to use SiO 2 consisting of an amorphous phase. Examples of SiO 2 containing 90% by mass or more of an amorphous phase include SiO 2 produced by a flame melting method, a deflagration method, a vapor phase method, a wet method, or the like.
  • the average particle size of the raw material silica particles can be, for example, 0.5 to 10 ⁇ m from the viewpoint of usability as base particles in a mixing process using a tumbling fluidized bed device, which will be described later.
  • the average particle size is measured in the same manner as the average particle size of the oxide composite particles.
  • the silica particles preferably have an average circularity of 0.9 or more, more preferably 0.95 or more. The average circularity is measured in the same manner as the average circularity of oxide composite particles.
  • the alumina of the alumina particles used as a raw material is not particularly limited, but examples thereof include ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 and amorphous alumina. These may be used alone or in combination of two or more. Further, as will be described later, the alumina particles may be in the form of an alumina slurry (alumina sol), and the alumina of the alumina particles may be an alumina hydrate.
  • an alumina slurry containing alumina particles is sprayed into an air stream in which silica particles are dancing using a tumbling fluidized bed apparatus, and particles having a core-shell structure in which the alumina particles are attached to the surfaces of the silica particles.
  • is preferably a step of forming By performing mixing using a tumbling fluidized bed apparatus, the oxide composite particles according to the present invention can be produced more efficiently.
  • FIG. 1 shows an example of the tumbling fluidized bed equipment used in this process.
  • a tumbling fluidized bed apparatus 1 shown in FIG. 1 has a rotatable blade rotor 2 on the bottom and a spray nozzle 4 capable of spraying an alumina slurry (alumina sol) 5 on the side.
  • Silica particles (not shown) are introduced into the tumbling fluidized bed apparatus 1, and when the gas 3 is supplied from the bottom, the supplied gas 3 is sprayed with the silica particles by the rotation of the blade rotor 2.
  • a swirling flow 6 is formed along with the particulate alumina slurry. This makes it possible to efficiently form particles having a core-shell structure in which alumina particles adhere to the surface of silica particles.
  • the content of alumina particles contained in the alumina slurry is not particularly limited, but can be, for example, 1 to 50% by mass.
  • the solvent for the alumina slurry may be water, ethanol, or the like.
  • the mass ratio (alumina particles/silica particles) of alumina particles and silica particles mixed in the tumbling fluidized bed apparatus can be appropriately selected so as to obtain a desired content of each crystal phase. can be 0.
  • the temperature of the supplied gas (airflow) can be from 10 to 100°C.
  • Heating process In this step, the mixture obtained in the mixture manufacturing step is heated at 1300 to 1700° C. for 2 to 8 hours.
  • the heating device for heating the mixture is not particularly limited as long as it can be heated at a high temperature, and examples thereof include an electric furnace and a pusher furnace.
  • the heating atmosphere is not particularly limited, and examples thereof include atmospheric air, N 2 , Ar, under vacuum, and the like.
  • the heating temperature is preferably 1300-1700°C, more preferably 1400-1650°C, and even more preferably 1500-1600°C.
  • the heating temperature is 1300° C. or higher, the content of cristobalite is increased, and thermal conductivity as a heat-dissipating filler and low dielectric constant and dielectric loss tangent as a filler for high-frequency substrates can be ensured.
  • the heating time is preferably 2 to 8 hours, more preferably 2 to 6 hours, even more preferably 2 to 4 hours.
  • the heating time is 2 hours or more, the content of cristobalite increases, and thermal conductivity and dielectric properties can be secured. Further, by setting the heating time to 8 hours or less, it is possible to prevent a reduction in the circularity of the oxide composite particles due to inter-particle fusion due to heating.
  • the oxide composite particles obtained after heating may be aggregates in which multiple particles aggregate. Although the aggregates themselves may be used as the oxide composite particles, the aggregates may be pulverized as necessary and then used as the oxide composite particles.
  • the method of crushing aggregates is not particularly limited, but examples thereof include a method of crushing with an agate mortar, ball mill, vibrating mill, jet mill, wet jet mill, and the like.
  • the pulverization may be performed dry, or may be performed wet by mixing with a liquid such as water or alcohol.
  • oxide composite particles are obtained by drying after pulverization.
  • the drying method is not particularly limited, and examples thereof include heat drying, vacuum drying, freeze drying, supercritical carbon dioxide drying and the like.
  • the method for producing oxide composite particles according to the present embodiment includes, for example, a classification step of classifying the oxide composite particles so that a desired average particle size is obtained, an impurity reduction It may further include other steps such as a washing step for.
  • the resin composition according to this embodiment includes the oxide composite particles according to this embodiment and a resin. Since the resin composition according to this embodiment contains the oxide composite particles according to this embodiment, it can exhibit a low dielectric constant and dielectric loss tangent. In addition, since the resin composition according to the present embodiment contains the oxide composite particles according to the present embodiment having high sphericity, it has low viscosity, high fluidity, and excellent moldability.
  • the resin examples include, but are not limited to, polyethylene, polypropylene, epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyamide such as polyetherimide, poly Polyester such as butylene terephthalate and polyethylene terephthalate, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ ethylene/propylene/diene rubber-styrene) resins and the like.
  • One of these resins may be used, or two or more of them may be used in combination.
  • the content of the oxide composite particles in the resin composition is appropriately selected according to the desired physical properties such as dielectric constant and dielectric loss tangent, but is preferably 20 to 80% by mass. This content is 11 to 67% by volume when the density of the oxide composite particles is 2.4 and the density of the resin is 1.2, and the density of the oxide composite particles is 3.1 and the above When the density of the resin is 1.2, it is 9 to 61% by volume.
  • the resin composition according to this embodiment can contain components other than the oxide composite particles and resin according to this embodiment.
  • Other components include, for example, flame retardants and glass cloth.
  • the thermal conductivity, dielectric constant, dielectric loss tangent, and filling of the resin composition Rates etc. can be adjusted more easily.
  • the dielectric constant of the resin composition according to this embodiment is preferably 6.0 or less, more preferably 5.5 or less, and even more preferably 5.0 or less.
  • the dielectric loss tangent of the resin composition according to this embodiment is preferably 5.0 ⁇ 10 ⁇ 4 or less, more preferably 4.5 ⁇ 10 ⁇ 4 or less.
  • the dielectric constant and dielectric loss tangent of the resin composition are values measured by methods described later.
  • the resin composition according to the present embodiment exhibits a low dielectric constant and dielectric loss tangent, and has good moldability, so it is particularly useful as a resin composition for high frequency substrates.
  • high-frequency substrates include fluorine substrates, PPE substrates, and ceramic substrates.
