WO2024004736A1 - 酸化マグネシウム粉末及びそれを用いた樹脂組成物 - Google Patents

酸化マグネシウム粉末及びそれを用いた樹脂組成物 Download PDF

Info

Publication number
WO2024004736A1
WO2024004736A1 PCT/JP2023/022603 JP2023022603W WO2024004736A1 WO 2024004736 A1 WO2024004736 A1 WO 2024004736A1 JP 2023022603 W JP2023022603 W JP 2023022603W WO 2024004736 A1 WO2024004736 A1 WO 2024004736A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
powder
oxide powder
mass
resin
Prior art date
Application number
PCT/JP2023/022603
Other languages
English (en)
French (fr)
Inventor
俊彦 恒吉
元晴 深澤
拓人 岡部
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024004736A1 publication Critical patent/WO2024004736A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to magnesium oxide powder and a resin composition using the same.
  • inorganic metal oxide powders such as silica and alumina are filled as fillers in order to improve thermal expansion coefficient, thermal conductivity, flame retardance, etc.
  • silica has a relatively low thermal conductivity, and although alumina has a higher thermal conductivity than silica, it also has higher hardness, so there is a problem that the equipment used is easily worn out. Therefore, magnesium oxide powder, which has higher thermal conductivity than silica and alumina and lower hardness than alumina, is being considered as a filler that can be applied to the above field.
  • Patent Documents 1 and 2 describe that the surface of magnesium oxide powder is coated with alumina or a double oxide containing aluminum to improve the moisture resistance of the magnesium oxide powder.
  • an object of the present invention is to provide a magnesium oxide powder that has excellent moisture resistance and can achieve a low dielectric loss tangent that can be applied to high frequency band devices, and a resin composition using the same.
  • the BET ratio of the magnesium oxide powder is a magnesium oxide powder including coated particles in which the surface of a core particle containing magnesium oxide is coated with a layer containing a certain amount of MgAl 2 O 4 .
  • the present inventors have discovered that by setting the surface area to less than 2.3 m 2 /g, a magnesium oxide powder that can solve all of the above-mentioned problems can be obtained, and the present invention has been completed. That is, the present invention has the following aspects.
  • a magnesium oxide powder (I) comprising coated particles (X) in which the surface of the core particle (A) containing magnesium oxide is coated with a coating layer ( B ) containing MgAl2O4 , The ratio of MgAl 2 O 4 to the total mass of the magnesium oxide powder (I) is less than 13% by mass, Magnesium oxide powder (I) having a BET specific surface area (Si) of less than 2.3 m 2 /g.
  • M1 is the mass (g) of the magnesium oxide powder (I) before standing
  • M2 is the mass (g) of the magnesium oxide powder (I) after standing
  • 18.0 , 40.3 are the molecular weights of H 2 O and MgO, respectively.
  • the magnesium oxide powder (I) according to any one of [1] to [4], which has a viscosity of 2,000 Pa ⁇ s/25°C or less when measured under the following conditions.
  • a resin composition comprising the magnesium oxide powder (I) according to any one of [1] to [7] and at least one resin selected from thermoplastic resins and thermosetting resins.
  • the resin composition according to [8] which is used for a sealing material, a TIM material, or a substrate for high frequency band devices.
  • magnesium oxide powder (I) that has excellent moisture resistance and can achieve a low dielectric loss tangent that can be applied to high frequency band devices, and a resin composition containing the same.
  • FE-SEM field emission scanning electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • the magnesium oxide powder according to the present embodiment includes a coated particle (X) in which the surface of a core particle ( A ) containing magnesium oxide is coated with a coating layer (B) containing MgAl 2 O I), the proportion of MgAl 2 O 4 with respect to the total mass of the magnesium oxide powder (I) is less than 13% by mass, and the BET specific surface area (Si) of the magnesium oxide powder (I) is 2.3 m 2 /g.
  • the magnesium oxide powder (I) according to this embodiment (hereinafter sometimes simply referred to as "powder (I)”) has excellent moisture resistance and has a low dielectric loss tangent that can be applied to high frequency band devices. It can be achieved. Furthermore, the magnesium oxide powder (I) according to this embodiment also has good thermal conductivity.
  • the magnesium oxide powder (I) according to this embodiment will be explained.
  • Powder (I) includes coated particles (X) in which the surfaces of core particles (A) containing magnesium oxide are coated with a coating layer (B) containing MgAl 2 O 4 . By including such coated particles (X), the moisture resistance of powder (I) is improved.
  • the core particles (A) are particles containing magnesium oxide as a main component. "Containing as a main component” means containing more than 50% by mass of magnesium oxide based on all components (100% by mass) constituting the core particle.
  • the core particles (A) may contain components other than magnesium oxide. Components other than magnesium oxide include, for example, alkali components, boron, iron, etc. that are added during production of magnesium oxide particles.
  • the proportion of magnesium oxide in the core particles (A) is based on the total components (100% by mass) constituting the core particles. On the other hand, it is preferably 90% by mass or more, and more preferably 95% by mass or more. Note that particles containing magnesium oxide in such a proportion can be obtained by, for example, an electric melting method, a calcination method, or the like.
  • the coated particles (X) contained in the magnesium oxide powder (I) according to the present embodiment have a coating layer (B) containing MgAl 2 O 4 .
  • MgAl 2 O 4 (hereinafter sometimes referred to as "spinel") is a double oxide of magnesium and aluminum.
  • the moisture resistance of the powder (I) is improved by including the coated particle (X) in which the surface of the core particle (A) is coated with the coating layer (B) containing spinel.
  • the amount of spinel contained in the powder (I) according to the present embodiment is less than 13% by mass, preferably 10% by mass or less, based on the total mass of the powder (I).
  • the proportion of spinel in powder (I) is preferably 0.1% by mass or more, more preferably 1% by mass or more. That is, the amount of spinel contained in powder (I) may be 0.1% by mass or more and less than 13% by mass, and may be 0.1 to 10% by mass, based on the total mass of powder (I).
  • the content may be 1 to 10% by mass, or 2 to 10% by mass.
  • powder (I) containing coated particles (X) the inventors of the present application have aimed to suppress the amount of spinel contained in the coating layer to a relatively low level, and further to keep the BET specific surface area (Si) of powder (I) within a certain range. It has been found that by controlling the dielectric constant to less than 10%, powder (I) can be obtained which not only has excellent moisture resistance but also can achieve a lower dielectric loss tangent.
  • the powder (I) according to the present embodiment contains the coated particles (X) can be confirmed by observing the powder (I) with a scanning electron microscope or the like. Further, the amount of spinel in the powder (I) can be confirmed by measuring the X-ray diffraction pattern of the powder (I) using an X-ray diffraction device. For example, it can be measured by the following method. ⁇ Measurement method of spinel amount> The X-ray diffraction pattern of powder (I) is measured under the following measurement conditions using a sample horizontal multipurpose X-ray diffraction device (for example, manufactured by Rigaku Co., Ltd., product name "RINT-Ultima IV") as a measuring device.
  • a sample horizontal multipurpose X-ray diffraction device for example, manufactured by Rigaku Co., Ltd., product name "RINT-Ultima IV
  • X-ray source CuK ⁇ Tube voltage: 40kV Tube current: 40mA Scan speed: 10.0°/min 2 ⁇ scan range: 10° to 80°
  • the crystal phase is quantitatively analyzed by Rietveld analysis of the obtained X-ray diffraction pattern.
  • Rietveld method software for example, manufactured by MDI, product name "Integrated Powder X-ray Software Jade+9.6" is used.
  • an ICDD card (number: 01-075-1796) can be used to calculate the proportion (mass %) of the spinel crystal phase.
  • the coating layer (B) may contain components other than spinel.
  • Components other than spinel include, for example, inorganic metal oxides or inorganic metal double oxides (excluding spinel) containing at least one element selected from titanium, aluminum, magnesium, silicon, and calcium.
  • forsterite Mg 2 SiO 4
  • magnesium ferrite Fe 2 MgO 4
  • magnesium titanate MgTiO 3
  • alumina Al 2 O 3
  • MgO-Al 2 O 3 composite oxide SiO 2
  • MgO-SiO 2 composite oxide alumina
  • the coating layer (B) may contain one or more of these inorganic metal oxides or inorganic metal double oxides.
  • the coating layer (B) may be composed only of spinel. Note that the proportion of components other than spinel in powder (I) can also be calculated by the same method as the measurement of the amount of spinel described above.
  • the coated particles (X) are particles in which a part of the surface of the core particle (A) is coated with a coating layer (B). From the viewpoint of easily achieving high moisture resistance and low dielectric loss tangent, the coated particles (X) are preferably core-shell particles in which the entire surface of the core particle (A) is coated with the coating layer (B). Note that the term "core-shell particle” refers to a coated particle in which most of the surface of the core particle (A) is coated.
  • the coated particles (X) are core-shell particles can be determined by, for example, field emission scanning electron microscopy (for example, manufactured by Carl Zeiss, product name "MERLIN, FE-SEM") and energy dispersive X-ray spectroscopy (for example, In a cross-sectional image of a coated particle (X) obtained by a Bruker company, product name "QUANTAX System When the ratio of the circumferential length rc of the portion covered with the coating layer (B) (rc/ra) is 0.6 or more, most of the core particles (A) are covered with the coating layer (B) ( In other words, it can be determined that the particles are core-shell particles.
  • field emission scanning electron microscopy for example, manufactured by Carl Zeiss, product name "MERLIN, FE-SEM”
  • energy dispersive X-ray spectroscopy for example, In a cross-sectional image of a coated particle (X) obtained by a Bruker company, product name "QUANTAX System
  • the proportion of coated particles (X) in powder (I) is preferably 80% or more, more preferably 90% or more.
  • Powder (I) contains particles other than coated particles (X) (other particles) within a range that can maintain the physical properties such as spinel content and BET specific surface area (Si) of powder (I) according to the present embodiment. can be included.
  • Other particles include, for example, uncoated core particles (A), particles of inorganic metal oxides or inorganic metal double oxides (eg, alumina particles, silica particles, spinel particles), and the like. These may be contained alone or in combination of two or more.
  • the particles of inorganic metal oxide or inorganic metal double oxide may be particles added at the time of production as a coating component of the core particles (A).
  • the powder (I) may contain only the coated particles (X).
  • the ratio of the coated particles (X) in the powder (I) can be determined, for example, by the method using the field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) described above. ) may be calculated based on how many coated particles (X) are present among the 50 measured particles. For example, if 50 arbitrary particles in the area are observed and all 50 particles are coated particles (X), the proportion of coated particles (X) in powder (I) is 100%. can do.
  • FE-SEM field emission scanning electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • the thickness of the coating layer (B) in the coated particles (X) may be 40 ⁇ m or less, or 35 ⁇ m or less, from the viewpoint of easily maintaining high thermal conductivity. From the viewpoint of easily obtaining a resin composition with a lower viscosity and having good fluidity when filled into a resin, the thickness may be 30 ⁇ m or less, or 26 ⁇ m or less.
  • the thickness of the coating layer (B) is determined based on the median diameter (Da50) of the raw material powder constituting the core particles (A) and the final powder (I) during production of the powder (I) according to the present embodiment. ) may be a value calculated from the difference in median diameter (Di50), or may be a value measured with a scanning electron microscope.
  • FIG. 1 is an example of a photograph of the powder (I) according to the present embodiment observed with a field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). From FIG. 1, it can be confirmed that the powder (I) contains coated particles (X). Moreover, it can be seen that the thickness of the coating layer (B) of the coated particles (X) contained in the powder (I) according to the present embodiment is relatively uniform. Powder (I) containing such coated particles (X) has a relatively small value of BET specific surface area (Si), and therefore has excellent moisture resistance and easily achieves a low dielectric loss tangent.
  • FE-SEM field emission scanning electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • the BET specific surface area (Si) of the powder (I) according to the present embodiment is less than 2.3 m 2 /g.
  • the BET specific surface area (Si) of the powder (I) is less than 2.3 m 2 /g, excellent moisture resistance and low dielectric loss tangent can be achieved.
  • the BET specific surface area (Si) can be measured by the following method.
  • the specific surface area is measured by filling 5 g of magnesium oxide powder (I) into a measuring cell of a fully automatic specific surface area measuring device (for example, manufactured by Mountech, product name "Macsorb HM model-1201", BET-point method). .
  • Degassing conditions before measurement can be 200° C. and 10 minutes.
  • helium can be used as the carrier gas
  • nitrogen mixed concentration: 30.5%
  • the BET specific surface area (Si) of powder (I) may be 2.1 m 2 /g or less, and 1.9 m 2 /g or less. Furthermore, from the viewpoint that the fluidity when filled into the resin is likely to be better, it may be 0.01 to 2.1 m 2 /g, or 0.05 to 1.9 m 2 /g.
  • the median diameter (Di50) of powder (I) may be 5 to 300 ⁇ m, may be 5 to 200 ⁇ m, may be 5 to 150 ⁇ m, or may be 30 to 150 ⁇ m. Good too. If the median diameter (Di50) of the powder (I) is within the above range, it becomes easier to achieve both high moisture resistance and low dielectric loss tangent.
