WO2022065349A1 - 酸化物粉末及びその製造方法、並びに樹脂組成物 - Google Patents

酸化物粉末及びその製造方法、並びに樹脂組成物 Download PDF

Info

Publication number
WO2022065349A1
WO2022065349A1 PCT/JP2021/034745 JP2021034745W WO2022065349A1 WO 2022065349 A1 WO2022065349 A1 WO 2022065349A1 JP 2021034745 W JP2021034745 W JP 2021034745W WO 2022065349 A1 WO2022065349 A1 WO 2022065349A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide powder
mass
resin composition
sio
content
Prior art date
Application number
PCT/JP2021/034745
Other languages
English (en)
French (fr)
Inventor
拓人 岡部
元晴 深澤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202180065775.5A priority Critical patent/CN116323486A/zh
Priority to KR1020237005198A priority patent/KR20230070445A/ko
Priority to US18/026,889 priority patent/US20230332032A1/en
Priority to JP2022552022A priority patent/JPWO2022065349A1/ja
Publication of WO2022065349A1 publication Critical patent/WO2022065349A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K2003/343Peroxyhydrates, peroxyacids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to an oxide powder, a method for producing the same, and a resin composition.
  • silica As a high-frequency band ceramic material, silica (SiO 2 ) has a small dielectric constant (3.7), a quality coefficient index Qf (the reciprocal of the dielectric loss tangent multiplied by the measurement frequency) of about 120,000, and low dielectric constant. It is promising as a material for fillers having a high rate and low dielectric loss tangent. Further, in order to facilitate compounding in the resin, it is preferable that the filler shape is closer to a spherical shape. Spherical silica can be easily synthesized (for example, Patent Document 1) and has already been used in many applications. Therefore, it is expected to be widely used in high frequency band dielectric devices and the like.
  • the spherical silica is generally amorphous, has a low thermal conductivity of about 1 W / m ⁇ K, and the resin composition filled with the spherical silica may have insufficient heat dissipation.
  • Patent Documents 2 and 3 propose that amorphous spherical silica is crystallized into quartz particles or cristobalite by heat treatment.
  • low-temperature quartz and cristobalite have a high coefficient of thermal expansion, and it is difficult to reduce the coefficient of thermal expansion of substrates and the like.
  • Patent Document 4 discloses crystallization into high-temperature quartz and cristobalite.
  • Patent Document 4 since it is a coating layer of a sintered body and a halide is used as a raw material, it is not suitable as a filler for electronic materials.
  • the present invention provides an oxide powder having a low coefficient of thermal expansion, high thermal conductivity, and low dielectric loss tangent, a method for producing the same, and the resin composition obtained by mixing the resin composition with a resin. The purpose.
  • the present invention includes the following embodiments.
  • An oxide powder containing Ca, Al and Si contains 40% by mass or more of the crystal phase of high-temperature cristobalite containing Ca, Al and Si, based on the total mass of the oxide powder.
  • the contents of Ca, Al and Si in the oxide powder are CaO: 1 to 5 mol% and Al 2O 3 : 1 to 5 mol, respectively, when converted as the contents of CaO, Al 2 O 3 and SiO 2 , respectively.
  • %, SiO 2 90 to 98 mol% (the total content of CaO, Al 2 O 3 and SiO 2 is 100 mol%), an oxide powder.
  • the oxide powder contains 30% by mass or less of the crystal phase of low-temperature cristobalite containing Si or Si and at least one of Ca and Al, based on the total mass of the oxide powder [1]. Or the oxide powder according to [2].
  • [7] The method for producing an oxide powder according to any one of [1] to [6].
  • the resin composition obtained by mixing with a resin provides an oxide powder having a low coefficient of thermal expansion, a high thermal conductivity, and a low dielectric loss tangent, a method for producing the same, and the resin composition. be able to.
  • FIG. 1 It is a figure which shows the X-ray diffraction pattern of the oxide powder of Example 1.
  • FIG. 1 shows the X-ray diffraction pattern of the oxide powder of Example 1.
  • the oxide powder according to this embodiment contains Ca, Al and Si.
  • the oxide powder has a crystal phase of high-temperature cristobalite containing Ca, Al and Si based on the total mass of the oxide powder (that is, the total mass of the oxide powder is 100% by mass).
  • the contents of Ca, Al and Si in the oxide powder are CaO: 1 to 5 mol% and Al 2O 3 : 1 to 1, respectively, when converted as the contents of CaO, Al 2 O 3 and SiO 2 , respectively.
  • conversion content the total content of CaO, Al 2 O 3 and SiO 2 is 100 mol%.
  • the oxide powder contains 40% by mass or more of the crystal phase of high-temperature Christovalite containing Ca, Al and Si, and the composition ratio of Ca, Al and Si is in a predetermined range.
  • the resin composition containing the oxide powder can exhibit a low coefficient of thermal expansion, a high thermal conductivity, and a low dielectric tangent.