  • Example 1 (Mixture manufacturing process) Using a tumbling fluidized bed apparatus, a mixture containing particles having a core-shell structure in which alumina particles were attached to the surfaces of silica particles was produced. Specifically, an alumina slurry (trade name: PG008, manufactured by CABOT, solid content: 40% by mass) was diluted with pure water to prepare an alumina slurry having a solid content of 20% by mass.
  • alumina slurry trade name: PG008, manufactured by CABOT, solid content: 40% by mass
  • the alumina slurry was treated with a tumbling fluidized bed apparatus (trade name: FD-MP-01, manufactured by Denka Co., Ltd.) in which 500 g of silica particles (trade name: FB5D, manufactured by Denka Co., Ltd., average particle size: 4.8 ⁇ m) were introduced. (manufactured by Powrex) at a rate of 5.0 g/min, and mixed by a swirling flow to obtain a mixture. The amount of alumina particles added was 15% by mass.
  • Heating process 10 g of the mixture obtained in the above mixture manufacturing step was placed in an alumina crucible, heated from room temperature at a rate of 10° C./min, and heated in an electric furnace. At this time, the heating temperature was 1500° C. and the heating time was 4 hours. After heating, the sample was allowed to cool naturally, and after the sample was cooled, the sample was pulverized in an agate mortar and sieved through a 106 ⁇ m mesh sieve to obtain oxide composite particles. The oxide composite particles were evaluated by the method described later.
  • Oxide composite particles were prepared and evaluated in the same manner as in Example 1, except that the type and amount of raw material added, the heating time, and the heating temperature were changed to the conditions shown in Table 1 or Table 2.
  • Example 5 air-classified silica particles were used, and those having an average particle size of 0.5 ⁇ m, 3.1 ⁇ m and 8.2 ⁇ m were used, respectively.
  • Rietveld method software (manufactured by MDI, trade name: integrated powder X-ray software Jade+9.6) was used for the quantitative analysis of the crystal phase.
  • the proportions (% by mass) of various crystal phases were calculated by performing X-ray diffraction measurement on the oxide composite particle sample and performing Rietveld analysis.
  • the peak area (As) of the peak derived from the ⁇ -cristobalite crystal phase in the X-ray diffraction peak of the sample obtained in the X-ray diffraction measurement of the oxide composite particle sample, and the cristobalite standard manufactured by the Japan Working Environment Measurement Association From the ratio of the peak area (Ac) of the X-ray diffraction peak obtained when the sample (JAWE 551) is measured, the content of the silica component ⁇ -cristobalite in the oxide composite particle sample using the following formula (2) (Rc) (% by mass) was calculated.
  • Rc, A ⁇ Rc/C, M ⁇ Rc/C, and X ⁇ Rc/C obtained by multiplying C, A, M, and X by the ratio Rc/C of C and the aforementioned Rc are respectively the oxides
  • the contents (% by mass) of the ⁇ -cristobalite crystal phase, ⁇ -alumina crystal phase, mullite crystal phase and other crystal phases contained in the composite particles were defined as amorphous, and the remaining components were amorphous.
  • the element ratio of aluminum/silicon on the surface of the oxide composite particles was measured using an X-ray photoelectron spectrometer (XPS, manufactured by Thermo Co., Ltd., trade name: K-Alpha). After introducing the oxide composite particles into the apparatus, measurement was performed by irradiating a monochromatic Al-K ⁇ ray to a measurement area of 400 ⁇ 200 ⁇ m. From the spectrum obtained by the measurement, the peak corresponding to the aluminum-oxygen bond (near the binding energy of 75 eV) and the silicon-oxygen bond (near the binding energy of 103 eV) were extracted, and the relative sensitivity factor provided by ULVAC-PHI was used. The respective peak area ratios corrected by the method were taken as the aluminum/silicon element ratios.
  • the element ratio can be considered as the number ratio of the number of atoms of the element present in the measurement range (oxide composite particle surface).
  • the measurement sample was analyzed by ICP emission spectrometry (ICP spectroscopic analysis device: manufactured by Agilent, trade name: 5110 VDV), the amount of aluminum in the oxide composite particles was measured, and aluminum single oxide of aluminum (Al 2 O 3 ) conversion content was calculated.
  • the measurement wavelength was 396.152 nm.
  • a calibration curve was prepared using the following standard solutions. 6.0 g of titanium (purity of 99.9% or more) was heated and dissolved in 50 mL of 6M hydrochloric acid, and then the volume was adjusted to 100 mL to prepare a titanium solution.
  • An aluminum standard solution (Al1000, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was dispensed into 10 mL spitch tubes so as to have concentrations of 0 mg/L, 0.1 mg/L, 1.0 mg/L, and 10 mg/L. , 2 mL of 6M sulfuric acid and 1 mL of titanium solution were added to a constant volume to prepare a standard solution for calibration curve.
  • the average particle size was measured using a laser diffraction particle size distribution analyzer (manufactured by Beckman Coulter, trade name: LS 13 320). 50 cm 3 of pure water and 0.1 g of a sample to be measured were placed in a plastic disposable cup, and dispersed for 1 minute with an ultrasonic homogenizer (manufactured by Microtech Nition Co., Ltd., trade name: Smurt NR-50M). The dispersion liquid of the measurement sample subjected to dispersion treatment was added drop by drop using a dropper to a laser diffraction particle size distribution analyzer, and measurement was performed 30 seconds after adding a predetermined amount.
  • a laser diffraction particle size distribution analyzer manufactured by Beckman Coulter, trade name: LS 13 320. 50 cm 3 of pure water and 0.1 g of a sample to be measured were placed in a plastic disposable cup, and dispersed for 1 minute with an ultrasonic homogenizer (manufactured by Microtech Nition Co., Ltd
  • the particle size distribution was calculated from the light intensity distribution data of the diffracted/scattered light from the measurement sample detected by the sensor in the laser diffraction particle size distribution analyzer.
  • the average particle size was obtained by multiplying the value of the measured particle size by the relative particle amount (difference %) and dividing by the total relative particle amount (100%).
  • % here is volume %.
  • the oxide composite particles and polyethylene powder are weighed so that the filling amount of the oxide composite particles is 40% by volume, and are mixed with a vibrating mixer manufactured by Resodyn. Mixed (acceleration 60 g, treatment time 2 minutes). A predetermined volume of the obtained mixed powder (so that the thickness is about 0.5 mm) is weighed, placed in a metal frame with a diameter of 3 cm, and 140 mm with a nanoimprint device (manufactured by SCIVAX, trade name: X-300).
  • the sheet thickness of the evaluation sample is about 0.5 mm.
  • the shape and size do not affect the evaluation results as long as they can be mounted on the measuring instrument, but they are about 1 to 3 cm square.
  • the dielectric properties were measured by the following method.
  • a 36 GHz cavity resonator manufactured by Sumtech
  • a vector network analyzer (trade name: 85107, manufactured by Keysight Technologies), and an evaluation sample (1.5 cm square, thickness 0.5 mm) was provided in the resonator.
  • a hole with a diameter of 10 mm was set to block, and the resonance frequency (f0) and unloaded Q value (Qu) were measured.
  • the evaluation sample was rotated for each measurement, the measurement was repeated five times, and the obtained f0 and Qu were averaged to obtain the measured value.
  • the permittivity was calculated from f0, and the dielectric loss tangent (tan ⁇ c) was calculated from Qu using analysis software (software manufactured by Samtech).
  • the measurement temperature was 20° C. and the humidity was 60% RH.
  • the oxide composite particles of Examples 1 to 7, which are embodiments of the present invention exhibit a high average circularity (0.85 or more) and contain the oxide composite particles. It was found that the resin composition exhibits a low dielectric constant (6.0 or less) and a low dielectric loss tangent (5.0 ⁇ 10 ⁇ 4 or less).