  • the "median diameter (D50)” refers to the average particle diameter (D50) corresponding to a cumulative value of 50% in a volume-based particle size distribution determined by a laser diffraction light scattering method. The cumulative particle size distribution is represented by a distribution curve with the horizontal axis representing the particle diameter ( ⁇ m) and the vertical axis representing the cumulative value (%).
  • the average circularity (ARi) of powder (I) may be 0.75 or more, may be 0.80 or more, may be 0.85 or more, 0.90 It may be more than that.
  • the average circularity (ARi) of the powder (I) is 0.75 or more, the powder (I) tends to have a BET specific surface area (Si) of less than 2.3 m 2 /g. Further, the powder (I) tends to have a lower dielectric loss tangent.
  • the average circularity (ARi) of powder (I) can be measured by the following method. (Method of measuring average circularity (ARi)) After fixing the magnesium oxide powder (I) with carbon tape, osmium coating is performed.
  • the ratio of periclase (crystals of magnesium oxide) to the total mass of powder (I) is preferably 80% by mass or more, more preferably 85% by mass or more, and 87% by mass or more. It is even more preferable that there be.
  • the total amount of periclase and spinel in powder (I) may be 100% by weight. If the proportion of periclase in the powder (I) is 80% by mass or more, the proportion of components other than periclase and spinel in the powder (I) will be reduced, resulting in a powder ( I) is likely to occur.
  • the periclase crystallite diameter of powder (I) is preferably 50 ⁇ 10 ⁇ 9 m or more.
  • Powder (I) having a crystallite diameter of 50 ⁇ 10 ⁇ 9 m or more tends to have good thermal conductivity.
  • crystallite diameter refers to a value calculated using the Scherrer formula using an X-ray diffraction method.
  • the crystallite diameter indicates the average size of single crystals in the polycrystalline.
  • the average particle density of powder (I) is preferably 0.1 to 7.0 g/cm 3 , more preferably 0.5 to 5.5 g/cm 3 .
  • the average particle density of powder (I) can be measured by the following method. (Method of measuring average particle density) Put 2.0 g of powder (I) into a sample cell for measurement, and measure the average particle density by a gas (helium) substitution method using a dry density meter (for example, manufactured by Shimadzu Corporation, product name "Accupic II 1340"). do.
  • Powder (I) according to this embodiment has excellent moisture resistance.
  • the magnesium hydroxide content measured under the following conditions is preferably less than 50% by mass, more preferably 30% by mass or less, and even more preferably 10% by mass or less. Since the powder (I) according to the present embodiment has excellent moisture resistance, it is difficult to generate magnesium hydroxide.
  • Magnesium oxide powder (I) 10g (M1) was placed in a test device at a temperature of 135°C and a humidity of 85RH% (for example, manufactured by ESPEC Co., Ltd., product name "Highly Accelerated Life Testing Device EHS-212M". Conditions were unsaturated mode. ) for 168 hours.
  • M2 The mass (M2) of the magnesium oxide powder (I) after standing is measured, and the change in mass before and after standing is substituted into the following equation (1) to calculate the magnesium hydroxide content.
  • M1 is the mass (g) of the magnesium oxide powder (I) before standing
  • M2 is the mass (g) of the magnesium oxide powder (I) after standing
  • 18.0 , 40.3 are the molecular weights of H 2 O and MgO, respectively.
  • the viscosity of powder (I) measured under the following conditions is preferably 2,000 Pa ⁇ s/25°C or less, more preferably 1,000 Pa ⁇ s/25°C or less, and 500 Pa ⁇ s/25°C or less. - It is more preferable that it is s/25°C or less.
  • the powder (I) according to the present embodiment has a BET specific surface area (Si) of less than 2.3 m 2 /g and contains particles with relatively good surface smoothness. Therefore, the powder (I) according to the present embodiment tends to have good fluidity when filled into a resin.
  • Viscosity measurement conditions A resin composition consisting of 60 volume % of bisphenol A liquid epoxy resin (epoxy equivalent: 184 to 194; for example, manufactured by Mitsubishi Chemical Corporation, product name "JER828”) and 40 volume % of powder (I) was heated in a rotary machine. Viscosity is measured using a rheometer at a shear rate of 1.0/s, plate shape: circular plate (10 mm ⁇ ), sample thickness: 1 mm, and temperature: 25 ⁇ 1°C.
  • the powder (I) may be surface-treated with a surface-treating agent in order to improve the filling properties and fluidity of the resin.
  • polar functional groups and the like on the surfaces of particles constituting the powder can be easily reduced, making it easier to achieve a lower dielectric loss tangent.
  • the surface treatment agent include silane coupling agents, aluminate coupling agents, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of easily reducing polar functional groups on the particle surface, it is preferable that the particles be treated with a silane coupling agent. A silane coupling agent having a group is more preferred. Note that the presence or absence of surface treatment of powder (I) can be confirmed by analyzing the powder using, for example, IR, TG-DTA, mass spectrometry, or the like.
  • the thermal conductivity of powder (I) measured under the following conditions may be 4.0 to 8.0 W/mK, or may be 5.0 to 7.0 W/mK. .
  • the powder (I) according to this embodiment has excellent moisture resistance and can achieve a low dielectric loss tangent, but also easily maintains high thermal conductivity. (Measurement conditions for thermal conductivity) Mix magnesium oxide powder (I) and spherical alumina powder (for example, manufactured by Denka Co., Ltd., product name "DAW-07", product name "ASFP-40", etc.) at a volume ratio of 51:49. Create a powder.
  • the mixed powder is added to a silicone resin (for example, manufactured by Shin-Etsu Chemical Co., Ltd., product name "SE1885:A”, product name "SE1885:B”, etc.) so that the proportion of the mixed powder is 77.5% by volume. Fill it in the following manner and create an evaluation sheet.
  • the evaluation sheet is measured with a thermal resistance measuring device (for example, manufactured by Hitachi Technology and Service Co., Ltd., product name "TRM-046RHHT”) to determine thermal conductivity.
  • a resin sheet containing powder (I) (a sheet made of polyethylene resin and powder (I).
  • the proportion of powder (I) in the resin sheet is 20% by volume) measured at 36 GHz under the conditions described below.
  • the dielectric loss tangent is preferably 4.0 ⁇ 10 ⁇ 4 or less, more preferably 3.5 ⁇ 10 ⁇ 4 or less, and even more preferably 3.0 ⁇ 10 ⁇ 4 or less. Note that the "dielectric loss tangent" refers to the filler-equivalent dielectric loss tangent (tan ⁇ f ) calculated from the following equation (3).
  • V f the filler content (mass %)
  • tan ⁇ c the dielectric loss tangent of the resin sheet
  • tan ⁇ r the dielectric loss tangent of the polyethylene resin (PE).
  • the powder (I) according to the present embodiment has excellent moisture resistance and can achieve a low dielectric loss tangent that can be applied to high frequency band devices.
  • the reason why the powder (I) according to this embodiment can achieve a low dielectric loss tangent is that the total amount of polar functional groups can be reduced by reducing the particle surface area, and the introduction of the spinel layer can reduce the amount of OH groups on the surface and the surface adsorption. This is thought to be because the amount of water could be reduced.
  • the magnesium oxide powder according to the present embodiment can be produced, for example, by a method including coating a raw material powder containing magnesium oxide with a coating component containing aluminum and then firing it (step (1)).
  • a method for producing powder (I) including step (1) will be described.
  • step (1) is to coat a raw material powder containing magnesium oxide with a coating component containing aluminum, and then to bake it.
  • the "raw material powder” is the core particle (A) containing the above-mentioned magnesium oxide as a main component.
  • the median diameter (Da50) of the raw material powder is preferably 10 to 150 ⁇ m.
  • the median diameter (Da50) may be 15 to 150 ⁇ m, 20 to 140 ⁇ m, or 40 to 130 ⁇ m. If the median diameter (Da50) of the raw material powder is within the above range, magnesium oxide powder having a low dielectric loss tangent can be easily obtained.
  • the average circularity (ARa) of the raw material powder may be 0.70 or more, 0.80 or more, and 0.70 or more, from the viewpoint of easily improving resin filling properties. It may be .90 or more.
  • the average circularity (ARa) of the raw material powder can be measured in the same manner as the average circularity (ARi) of the powder (I) described above.
  • the average circularity (ARi) ((ARi)/(ARa)) of powder (I) with respect to the average circularity (ARa) of the raw material powder may be 1.0 or more, and 1. It may be 05 or more.
  • the coating layer can be easily formed uniformly. As a result, the surface irregularities of the particles constituting the powder (I) tend to become small, and the BET specific surface area (Si) tends to become less than 2.3 m 2 /g.
  • the BET specific surface area (Sa) of the raw material powder is 0.01 to 20 m 2 /g from the viewpoint of easily obtaining powder (I) with a BET specific surface area (Si) of less than 2.3 m 2 /g. It may be 0.01 to 10 m 2 /g, or 0.01 to 1 m 2 /g.
  • the BET specific surface area (Sa) of the raw material powder can also be measured in the same manner as for powder (I).
  • the BET specific surface area (Si) ((Si)/(Sa)) of powder (I) relative to the BET specific surface area (Sa) of the raw material powder may be 5.0 or less. When (Si)/(Sa) is 5.0 or less, the resulting powder (I) tends to have better fluidity and filling properties when filled into a resin.
  • the method for preparing the raw material powder is not particularly limited.
  • it may be prepared by a method such as calcination of magnesium hydroxide powder.
  • the raw material powder contains impurities of alkali metal elements such as Li, Na, and K, metal elements such as Fe, and anion content such as Cl - and Br - from the viewpoint of reducing the dielectric loss tangent and reliability of electronic materials. It is preferable that there is little. Specifically, the total amount of these impurities and anions in the raw material powder is preferably 0.01% by mass or less.
  • the method for coating the raw material powder is not particularly limited, and for example, a shaking mixer, a flame melting method, a rolling fluidized bed coating, etc. can be employed. Among these, from the viewpoint of easily adjusting the BET specific surface area of the obtained powder (I) to less than 2.3 m 2 /g, it is preferable to coat the raw material powder with rolling fluidized bed coating.
  • step (1) can include spraying a slurry containing a coating component containing aluminum onto the raw powder to coat the raw material powder in a tumbling fluidized bed.
  • tumbling fluidized bed coating is also called tumbling fluidized coating, tumbling fluidized granulation coating, etc., and is a coating method using a coating device equipped with a blade rotor at the bottom of a typical fluidized bed device.
  • the coating component containing aluminum preferably includes an inorganic metal oxide powder (B1) containing alumina powder.
  • the inorganic metal oxide powder (B1) may contain powder other than alumina powder, and may contain, for example, silica powder.
  • the median diameter (Db 1 50) ((Db 1 50)/(Da50)) of the inorganic metal oxide powder (B1) with respect to the median diameter (Da50) of the raw material powder is 8.0 ⁇ 10 ⁇ 6 1.0 ⁇ 10 ⁇ 1 or 5.0 ⁇ 10 ⁇ 5 to 5.0 ⁇ 10 ⁇ 2 . If (Db 1 50)/(Da50) is within the above range, the surface of the raw material powder can be coated more efficiently.
  • the proportion of the coating component containing aluminum in the slurry is based on the total mass of the slurry, from the viewpoint of easily adjusting the amount of spinel contained in the obtained powder (I) to less than 13% by mass. It may be 0.1 to 80% by mass, or 1 to 50% by mass.
  • the dispersion medium contained in the slurry preferably contains water or ethanol, and more preferably contains water.
  • the slurry may contain components other than the coating component and the dispersion medium. Examples of other components include a dispersant, a binder, and the like. These other components may be contained alone or in combination of two or more.
  • the spraying amount of the coating component containing aluminum to the raw powder is such that the amount of spinel contained in the obtained powder (I) can be easily adjusted to less than 13% by mass, and the BET specific surface area (Si) can be adjusted to 2 From the viewpoint of easy adjustment to less than .3 m 2 /g, the amount is preferably 1 to 25% by mass based on the total amount (100% by mass) of the raw material powder and the coating component containing aluminum.
  • spraying the slurry onto the raw material powder increases the amount of the coating component containing aluminum relative to the total amount (100% by mass) of the raw material powder and the coating component containing aluminum.
  • the proportion may be in the range of 1 to 25% by mass.
  • the amount of the coating component sprayed may be 1% by mass or more and less than 25% by mass, 1 to 20% by mass, or 1% to 20% by mass, based on the total amount. It may be less than 1% by mass, and may be 1 to 18% by mass.
  • the tumbling fluidized bed coating may be performed at a temperature of 20 to 150°C, a temperature of 30 to 100°C, or a temperature of 50 to 90°C.
  • the coating time is not particularly limited as long as the surface of the raw material powder is sufficiently coated. From the viewpoint of easily forming a uniform coating layer (B), the time may be 0.01 to 24 hours, may be 0.05 to 24 hours, or may be 0.1 to 12 hours. .
  • the tumbling fluidized bed coating can be performed using a conventionally known tumbling fluidized bed apparatus.
  • a rolling fluid granulation coating device MP Multiplex manufactured by Powrex Co., Ltd., product name may be used.
  • step (1) includes baking after coating the raw material powder.
  • the firing temperature is preferably 500 to 1,600°C, more preferably 700 to 1,600°C, even more preferably 1,000 to 1,600°C, and particularly preferably 1,000 to 1,400°C from the viewpoint of easily forming a uniform coating layer (B).
  • the temperature may be higher than 1000°C and lower than or equal to 1600°C.