  • the crystal phase of the high-temperature cristobalite according to the present embodiment has a structure stabilized even at room temperature because calcium and aluminum are solid-solved in the high-temperature cristobalite in a predetermined amount, and 220 to 260 confirmed by the low-temperature cristobalite. No phase transition occurs at ° C.
  • the oxide powder according to the present embodiment contains the crystal phase in an amount of 40% by mass or more, the coefficient of thermal expansion of the resin composition can be reduced.
  • the crystal phase can exhibit high thermal conductivity and low dielectric loss tangent in the resin composition as in the case of ordinary low-temperature cristobalite.
  • the converted content of Ca as CaO in the oxide powder is 1 to 5 mol%, preferably 1.5 to 4.5 mol%, more preferably 2 to 4 mol%, and further preferably 3 to 4 mol%. preferable. If the converted content is less than 1 mol%, crystallization is less likely to proceed, resulting in a decrease in thermal conductivity and / or an increase in dielectric loss tangent in the resin composition. When the converted content exceeds 5 mol%, the content of the crystalline phase of the high temperature cristobalite decreases, and the coefficient of thermal expansion, the dielectric loss tangent, and / or the reliability of the electronic material in the resin composition increase. There is a drop.
  • the converted content of Al as Al 2 O 3 in the oxide powder is 1 to 5 mol%, preferably 1.5 to 4.5 mol%, more preferably 2 to 4 mol%, and 3 to 4 mol. % Is more preferable. If the converted content is less than 1 mol%, crystallization is less likely to proceed, resulting in a decrease in thermal conductivity and / or an increase in dielectric loss tangent in the resin composition. When the converted content exceeds 5 mol%, the content of the crystal phase of the high temperature cristobalite decreases, and the coefficient of thermal expansion and / or the dielectric loss tangent increases in the resin composition.
  • the converted content of Si as SiO 2 in the oxide powder is 90 to 98 mol%, preferably 91 to 97 mol%, more preferably 92 to 96 mol%, still more preferably 92 to 94 mol%.
  • the converted content exceeds 98 mol%, crystallization is less likely to proceed, resulting in a decrease in thermal conductivity and / or an increase in dielectric loss tangent in the resin composition.
  • the converted content is less than 90 mol%, the content of the crystal phase of the high temperature cristobalite decreases, the coefficient of thermal expansion increases in the resin composition, the dielectric loss tangent increases, and / or the reliability to the electronic material. Will occur.
  • the total content of CaO, Al 2 O 3 and SiO 2 is 100 mol%.
  • the conversion content of Ca as CaO, the conversion content of Al as Al 2 O 3 , and the conversion content of Si as SiO 2 are measured by inductively coupled plasma emission spectroscopic analysis. Specifically, it can be measured by a method described later.
  • the oxide powder contains 40% by mass of the crystal phase of high-temperature cristobalite containing Ca, Al and Si, based on the total mass of the oxide powder (that is, the total mass of the oxide powder is 100% by mass). Including the above.
  • the content of the crystal phase of the high-temperature cristobalite is less than 40% by mass, the coefficient of thermal expansion increases, the thermal conductivity decreases, and / or the dielectric loss tangent increases in the resin composition.
  • the content of the crystal phase of the high-temperature cristobalite is preferably 45% by mass or more, more preferably 50% by mass or more, and further preferably 55% by mass or more.
  • the upper limit of the content of the crystal phase of the high-temperature cristobalite is not particularly limited, but may be, for example, 90% by mass or less.
  • the crystal phase structure of the high-temperature cristobalite according to the present embodiment is a structure in which trace amounts of calcium and aluminum are solidly dissolved in the high-temperature cristobalite and are stabilized even at room temperature. Therefore, the phase transition at 220 to 260 ° C. does not occur, and it is considered that the coefficient of thermal expansion is low in the resin composition.
  • the crystal phase is identified and quantified by the powder X-ray diffraction / Rietveld method. Crystal attribution can be done, for example, in an X-ray database or the like. Specifically, it can be analyzed by a method described later.
  • the oxide powder is a low-temperature cristobalite containing Si or Si and at least one of Ca and Al, based on the total mass of the oxide powder (that is, the total mass of the oxide powder is 100% by mass). It is preferable that the crystal phase of the above is contained in an amount of 30% by mass or less. When the content of the crystal phase of the low-temperature cristobalite is 30% by mass or less, a lower coefficient of thermal expansion can be achieved in the resin composition.
  • the content of the crystal phase of the low temperature cristobalite is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the lower limit of the range of the content of the crystal phase of the low temperature cristobalite is not particularly limited, and may be, for example, 1% by mass or more. Further, the content may be 0% by mass.
  • the identification, quantification, and crystal assignment of the crystal phase can be performed by the same method as the above-mentioned high temperature cristobalite crystal phase. Specifically, it can be analyzed by a method described later.
  • the oxide powder preferably contains 60% by mass or more of a crystal phase based on the total mass of the oxide powder (that is, the total mass of the oxide powder is 100% by mass).
  • the content of the crystal phase is preferably 65% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more.
  • the upper limit of the content of the crystal phase is not particularly limited, and may be, for example, 99% by mass or less. Further, the content may be 100% by mass.