Abstract

より球形に近く、かつ、樹脂と混合して得られる樹脂組成物が低い誘電率及び誘電正接を示す酸化物複合粒子を提供する。シリカ及びアルミニウムの酸化物(単一酸化物または複合酸化物、あるいはその両方)を含む酸化物複合粒子であって、前記酸化物複合粒子が、α-クリストバライトの結晶相を10~90質量%、α-アルミナの結晶相を50質量%以下、及びムライトの結晶相を10質量%を超えて含み、X線光電子分光法によって検出される、アルミニウムのケイ素に対する元素比率(アルミニウム/ケイ素)が0.1以上である、酸化物複合粒子。

Description

酸化物複合粒子及びその製造方法、並びに樹脂組成物
 本発明は、酸化物複合粒子及びその製造方法、並びに樹脂組成物に関する。
 近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の活用が広がっており、高周波帯用のデバイスに用いられる材料に関して、誘電率および誘電正接が低いことが求められている。また、関連する電子材料及び部材の小型化、高集積化も進み、さらなる放熱性が求められつつある。
 高周波帯のセラミックス材料として、シリカ(SiO)は、誘電率が小さく(3.7)、品質係数指標Qf(誘電正接の逆数と測定周波数を掛けた値)が約12万であり、低誘電率かつ低誘電正接を有するフィラーの材料として有望である。また、樹脂中での配合を容易にし、また粘度を下げて成形性を良好にするため、フィラー形状は球形に近い程好ましい。球状シリカは容易に合成可能であり(例えば特許文献1)、既に多くの用途で使用されている。そのため、高周波帯の誘電体デバイス等においても広く用いられることが期待される。
 しかしながら、前記球状シリカは一般的に非晶質であり、熱伝導率が1W/m・K程度と低く、球状シリカを充填した樹脂組成物は放熱性が不十分な場合がある。熱伝導率を向上させるため、球状シリカを非晶質から石英やクリストバライト等へ結晶化させることが考えられる。例えば特許文献2や3では、非晶質球状シリカを熱処理することで、石英やクリストバライトへ結晶化させることが提案されている。一方、特許文献4には、アエロジルを用いて形成される酸化アルミニウム系セラミックからなる被膜を有するシリカ粉末が開示されている。
特開昭58-138740号公報 特許第6207753号公報 国際公開第2018/186308号 特開平10-251042号公報
 しかし、石英やクリストバライトなどの結晶質シリカを含む酸化物複合粒子はその製造において球形を維持するのが困難であり、より球形に近く、かつ、低い誘電率及び誘電正接を示す酸化物複合粒子の開発が望まれている。
 本発明は、より球形に近く、かつ、樹脂と混合して得られる樹脂組成物が低い誘電率及び誘電正接を示す酸化物複合粒子及びその製造方法、並びに該樹脂組成物を提供することを目的とする。
 本発明は、以下の実施形態を含む。
[1]シリカ及びアルミニウムの酸化物(単一酸化物または複合酸化物、あるいはその両方)を含む酸化物複合粒子であって、
 前記酸化物複合粒子が、α-クリストバライトの結晶相を10~90質量%、α-アルミナの結晶相を50質量%以下、及びムライトの結晶相を10質量%を超えて含み、
 X線光電子分光法によって検出される、アルミニウムのケイ素に対する元素比率(アルミニウム/ケイ素)が0.1以上である、酸化物複合粒子。
[2]前記酸化物複合粒子中に含まれるアルミニウムのアルミニウム単一酸化物(Al)換算含有率が5~60質量%である、[1]に記載の酸化物複合粒子。
[3]前記酸化物複合粒子の平均粒子径が0.5~70μmである、[1]又は[2]に記載の酸化物複合粒子。
[4]前記酸化物複合粒子の平均円形度が0.85以上である、[1]~[3]のいずれかに記載の酸化物複合粒子。
[5]前記酸化物複合粒子がα-アルミナの結晶相を0.1~50質量%含む、[1]~[4]のいずれかに記載の酸化物複合粒子。
[6][1]~[5]のいずれかに記載の酸化物複合粒子の製造方法であって、
 平均粒子径が0.5~10μmであるシリカ粒子と、アルミナ粒子とを混合して混合物を得る工程と、
 前記混合物を1300~1700℃で2~8時間加熱する工程と、
を含む、酸化物複合粒子の製造方法。
[7]前記混合物を得る工程が、転動流動層装置を用いて、前記シリカ粒子が舞う気流中に前記アルミナ粒子を含むアルミナスラリーを噴霧して、前記シリカ粒子の表面に前記アルミナ粒子が付着したコアシェル構造を有する粒子を形成する工程である、[6]に記載の酸化物複合粒子の製造方法。
[8][1]~[5]のいずれかに記載の酸化物複合粒子と、樹脂とを含む樹脂組成物。
[9]前記樹脂組成物中の前記酸化物複合粒子の含有率が20~80質量%である、[8]に記載の樹脂組成物。
[10]高周波基板用の樹脂組成物である、[8]又は[9]に記載の樹脂組成物。
 本発明によれば、より球形に近く、かつ、樹脂と混合して得られる樹脂組成物が低い誘電率及び誘電正接を示す酸化物複合粒子及びその製造方法、並びに該樹脂組成物を提供することができる。
本実施形態に係る方法で使用する転動流動層装置の一例を示す模式図である。 実施例1の酸化物複合粒子のX線回折パターンを示す図である。
 以下、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 [酸化物複合粒子]
 本実施形態に係る酸化物複合粒子は、シリカ及びアルミニウムの酸化物を含む。本実施形態において、「アルミニウムの酸化物」とは、アルミニウムの単一酸化物、アルミニウムの複合酸化物、又はその両方を示す。ここで、前記酸化物複合粒子は、α-クリストバライトの結晶相を10~90質量%、α-アルミナの結晶相を50質量%以下、及びムライトの結晶相を10質量%を超えて含む。また、X線光電子分光法(以下、XPSともいう。)によって検出される、アルミニウムのケイ素に対する元素比率(アルミニウム/ケイ素)は0.1以上である。
 本実施形態に係る酸化物複合粒子は、α-クリストバライトの結晶相、α-アルミナの結晶相、及びムライトの結晶相を前記含有量の範囲内で含むことにより、高い球形性と、樹脂組成物において低い誘電率及び誘電正接を達成できる。特に、本実施形態に係る酸化物複合粒子は、XPSによって検出されるアルミニウム/ケイ素の元素比率が0.1以上であるため、酸化物複合粒子の表面にアルミニウムの酸化物がある程度存在し、酸化物複合粒子の表面の少なくとも一部がアルミニウムの酸化物より成る層によって被覆されている構造を有する。このような構造により、比較的融点の高いアルミニウムの酸化物より成る層が酸化物複合粒子間の融着を防ぐため、本実施形態では高い球形性を発現することができる。さらに、酸化物複合粒子中に含まれるα-クリストバライトの結晶相は低い誘電率及び誘電正接を示すため、全体として高い球形性、並びに低い誘電率及び誘電正接を達成することができる。
 前記酸化物複合粒子は、前記酸化物複合粒子全体の質量を基準として(すなわち、酸化物複合粒子全体の質量を100質量%とする)、α-クリストバライトの結晶相を10~90質量%含む。α-クリストバライトの結晶相の含有量が10質量%未満である場合、高周波基板用の樹脂組成物に求められる誘電特性を確保できない。また、前記含有量が90質量%を超える場合、アルミニウムの酸化物より成る層を形成するアルミニウムの酸化物成分の不足により酸化物複合粒子間の融着が進むことで、高い円形度を保てなくなる。前記含有量は、例えば20~85質量%であることができ、30~85質量%であることができ、50~85質量%であることができ、60~85質量%であることができる。該結晶相の同定及び定量は、粉末X線回折/リートベルト法により行う。結晶の帰属は、例えば、X線データベース等で行うことができる。具体的には、後述する方法により分析することができる。
 前記酸化物複合粒子は、前記酸化物複合粒子全体の質量を基準として(すなわち、酸化物複合粒子全体の質量を100質量%とする)、α-アルミナの結晶相を50質量%以下含む。前記含有量が50質量%を超える場合、誘電特性、特に誘電率の増大が生じる。前記含有量は、例えば0.1~50質量%であることができ、0.3~30質量%であることができ、0.3~20質量%であることができ、0.5~10質量%であることができ、0.5~5質量%であることができ、0.5~3質量%であることができる。当該結晶相の同定及び定量、結晶の帰属は、前述したα-クリストバライトの結晶相と同様の方法により行うことができる。具体的には、後述する方法により分析することができる。