  • the firing time is preferably 0.5 to 10 hours, more preferably 1 to 8 hours, from the viewpoint of easily forming a uniform coating layer (B).
  • the powder (I) obtained may be in the form of aggregates. Therefore, a crushing process may be performed as necessary.
  • the crushing method is preferably carried out under conditions where the BET specific surface area (Si) of the powder (I) is not easily changed, and for example, a mortar, bead mill, ball mill, etc. can be used.
  • the method may also include a step of surface treating the obtained powder (I) with a surface treatment agent, a washing step for reducing impurities (for example, the above-mentioned anions, etc.) in the powder (I), and the like.
  • the obtained powder (I) may be classified by a sieving method, an air classification method, or the like. By classifying the powder (I), it becomes easier to control the median diameter (Di50), BET specific surface area (Si), etc. of the powder (I) within a suitable range.
  • the powder (I) according to the present embodiment has excellent moisture resistance, and when filled into a resin, can achieve a low dielectric loss tangent that can be applied to high frequency band devices. Therefore, the powder (I) according to the present embodiment is suitable as a filler for resins, particularly for resin compositions applied to sealing materials, TIM materials, or substrates for high frequency band devices. Available. Other embodiments of the powder (I) are the use or methods of use as inorganic fillers for encapsulants, TIM materials, or substrates for high frequency band devices.
  • the "high frequency band device” may be a mobile phone or a vehicle loading member that uses high frequency band radio waves.
  • the resin composition according to the present embodiment includes the above-described magnesium oxide powder (I) and at least one resin selected from thermoplastic resins and thermosetting resins.
  • the content of powder (I) in the resin composition is not particularly limited, and can be adjusted as appropriate depending on the purpose.
  • the powder (I) according to the present embodiment has good fluidity when filled into a resin, the amount of powder blended in the resin composition can be arbitrarily adjusted so as to obtain the desired dielectric properties. can.
  • it when used as a substrate material for high frequency bands or an insulating material, it may be blended in an amount of 1 to 99% by mass, more preferably 10 to 90% by mass, based on the total mass of the resin composition. % range.
  • the resin composition according to this embodiment includes at least one resin selected from thermoplastic resins and thermosetting resins. More specifically, for example, polyethylene resin; polypropylene resin; epoxy resin; silicone resin; phenol resin; melamine resin; urea resin; unsaturated polyester resin; fluororesin; polyimide resin, polyamideimide resin, polyetherimide resin, etc.
  • Polyamide resin polyester resin such as polybutylene terephthalate resin, polyethylene terephthalate resin; polyphenylene sulfide resin; wholly aromatic polyester resin; polysulfone resin; liquid crystal polymer resin; polyether sulfone resin; polycarbonate resin; maleimide modified resin; ABS resin;
  • AAS acrylonitrile-acrylic rubber-styrene
  • AES acrylonitrile-ethylene-propylene-diene rubber-styrene
  • hydrocarbon elastomer resin polyphenylene ether resin
  • aromatic polyene resin may be used alone or in combination of two or more.
  • the resin composition according to the present embodiment may contain a curing agent, a curing accelerator, a mold release agent, a coupling agent, a coloring agent, a flame retardant, an ion scavenger, etc., within a range that does not impede the effects of the present invention. It's okay.
  • the method for producing the resin composition is not particularly limited, and the resin composition can be produced by stirring, dissolving, mixing, and dispersing predetermined amounts of each material.
  • Apparatus for mixing, stirring, dispersing, etc. these mixtures is not particularly limited, but a Raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, etc. can be used. Further, these devices may be used in appropriate combination.
  • the resin composition containing the magnesium oxide powder according to the present embodiment has excellent moisture resistance and can achieve a low dielectric loss tangent. Furthermore, the resin composition containing the magnesium oxide powder according to the present embodiment has low viscosity and is therefore excellent in processability and workability.
  • Example 1 As raw material powder, magnesium oxide powder (manufactured by Denka Co., Ltd., trade name "DMG-50”, median diameter (Da50): 50 ⁇ m, BET specific surface area (Sa): 0.2 m 2 /g, average circularity (ARa) :0.93, a slurry containing alumina powder (manufactured by Cabot Specialty Chemicals, Inc., product name "CAB-O-SPERSE PG008", median diameter (Db i 50): 100 nm) as a coating component, Rolling fluidized bed coating was performed by spraying onto the raw material powder. The slurry contained 5% by mass of the coating component (95% by mass of the magnesium oxide powder) relative to the total amount (100% by mass) of the magnesium oxide powder and the coating component.
  • magnesium oxide powder (I) The amount of spinel, amount of periclase, BET specific surface area (Si), presence or absence of coated particles (X), median diameter (Di50), and average circularity (ARi) of magnesium oxide powder (I) were measured under the following conditions. The physical property values of the raw material powder and alumina powder were also measured under the following conditions. The results are shown in Table 1.
  • X-ray diffraction pattern of powder (I) was measured under the following measurement conditions using a sample horizontal multipurpose X-ray diffraction device (manufactured by Rigaku Co., Ltd., product name "RINT-Ultima IV") as a measuring device.
  • X-ray source CuK ⁇ Tube voltage: 40kV Tube current: 40mA Scan speed: 10.0°/min 2 ⁇ scan range: 10° to 80°
  • the crystal phase was quantitatively analyzed by Rietveld analysis of the obtained X-ray diffraction pattern.
  • X-ray diffraction pattern of powder (I) was measured under the following measurement conditions using a sample horizontal multipurpose X-ray diffraction device (manufactured by Rigaku Co., Ltd., product name "RINT-Ultima IV") as a measuring device.
  • X-ray source CuK ⁇ Tube voltage: 40kV Tube current: 40mA Scan speed: 10.0°/min 2 ⁇ scan range: 10° to 80°
  • the crystal phase was quantitatively analyzed by Rietveld analysis of the obtained X-ray diffraction pattern.
  • Powder (I) was observed with a scanning electron microscope (manufactured by JEOL Ltd., product name "JSM-7001F") to confirm the presence or absence of coated particles (X).
  • powder (I) a field emission scanning electron microscope (manufactured by Carl Zeiss, product name “MERLIN, FE-SEM”) and an energy dispersive X-ray spectroscopy (manufactured by Bruker, product name "QUANTAX System XFlash6/ The value of the ratio (rc/ra) of the cross-sectional perimeter ra of the coated particle and the perimeter rc of the portion covered with the coating layer (B) in the cross-section of the coated particle in the cross-sectional image obtained by ⁇ 60 SDD, EDS''). The presence or absence of core-shell particles was confirmed.
  • the measurement was carried out at an image acquisition magnification of 1000 times, an applied voltage of 10 kV, a current amount of 500 nA, and a measurement time of 30 seconds, and elemental mapping was performed for aluminum and magnesium.
  • image analysis was carried out using ImageJ, and for one particle image, the perimeter of the magnesium component mapping part, which is the core part, is ra, and the part of the surrounding part of the magnesium component that is in contact with the aluminum component, which is the shell part. (It is determined that the area is "contacting" when the mapping area of the aluminum component is located one pixel outside from the periphery of the magnesium) as rc, calculate rc/ra, and calculate rc/ra if rc/ra is 0. Those with a particle size of 6 or more were determined to be core-shell particles. The results are shown in Table 1.
  • the median diameter (D50) of each material was determined by volume-based particle size distribution measurement using a laser diffraction particle size distribution analyzer (manufactured by Beckman Coulter, Inc., product name "LS 13 320"). Specifically, 50 cm 3 of pure water and 0.1 g of raw material powder (or powder (I)) were placed in a glass beaker, and an ultrasonic homogenizer (manufactured by Microtec Nichion Co., Ltd., product name: "Smurt NR-”) was placed. Dispersion treatment was performed using a titanium alloy tip ⁇ 3 (NS-50M-MT3) for 60 seconds at an output of 25W.
  • the dispersion of the raw material powder (or powder (I)) that had been subjected to the dispersion treatment was added drop by drop to the laser diffraction particle size distribution analyzer using a dropper, and measurements were taken 30 seconds after adding a predetermined amount. Note that the refractive index of water was 1.33, and the refractive index of powder (I) was 1.74.
  • the median diameter (D50) was calculated from the particle diameter corresponding to a cumulative value of 50% in the volume-based cumulative particle size distribution of the measured particle diameter.
  • M1 is the mass (g) of the magnesium oxide powder (I) before standing
  • M2 is the mass (g) of the magnesium oxide powder (I) after standing
  • 18.0 , 40.3 are the molecular weights of H 2 O and MgO, respectively.
  • Evaluation criteria Excellent: Conversion rate to magnesium hydroxide is less than 10% by mass.
  • Good The rate of change to magnesium hydroxide is 10% by mass or more and less than 30% by mass.
  • Acceptable The rate of change to magnesium hydroxide is 30% by mass or more and less than 50% by mass.
  • Impossible Conversion rate to magnesium hydroxide is 50% by mass or more.
  • Powder (I) and polyethylene resin powder were weighed so that the amount of powder (I) filled was 20% by volume.
  • a resin composition was obtained by mixing using a vibrating mixer (manufactured by Resodyn) at an acceleration of 60 G and a processing time of 2 minutes.
  • the obtained resin composition was placed in a metal frame with a diameter of 3 cm in an amount such that the thickness was about 0.3 mm, and was heated at 140°C for 50 minutes using a nanoimprint device (manufactured by SCIVAX, trade name "X-300").
  • the dielectric loss tangent (tan ⁇ f ) was calculated from the following formula (3) using analysis software (software manufactured by Samtech Co., Ltd.). Note that the measurement was performed under conditions of a measurement temperature of 20° C. and a humidity of 60% RH. The obtained dielectric loss tangent value was evaluated using the following evaluation criteria.
  • tan ⁇ c V f ⁇ tan ⁇ f + (1 ⁇ V f ) ⁇ tan ⁇ r ...
  • V f represents the filler content (mass%)
  • tan ⁇ c represents the dielectric loss tangent of the resin sheet
  • tan ⁇ r represents the dielectric loss tangent of the polyethylene resin (PE).
  • Evaluation criteria Excellent: Dielectric loss tangent is 3.0 ⁇ 10 -4 or less. Good: Dielectric loss tangent is more than 3.0 ⁇ 10 ⁇ 4 and less than 3.5 ⁇ 10 ⁇ 4 . Acceptable: Dielectric loss tangent is over 3.5 x 10 -4 and below 4.0 x 10 -4 . Impossible: Dielectric loss tangent exceeds 4.0 ⁇ 10 -4 .
  • a mixed powder was prepared by mixing the following ratios) at a volume ratio of 51:49.
  • the mixed powder is a mixture of silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name "SE1885:A" and product name "SE1885:B”.
  • the obtained shear viscosity was evaluated according to the following evaluation criteria, and a C rating or higher was considered to be a pass.
  • Impossible The viscosity of the resin composition exceeds 2,000 Pa ⁇ s/25°C.
  • Powder (I) was prepared in the same manner as in Example 1, except that the raw material powder and manufacturing conditions were as shown in Table 1.
  • the amount of spinel, amount of periclase, BET specific surface area, presence or absence of coated particles (X), median diameter (Di50), and average circularity (ARi) were measured under the same conditions as in Example 1. Further, moisture resistance, dielectric loss tangent, fluidity, and thermal conductivity were evaluated under the same conditions as in Example 1. The results are shown in Table 1.
  • the raw materials used in each example are as follows. ⁇ Raw material powder (core particles (A))> DMG50: Magnesium oxide powder (manufactured by Denka Co., Ltd., median diameter (Da50): 50 ⁇ m, BET specific surface area (Sa): 0.2 m 2 /g, average circularity (ARa): 0.93). DMG120: Magnesium oxide powder (manufactured by Denka Co., Ltd., median diameter (Da50): 120 ⁇ m, BET specific surface area (Sa): 0.1 m 2 /g, average circularity (ARa): 0.94).
  • the powders (I) of Examples 1 to 7 satisfying the configuration of this embodiment had excellent moisture resistance and achieved a low dielectric loss tangent. Furthermore, the fluidity and thermal conductivity were also good.
  • Comparative Example 1 in which the amount of spinel in powder (I) was 0% by mass and the BET specific surface area (Si) was 2.3 m 2 /g or more, had poor moisture resistance and a low dielectric loss tangent value. it was high.
  • Comparative Example 2 in which the amount of spinel in the powder (I) was more than 13% by mass and the BET specific surface area (Si) was 2.3 m 2 /g or more, had good moisture resistance, but the dielectric loss tangent was it was high.
  • Comparative Example 3 which had a BET specific surface area (Si) of 2.3 m 2 /g, had poor moisture resistance and a high dielectric loss tangent value.
  • the dielectric loss tangent value of uncoated magnesium oxide powder containing no coated particles (X) measured by the above method is 6.7 ⁇ 10 ⁇ 4 .
  • the powders (I) of Examples 1 to 7 were able to achieve a lower dielectric loss tangent than the uncoated magnesium oxide powder. From the above results, it was confirmed that the powder (I) according to the present embodiment has excellent moisture resistance and can achieve a low dielectric loss tangent.
  • the dielectric loss tangent of the powder (I) according to this embodiment was a value that could be sufficiently applied as a filler for high frequency band devices.
  • the powder (I) according to the present embodiment has excellent moisture resistance and can achieve a low dielectric loss tangent when filled into a resin. Therefore, the powder (I) according to this embodiment and the resin composition using the same can be applied as a ceramic filler for high frequency band devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐湿性に優れ、かつ高周波数帯用デバイスにも応用可能な低誘電正接を達成できる酸化マグネシウム粉末及びそれを用いた樹脂組成物を提供する。 酸化マグネシウムを含むコア粒子(A)の表面が、MgAl2O4を含む被覆層(B)で被覆された被覆粒子(X)を含む、酸化マグネシウム粉末(I)であって、酸化マグネシウム粉末(I)の総質量に対する、MgAl2O4の割合が13質量%未満であり、酸化マグネシウム粉末(I)のBET比表面積(Si)が、2.3m2/g未満である、酸化マグネシウム粉末(I)とする。