  • the content of the crystal phase can be measured by the same method as that of the above-mentioned high temperature type cristobalite crystal phase. Specifically, it can be measured by a method described later.
  • the oxide powder may further contain another crystal phase or an amorphous phase in addition to the crystal phase of the high temperature type cristobalite and the crystal phase of the low temperature type cristobalite.
  • other crystal phases include low-temperature quartz, CaAl 2 Si 2 O 8 , CaSiO 3 , and the like.
  • the content of the other crystalline phase can be, for example, 0 to 15% by mass based on the total mass of the oxide powder (that is, the total mass of the oxide powder is 100% by mass), and 5 to 5 to. It can be 10% by weight.
  • the content of the amorphous phase can be, for example, 0 to 40% by mass based on the total mass of the oxide powder (that is, the total mass of the oxide powder is 100% by mass). It can be 5 to 35% by mass.
  • the oxide powder may not contain other crystalline phase or amorphous phase.
  • the oxide powder may contain other elements other than Ca, Al and Si within the range in which the effect in the present embodiment is exhibited.
  • the halogen content of the oxide powder is 0 based on the mass of the entire oxide powder (that is, the mass of the entire oxide powder is 100% by mass). .1% by mass or less, more preferably 0.05% by mass or less, further preferably 0.01% by mass (100% by mass) or less, and the oxide powder contains halogen.
  • the halogen content in the present specification refers to the total amount of fluorine, chlorine and bromine.
  • the total content of Li, Na and K of the oxide powder is based on the mass of the entire oxide powder (that is, oxidation).
  • the total mass of the product powder is 100% by mass), preferably less than 500% by mass, more preferably less than 250% by mass, further preferably less than 100% by mass, and the oxide powder is It is particularly preferable that it does not contain Li, Na and K.
  • the oxide powder contains as low an impurity as possible for a metal element such as Fe.
  • the average particle size of the oxide powder is preferably 0.1 to 20 ⁇ m.
  • the average particle size is more preferably 0.5 to 18 ⁇ m, further preferably 1 to 15 ⁇ m, and particularly preferably 3 to 10 ⁇ m.
  • the average particle size is measured using a laser diffraction type particle size distribution measuring device. Specifically, it can be measured by a method described later.
  • the average circularity of the oxide powder is preferably 0.60 or more, preferably 0.70 or more, and more preferably 0.80 or more.
  • the upper limit of the range of the average circularity is not particularly limited, and a higher value is preferable for the average circularity, and it may be 1.
  • the average circularity of the oxide powder can be increased. The average circularity is measured by the following method.
  • the oxide powder according to the present embodiment can exhibit a low coefficient of thermal expansion, a high thermal conductivity, and a low dielectric loss tangent when mixed with a resin, the resin composition is required to have these physical characteristics. It is useful as a filler to be filled in.
  • the method for producing an oxide powder according to this embodiment includes the following steps.
  • a step of mixing a Ca compound having a specific surface area of 2 m 2 / g or more, an Al compound having a specific surface area of 2 m 2 / g or more and SiO 2 to obtain a mixture (hereinafter, also referred to as a mixture manufacturing step);
  • a step of heating at 1000 to 1300 ° C. (hereinafter, also referred to as a heating step).
  • the oxide powder according to the present embodiment can be easily and efficiently produced.
  • a Ca compound having a specific surface area of 2 m 2 / g or more, an Al compound having a specific surface area of 2 m 2 / g or more, and SiO 2 are mixed to obtain a mixture.
  • the Ca compound used as a raw material is not particularly limited, but CaO or a compound that produces CaO at a high temperature is preferable, and examples thereof include CaO, CaCO 3 , Ca (OH) 2 , and Ca (CH 3 COO) 2 . .. These Ca compounds may be used alone or in combination of two or more. Further, as the Ca compound, it is preferable to use a powder smaller than the average particle size of the raw material SiO 2 from the viewpoint of improving the reactivity.
  • a powder that dissolves in a solvent such as water or alcohol, for example, Ca (CH 3 COO) 2 or the like, may be used and added in a state of being dissolved in a solvent such as water or alcohol, but from the viewpoint of mass productivity and cost. , The method of adding in a powder state is preferable.
  • the specific surface area of the Ca compound is preferably 2 m 2 / g or more, more preferably 5 to 100 m 2 / g, still more preferably 10 to 50 m 2 / g, from the viewpoint of reactivity with SiO 2 .
  • the specific surface area is measured by a gas adsorption method.
  • the Al compound used as a raw material is not particularly limited, but Al 2 O 3 or a compound that produces Al 2 O 3 at a high temperature is preferable, and for example, Al 2 O 3 , Al (OH) 3 , AlO (OH), and the like. Al (CH 3 COO) 3 and the like can be mentioned. These Al compounds may be used alone or in combination of two or more. Further, as the Al compound, it is preferable to use a powder smaller than the average particle size of the raw material SiO 2 from the viewpoint of improving the reactivity.