 前記酸化物複合粒子は、前記酸化物複合粒子全体の質量を基準として(すなわち、酸化物複合粒子全体の質量を100質量%とする)、ムライトの結晶相を10質量%を超えて含む。ムライトの結晶相の含有量が10質量%以下である場合、アルミニウムの酸化物より成る層を形成するアルミニウムの酸化物成分の不足により酸化物複合粒子間の融着が進むことで、高い円形度を保てなくなる。ムライトの結晶相の含有量は11~80質量%であることができ、11~60質量%であることができ、11~40質量%であることができ、11~30質量%であることができ、11~25質量%であることができる。当該結晶相の同定及び定量、結晶の帰属は、前述したα-クリストバライトの結晶相と同様の方法により行うことができる。具体的には、後述する方法により分析することができる。
 前記酸化物複合粒子は、前記酸化物複合粒子全体の質量を基準として(すなわち、酸化物複合粒子全体の質量を100質量%とする)、非晶質シリカを50質量%以下含むことができ、30質量%以下含むことができる。特に、非晶質シリカの含有量が10質量%以下であることにより、誘電正接の値を低く抑えられる。なお、本実施形態に係る酸化物複合粒子は、非晶質シリカを含まなくてもよい。非晶質シリカの同定及び定量は、前述したα-クリストバライトの結晶相と同様の方法により行うことができる。具体的には、後述する方法により分析することができる。
 前記酸化物複合粒子は、前記α-クリストバライトの結晶相、前記α-アルミナの結晶相、前記ムライトの結晶相、及び前記非晶質シリカ以外に、他の結晶相や他の非晶質相を更に含んでもよい。他の結晶相としては、例えば、γ-アルミナ、θ-アルミナ、石英等が挙げられる。他の非晶質相としては、例えば、非晶質アルミナ等が挙げられる。他の結晶相の含有率は、前記酸化物複合粒子全体の質量を基準として(すなわち、酸化物複合粒子全体の質量を100質量%とする)、例えば0~8質量%であることができ、0~4質量%であることができる。また、他の非晶質相の含有率は、前記酸化物複合粒子全体の質量を基準として(すなわち、酸化物複合粒子全体の質量を100質量%とする)、例えば0~8質量%であることができ、0~4質量%であることができる。なお、前記酸化物複合粒子は、前記他の結晶相や他の非晶質相を含まなくてもよい。
 前記酸化物複合粒子中に含まれるアルミニウムのアルミニウム単一酸化物(Al)換算含有率(酸化物複合粒子全体の質量を100質量%とする)は、5~60質量%であることが好ましい。前記含有率が5質量%以上であることにより、樹脂組成物として一定以上の放熱性能を確保することができる。また、前記含有率が60質量%以下であることにより、高周波デバイスにおいても利用可能な低い誘電率、誘電正接を確保することができる。前記含有率は、例えば5~40質量%であることができ、5~30質量%であることができる。なお、ここでの「アルミニウム」とは、前記酸化物複合粒子中のα-アルミナに代表されるアルミニウムの単一酸化物やムライトに代表されるアルミニウムの複合酸化物を含むあらゆる化合物として存在する全てのアルミニウム元素成分を指す。また、酸化物複合粒子中に含まれるアルミニウムのアルミニウム単一酸化物(Al)換算含有率は、ICP(Inductively Coupled Plasma)分析により測定することができる。具体的には、後述する方法により分析することが出来る。
 前記酸化物複合粒子中のシリカの含有率(酸化物複合粒子全体の質量を100質量%とする)は、40~95質量%であることが好ましい。前記含有率が40質量%以上であることにより、高周波デバイスにおいても利用可能な低い誘電率、誘電正接を確保することができる。なお、シリカの含有率についても、アルミニウムの酸化物の含有率と同様にICP分析により測定することができる。具体的には、後述するアルミニウム酸化物成分の測定方法と同様の方法により分析することが出来る。
 前記酸化物複合粒子は、シリカ及びアルミニウムの酸化物以外に更に他の成分を含むことができるが、シリカ及びアルミニウムの酸化物からなってもよい。
 前記酸化物複合粒子は、XPS(X-ray Photoelectron Spectroscopy)によって検出されるアルミニウム/ケイ素の元素比率が0.1以上である。XPSは、測定試料の表面数nm以下に存在する元素の情報を得ることができるため、前記元素比率が0.1以上である本実施形態に係る酸化物複合粒子では、酸化物複合粒子の表面にアルミニウムの酸化物がある程度存在し、酸化物複合粒子の表面の少なくとも一部がアルミニウムの酸化物より成る層によって被覆されている構造を有する。前記元素比率は0.3以上が好ましく、0.5以上がより好ましく、0.8以上がさらに好ましい。酸化物複合粒子の表面は出来るだけアルミニウムの酸化物より成る層によって被覆されていることが好ましいため、前記元素比率は高い方が好ましいが、前記元素比率の範囲は例えば10以下であることができる。なお、XPSによって検出されるアルミニウム/ケイ素の元素比率は、後述する方法により測定することができる。
 前記酸化物複合粒子の平均粒子径は、0.5~70μmであることが好ましい。該平均粒子径が0.5μm以上であることにより、樹脂組成物として一定の放熱特性を確保することができる。また、該平均粒子径が70μm以下であることにより、高周波デバイス向けの放熱フィラーとして材料間に充填可能となる。該平均粒子径は、例えば1~50μmであることができ、3~45μmであることができ、5~35μmであることができる。なお、該平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定される。具体的には、後述する方法により測定することができる。
 前記酸化物複合粒子の平均円形度は、0.85以上であることが好ましい。該平均円形度が0.85以上であることにより、樹脂組成物の低い粘度を達成することができる。該平均円形度は、0.87以上であることがより好ましく、0.88以上であることがさらに好ましく、0.90以上であることが特に好ましい。該平均円形度の範囲の上限は特に限定されないが、平均円形度はより高い値の方が好ましく、1であってもよい。なお、該平均円形度は、酸化物複合粒子がどの程度球形に近いかを示す値である。平均円形度は以下の方法により測定される。電子顕微鏡を用いて撮影した酸化物複合粒子の投影面積(S)と投影周囲長(L)を求め、以下の式(1)に当てはめることにより円形度を算出する。そして、一定の投影面積円(100個以上の酸化物複合粒子を含む面積)に含まれる酸化物複合粒子全ての円形度の平均値を算出し、当該平均値を平均円形度とする。平均円形度は具体的には後述する方法により測定することができる。
  円形度=4πS/L   (1)
 本実施形態に係る酸化物複合粒子は、高い球形性と、樹脂と混合した際に樹脂組成物が高い熱伝導率、並びに低い誘電率及び誘電正接を示すことができるため、これらの物性が求められる樹脂組成物(例えば高周波基板用の樹脂組成物等)に充填されるフィラーとして有用である。
 [酸化物複合粒子の製造方法]
 本実施形態に係る酸化物複合粒子の製造方法は、以下の工程を含む。平均粒子径が0.5~10μmであるシリカ粒子と、アルミナ粒子とを混合して混合物を得る工程(以下、混合物製造工程ともいう。);前記混合物を1300~1700℃で2~8時間加熱する工程(以下、加熱工程ともいう。)。本実施形態に係る方法によれば、本実施形態に係る酸化物複合粒子を容易にかつ効率よく製造することができる。
 (混合物製造工程)
 本工程では、平均粒子径が0.5~10μmであるシリカ粒子と、アルミナ粒子とを混合して混合物を得る。原料として使用されるシリカ粒子は、非晶質、石英、クリストバライト等の結晶系は特に限定されず、シリカ粒子の製法も特に限定されないが、非晶質相を90質量%以上含むSiOを使用することが好ましく、非晶質相からなるSiOを使用することがより好ましい。非晶質相を90質量%以上含むSiOとしては、火炎溶融法、爆燃法、気相法、湿式法等で製造されたSiOが挙げられる。