Description

酸化マグネシウム粉末及びそれを用いた樹脂組成物
 本発明は、酸化マグネシウム粉末及びそれを用いた樹脂組成物に関する。
 半導体封止材等の分野においては、熱膨張率や、熱伝導率、難燃性等を向上させる目的でシリカやアルミナ等の無機金属酸化物粉末をフィラーとして充填している。しかしながら、シリカは熱伝導率が比較的低く、またアルミナはシリカより熱伝導率は高いものの、硬度も高いため、使用設備が摩耗されやすいという問題がある。そこで、熱伝導率がシリカやアルミナよりも高く、さらに硬度がアルミナよりも低い、酸化マグネシウムの粉末が、上記分野に応用可能なフィラーとして検討されている。
 酸化マグネシウム粉末は耐湿性が低く、大気中の水分と反応して水酸化マグネシウムとなることが知られている。水酸化マグネシウムが生成すると熱伝導率が低下しやすいため、酸化マグネシウム粉末の表面を被覆して、耐湿性を向上させることが行われている。例えば、特許文献1~2には、酸化マグネシウム粉末の表面をアルミナ、又はアルミニウムを含む複酸化物で被覆して、酸化マグネシウム粉末の耐湿性を向上することが記載されている。
 ところで、近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の信号の活用が広がっている。一方、高周波数帯の信号を前記機器に適用することにより、回路信号の伝送損失が大きくなるという問題も生じている。そのため、高周波数帯用のデバイスに用いられるフィラーに関しては、誘電正接の低い材料が求められている。
特開昭63-248716号公報 特許第4302690号公報
 そこで本発明は、耐湿性に優れ、かつ高周波数帯用デバイスにも応用可能な低誘電正接を達成できる酸化マグネシウム粉末及びそれを用いた樹脂組成物を提供することを目的とする。
 本発明者らは鋭意検討した結果、酸化マグネシウムを含むコア粒子の表面を、MgAlを一定量含む層で被覆した被覆粒子を含む酸化マグネシウム粉末であって、前記酸化マグネシウム粉末のBET比表面積を2.3m/g未満とすることにより、上述のすべての課題を解決できる酸化マグネシウム粉末が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の態様を有する。
[1]酸化マグネシウムを含むコア粒子(A)の表面が、MgAlを含む被覆層(B)で被覆された被覆粒子(X)を含む、酸化マグネシウム粉末(I)であって、
 酸化マグネシウム粉末(I)の総質量に対する、MgAlの割合が13質量%未満であり、
 酸化マグネシウム粉末(I)のBET比表面積(Si)が、2.3m/g未満である、酸化マグネシウム粉末(I)。
[2]酸化マグネシウム粉末(I)の総質量に対する、ペリクレースの割合が80質量%以上である、[1]に記載の酸化マグネシウム粉末(I)。
[3]酸化マグネシウム粉末(I)の平均円形度(ARi)が0.75以上である、[1]または[2]に記載の酸化マグネシウム粉末(I)。
[4]下記条件で測定した試験後水酸化マグネシウム含有率が50質量%未満である、[1]から[3]のいずれかに記載の酸化マグネシウム粉末(I)。
 <測定条件>
 酸化マグネシウム粉末(I)10g(M1)を、温度135℃、湿度85RH%の試験装置内に168時間静置する。静置後の酸化マグネシウム粉末(I)の質量(M2)を測定し、静置前後における質量の変化を以下の式(1)に代入して、水酸化マグネシウム含有率を算出する。
 {(M2-M1)/18.0}×(40.3/M1)×100 ・・・(1)
 (式(1)において、M1は静置前の酸化マグネシウム粉末(I)の質量(g)であり、M2は静置後の酸化マグネシウム粉末(I)の質量(g)であり、18.0、40.3はそれぞれ、HOおよびMgOの分子量である。)
[5]下記条件で測定した粘度が2,000Pa・s/25℃以下である、[1]から[4]のいずれかに記載の酸化マグネシウム粉末(I)。
 <測定条件>
 ビスフェノールA型液状エポキシ樹脂(エポキシ当量:184~194)60体積%と、酸化マグネシウム粉末(I)40体積%からなる樹脂組成物を、回転式レオメーターを用いて剪断速度:1/s、プレート形状:円形平板(10mmφ)、試料厚み:1mm、温度:25±1℃で粘度を測定する。
[6]前記酸化マグネシウム粉末(I)の総質量に対する、MgAlの割合が0.1質量%以上である、[1]から[5]のいずれかに記載の酸化マグネシウム粉末(I)。
[7]樹脂充填用である、[1]から[6]のいずれかに記載の酸化マグネシウム粉末(I)。
[8][1]から[7]のいずれかに記載の酸化マグネシウム粉末(I)と、熱可塑性樹脂及び熱硬化性樹脂から選択される少なくとも1つの樹脂とを含む、樹脂組成物。
[9]高周波数帯デバイス向けの、封止材用、TIM材用、又は基板用である、[8]に記載の樹脂組成物。
 本発明によれば、耐湿性に優れ、かつ高周波数帯用デバイスにも応用可能な低誘電正接を達成できる酸化マグネシウム粉末(I)及びそれを含む樹脂組成物を提供することができる。
本発明の酸化マグネシウム粉末(I)について、電界放射型走査電子顕微鏡(FE-SEM)およびエネルギー分散型X線分光法(EDS)を用いて、断面画像にアルミニウム成分をマッピングした画像の一例である。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。本明細書において数値範囲を示す「α~β」との表現は、「α以上β以下」であることを意味している。また本明細書において「粉末」とは、「複数の粒子の集合体」を意味する。
[酸化マグネシウム粉末(I)]
 本実施形態に係る酸化マグネシウム粉末は、酸化マグネシウムを含むコア粒子(A)の表面が、MgAlを含む被覆層(B)で被覆された被覆粒子(X)を含む、酸化マグネシウム粉末(I)であって、酸化マグネシウム粉末(I)の総質量に対する、MgAlの割合が13質量%未満であり、酸化マグネシウム粉末(I)のBET比表面積(Si)が、2.3m/g未満であることを特徴とする。本実施形態に係る酸化マグネシウム粉末(I)(以下、単に「粉末(I)」と記載することもある)は、耐湿性に優れ、かつ高周波数帯用デバイスにも応用可能な低誘電正接を達成できる。また、本実施形態に係る酸化マグネシウム粉末(I)は熱伝導率も良好である。以下、本実施形態に係る酸化マグネシウム粉末(I)の詳細について説明する。
<被覆粒子(X)>
 本実施形態に係る粉末(I)は、酸化マグネシウムを含むコア粒子(A)の表面が、MgAlを含む被覆層(B)で被覆された被覆粒子(X)を含む。このような被覆粒子(X)を含むことにより、粉末(I)の耐湿性が向上する。
(コア粒子(A))
 コア粒子(A)は酸化マグネシウムを主成分として含む粒子である。「主成分として含む」とは、コア粒子を構成する全成分(100質量%)に対して、酸化マグネシウムを50質量%超含むことを意味する。
 コア粒子(A)には、酸化マグネシウム以外の成分が含まれていてもよい。酸化マグネシウム以外の成分としては、例えば、酸化マグネシウム粒子の製造時に添加されるアルカリ成分、ホウ素、鉄等が挙げられる。本実施形態に係る粉末(I)を、例えば、半導体封止材用フィラーとして用いる場合は、コア粒子(A)中の酸化マグネシウムの割合は、コア粒子を構成する全成分(100質量%)に対して、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。なおこのような割合で酸化マグネシウムを含む粒子は、例えば、電気溶融法、焼成法等の方法で得ることができる。
(被覆層(B))
 本実施形態に係る酸化マグネシウム粉末(I)に含まれる被覆粒子(X)は、MgAlを含む被覆層(B)を有する。MgAl(以下、「スピネル」と記載することもある)は、マグネシウムとアルミニウムの複酸化物である。コア粒子(A)の表面がスピネルを含む被覆層(B)で被覆された被覆粒子(X)を含むことにより、粉末(I)の耐湿性が向上する。
 本実施形態に係る粉末(I)に含まれるスピネル量は、粉末(I)の総質量に対して、13質量%未満であり、10質量%以下が好ましい。一実施形態において、粉末(I)中のスピネルの割合は、0.1質量%以上が好ましく、1質量%以上がより好ましい。すなわち、粉末(I)に含まれるスピネル量は、粉末(I)の総質量に対して、0.1質量%以上13質量%未満であってもよく、0.1~10質量%であってもよく、1~10質量%であってもよく、2~10質量%であってもよい。
 酸化マグネシウム粒子の表面をスピネルを含む無機金属酸化物粉末で被覆して、酸化マグネシウム粉末の耐湿性を向上させることは従来より行われている(例えば、上述の特許文献1~2等)。本願発明者らは、被覆粒子(X)を含む粉末(I)において、被覆層に含まれるスピネルの量を比較的低く抑えること、さらに粉末(I)のBET比表面積(Si)を一定の範囲未満に制御することにより、耐湿性に優れるだけでなく、より低い誘電正接を達成できる粉末(I)が得られることを見出した。
 なお、本実施形態に係る粉末(I)が被覆粒子(X)を含むかどうかは、粉末(I)を走査型電子顕微鏡で観察すること等によって確認できる。また粉末(I)中のスピネル量は、X線回折装置を用いて粉末(I)のX線回折パターンを測定すること等によって確認できる。例えば、以下の方法で測定できる。
 <スピネル量の測定方法>
 測定装置として、試料水平型多目的X線回折装置(例えば、(株)リガク製、製品名「RINT-UltimaIV」)を用い、以下の測定条件で粉末(I)のX線回折パターンを測定する。
 X線源:CuKα
 管電圧:40kV
 管電流:40mA
 スキャン速度:10.0°/min
 2θスキャン範囲:10°~80°
 また、得られたX線回折パターンのリートベルト解析により、結晶相の定量分析を行う。具体的には、リートベルト法ソフトウェア(例えば、MDI社製、製品名「統合粉末X線ソフトウェアJade+9.6」)を使用する。なお、スピネル結晶相の割合(質量%)の算出には、ICDDカード(番号:01-075-1796)を使用できる。
 一実施形態において、被覆層(B)にはスピネル以外の成分が含まれていてもよい。スピネル以外の成分としては、例えば、チタン、アルミニウム、マグネシウム、ケイ素、及びカルシウムから選択される少なくとも1つの元素を含む無機金属酸化物又は無機金属複酸化物(ただし、スピネルを除く)が挙げられる。具体的には、フォルステライト(MgSiO)、マグネシウムフェライト(FeMgO)、チタン酸マグネシウム(MgTiO)、アルミナ(Al)、MgO-Al複合酸化物、SiO、及びMgO-SiO複合酸化物等が挙げられる。被覆層(B)は、これら無機金属酸化物又は無機金属複酸化物を、1種以上含んでいてもよい。より耐湿性に優れる粉末(I)が得られやすい観点からは、被覆層(B)はスピネルのみで構成されていてもよい。なお、粉末(I)中のスピネル以外の成分の割合も、前記のスピネル量の測定と同じ方法で算出できる。
 被覆粒子(X)は、コア粒子(A)の一部の表面が被覆層(B)で被覆された粒子である。高耐湿性及び低誘電正接を達成しやすい観点からは、被覆粒子(X)が、コア粒子(A)の全表面が被覆層(B)で被覆されたコアシェル粒子であることが好ましい。なお、「コアシェル粒子」とは、コア粒子(A)表面の大部分が被覆された被覆粒子のことを指す。被覆粒子(X)がコアシェル粒子であるかどうかは、例えば、電界放射型走査電子顕微鏡(例えば、Carl Zeiss社製、製品名「MERLIN、FE-SEM」)およびエネルギー分散型X線分光法(例えば、Bruker社製、製品名「QUANTAXシステムXFlash6/60SDD、EDS」)によって得られる被覆粒子(X)の断面画像において、コア粒子(A)の断面周囲長raと前記コア粒子(A)の断面において被覆層(B)で被覆された部分の周囲長rcの比(rc/ra)が0.6以上である場合、コア粒子(A)の大部分が被覆層(B)で被覆されている(すなわち、コアシェル粒子である)と判断することができる。