  • a powder that dissolves in a solvent such as water or alcohol for example, Al (CH 3 COO) 3, acetalkoxyaluminum diisopropyrate, or the like may be used and added in a state of being dissolved in a solvent such as water or alcohol. From the viewpoint of mass productivity and cost, the method of adding in a powder state is preferable.
  • the specific surface area of the Al compound is preferably 2 m 2 / g or more, more preferably 10 to 500 m 2 / g, still more preferably 50 to 300 m 2 / g, from the viewpoint of reactivity with SiO 2 .
  • the specific surface area is measured by a gas adsorption method.
  • a crystalline system such as amorphous, quartz, and cristobalite is not particularly limited, and the manufacturing method of SiO 2 is not particularly limited, but SiO 2 containing an amorphous phase of 90% by mass or more is used. It is more preferable to use SiO 2 having an amorphous phase.
  • the SiO 2 containing 90% by mass or more of the amorphous phase include SiO 2 manufactured by a flame melting method, an explosive combustion method, a gas phase method, a wet method, or the like.
  • the total content of Li, Na and K of the raw material SiO 2 is preferably low, and is less than 100 mass ppm. Is preferable.
  • the average particle size of the raw material SiO 2 is preferably 0.1 to 20 ⁇ m, preferably 0.5 to 18 ⁇ m. It is more preferably 1 to 15 ⁇ m, and particularly preferably 3 to 10 ⁇ m. The average particle size is measured in the same manner as the average particle size of the oxide powder. Further, since the shape of the oxide powder obtained after heating mainly reflects the shape of the raw material SiO 2 , it is preferable to use the spherical raw material SiO 2 because the average circularity of the oxide powder can be increased. .. The average circularity of the raw material SiO 2 is preferably 0.60 or more, preferably 0.70 or more, and more preferably 0.80 or more. The average circularity is measured in the same manner as the average circularity of the oxide powder.
  • the method of mixing the Ca compound, the Al compound and the SiO 2 may be either dry mixing or wet mixing, but since the dry mixing does not use a solvent, it is not necessary to dry the solvent and the production cost of the oxide powder is reduced. It is preferable because it can be reduced.
  • the Ca compound and the Al compound can be dissolved in a solvent such as water or alcohol, mixed with SiO 2 , and dried.
  • the mixing method include agate mortar, a crusher such as a ball mill and a vibration mill, and various mixers.
  • the mixing ratio of the Ca compound, the Al compound and the SiO 2 can be appropriately selected so that the Ca, Al and Si contents of the obtained oxide powder are within the range of the present embodiment.
  • Heating process In this step, the mixture obtained in the mixture manufacturing step is heated at 1000 to 1300 ° C.
  • the heating device for heating the mixture is not particularly limited as long as it is a device capable of heating at a high temperature, and examples thereof include an electric furnace, a rotary kiln, and a pusher furnace.
  • the heating atmosphere is not particularly limited, and examples thereof include the atmosphere, N2 , Ar, and under vacuum.
  • the heating temperature is preferably 1000 to 1300 ° C, more preferably 1050 to 1250 ° C, and even more preferably 1100 ° C to 1200 ° C.
  • the heating time is preferably 1 to 24 hours, more preferably 2 to 15 hours, still more preferably 3 to 10 hours, although it depends on the heating temperature.
  • the heating time is 1 hour or more, crystallization into high-temperature cristobalite can be sufficiently performed. Further, when the heating time is 24 hours or less, the production capacity can be improved.
  • the oxide powder obtained after heating may be an agglomerate of a plurality of particles.
  • the agglomerate itself may be used as an oxide powder, but if necessary, the agglomerate may be crushed and then used as an oxide powder.
  • the method for crushing the agglomerates is not particularly limited, and examples thereof include a method for crushing with an agate mortar, a ball mill, a vibration mill, a jet mill, a wet jet mill, or the like.
  • the crushing may be carried out in a dry manner, or may be carried out in a wet manner by mixing with a liquid such as water or alcohol.
  • wet crushing an oxide powder is obtained by drying after crushing.
  • the drying method is not particularly limited, and examples thereof include heat drying, vacuum drying, freeze drying, and supercritical carbon dioxide drying.
  • the method for producing an oxide powder according to the present embodiment includes a classification step for classifying the oxide powder so as to obtain a desired average particle size, and a surface using a coupling agent, in addition to the mixture manufacturing step and the heating step. Other steps such as a treatment step and a cleaning step for reducing impurities may be further included. By carrying out the surface treatment step, the blending amount (filling amount) of the oxide particles in the resin can be further increased.
  • a silane coupling agent is preferable, and for example, a titanate coupling agent, an aluminate-based coupling agent, or the like can be used.
  • the resin composition according to the present embodiment contains the oxide powder according to the present embodiment and the resin. Since the resin composition according to the present embodiment contains the oxide powder according to the present embodiment, it can exhibit a low coefficient of thermal expansion, a high thermal conductivity, and a low dielectric loss tangent. Further, since the resin composition according to the present embodiment has a low viscosity, it has high fluidity and excellent moldability.
  • the resin is not particularly limited, and is, for example, polyamide such as polyethylene, polypropylene, epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and poly.