 原料であるシリカ粒子の平均粒子径は、後述する転動流動層装置を利用した混合プロセスにおける母粒子としての使用性の観点から、例えば0.5~10μmであることができる。なお、該平均粒子径は酸化物複合粒子の平均粒子径と同様に測定される。また、酸化物複合粒子の平均円形度を高くする観点から、原料として球状のシリカ粒子を用いることが好ましい。シリカ粒子の平均円形度は、0.9以上であることが好ましく、0.95以上であることがより好ましい。なお、該平均円形度は酸化物複合粒子の平均円形度と同様に測定される。
 原料として使用されるアルミナ粒子のアルミナは特に限定されないが、例えばγ-Al、θ-Al、α-Al、非晶質アルミナ等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。また、後述するようにアルミナ粒子はアルミナスラリー(アルミナゾル)の形態であってもよく、アルミナ粒子のアルミナはアルミナ水和物であってもよい。
 本工程は、特に、転動流動層装置を用いて、シリカ粒子が舞う気流中にアルミナ粒子を含むアルミナスラリーを噴霧して、前記シリカ粒子の表面に前記アルミナ粒子が付着したコアシェル構造を有する粒子を形成する工程であることが好ましい。転動流動層装置を用いて混合を行うことにより、本発明に係る酸化物複合粒子をより効率よく製造することができる。
 本工程で使用する転動流動層装置の一例を図1に示す。図1に示される転動流動層装置1は、底部に回転可能なブレードロータ2を備え、側面にアルミナスラリー(アルミナゾル)5を噴霧可能なスプレーノズル4を備える。転動流動層装置1の内部にはシリカ粒子(不図示)が導入されており、底部からガス3が供給されると、ブレードロータ2の回転により、供給されたガス3はシリカ粒子と噴霧された微粒子状のアルミナスラリーを伴い旋回流6を形成する。これにより、シリカ粒子の表面にアルミナ粒子が付着したコアシェル構造を有する粒子を効率よく形成することができる。
 アルミナスラリーに含まれるアルミナ粒子の含有量は特に限定されないが、例えば1~50質量%であることができる。また、アルミナスラリーの溶媒としては、水、エタノール等であることができる。転動流動層装置内で混合するアルミナ粒子とシリカ粒子の質量比率(アルミナ粒子/シリカ粒子)は、所望の各結晶相の含有率となるように適宜選択できるが、例えば0.01~1.0であることができる。供給されるガス(気流)の温度は10~100℃であることができる。
 (加熱工程)
 本工程では、前記混合物製造工程で得られた混合物を、1300~1700℃で2~8時間加熱する。混合物を加熱する加熱装置としては、高温での加熱が可能な装置であれば特に限定されないが、例えば、電気炉、プッシャー炉等が挙げられる。加熱雰囲気は特に限定されず、例えば、大気、N、Ar、真空下等が挙げられる。
 加熱温度は1300~1700℃が好ましく、1400~1650℃がより好ましく、1500~1600℃がさらに好ましい。加熱温度が1300℃以上であることにより、クリストバライトの含有率が大きくなり、放熱フィラーとしての熱伝導性および高周波基板向けフィラーとしての低い誘電率および誘電正接を確保することができる。また、加熱温度が1700℃以下であることにより、加熱に伴う粒子間融着による酸化物複合粒子の円形度の低下を防ぐことができる。加熱時間は、2~8時間が好ましく、2~6時間がより好ましく、2~4時間がさらに好ましい。加熱時間が2時間以上であることにより、クリストバライトの含有率が大きくなり、熱伝導性および誘電特性を確保することができる。また、加熱時間が8時間以下であることにより、加熱に伴う粒子間融着による酸化物複合粒子の円形度の低下を防ぐことができる。
 加熱後に得られる酸化物複合粒子は、複数の粒子が凝集した凝集体となっていることがある。凝集体自体を酸化物複合粒子として利用してもよいが、必要に応じて凝集体を解砕してから、これを酸化物複合粒子として用いてもよい。凝集体の解砕方法は特に限定されないが、例えばメノウ乳鉢、ボールミル、振動ミル、ジェットミル、湿式ジェットミル等により解砕する方法が挙げられる。解砕は乾式で行われてもよいが、水又はアルコール等の液体と混合して湿式で行われてもよい。湿式による解砕では、解砕後に乾燥することで酸化物複合粒子が得られる。乾燥方法は特に限定されないが、例えば加熱乾燥、真空乾燥、凍結乾燥、超臨界二酸化炭素乾燥等が挙げられる。
 (その他の工程)
 本実施形態に係る酸化物複合粒子の製造方法は、前記混合物製造工程及び前記加熱工程以外にも、例えば、所望の平均粒子径が得られるように酸化物複合粒子を分級する分級工程、不純物低減のための洗浄工程等の他の工程をさらに含んでもよい。
 [樹脂組成物]
 本実施形態に係る樹脂組成物は、本実施形態に係る酸化物複合粒子と、樹脂とを含む。本実施形態に係る樹脂組成物は、本実施形態に係る酸化物複合粒子を含むため、低い誘電率及び誘電正接を示すことができる。また、本実施形態に係る樹脂組成物は、高い球形性を有する本実施形態に係る酸化物複合粒子を含むため、低粘度であり、流動性が高く、成形性に優れる。
 前記樹脂としては、特に限定されないが、例えばポリエチレン、ポリプロピレン、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。これらの樹脂は一種を用いてもよく、二種以上を併用してもよい。
 前記樹脂組成物中の酸化物複合粒子の含有量は、目的とする誘電率、誘電正接等の物性に応じて適宜選択されるが、20~80質量%であることが好ましい。この含有量は、前記酸化物複合粒子の密度が2.4で前記樹脂の密度が1.2である場合は11~67体積%であり、前記酸化物複合粒子の密度が3.1で前記樹脂の密度が1.2である場合は9~61体積%である。
 本実施形態に係る樹脂組成物は、本実施形態に係る酸化物複合粒子及び樹脂以外の他の成分を含むことができる。他の成分としては、例えば、難燃剤、ガラスクロス等が挙げられる。また、本実施形態に係る酸化物複合粒子以外に、組成や比表面積、平均粒子径等が異なる他の粒子をさらに混合することで、樹脂組成物の熱伝導率、誘電率、誘電正接、充填率等をより容易に調整することができる。
 本実施形態に係る樹脂組成物の誘電率は、6.0以下であることが好ましく、5.5以下であることがより好ましく、5.0以下であることがさらに好ましい。本実施形態に係る樹脂組成物の誘電正接は、5.0×10-4以下であることが好ましく、4.5×10-4以下であることがより好ましい。なお、前記樹脂組成物の誘電率及び誘電正接は、後述する方法により測定される値である。
 本実施形態に係る樹脂組成物は、低い誘電率及び誘電正接を示し、成形性が良好であるため、特に高周波基板用の樹脂組成物として有用である。高周波基板としては、具体的にはフッ素基板、PPE基板、セラミックス基板等が挙げられる。
 以下、実施例により本発明の実施形態をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 (混合物製造工程)
 転動流動層装置を用いて、シリカ粒子の表面にアルミナ粒子が付着したコアシェル構造を有する粒子を含む混合物を製造した。具体的には、アルミナスラリー(商品名:PG008、CABOT社製、固形分含有量:40質量%)を純水で希釈して、固形分含有量が20質量%のアルミナスラリーを調製した。該アルミナスラリーを、シリカ粒子(商品名:FB5D、デンカ(株)製、平均粒子径:4.8μm)500gが導入された転動流動層装置(商品名:FD-MP-01、(株)パウレック製)内に5.0g/分の速度で噴霧し、旋回流により両者を混合して混合物を得た。アルミナ粒子の添加量は15質量%であった。
 (加熱工程)
 前記混合物製造工程で得られた混合物10gをアルミナ坩堝に入れ、室温から10℃/minで昇温させ、電気炉で加熱した。このとき、加熱温度は1500℃、加熱時間は4時間であった。加熱後自然放冷し、試料が冷却された後にメノウ乳鉢にて解砕したものを、目開き106μmの篩に掛けることで、酸化物複合粒子を得た。該酸化物複合粒子を後述する方法により評価した。