 一実施形態において、粉末(I)中の被覆粒子(X)の割合は、80%以上が好ましく、90%以上がより好ましい。本実施形態に係る粉末(I)のスピネル量、BET比表面積(Si)等の物性を維持し得る範囲内で、粉末(I)は、被覆粒子(X)以外の粒子(その他の粒子)を含むことができる。その他の粒子としては、例えば、未被覆のコア粒子(A)や、無機金属酸化物又は無機金属複酸化物の粒子(例えば、アルミナ粒子、シリカ粒子、スピネル粒子)等が挙げられる。これらは1種単独で含まれていてもよく、2種以上が含まれていてもよい。なお、無機金属酸化物又は無機金属複酸化物の粒子は、コア粒子(A)の被覆成分として、製造時に添加された粒子であってもよい。
 一実施形態においては、粉末(I)は被覆粒子(X)のみを含んでいてもよい。粉末(I)中の被覆粒子(X)の割合は、例えば、前述の電界放射型走査電子顕微鏡(FE-SEM)およびエネルギー分散型X線分光法(EDS)を用いた方法で、粉末(I)を観測した際、測定した50個の粒子のうち、被覆粒子(X)がどの程度存在するかによって算出してもよい。例えば、前記エリア内の任意の50個の粒子を観測した際、50個の粒子が全て被覆粒子(X)であった場合、粉末(I)中の被覆粒子(X)の割合は100%とすることができる。
 一実施形態において、被覆粒子(X)における被覆層(B)の厚みは、高熱伝導率を維持しやすい観点からは、40μm以下であってもよく、35μm以下であってもよい。樹脂に充填した際に、より低粘度の樹脂組成物が得られやすく、流動性が良好となりやすい観点からは、30μm以下であってもよく、26μm以下であってもよい。なお、被覆層(B)の厚みは、本実施形態に係る粉末(I)の製造時に、コア粒子(A)を構成する原料粉末のメディアン径(Da50)と、最終的に得られる粉末(I)のメディアン径(Di50)の差分から算出された値であってもよく、走査型電子顕微鏡で測定された値であってもよい。
 図1は本実施形態に係る粉末(I)を電界放射型走査電子顕微鏡(FE-SEM)およびエネルギー分散型X線分光法(EDS)で観察した写真の一例である。図1より、粉末(I)中に、被覆粒子(X)が含まれることが確認できる。また、本実施形態に係る粉末(I)に含まれる被覆粒子(X)は、被覆層(B)の厚みが比較的均一であることが分かる。このような被覆粒子(X)を含む粉末(I)は、BET比表面積(Si)の値が比較的小さく、それにより、耐湿性に優れ、低誘電正接を達成しやすい。
<酸化マグネシウム粉末(I)のBET比表面積(Si)>
 本実施形態に係る粉末(I)のBET比表面積(Si)は、2.3m/g未満である。粉末(I)のBET比表面積(Si)が2.3m/g未満であれば、耐湿性に優れ、かつ低誘電正接を達成できる。なお、BET比表面積(Si)は以下の方法で測定できる。
(BET比表面積(Si)の測定方法)
 全自動比表面積測定装置(例えば、Mountech社製、製品名「Macsorb HM model-1201」、BETー点法)の測定用セルに、酸化マグネシウム粉末(I)を5g充填して比表面積を測定する。測定前の脱気条件は、200℃、10分間とすることができる。また、キャリアガスにはヘリウム、吸着ガスには窒素(混合濃度:30.5%)をそれぞれ用いることができる。
 一実施形態において、高耐湿性と低誘電正接とを達成しやすい観点からは、粉末(I)のBET比表面積(Si)は2.1m/g以下であってもよく、1.9m/g以下であってもよい。さらに樹脂に充填した際の流動性がより良好となりやすい観点からは、0.01~2.1m/gであってもよく、0.05~1.9m/gであってもよい。
 一実施形態において、粉末(I)のメディアン径(Di50)は、5~300μmであってもよく、5~200μmであってもよく、5~150μmであってもよく、30~150μmであってもよい。粉末(I)のメディアン径(Di50)が前記範囲内であれば、高耐湿性と低誘電正接とをより両立しやすくなる。なお、本明細書において、「メディアン径(D50)」とは、レーザー回折光散乱法による体積基準の粒度分布において、累積値が50%に相当する平均粒子径(D50)のことを指す。累積粒度分布は、横軸を粒子径(μm)、縦軸を累積値(%)とする分布曲線で表される。
 一実施形態において、粉末(I)の平均円形度(ARi)は0.75以上であってもよく、0.80以上であってもよく、0.85以上であってもよく、0.90以上であってもよい。粉末(I)の平均円形度(ARi)が0.75以上であれば、BET比表面積(Si)が2.3m/g未満の粉末(I)となりやすい。また、誘電正接のより低い粉末(I)となりやすい。なお、粉末(I)の平均円形度(ARi)は、以下の方法で測定できる。
(平均円形度(ARi)の測定方法)
 酸化マグネシウム粉末(I)をカーボンテープで固定した後、オスミウムコーティングを行う。その後、走査型電子顕微鏡(例えば、日本電子(株)製、製品名「JSM-7001F SHL)を用いて、倍率500~50,000倍で粉末(I)を構成する粒子を撮影し、画像解析装置(例えば、日本ローパー(株)製、製品名「Image-Pro Premier Ver.9.3)を用いて、粒子の投影面積(A)と投影周囲長(L)を算出してから、下記の式(2)より円形度を算出する。任意の200個の粒子について円形度を算出してその平均値を、平均円形度(ARi)とする。
 円形度=4πA/L ・・・(2)
 一実施形態において、粉末(I)の総質量に対するペリクレース(酸化マグネシウムの結晶)の割合は、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、87質量%以上であることがさらに好ましい。一実施形態において、粉末(I)中のペリクレースとスピネルの合計量は100質量%であってもよい。粉末(I)中のペリクレースの割合が80質量%以上であれば、粉末(I)中のペリクレース及びスピネル以外の成分の割合が少なくなり、より耐湿性に優れ、かつ低誘電正接を有する粉末(I)となりやすい。
 一実施形態において、粉末(I)のペリクレース結晶子径は50×10-9m以上であることが好ましい。結晶子径が50×10-9m以上の粉末(I)であれば、熱伝導率が良好となりやすい。なお「結晶子径」とは、X線回折法を用いて、Scherrer式で算出した値を指す。なお、粉末中の粒子が多結晶体である場合、結晶子径は多結晶体中の単結晶の大きさの平均値を示す。
 一実施形態において、粉末(I)の平均粒子密度は、0.1~7.0g/cmが好ましく、0.5~5.5g/cmがより好ましい。平均粒子密度が0.1~7.0g/cmであれば、樹脂中での均一な分散が容易であり、熱伝導性、誘電特性が良好となりやすい。なお、粉末(I)の平均粒子密度は以下の方法で測定することができる。
(平均粒子密度の測定方法)
 粉末(I)2.0gを測定用試料セルに入れ、乾式密度計(例えば、(株)島津製作所製、製品名「アキュピックII 1340)を用い、気体(ヘリウム)置換法により平均粒子密度を測定する。
 本実施形態に係る粉末(I)は耐湿性に優れる。一実施形態において、下記条件で測定した水酸化マグネシウム含有率は、50質量%未満であることが好ましく、30質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。本実施形態に係る粉末(I)は耐湿性に優れるため、水酸化マグネシウムが生成しにくい。
(試験後水酸化マグネシウム含有率の測定条件)
 酸化マグネシウム粉末(I)10g(M1)を、温度135℃、湿度85RH%の試験装置内(例えば、エスペック(株)製、製品名「高度加速寿命試験装置 EHS-212M」。条件は不飽和モード。)に168時間静置する。静置後の酸化マグネシウム粉末(I)の質量(M2)を測定し、静置前後における質量の変化を以下の式(1)に代入して、水酸化マグネシウム含有率を算出する。
 {(M2-M1)/18.0}×(40.3/M1)×100 ・・・(1)
 (式(1)において、M1は静置前の酸化マグネシウム粉末(I)の質量(g)であり、M2は静置後の酸化マグネシウム粉末(I)の質量(g)であり、18.0、40.3はそれぞれ、HOおよびMgOの分子量である。)
 一実施形態において、粉末(I)の下記条件で測定した粘度は、2,000Pa・s/25℃以下であることが好ましく、1,000Pa・s/25℃以下であることがより好ましく、500Pa・s/25℃以下であることがさらに好ましい。本実施形態に係る粉末(I)はBET比表面積(Si)が2.3m/g未満であり、表面平滑性が比較的良好な粒子を含む粉末である。そのため、本実施形態に係る粉末(I)は樹脂に充填した際の流動性も良好となりやすい。
(粘度の測定条件)
 ビスフェノールA型液状エポキシ樹脂(エポキシ当量:184~194。例えば、三菱化学(株)製、製品名「JER828」)60体積%と、粉末(I)40体積%からなる樹脂組成物を、回転式レオメーターを用いて剪断速度:1.0/s、プレート形状:円形平板(10mmφ)、試料厚み:1mm、温度:25±1℃で粘度を測定する。
 一実施形態において、樹脂への充填性や流動性をより良好とする観点から、粉末(I)は表面処理剤で表面処理されていてもよい。また、粉末を構成する粒子表面の極性官能基等が低減しやすくなり、より低い誘電正接を達成しやすい。表面処理剤としては、例えば、シランカップリング剤、アルミネートカップリング剤等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。これらのうち、粒子表面の極性官能基等を低減しやすい観点からは、シランカップリング剤で処理されていることが好ましく、ヘキサメチルジシラザン(HMDS)等のシラザン、ビニルトリメトキシシラン等のビニル基を有するシランカップリング剤がより好ましい。なお、粉末(I)の表面処理の有無は、例えば、IR、TG-DTA、質量分析法等で粉末を分析することにより確認できる。
 一実施形態において、以下の条件で測定した粉末(I)の熱伝導率は、4.0~8.0W/mKであってもよく、5.0~7.0W/mKであってもよい。本実施形態に係る粉末(I)は、耐湿性に優れ、かつ低誘電正接を達成できるが、高熱伝導率も維持しやすい。
(熱伝導率の測定条件)
 酸化マグネシウム粉末(I)と球状アルミナ粉末(例えば、デンカ(株)社製、製品名「DAW-07」や、製品名「ASFP-40」等)を51:49の体積比で混合して混合粉末を作成する。前記混合粉末をシリコーン樹脂(例えば、信越化学工業(株)製、製品名「SE1885:A」や、製品名「SE1885:B」等)に、前記混合粉末の割合が77.5体積%となるように充填して評価用シートを作成する。前記評価用シートを熱抵抗測定機(例えば、(株)日立テクノロジーアンドサービス製、製品名「TRM-046RHHT」)で測定して、熱伝導率を求める。
 一実施形態において、後述する条件で測定した、粉末(I)を含む樹脂シート(ポリエチレン樹脂と粉末(I)からなるシート。樹脂シート中の粉末(I)の割合は20体積%)の36GHzでの誘電正接は、4.0×10-4以下が好ましく、3.5×10-4以下がより好ましく、3.0×10-4以下がさらに好ましい。なお、「誘電正接」は、以下の式(3)から算出した、フィラー換算誘電正接(tanδ)を指す。
 tanδ=V・tanδ+(1-V)・tanδ ・・・(3)
 式(3)中、Vはフィラー含有量(質量%)を表し、tanδは樹脂シートの誘電正接を表し、tanδはポリエチレン樹脂(PE)の誘電正接を表す。
 上記の通り、本実施形態に係る粉末(I)は耐湿性に優れ、かつ高周波数帯用デバイスにも適用可能な低誘電正接を達成できる。本実施形態に係る粉末(I)で低誘電正接を達成できる理由は、粒子表面積が低減することにより極性官能基の総量を低減できたこと、およびスピネル層の導入により表面のOH基や表面吸着水の量を低減できたためであると考えられる。
[酸化マグネシウム粉末(I)の製造方法]
 本実施形態に係る酸化マグネシウム粉末は、例えば、酸化マグネシウムを含む原料粉末を、アルミニウムを含む被覆成分で被覆した後、焼成すること(工程(1))を含む方法によって、製造できる。以下、工程(1)を含む粉末(I)の製造方法の一実施形態について説明する。
<工程(1)>
 本実施形態に係る製造方法において、工程(1)は、酸化マグネシウムを含む原料粉末を、アルミニウムを含む被覆成分で被覆した後、焼成することである。ここで、「原料粉末」は、前述の酸化マグネシウムを主成分として含むコア粒子(A)である。
(原料粉末)