  • polyamide such as polyethylene, polypropylene, epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and poly.
  • Polyester such as butylene terephthalate and polyethylene terephthalate, polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile) Ethylene / propylene / diene rubber-styrene) resin and the like can be mentioned. These resins may be used alone or in combination of two or more.
  • the content of the oxide powder in the resin composition is appropriately selected according to the physical properties such as the target thermal expansion coefficient, thermal conductivity, dielectric constant, and dielectric loss tangent, but is 2 to 89% by mass. Is more preferable, 10 to 79% by mass is more preferable, and 20 to 72% by mass is further preferable.
  • the content of the resin in the resin composition is preferably 11 to 98% by mass, more preferably 21 to 90% by mass, and even more preferably 28 to 80% by mass.
  • the resin composition according to the present embodiment may contain other components other than the oxide powder and the resin according to the present embodiment.
  • other components include coupling agents, flame retardants, glass cloth and the like.
  • the dielectric constant, dielectric loss tangent, thermal expansion coefficient, and thermal conductivity of the resin composition are further mixed. , Filling rate and the like can be adjusted more easily.
  • the coefficient of thermal expansion of the resin composition according to the present embodiment is preferably 40 ⁇ 10 -6 / ° C. or less, and more preferably 35 ⁇ 10 -6 / ° C. or less.
  • the thermal conductivity of the resin composition according to the present embodiment is preferably 0.75 W / m ⁇ K or more, and more preferably 0.80 W / m ⁇ K or more.
  • the dielectric loss tangent of the resin composition according to this embodiment is preferably 4.0 ⁇ 10 -4 or less, and more preferably 3.5 ⁇ 10 -4 or less.
  • the coefficient of thermal expansion, thermal conductivity, and dielectric loss tangent of the resin composition are values measured by a method described later.
  • the resin composition according to the present embodiment is particularly useful as a resin composition for a high-frequency substrate because it exhibits a low coefficient of thermal expansion, a high thermal conductivity, and a low dielectric loss tangent.
  • Specific examples of the high frequency substrate include a fluorine substrate, a PPE substrate, and a ceramic substrate.
  • Example 1 CaCO 3 (trade name: CWS-20, manufactured by Sakai Chemicals, specific surface area: 20 m 2 / g), Al 2 O 3 (trade name: AEROXIDE Aluc, manufactured by Nippon Aerosil Co., Ltd., specific surface area: 100 m 2 / g), and spherical Amorphous SiO 2 (trade name: AF-6C, manufactured by Suzuki Oil & Fat, average particle size: 4 ⁇ m, average circularity: 0.95) was used as a raw material in the addition amounts shown in Table 1.
  • CWS-20 manufactured by Sakai Chemicals, specific surface area: 20 m 2 / g
  • Al 2 O 3 trade name: AEROXIDE Aluc, manufactured by Nippon Aerosil Co., Ltd., specific surface area: 100 m 2 / g
  • spherical Amorphous SiO 2 trade name: AF-6C, manufactured by Suzuki Oil & Fat, average particle size: 4 ⁇ m, average circularity: 0.95
  • Ethanol and alumina beads (5 mm ⁇ ) were added to these raw materials, and the mixture was mixed with a vibration mixer (manufactured by Reasonyn, trade name: low frequency resonance acoustic mixer Lab RAM II). Alumina beads were removed from the resulting mixture and the ethanol was dried. 10 g of this mixture was placed in an alumina crucible, heated from room temperature at 10 ° C./min, and heated in an electric furnace. At this time, the heating temperature was 1200 ° C. and the heating time was 4 hours. After heating, the sample was allowed to cool naturally, and after the sample was cooled, it was crushed in an agate mortar to obtain an oxide powder. The oxide powder was evaluated by the method described later.
  • Oxide powder was prepared and evaluated by the same method as in Example 1 except that the addition amount of the raw material, the heating time and the heating temperature were changed to the conditions shown in Table 1 or Table 2.
  • Example 4 As the raw material SiO 2 , a spherical amorphous SiO 2 (trade name: E-90C, manufactured by Suzuki Oil and Fat, average particle size: 19 ⁇ m, average circularity: 0.95) was used, and the heating time was shown in Table 1. Oxide powder was prepared and evaluated by the same method as in Example 1 except that it was changed to.
  • Example 5 Same as Example 1 except that spherical amorphous SiO 2 (trade name: SFP-30M, manufactured by Denka, average particle diameter: 0.6 ⁇ m, average circularity: 0.95) was used as the raw material SiO 2 .
  • Oxide powder was prepared and evaluated by the above method.
  • Example 6 As the raw material SiO 2 , a spherical amorphous SiO 2 (trade name: Sciqas, manufactured by Sakai Chemicals, average particle diameter: 0.1 ⁇ m, average circularity: 1.00) was used, and the heating temperature was shown in Table 1. Oxide powder was prepared and evaluated by the same method as in Example 1 except that it was changed to.