 [実施例2~7、及び比較例1~3]
 原料の種類及び添加量、加熱時間並びに加熱温度を表1又は表2に示した条件に変更した以外は、実施例1と同様の方法により酸化物複合粒子を調製し、評価した。なお、実施例5、6及び7では、空気分級したシリカ粒子を使用しており、それぞれ平均粒子径が0.5μm、3.1μm、8.2μmのものを用いた。
 各実施例、比較例で調製した酸化物複合粒子の各特性を、以下の方法で評価した。各評価結果を表1及び表2に示す。
 [各結晶相の同定及び各結晶相の含有量の測定]
 酸化物複合粒子に含まれる各結晶相の同定及び各結晶相の含有量の測定は、粉末X線回折測定/リートベルト法により行った。測定装置として、試料水平型多目的X線回折装置(リガク社製、商品名:RINT-UltimaIV)を用いた。測定は、X線源:CuKα、管電圧:40kV、管電流:40mA、スキャン速度:10.0°/min、2θスキャン範囲:10°~70°の条件で行った。一例として、実施例1の酸化物複合粒子のX線回折パターンを図2に示す。結晶相の定量分析には、リートベルト法ソフトウェア(MDI社製、商品名:統合粉末X線ソフトウェアJade+9.6)を使用した。各種結晶相の割合(質量%)は、酸化物複合粒子試料をX線回折測定し、リートベルト解析により算出した。その際に、当該酸化物複合粒子試料のX線回折測定において得られる試料のX線回折ピーク中のα-クリストバライト結晶相由来のピークのピーク面積(As)と、日本作業環境測定協会製クリストバライト標準試料(JAWE 551)を測定した際に得られるX線回折ピークのピーク面積(Ac)の比率から、下記式(2)を用いて前記酸化物複合粒子試料中のシリカ成分α-クリストバライトの含有率(Rc)(質量%)を算出した。
  Rc=100As/Ac (2)
 このようにして得られたα-クリストバライト含有率の値と、別途リートベルト解析から得られた結晶相の割合を比較し、以下のように前記酸化物複合粒子試料中の各結晶相および非晶質シリカ成分の含有量を計算した。
 リートベルト解析によりもとめた各結晶相の含有率(質量%)が、α-クリストバライトについてC、α-アルミナについてA、ムライトについてM、その他の結晶相についてXであるとする。このとき、Cと前述のRcの比率Rc/CをC、A、MおよびXに掛け合わせたRc、A×Rc/C、M×Rc/CおよびX×Rc/Cをそれぞれ、前記酸化物複合粒子中に含まれるα-クリストバライト結晶相、α-アルミナ結晶相、ムライト結晶相およびその他の結晶相の含有率(質量%)とし、残りの成分を非晶質であるとした。
 [XPSによって検出されるアルミニウム/ケイ素の元素比率の測定]
 X線光電子分光装置(XPS、サーモ社製、商品名:K-Alpha)を用いて酸化物複合粒子表面のアルミニウム/ケイ素の元素比率の測定を行った。酸化物複合粒子を装置内に導入後、400×200μmの測定領域に単色化Al-Kα線を照射することで測定を行った。測定により得られたスペクトルからアルミニウム-酸素結合に該当するピーク(結合エネルギー75eV付近)およびケイ素-酸素結合に該当するピーク(結合エネルギー103eV付近)を取り出し、アルバック-ファイ社提供の相対感度因子を用いて補正したそれぞれのピーク面積比をアルミニウム/ケイ素の元素比率とした。なお、ここでいう元素比率とは測定範囲(酸化物複合粒子表面)に存在する元素の原子数の個数比率と考えることが出来る。
 [酸化物複合粒子中に含まれるアルミニウムのアルミニウム単一酸化物(Al)換算含有量の測定方法]
 酸化物複合粒子0.1gをテフロン(登録商標)容器に入れ、6M硫酸を2mL加えて、テフロン(登録商標)容器を密栓後、230℃に調節した乾燥機内で16時間加熱した。放冷後、分解液を純水で10mLに定容し試験液とした。試験液は、必要に応じ希硫酸で希釈した。その後、測定サンプルをICP発光分光分析法(ICP分光分析装置:Agilent社製、商品名:5110 VDV)にて分析し、酸化物複合粒子中のアルミニウム量を測定し、アルミニウムのアルミニウム単一酸化物(Al)換算含有量を算出した。測定波長は396.152nmとした。なお、検量線は以下の標準液で作成した。
 チタン(純度99.9%以上)6.0gを6M塩酸50mLで加温溶解した後、100mLに定容してチタン溶液を調製した。アルミニウム標準溶液(Al1000、富士フィルム和光純薬(株)製)を、0mg/L、0.1mg/L、1.0mg/L、及び10mg/Lになるように10mLのスピッチ管に分取し、6M硫酸2mLおよびチタン溶液1mLを加えて定容し検量線用標準液とした。
 [平均粒子径の測定]
 レーザー回折式粒度分布測定装置(ベックマンコールター社製、商品名:LS 13 320)を用いて平均粒子径の測定を行った。プラスチック製ディスポーザブルカップに50cmの純水と、測定試料0.1gとを入れ、超音波ホモジナイザー(マイクロテック・ニチオン社製、商品名:Smurt NR-50M)で1分間、分散処理を行った。分散処理を行った測定試料の分散液を、レーザー回折式粒度分布測定装置にスポイトで一滴ずつ添加し、所定量添加してから30秒後に測定を行った。レーザー回折式粒度分布測定装置内のセンサで検出した測定試料による回折/散乱光の光強度分布のデータから、粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。なお、ここでの%は体積%である。
 [平均円形度の測定]
 酸化物複合粒子をカーボンテープで試料台に固定後、オスミウムコーティングを行い、走査型電子顕微鏡(日本電子社製、商品名:JSM-7001F SHL)で撮影した倍率500~5000倍、解像度2048×1356ピクセルの画像をパソコンに取り込んだ。この画像を、画像解析装置(日本ローパー社製、商品名:Image-Pro Premier Ver.9.3)を使用し、酸化物複合粒子の投影面積(S)と酸化物複合粒子の投影周囲長(L)を算出してから、下記式(1)より円形度を算出した。このようにして得られた任意の投影面積円相当径0.1μm以上の酸化物複合粒子100個の円形度を求め、その平均値を平均円形度とした。
   円形度=4πS/L   (1)
 [樹脂組成物の誘電率、誘電正接の測定]
 酸化物複合粒子の充填量が40体積%になるように、酸化物複合粒子及びポリエチレン粉末(住友精化社製、商品名:フローセンUF-20S)を計量し、Resodyn社製振動式ミキサーにて混合した(加速度60g、処理時間2分)。得られた混合粉末を所定体積分(厚みが約0.5mmになるように)計量し、直径3cmの金枠内に入れ、ナノインプリント装置(SCIVAX社製、商品名:X-300)にて140℃、5分、30000Nの条件でシート化し、評価試料とした。評価試料のシートの厚さは約0.5mmである。形状やサイズは測定器に搭載できれば評価結果に影響しないが、1~3cm角程度である。
 誘電特性の測定は、以下の方法により行った。36GHz空洞共振器(サムテック社製)をベクトルネットワークアナライザ(商品名:85107、キーサイトテクノロジー社製)に接続し、評価試料(1.5cm角、厚さ0.5mm)を共振器に設けられた直径10mmの穴をふさぐようセットし、共振周波数(f0)、無負荷Q値(Qu)を測定した。測定ごとに評価試料を回転させ、同様に測定を5回繰り返し、得られたf0、Quの平均をとって測定値とした。f0より誘電率、Quより誘電正接(tanδc)を解析ソフト(サムテック社製ソフトウェア)にて算出した。測定温度は20℃、湿度は60%RHであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示されるように、本発明の実施形態である実施例1~7の酸化物複合粒子は高い平均円形度(0.85以上)を示し、該酸化物複合粒子を含有する樹脂組成物は低い誘電率(6.0以下)、及び低い誘電正接(5.0×10-4以下)を示すことが分かった。
1  転動流動層装置
2  ブレードロータ
3  ガス
4  スプレーノズル
5  アルミナスラリー(アルミナゾル)
6  旋回流
 