 一実施形態において、原料粉末のメディアン径(Da50)は10~150μmであることが好ましい。前記メディアン径(Da50)は、15~150μmであってもよく、20~140μmであってもよく、40~130μmであってもよい。原料粉末のメディアン径(Da50)が前記範囲内であれば、低誘電正接を有する酸化マグネシウム粉末が得られやすくなる。
 一実施形態において、原料粉末の平均円形度(ARa)は、樹脂への充填性が向上しやすい観点からは、0.70以上であってもよく、0.80以上であってもよく、0.90以上であってもよい。なお原料粉末の平均円形度(ARa)は、前述の粉末(I)の平均円形度(ARi)と同じ方法で測定できる。一実施形態において、原料粉末の平均円形度(ARa)に対する、粉末(I)の平均円形度(ARi)((ARi)/(ARa))は、1.0以上であってもよく、1.05以上であってもよい。(ARi)/(ARa)が1.0以上であれば、被覆層が均一に形成されやすくなる。その結果、粉末(I)を構成する粒子の表面凹凸が小さくなりやすく、BET比表面積(Si)が2.3m/g未満となりやすい。
 一実施形態において、原料粉末のBET比表面積(Sa)は、BET比表面積(Si)が2.3m/g未満の粉末(I)が得られやすい観点から、0.01~20m/gであってもよく、0.01~10m/gであってもよく、0.01~1m/gであってもよい。原料粉末のBET比表面積(Sa)も、粉末(I)と同じ方法で測定できる。一実施形態において、原料粉末のBET比表面積(Sa)に対する、粉末(I)のBET比表面積(Si)((Si)/(Sa))は、5.0以下であってもよい。(Si)/(Sa)が5.0以下であれば、得られる粉末(I)を樹脂に充填した際に、流動性及び充填性がより良好となりやすい。
 原料粉末の調製方法は特に限定されない。例えば、水酸化マグネシウム粉末の焼成等の方法で調製してもよい。
 原料粉末には、誘電正接の低減及び電子材料の信頼性の観点から、Li、Na及びK等のアルカリ金属元素やFe等の金属元素の不純物、Cl、Br等の陰イオンの含有量が少ないことが好ましい。具体的には、原料粉末中の、これら不純物及び陰イオンの合計量が、0.01質量%以下であることが好ましい。
(被覆方法)
 本実施形態に係る製造方法において、原料粉末を被覆する方法としては、特に限定されず、例えば、振とう式ミキサー、火炎溶融法、転動流動層コーティング等を採用できる。このうち、得られる粉末(I)のBET比表面積を2.3m/g未満に調整しやすい観点から、転動流動層コーティングで原料粉末を被覆することが好ましい。
 (転動流動層コーティング)
 一実施形態において、工程(1)は、アルミニウムを含む被覆成分を含有するスラリーを原料粉末に吹き付けて転動流動層コーティングすること、を含むことができる。なお、転動流動層コーティングは、転動流動コーティング、転動流動造粒コーティングなどとも呼ばれ、一般的な流動層装置下部にブレードローターを搭載したコーティング装置を使用したコーティング手法である。一実施形態において、アルミニウムを含む被覆成分としては、アルミナ粉末を含む無機金属酸化物粉末(B1)を含むことが好ましい。無機金属酸化物粉末(B1)には、アルミナ粉末以外のその他の粉末が含まれていてもよく、例えば、シリカ粉末等を含んでいてもよい。好ましい実施形態において、原料粉末のメディアン径(Da50)に対する無機金属酸化物粉末(B1)のメディアン径(Db50)((Db50)/(Da50))は、8.0×10-6~1.0×10-1であってもよく、5.0×10-5~5.0×10-2であってもよい。(Db50)/(Da50)が前記範囲内であれば、原料粉末の表面をより効率的に被覆しやすい。
 一実施形態において、スラリー中のアルミニウムを含む被覆成分の割合は、得られる粉末(I)に含まれるスピネルの量を13質量%未満に調整しやすい観点からは、スラリーの総質量に対して、0.1~80質量%であってもよく、1~50質量%であってもよい。
 一実施形態において、スラリーに含まれる分散媒としては、水、又はエタノールを含むことが好ましく、水を含むことがより好ましい。また、スラリーには被覆成分と分散媒以外の成分が含まれていてもよい。その他の成分としては、例えば、分散剤、バインダー等が挙げられる。これらその他の成分は1種単独で含まれていてもよく、2種以上を併用してもよい。
 一実施形態において、原料粉末に対する、アルミニウムを含む被覆成分の吹付量は、得られる粉末(I)に含まれるスピネルの量を13質量%未満に調整しやすく、かつBET比表面積(Si)を2.3m/g未満に調整しやすい観点から、原料粉末とアルミニウムを含む被覆成分との合計量(100質量%)に対して、1~25質量%であることが好ましい。すなわち、転動流動層コーティングにて原料粉末を被覆する場合、原料粉末にスラリーを吹き付けることが、原料粉末とアルミニウムを含む被覆成分との合計量(100質量%)に対する、アルミニウムを含む被覆成分の割合が、1~25質量%となる範囲で行われてもよい。その他の実施形態において、被覆成分の吹付量は、前記合計量に対して、1質量%以上25質量%未満であってもよく、1~20質量%であってもよく、1質量%以上20質量%未満であってもよく、1~18質量%であってもよい。
 一実施形態において、転動流動層コーティングは、20~150℃の条件で行われてもよく、30~100℃の条件で行われてもよく、50~90℃の条件で行われてもよい。また、コーティング時間は、原料粉末の表面が十分に被覆される時間であれば特に限定されない。均一な被覆層(B)を形成しやすい観点からは、0.01~24時間であってもよく、0.05~24時間であってもよく、0.1~12時間であってもよい。
 転動流動層コーティングは、従来公知の転動流動層装置を用いて行うことができる。例えば、(株)パウレック製、製品名:転動流動造粒コーティング装置MP(マルチプレックス)などを用いてもよい。
<焼成>
 本実施形態に係る製造方法において、工程(1)は、原料粉末を被覆した後、焼成することを含む。焼成温度としては、均一な被覆層(B)を形成しやすい観点からは、500~1600℃が好ましく、700~1600℃がより好ましく、1000~1600℃がさらに好ましく、1000~1400℃が特に好ましい。一実施形態においては、1000℃超1600℃以下であってもよい。また焼成時間としては、均一な被覆層(B)を形成しやすい観点からは、0.5~10時間が好ましく、1~8時間がより好ましい。
<その他の工程>
 工程(1)のあと、得られる粉末(I)は凝集体となっていることがある。よって、必要に応じて解砕処理を行ってもよい。解砕方法としては、粉末(I)のBET比表面積(Si)が変化しにくい条件で行われることが好ましく、例えば、乳鉢、ビーズミル、ボールミル等を採用できる。
 また、得られた粉末(I)を表面処理剤で表面処理する工程、粉末(I)中の不純物(例えば、前述の陰イオン等)を低減するための洗浄工程等を含んでいてもよい。
 一実施形態において、原料粉末を焼成した後、得られた粉末(I)をふるい分け法、気流分級法等で分級してもよい。粉末(I)を分級することにより、粉末(I)のメディアン径(Di50)やBET比表面積(Si)等を好適な範囲に制御しやすくなる。
[用途]
 本実施形態に係る粉末(I)は、耐湿性に優れており、さらに樹脂に充填した際には高周波数帯用デバイスにも応用可能な低誘電正接を達成できる。そのため、本実施形態に係る粉末(I)は、樹脂用充填材として、特に高周波数帯デバイス向けの、封止材、TIM材、又は基板に応用される樹脂組成物用の充填材として好適に利用できる。粉末(I)のその他の実施形態は、高周波数帯デバイス向けの、封止材、TIM材、又は基板のための無機フィラーとしての使用、又はその使用方法である。ここで「高周波数帯デバイス」は、高周波数帯電波を利用する携帯電話や自動車積載部材であってもよい。
[樹脂組成物]
 本実施形態に係る樹脂組成物は、前述の酸化マグネシウム粉末(I)と、熱可塑性樹脂及び熱硬化性樹脂から選択される少なくとも1つの樹脂とを含む。
 樹脂組成物中の粉末(I)の含有量は特に限定されず、目的に応じて適宜調整し得る。なお、本実施形態に係る粉末(I)は、樹脂に充填した際の流動性も良好であるため、所望の誘電特性が得られるように、樹脂組成物中の粉末の配合量を任意に調整できる。例えば、高周波数帯用基板材料や、絶縁材料用途に用いる場合は、樹脂組成物の総質量に対して、1~99質量%の範囲で配合してもよく、より好ましくは、10~90質量%の範囲である。
<樹脂>
 本実施形態に係る樹脂組成物は、熱可塑性樹脂及び熱硬化性樹脂から選択される少なくとも1つの樹脂を含む。より具体的には、例えば、ポリエチレン樹脂;ポリプロピレン樹脂;エポキシ樹脂;シリコーン樹脂;フェノール樹脂;メラミン樹脂;ユリア樹脂;不飽和ポリエステル樹脂;フッ素樹脂;ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等のポリアミド系樹脂;ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂等のポリエステル系樹脂;ポリフェニレンスルフィド樹脂;全芳香族ポリエステル樹脂;ポリスルホン樹脂;液晶ポリマー樹脂;ポリエーテルスルホン樹脂;ポリカーボネート樹脂;マレイミド変性樹脂;ABS樹脂;AAS(アクリロニトリル-アクリルゴム-スチレン)樹脂;AES(アクリロニトリル-エチレン-プロピレン-ジエンゴム-スチレン)樹脂;炭化水素系エラストマー樹脂;ポリフェニレンエーテル樹脂;芳香族ポリエン系樹脂等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
 本実施形態に係る樹脂組成物には、本発明の効果を阻害しない範囲で、硬化剤、硬化促進剤、離型剤、カップリング剤、着色剤、難燃剤、イオン補捉剤等を配合してもよい。
<樹脂組成物の製造方法>
 樹脂組成物の製造方法は、特に限定されず、各材料の所定量を撹拌、溶解、混合、分散させることにより製造することができる。これらの混合物の混合、撹拌、分散等の装置は特に限定されないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー等を用いることができる。またこれらの装置を適宜組み合わせて使用してもよい。
 上述の通り、本実施形態に係る酸化マグネシウム粉末を含む樹脂組成物は、耐湿性に優れ、かつ低誘電正接を達成できる。また、本実施形態に係る酸化マグネシウム粉末を含む樹脂組成物は、低粘度であるため加工性や作業性にも優れている。
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
[実施例1]
 原料粉末として、酸化マグネシウム粉末(デンカ(株)製、商品名「DMG-50」、メディアン径(Da50):50μm、BET比表面積(Sa):0.2m/g、平均円形度(ARa):0.93を用いて、被覆成分としてアルミナ粉末(キャボット・スペシャルティ・ケミカルズ・インク社製、製品名「CAB-O-SPERSE PG008」、メディアン径(Db50):100nm)を含むスラリーを、前記原料粉末に吹き付けて転動流動層コーティングを行った。スラリーは、酸化マグネシウム粉末と前記被覆成分との合計量(100質量%)に対する前記被覆成分の割合が5質量%(酸化マグネシウム粉末95質量%、被覆成分5質量%(アルミナ粉末換算))となる量で、酸化マグネシウム粉末に吹き付けられた。その後、1000℃で1時間焼成して、酸化マグネシウム粉末(I)を得た。得られた酸化マグネシウム粉末(I)のスピネル量、ペリクレース量、BET比表面積(Si)、被覆粒子(X)の有無、メディアン径(Di50)及び平均円形度(ARi)を以下の条件で測定した。なお、原料粉末及びアルミナ粉末の各物性値も、以下の条件で測定した値である。結果を表1に示す。
<粉末(I)のスピネル量の測定方法>
 測定装置として、試料水平型多目的X線回折装置((株)リガク製、製品名「RINT-UltimaIV」)を用い、以下の測定条件で粉末(I)のX線回折パターンを測定した。
 X線源:CuKα
 管電圧:40kV
 管電流:40mA
 スキャン速度:10.0°/min
 2θスキャン範囲:10°~80°