  • Example 10 As the raw material SiO 2 , a spherical amorphous SiO 2 (trade name: B-6C, manufactured by Suzuki Oil and Fat, average particle size: 4 ⁇ m, average circularity: 0.95) was used, and the heating temperature was shown in Table 1. Oxide powder was prepared and evaluated by the same method as in Example 1 except that it was changed to.
  • Example 6 The same method as in Example 1 except that spherical amorphous SiO 2 (trade name: FB-40R, manufactured by Denka, average particle diameter: 40 ⁇ m, average circularity: 0.95) was used as the raw material SiO 2 . Oxide powder was prepared and evaluated.
  • spherical amorphous SiO 2 (trade name: FB-40R, manufactured by Denka, average particle diameter: 40 ⁇ m, average circularity: 0.95) was used as the raw material SiO 2 .
  • Oxide powder was prepared and evaluated.
  • Rietveld software (manufactured by MDI, trade name: integrated powder X-ray software Jade + 9.6) was used for the quantitative analysis of the crystal phase.
  • the ratio (% by mass) of various crystal phases is an oxide containing ⁇ -alumina (internal standard substance), which is a standard sample for X-ray diffraction manufactured by NIST, so that the content is 50% by mass (based on the total amount of the sample after addition).
  • the sample added to the powder was measured by X-ray diffraction and calculated by Rietveld analysis.
  • the impurity (halogen) content was measured by combustion ion chromatography.
  • a combustion-ion chromatograph analyzer combustion unit: manufactured by Mitsubishi Chemical Analytical Co., Ltd., trade name: AQF-2100H / measurement unit: manufactured by Thermo Fisher, trade name: ICS-1500
  • halogen fluorine, chlorine, bromine
  • 0.1 g of a sample is weighed in an alumina boat, installed in a combustion decomposition unit, and burned in a combustion gas stream containing oxygen to absorb the generated gas. Collected in liquid.
  • Various halogen ions collected by the absorption liquid were separated and quantified by ion chromatography.
  • the average particle size was measured using a laser diffraction type particle size distribution measuring device (manufactured by Beckman Coulter, trade name: LS 13 320). 50 cm 3 of pure water and 0.1 g of oxide powder were placed in a glass beaker and dispersed with an ultrasonic homogenizer (manufactured by BRANSON, trade name: SFX250) for 1 minute. The dispersion liquid of the oxide powder subjected to the dispersion treatment was added drop by drop to the laser diffraction type particle size distribution measuring device with a dropper, and the measurement was performed 30 seconds after the predetermined amount was added.
  • the particle size distribution was calculated from the data of the light intensity distribution of the diffracted / scattered light by the oxide particles detected by the sensor in the laser diffraction type particle size distribution measuring device.
  • the average particle size was obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). In addition,% here is volume%.
  • a vacuum heating press machine manufactured by Imoto Seisakusho Co., Ltd., trade name: IMC-1674-A type
  • IMC-1674-A type press heating and curing were performed in the order of time / 5 MPa.
  • the cured sample was processed into a sample size for measurement (4 ⁇ 4 ⁇ 15 mm), and the coefficient of thermal expansion was measured by TMA (manufactured by Bruker, trade name: TMA4000SA).
  • the temperature rise condition was 5 ° C./min
  • the measurement temperature was ⁇ 10 ° C. to 280 ° C.
  • the atmosphere was a nitrogen atmosphere
  • the coefficient of thermal expansion of 0 ° C. to 100 ° C. was calculated from the obtained TMA measurement chart.
  • Thermal conductivity of the resin composition was calculated by multiplying the thermal diffusivity, the specific gravity, and the specific heat.
  • the resin composition was blended and cured under the same conditions as the evaluation of the coefficient of thermal expansion.
  • the thermal diffusivity was determined by processing a sample into a width of 10 mm ⁇ 10 mm ⁇ thickness of 1 mm and using a laser flash method.
  • a xenon flash analyzer manufactured by NETZSCH, trade name: LFA447 NanoFlash was used as the measuring device.
  • the specific density was determined using the Archimedes method.
  • the specific heat was determined by using a differential scanning calorimeter (manufactured by TA Instruments, trade name: Q2000) and raising the temperature from room temperature to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere.
  • Oxide powder and polyethylene powder were weighed and mixed with a vibration mixer manufactured by Resodyn so that the filling amount of the oxide powder was 52% by mass. (Acceleration 60 g, processing time 2 minutes).
  • the obtained mixed powder is weighed by a predetermined volume (so that the thickness is about 0.5 mm), placed in a metal frame having a diameter of 3 cm, and 140 by a nanoimprint apparatus (manufactured by SCIVAX, trade name: X-300). Sheets were formed at °C for 5 minutes at 30,000 N to prepare an evaluation sample.
  • the thickness of the evaluation sample sheet is about 0.5 mm.
  • the shape and size do not affect the evaluation result if they can be mounted on the measuring instrument, but they are about 1 to 3 cm square.
  • the dielectric property was measured by the following method.
  • a 36 GHz hollow resonator manufactured by Samtec
  • a vector network analyzer (trade name: 85107, manufactured by KeySight Technology), and an evaluation sample (1.5 cm square, thickness 0.5 mm) was provided in the resonator.