Claims (10)

  1.  シリカ及びアルミニウムの酸化物(単一酸化物または複合酸化物、あるいはその両方)を含む酸化物複合粒子であって、
     前記酸化物複合粒子が、α-クリストバライトの結晶相を10~90質量%、α-アルミナの結晶相を50質量%以下、及びムライトの結晶相を10質量%を超えて含み、
     X線光電子分光法によって検出される、アルミニウムのケイ素に対する元素比率(アルミニウム/ケイ素)が0.1以上である、酸化物複合粒子。
  2.  前記酸化物複合粒子中に含まれるアルミニウムのアルミニウム単一酸化物(Al)換算含有率が5~60質量%である、請求項1に記載の酸化物複合粒子。
  3.  前記酸化物複合粒子の平均粒子径が0.5~70μmである、請求項1又は2に記載の酸化物複合粒子。
  4.  前記酸化物複合粒子の平均円形度が0.85以上である、請求項1又は2に記載の酸化物複合粒子。
  5.  前記酸化物複合粒子がα-アルミナの結晶相を0.1~50質量%含む、請求項1又は2に記載の酸化物複合粒子。
  6.  請求項1又は2に記載の酸化物複合粒子の製造方法であって、
     平均粒子径が0.5~10μmであるシリカ粒子と、アルミナ粒子とを混合して混合物を得る工程と、
     前記混合物を1300~1700℃で2~8時間加熱する工程と、
    を含む、酸化物複合粒子の製造方法。
  7.  前記混合物を得る工程が、転動流動層装置を用いて、前記シリカ粒子が舞う気流中に前記アルミナ粒子を含むアルミナスラリーを噴霧して、前記シリカ粒子の表面に前記アルミナ粒子が付着したコアシェル構造を有する粒子を形成する工程である、請求項6に記載の酸化物複合粒子の製造方法。
  8.  請求項1又は2に記載の酸化物複合粒子と、樹脂とを含む樹脂組成物。
  9.  前記樹脂組成物中の前記酸化物複合粒子の含有率が20~80質量%である、請求項8に記載の樹脂組成物。
  10.  高周波基板用の樹脂組成物である、請求項8に記載の樹脂組成物。
     