 また、得られたX線回折パターンのリートベルト解析により、結晶相の定量分析を行った。具体的には、リートベルト法ソフトウェア(MDI社製、製品名「統合粉末X線ソフトウェアJade+9.6」)を使用して解析した。なお、スピネル結晶相の割合(質量%)の算出には、ICDDカード(番号:01-075-1796)を使用した。
<粉末(I)のペリクレース量の測定方法>
 測定装置として、試料水平型多目的X線回折装置((株)リガク製、製品名「RINT-UltimaIV」)を用い、以下の測定条件で粉末(I)のX線回折パターンを測定した。
 X線源:CuKα
 管電圧:40kV
 管電流:40mA
 スキャン速度:10.0°/min
 2θスキャン範囲:10°~80°
 また、得られたX線回折パターンのリートベルト解析により、結晶相の定量分析を行った。具体的には、リートベルト法ソフトウェア(MDI社製、製品名「統合粉末X線ソフトウェアJade+9.6」)を使用して解析した。なお、ペリクレース結晶相の割合(質量%)の算出には、ICDDカード(番号:00-045-0946)を使用した。
<粉末(I)のBET比表面積(Si)の測定方法>
 全自動比表面積測定装置(BET一点法)(Mountech社製 Macsorb HM model-1201全自動比表面積測定装置)の測定用セルに粉末(I)を5g充填して比表面積を測定した。測定前の脱気条件は、200℃、10分間とした。また、キャリアガスにはヘリウム、吸着ガスには窒素(混合濃度:30.5%)をそれぞれ用いた。
<被覆粒子(X)及びコアシェル粒子の有無>
 粉末(I)を走査型電子顕微鏡(日本電子(株)製、製品名「JSM-7001F」)で観察して被覆粒子(X)の有無を確認した。また、粉末(I)について、電解放出型走査電子顕微鏡(Carl Zeiss社製、製品名「MERLIN、FE-SEM」)およびエネルギー分散型X線分光法(Bruker社製、製品名「QUANTAXシステムXFlash6/60SDD、EDS」)によって得られる断面画像の、被覆粒子の断面周囲長raと前記被覆粒子の断面において被覆層(B)で被覆された部分の周囲長rcの比(rc/ra)の値を算出し、コアシェル粒子の有無を確認した。この時、測定は画像取得倍率1000倍、加圧電圧10kV、電流量500nA、測定時間30秒で実施し、アルミニウムおよびマグネシウムについて元素マッピングを行った。また、画像解析はImageJを使用して実施し、一つの粒子画像についてコア部となるマグネシウム成分マッピング部の周囲長をra、マグネシウム成分の周囲部のうちシェル部となるアルミニウム成分と接している部分(マグネシウムの周囲部から1ピクセル分だけ外側がアルミニウム成分のマッピング部である場合に「接している」と判断した)の周囲長をrcとして、rc/raを算出し、rc/raが0.6以上であるものをコアシェル粒子と判断した。結果を表1に示す。
<粉末(I)のメディアン径(Di50)の測定方法>
 レーザー回折式粒度分布測定装置(ベックマンコールター(株)製、製品名「LS 13 320」)による体積基準の粒度分布測定により、各材料のメディアン径(D50)を求めた。具体的には、ガラスビーカーに50cmの純水と、原料粉末(又は粉末(I))0.1gとを入れ、超音波ホモジナイザー((株)マイクロテック・ニチオン製、製品名「Smurt NR-50M(チタン合金製チップ φ3(NS-50M-MT3))」)を用いて25Wの出力で60秒間、分散処理を行った。分散処理を行った前記原料粉末(又は粉末(I))の分散液を、前記レーザー回折式粒度分布測定装置にスポイトで一滴ずつ添加し、所定量添加してから30秒後に測定を行った。なお、水の屈折率は1.33とし、粉末(I)の屈折率は1.74とした。メディアン径(D50)は、測定される粒子径の体積基準の累積粒度分布において、累積値が50%に相当する粒子径から算出した。
<平均円形度(ARi)の測定方法>
 酸化マグネシウム粉末(I)をカーボンテープで固定した後、オスミウムコーティングを行った。その後、走査型電子顕微鏡(日本電子(株)製、製品名「JSM-7001F SHL)を用いて、倍率500~50,000倍で粉末(I)を構成する粒子を撮影し、画像解析装置(日本ローパー(株)製、製品名「Image-Pro Premier Ver.9.3」)を用いて、粒子の投影面積(A)と投影周囲長(L)を算出してから、下記の式(2)より円形度を算出した。任意の200個の粒子について円形度を算出してその平均値を、平均円形度(ARi)とした。
 円形度=4πA/L ・・・(2)
 次に、得られた粉末(I)の耐湿性及び誘電正接を以下の条件で評価した。また、熱伝導率、流動性についても評価を行った。結果を表1に示す。
<耐湿性評価>
 下記条件で粉末(I)の耐湿試験を実施して、試験後の水酸化マグネシウム含有率を測定した。また、下記の評価基準に沿って評価した。
 酸化マグネシウム粉末(I)10g(M1)を、温度135℃、湿度85RH%の試験装置内(エスペック(株)製、製品名「高度加速寿命試験装置 EHS-212M」。条件は不飽和モード。)に168時間静置した。静置後の酸化マグネシウム粉末(I)の質量(M2)を測定し、静置前後における質量の変化を以下の式(1)に代入して、水酸化マグネシウム含有率を算出した。
 {(M2-M1)/18.0}×(40.3/M1)×100 ・・・(1)
 (式(1)において、M1は静置前の酸化マグネシウム粉末(I)の質量(g)であり、M2は静置後の酸化マグネシウム粉末(I)の質量(g)であり、18.0、40.3はそれぞれ、HOおよびMgOの分子量である。)
(評価基準)
 優:水酸化マグネシウムへの変化率が10質量%未満。
 良:水酸化マグネシウムへの変化率が10質量%以上30質量%未満。
 可:水酸化マグネシウムへの変化率が30質量%以上50質量%未満。
 不可:水酸化マグネシウムへの変化率が50質量%以上。
<誘電正接の評価>
 粉末(I)の充填量が20体積%となるように、粉末(I)とポリエチレン樹脂粉末(住友精化(株)製、商品名「フローセン(登録商標)UF-20S」)とを計量し、振動式ミキサー(Resodyn社製)を用いて、加速度60G、処理時間2分で混合して樹脂組成物を得た。得られた樹脂組成物を、厚みが約0.3mmとなる量で直径3cmの金枠内に投入し、ナノインプリント装置(SCIVAX社製、商品名「X-300」)にて、140℃、5分、30,000Nの条件でシート化した。得られたシートを1.5cm×1.5cmサイズに切り出して評価サンプルを得た。
 次に、36GHzの空洞共振器(サムテック(株)製)をベクトルネットワークアナライザ(キーサイトテクノロジー社製、製品名「85107」)に接続し、評価サンプルを空洞共振器に設けられた直径10mmの穴を塞ぐように配置して、共振周波数(f0)、無負荷Q値(Qu)を測定した。1回測定するごとに評価サンプルを60度回転させ、同様の測定を5回繰り返した。得られたf0、Quの値の平均値を測定値として、解析ソフト(サムテック(株)製ソフトウェア)を用いて、下記式(3)より誘電正接(tanδ)を算出した。なお、測定温度20℃、湿度60%RHの条件で測定を行った。得られた誘電正接の値を以下の評価基準で評価した。
 tanδ=V・tanδ+(1-V)・tanδ ・・・(3)
 (式(3)中、Vはフィラー含有量(質量%)を表し、tanδは樹脂シートの誘電正接を表し、tanδはポリエチレン樹脂(PE)の誘電正接を表す。)
(評価基準)
 優:誘電正接が3.0×10-4以下。
 良:誘電正接が3.0×10-4超3.5×10-4以下。
 可:誘電正接が3.5×10-4超4.0×10-4以下。
 不可:誘電正接が4.0×10-4超。
<熱伝導率評価>
 酸化マグネシウム粉末と球状アルミナ粉末(デンカ(株)社製、製品名「DAW-07」及び製品名「ASFP-40」の混合物。(DAW-07)/(ASFP-40)=70/30(体積比))を51:49の体積比で混合して混合粉末を作成した。前記混合粉末をシリコーン樹脂(信越化学工業(株)製、製品名「SE1885:A」及び製品名「SE1885:B」の混合物。(SE1885:A)/(SE1885:B)=50/50(体積比))に、前記混合粉末の割合が77.5体積%となるように充填して、撹拌羽のついたミキサーで混合して樹脂組成物を得た。前記樹脂組成物を、シートコーターを用いて成形し、厚み3mmの評価用シートを得た。前記評価用シートを熱抵抗測定機((株)日立テクノロジーアンドサービス製、製品名「TRM-046RHHT」)で測定して、熱伝導率を求めた。なお、測定は荷重一定モード、設定荷重2Nの条件で行った。また以下の評価基準に沿って評価し、B評価以上を合格とした。
(評価基準)
 優:熱伝導率が6.0W/mK超。
 良:熱伝導率が4.0W/mK超6.0W/mK以下。
 不可:熱伝導率が4.0W/mK以下。
<流動性評価>
 ビスフェノールA型液状エポキシ樹脂(エポキシ当量:184~194。三菱化学(株)製、製品名「JER828」)60体積%と、粉末(I)40体積%とを混合し、遊星式撹拌機((株)シンキー製、製品名「あわとり練太郎(登録商標)AR-250」、回転数2000rpm)にて混練し、樹脂組成物を調製した。次に、得られた樹脂組成物の25℃での粘度を回転式レオメーター(アントンパール社製、製品名「MCR-302」)を用いて、以下の条件で測定した。
 プレート形状:円形平板10mmφ
 試料厚み:1mm
 温度:25±1℃
 剪断速度:1.0/s
 得られた剪断粘度を以下の評価基準に沿って評価し、C評価以上を合格とした。
 優:樹脂組成物の粘度が500Pa・s/25℃以下。
 良:樹脂組成物の粘度が500Pa・s/25℃超1,000Pa・s/25℃以下。
 可:樹脂組成物の粘度が1,000Pa・s/25℃超2,000Pa・s/25℃以下。
 不可:樹脂組成物の粘度が2,000Pa・s/25℃超。
[実施例2~7及び比較例1~3]
 原料粉末及び製造条件を表1に示す通りとした以外は、実施例1と同様に粉末(I)を調製した。各例の粉末(I)について、実施例1と同じ条件でスピネル量、ペリクレース量、BET比表面積、被覆粒子(X)の有無、メディアン径(Di50)及び平均円形度(ARi)を測定した。また、実施例1と同じ条件で耐湿性、誘電正接、流動性及び熱伝導率を評価した。結果を表1に示す。
 なお、各例で使用した原料は以下のとおりである。
<原料粉末(コア粒子(A)>
 DMG50:酸化マグネシウム粉末(デンカ(株)製、メディアン径(Da50):50μm、BET比表面積(Sa):0.2m/g、平均円形度(ARa):0.93)。
 DMG120:酸化マグネシウム粉末(デンカ(株)製、メディアン径(Da50):120μm、BET比表面積(Sa):0.1m/g、平均円形度(ARa):0.94)。
<被覆成分>
 Al粉末:キャボット・スペシャルティ・ケミカルズ・インク社製、製品名「PG008」、メディアン径(Db50):100nm。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、本実施形態の構成を満たす実施例1~7の粉末(I)は、耐湿性に優れ、かつ低誘電正接を達成できた。さらに流動性、熱伝導率も良好であった。一方、粉末(I)中のスピネルの量が0質量%であり、BET比表面積(Si)が2.3m/g以上であった比較例1は、耐湿性が悪く、誘電正接の値も高かった。粉末(I)のスピネルの量が13質量%超であり、BET比表面積(Si)が2.3m/g以上であった比較例2は、耐湿性は良好であったが、誘電正接が高かった。また、BET比表面積(Si)が2.3m/gであった比較例3は、耐湿性が悪く、誘電正接の値も高かった。なお、被覆粒子(X)を含まない未被覆の酸化マグネシウム粉末を、上記方法で測定した際の誘電正接の値は、6.7×10-4である。実施例1~7の粉末(I)は、未被覆の酸化マグネシウム粉末よりも、低い誘電正接を達成できていた。以上の結果より、本実施形態に係る粉末(I)は、耐湿性に優れ、かつ低誘電正接を達成できることが確認できた。本実施形態に係る粉末(I)の誘電正接は、高周波数帯用デバイスのためのフィラーとして十分に応用可能な値であった。
 本実施形態に係る粉末(I)は、耐湿性に優れ、かつ樹脂に充填した際に低誘電正接を達成できる。そのため、本実施形態に係る粉末(I)及びそれを用いた樹脂組成物は、高周波数帯用デバイスのためのセラミックスフィラーとして応用可能である。
 