  • a hole having a diameter of 10 mm was set to be closed, and the resonance frequency (f0) and the no-load Q value (Qu) were measured.
  • the evaluation sample was rotated for each measurement, and the measurement was repeated 5 times in the same manner, and the average of the obtained f0 and Qu was taken and used as the measured value.
  • the permittivity was calculated from f0, and the dielectric loss tangent (tan ⁇ c) was calculated from Qu using analysis software (software manufactured by Samtec).
  • the measured temperature was 20 ° C. and the humidity was 60% RH.
  • the resin compositions containing the oxide powders of Examples 1 to 10 according to the embodiment of the present invention have a low coefficient of thermal expansion and a low dielectric loss tangent and a high thermal conductivity. I understood.

Abstract

樹脂と混合して得られる樹脂組成物が、低い熱膨張率、高い熱伝導率、及び低い誘電正接を示す酸化物粉末を提供する。Ca、Al及びSiを含む酸化物粉末であって、前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、Ca、Al及びSiを含む高温型クリストバライトの結晶相を40質量%以上含み、前記酸化物粉末におけるCa、Al及びSiの含有量は、それぞれCaO、Al及びSiOの含有量として換算したとき、CaO:1~5モル%、Al:1~5モル%、SiO:90~98モル%(CaO、Al及びSiOの含有量の合計を100モル%とする)である、酸化物粉末。

Description

酸化物粉末及びその製造方法、並びに樹脂組成物
 本発明は、酸化物粉末及びその製造方法、並びに樹脂組成物に関する。
 近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の活用が広がっており、高周波帯用のデバイスに用いられる材料に関して、誘電率および誘電正接が低いことが求められている。また、関連する電子材料及び部材の小型化、高集積化も進み、さらなる放熱性が求められつつある。
 高周波帯のセラミックス材料として、シリカ(SiO)は、誘電率が小さく(3.7)、品質係数指標Qf(誘電正接の逆数と測定周波数を掛けた値)が約12万であり、低誘電率かつ低誘電正接を有するフィラーの材料として有望である。また、樹脂中での配合を容易にするため、フィラー形状は球形に近い程好ましい。球状シリカは容易に合成可能であり(例えば特許文献1)、既に多くの用途で使用されている。そのため、高周波帯の誘電体デバイス等においても広く用いられることが期待される。
 しかしながら、前記球状シリカは一般的に非晶質であり、熱伝導率が1W/m・K程度と低く、球状シリカを充填した樹脂組成物は放熱性が不十分な場合がある。
 熱伝導率を向上させるため、球状シリカを非晶質から石英やクリストバライト等へ結晶化させることが考えられる。例えば特許文献2や3では、非晶質球状シリカを熱処理することで、石英粒子やクリストバライトへ結晶化させることが提案されている。しかし、低温型の石英やクリストバライトは熱膨張率が高く、基板等の熱膨張率を低減させることが困難である。
 熱膨張率を低減させるため、これらを高温型の石英やクリストバライトへ結晶化させることが考えられる。例えば特許文献4には、高温型の石英やクリストバライトへの結晶化が開示されている。しかし、特許文献4では焼結体の被覆層であり、原料としてハロゲン化物が使用されているため、電子材料向けのフィラーとして適さない。
特開昭58-138740号公報 特許第6207753号公報 国際公開第2018/186308号 特開2002-154818号公報
 本発明は、樹脂と混合して得られる樹脂組成物が、低い熱膨張率、高い熱伝導率、及び低い誘電正接を示す酸化物粉末及びその製造方法、並びに該樹脂組成物を提供することを目的とする。
 本発明は、以下の実施形態を含む。
[1]Ca、Al及びSiを含む酸化物粉末であって、
 前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、Ca、Al及びSiを含む高温型クリストバライトの結晶相を40質量%以上含み、
 前記酸化物粉末におけるCa、Al及びSiの含有量は、それぞれCaO、Al及びSiOの含有量として換算したとき、CaO:1~5モル%、Al:1~5モル%、SiO:90~98モル%(CaO、Al及びSiOの含有量の合計を100モル%とする)である、酸化物粉末。
[2]前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、結晶相を60質量%以上含む、[1]に記載の酸化物粉末。