PCT/JP2022/025298 2021-07-14 2022-06-24 酸化物複合粒子及びその製造方法、並びに樹脂組成物 WO2023286565A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247000485A KR20240018601A (ko) 2021-07-14 2022-06-24 산화물 복합 입자 및 그 제조 방법, 그리고 수지 조성물
EP22841909.9A EP4353681A1 (en) 2021-07-14 2022-06-24 Oxide composite particles, method for producing same, and resin composition
JP2023535207A JPWO2023286565A1 (ja) 2021-07-14 2022-06-24
CN202280049458.9A CN117651694A (zh) 2021-07-14 2022-06-24 氧化物复合粒子及其制造方法以及树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021116375 2021-07-14
JP2021-116375 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286565A1 true WO2023286565A1 (ja) 2023-01-19

Family

ID=84920027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025298 WO2023286565A1 (ja) 2021-07-14 2022-06-24 酸化物複合粒子及びその製造方法、並びに樹脂組成物

Country Status (6)

Country Link
EP (1) EP4353681A1 (ja)
JP (1) JPWO2023286565A1 (ja)
KR (1) KR20240018601A (ja)
CN (1) CN117651694A (ja)
TW (1) TW202311162A (ja)
WO (1) WO2023286565A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (ja) 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk 樹脂組成物
JPH10251042A (ja) 1997-03-10 1998-09-22 Nippon Electric Glass Co Ltd シリカフィラー粉末及びガラス−セラミック組成物
JP2008162849A (ja) * 2006-12-28 2008-07-17 Shin Etsu Chem Co Ltd 高純度クリストバライト粒子及びその製造方法
JP2015078105A (ja) * 2013-10-18 2015-04-23 新日鉄住金マテリアルズ株式会社 球状非晶質シリカ粒子、その製造方法およびこれを含有する樹脂組成物
JP6207753B2 (ja) 2014-08-25 2017-10-04 新日鉄住金マテリアルズ株式会社 球状結晶性シリカ粒子およびその製造方法
WO2018186308A1 (ja) 2017-04-05 2018-10-11 新日鉄住金マテリアルズ株式会社 球状結晶性シリカ粒子およびその製造方法
JP2019019222A (ja) * 2017-07-18 2019-02-07 デンカ株式会社 球状シリカフィラー用粉末及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627753Y2 (ja) 1981-04-21 1987-02-23

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (ja) 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk 樹脂組成物
JPH10251042A (ja) 1997-03-10 1998-09-22 Nippon Electric Glass Co Ltd シリカフィラー粉末及びガラス−セラミック組成物
JP2008162849A (ja) * 2006-12-28 2008-07-17 Shin Etsu Chem Co Ltd 高純度クリストバライト粒子及びその製造方法
JP2015078105A (ja) * 2013-10-18 2015-04-23 新日鉄住金マテリアルズ株式会社 球状非晶質シリカ粒子、その製造方法およびこれを含有する樹脂組成物
JP6207753B2 (ja) 2014-08-25 2017-10-04 新日鉄住金マテリアルズ株式会社 球状結晶性シリカ粒子およびその製造方法
WO2018186308A1 (ja) 2017-04-05 2018-10-11 新日鉄住金マテリアルズ株式会社 球状結晶性シリカ粒子およびその製造方法
JP2019019222A (ja) * 2017-07-18 2019-02-07 デンカ株式会社 球状シリカフィラー用粉末及びその製造方法

Also Published As

Publication number Publication date
TW202311162A (zh) 2023-03-16
EP4353681A1 (en) 2024-04-17
JPWO2023286565A1 (ja) 2023-01-19
CN117651694A (zh) 2024-03-05
KR20240018601A (ko) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2019177112A1 (ja) 粉末及び混合粉末
WO2023286565A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2023286566A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2023032986A1 (ja) 電子材料用シリカ及びその製造方法
EP4269343A1 (en) Oxide composite particles, method for producing same and resin composition
WO2022065349A1 (ja) 酸化物粉末及びその製造方法、並びに樹脂組成物
JP7473726B1 (ja) シリカ粉末
JP7473725B1 (ja) シリカ粉末
WO2023189965A1 (ja) 球状チタン酸カルシウム粉末及びそれを用いた樹脂組成物
WO2023008290A1 (ja) 球状シリカ粉末及び球状シリカ粉末の製造方法
WO2024004738A1 (ja) 酸化マグネシウム粉末及びそれを用いた樹脂組成物
WO2024004736A1 (ja) 酸化マグネシウム粉末及びそれを用いた樹脂組成物
CN116648429A (zh) 氧化物复合粒子及其制造方法、以及树脂组合物
JP7041786B1 (ja) 球状シリカ粒子及びそれを用いた樹脂組成物
EP4353685A1 (en) Inorganic oxide powder, method for producing same, and resin composition
JP7041788B1 (ja) 球状シリカ粒子及びそれを用いた樹脂組成物
WO2022249940A1 (ja) 無機酸化物粉末及びその製造方法、並びに樹脂組成物
WO2023243572A1 (ja) 球状シリカ粉末の製造方法
Kim et al. Synthesis of spherical SiO2 powders from water glass and colloidal Sol through ultrasonic spray pyrolysis
JP2023181991A (ja) 球状シリカ粉末の製造方法
JP2023061871A (ja) 球状シリカ粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535207

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247000485

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000485

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022841909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022841909

Country of ref document: EP

Effective date: 20240112

NENP Non-entry into the national phase

Ref country code: DE