Claims (9)

  1.  酸化マグネシウムを含むコア粒子(A)の表面が、MgAlを含む被覆層(B)で被覆された被覆粒子(X)を含む、酸化マグネシウム粉末(I)であって、
     酸化マグネシウム粉末(I)の総質量に対する、MgAlの割合が13質量%未満であり、
     酸化マグネシウム粉末(I)のBET比表面積(Si)が、2.3m/g未満である、酸化マグネシウム粉末(I)。
  2.  酸化マグネシウム粉末(I)の総質量に対する、ペリクレースの割合が80質量%以上である、請求項1に記載の酸化マグネシウム粉末(I)。
  3.  酸化マグネシウム粉末(I)の平均円形度(ARi)が0.75以上である、請求項1または2に記載の酸化マグネシウム粉末(I)。
  4.  下記条件で測定した試験後水酸化マグネシウム含有率が50質量%未満である、請求項1または2に記載の酸化マグネシウム粉末(I)。
     <測定条件>
     酸化マグネシウム粉末(I)10g(M1)を、温度135℃、湿度85RH%の試験装置内に168時間静置する。静置後の酸化マグネシウム粉末(I)の質量(M2)を測定し、静置前後における質量の変化を以下の式(1)に代入して、水酸化マグネシウム含有率を算出する。
     {(M2-M1)/18.0}×(40.3/M1)×100 ・・・(1)
     (式(1)において、M1は静置前の酸化マグネシウム粉末(I)の質量(g)であり、M2は静置後の酸化マグネシウム粉末(I)の質量(g)であり、18.0、40.3はそれぞれ、HOおよびMgOの分子量である。)
  5.  下記条件で測定した粘度が2,000Pa・s/25℃以下である、請求項1または2に記載の酸化マグネシウム粉末(I)。
     <測定条件>
     ビスフェノールA型液状エポキシ樹脂(エポキシ当量:184~194)60体積%と、酸化マグネシウム粉末(I)40体積%からなる樹脂組成物を、回転式レオメーターを用いて剪断速度:1.0/s、プレート形状:円形平板(10mmφ)、試料厚み:1mm、温度:25±1℃で粘度を測定する。
  6.  酸化マグネシウム粉末(I)の総質量に対する、MgAlの割合が0.1質量%以上である、請求項1または2に記載の酸化マグネシウム粉末(I)。
  7.  樹脂充填用である、請求項1または2に記載の酸化マグネシウム粉末(I)。
  8.  請求項1または2に記載の酸化マグネシウム粉末(I)と、熱可塑性樹脂及び熱硬化性樹脂から選択される少なくとも1つの樹脂とを含む、樹脂組成物。
  9.  高周波数帯デバイス向けの、封止材用、TIM材用、又は基板用である、請求項8に記載の樹脂組成物。

     
PCT/JP2023/022603 2022-06-28 2023-06-19 酸化マグネシウム粉末及びそれを用いた樹脂組成物 WO2024004736A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022103519 2022-06-28
JP2022-103519 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024004736A1 true WO2024004736A1 (ja) 2024-01-04

Family

ID=89382176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022603 WO2024004736A1 (ja) 2022-06-28 2023-06-19 酸化マグネシウム粉末及びそれを用いた樹脂組成物

Country Status (1)

Country Link
WO (1) WO2024004736A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445716A (en) * 1987-08-14 1989-02-20 Asahi Glass Co Ltd Magnesium oxide powder
JP2004027177A (ja) * 2001-12-25 2004-01-29 Tateho Chem Ind Co Ltd 酸化マグネシウム粉末を含む樹脂組成物
CN103242042A (zh) * 2013-04-17 2013-08-14 山东大学 一种基于核壳结构三维微固相反应的多元氧化物纳米颗粒的制备方法
WO2014112334A1 (ja) * 2013-01-15 2014-07-24 タテホ化学工業株式会社 被覆酸化マグネシウム粉末及びその製造方法
JP2018512361A (ja) * 2015-03-18 2018-05-17 アナドル ユニバーシテシ レクトールグ 火炎熱分解法による、コア/シェル構造の複合スピネル粉末の製造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445716A (en) * 1987-08-14 1989-02-20 Asahi Glass Co Ltd Magnesium oxide powder
JP2004027177A (ja) * 2001-12-25 2004-01-29 Tateho Chem Ind Co Ltd 酸化マグネシウム粉末を含む樹脂組成物
WO2014112334A1 (ja) * 2013-01-15 2014-07-24 タテホ化学工業株式会社 被覆酸化マグネシウム粉末及びその製造方法
CN103242042A (zh) * 2013-04-17 2013-08-14 山东大学 一种基于核壳结构三维微固相反应的多元氧化物纳米颗粒的制备方法
JP2018512361A (ja) * 2015-03-18 2018-05-17 アナドル ユニバーシテシ レクトールグ 火炎熱分解法による、コア/シェル構造の複合スピネル粉末の製造

Similar Documents

Publication Publication Date Title
JP7433022B2 (ja) 中空シリカ粒子とその製造方法およびそれを用いた樹脂複合組成物並びに樹脂複合体
EP4215488A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
WO2024004736A1 (ja) 酸化マグネシウム粉末及びそれを用いた樹脂組成物
WO2024004738A1 (ja) 酸化マグネシウム粉末及びそれを用いた樹脂組成物
JP2023138688A (ja) 中空粒子、該中空粒子の製造方法、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体
WO2023032986A1 (ja) 電子材料用シリカ及びその製造方法
TW202408937A (zh) 氧化鎂粉末及使用其之樹脂組成物
TW202408939A (zh) 氧化鎂粉末及使用其之樹脂組成物
WO2024004737A1 (ja) 被覆粒子を含む無機金属酸化物粉末の製造方法
WO2023189965A1 (ja) 球状チタン酸カルシウム粉末及びそれを用いた樹脂組成物
WO2021171859A1 (ja) 中空粒子、該中空粒子の製造方法、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体
TW202408938A (zh) 含有被覆粒子之無機金屬氧化物粉末之製造方法
EP4269343A1 (en) Oxide composite particles, method for producing same and resin composition
TWI840800B (zh) 中空粒子、該中空粒子之製造方法、樹脂組合物、及使用該樹脂組合物之樹脂成形體以及積層體
EP4371937A1 (en) Oxide composite particles, method for producing same, and resin composition
WO2023286565A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
JP7473726B1 (ja) シリカ粉末
JP7041786B1 (ja) 球状シリカ粒子及びそれを用いた樹脂組成物
WO2023153353A1 (ja) 無機質粉末
JP7041788B1 (ja) 球状シリカ粒子及びそれを用いた樹脂組成物
EP4215486A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipating component
WO2023008290A1 (ja) 球状シリカ粉末及び球状シリカ粉末の製造方法
WO2023153352A1 (ja) 無機質粉末
EP4215487A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat-dissipating member
TW202311169A (zh) 無機氧化物粉末及其製造方法、以及樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831182

Country of ref document: EP

Kind code of ref document: A1