[3]前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、Si又はSiと少なくともCaとAlのいずれか一方を含む低温型クリストバライトの結晶相を30質量%以下含む、[1]又は[2]に記載の酸化物粉末。
[4]前記酸化物粉末の平均粒子径が0.1~20μmである、[1]~[3]のいずれかに記載の酸化物粉末。
[5]前記酸化物粉末のハロゲンの含有量が、前記酸化物粉末全体の質量を基準として、0.1質量%以下である、[1]~[4]のいずれかに記載の酸化物粉末。
[6]前記酸化物粉末のLi、Na及びKの含有量の合計が、前記酸化物粉末全体の質量を基準として、それぞれ500質量ppm未満である、[1]~[5]のいずれかに記載の酸化物粉末。
[7][1]~[6]のいずれかに記載の酸化物粉末の製造方法であって、
 比表面積が2m/g以上であるCa化合物、比表面積が2m/g以上であるAl化合物及びSiOを混合して混合物を得る工程と、
 前記混合物を1000~1300℃にて加熱する工程と、
を含む、酸化物粉末の製造方法。
[8][1]~[6]のいずれかに記載の酸化物粉末と、樹脂とを含む樹脂組成物。
[9]前記樹脂組成物中の酸化物粉末の含有量が2~89質量%である、[8]に記載の樹脂組成物。
[10]高周波基板用の樹脂組成物である、[8]又は[9]に記載の樹脂組成物。
 本発明によれば、樹脂と混合して得られる樹脂組成物が、低い熱膨張率、高い熱伝導率、及び低い誘電正接を示す酸化物粉末及びその製造方法、並びに該樹脂組成物を提供することができる。
実施例1の酸化物粉末のX線回折パターンを示す図である。
 以下、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 [酸化物粉末]
 本実施形態に係る酸化物粉末は、Ca、Al及びSiを含む。ここで、前記酸化物粉末は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、Ca、Al及びSiを含む高温型クリストバライトの結晶相を40質量%以上含む。また、前記酸化物粉末におけるCa、Al及びSiの含有量は、それぞれCaO、Al及びSiOの含有量として換算したとき、CaO:1~5モル%、Al:1~5モル%、SiO:90~98モル%である(以下、換算含有量ともいう。)。なお、前記換算含有量において、CaO、Al及びSiOの含有量の合計を100モル%とする。
 本実施形態に係る酸化物粉末では、該酸化物粉末がCa、Al及びSiを含む高温型クリストバライトの結晶相を40質量%以上含み、かつ、Ca、Al及びSiの組成比がそれぞれ所定の範囲内であることにより、該酸化物粉末を含む樹脂組成物において、低い熱膨張率、高い熱伝導率、かつ低い誘電正接を示すことができる。本実施形態に係る高温型クリストバライトの結晶相は、高温型クリストバライトにカルシウム及びアルミニウムが所定量固溶しているため、室温でも安定化された構造であり、低温型クリストバライトで確認される220~260℃での相転移が生じない。本実施形態に係る酸化物粉末は当該結晶相を40質量%以上含むため、樹脂組成物の熱膨張率を低減できる。また、当該結晶相は、樹脂組成物において通常の低温型クリストバライトと同様に高い熱伝導率かつ低い誘電正接を示すことができる。
 前記酸化物粉末におけるCaのCaOとしての換算含有量は1~5モル%であり、1.5~4.5モル%が好ましく、2~4モル%がより好ましく、3~4モル%がさらに好ましい。前記換算含有量が1モル%未満であると、結晶化が進行しにくくなり、樹脂組成物において熱伝導率の低下、及び/又は誘電正接の増加が生じる。前記換算含有量が5モル%を超えると、高温型クリストバライトの結晶相の含有量が低下し、樹脂組成物において熱膨張率の増加、誘電正接の増加、及び/又は電子材料への信頼性の低下が生じる。
 前記酸化物粉末におけるAlのAlとしての換算含有量は1~5モル%であり、1.5~4.5モル%が好ましく、2~4モル%がより好ましく、3~4モル%がさらに好ましい。前記換算含有量が1モル%未満であると、結晶化が進行しにくくなり、樹脂組成物において熱伝導率の低下、及び/又は誘電正接の増加が生じる。前記換算含有量が5モル%を超えると、高温型クリストバライトの結晶相の含有量が低下し、樹脂組成物において熱膨張率の増加、及び/又は誘電正接の増加が生じる。
 前記酸化物粉末におけるSiのSiOとしての換算含有量は90~98モル%であり、91~97モル%が好ましく、92~96モル%がより好ましく、92~94モル%がさらに好ましい。前記換算含有量が98モル%を超えると、結晶化が進行しにくくなり、樹脂組成物において熱伝導率の低下、及び/又は誘電正接の増加が生じる。前記換算含有量が90モル%未満であると、高温型クリストバライトの結晶相の含有量が低下し、樹脂組成物において熱膨張率の増加、誘電正接の増加、及び/又は電子材料への信頼性の低下が生じる。
 なお、前記換算含有量において、CaO、Al及びSiOの含有量の合計を100モル%とする。前記CaのCaOとしての換算含有量、AlのAlとしての換算含有量、及びSiのSiOとしての換算含有量の測定は、誘導結合プラズマ発光分光分析により行う。具体的には、後述する方法により測定することができる。
 前記酸化物粉末は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、Ca、Al及びSiを含む高温型クリストバライトの結晶相を40質量%以上含む。前記高温型クリストバライトの結晶相の含有率が40質量%未満であると、樹脂組成物において熱膨張率の増加、熱伝導率の低下、及び/又は誘電正接の増加が生じる。前記高温型クリストバライトの結晶相の含有率は45質量%以上であることが好ましく、50質量%以上であることがより好ましく、55質量%以上であることがさらに好ましい。前記高温型クリストバライトの結晶相の含有率の範囲の上限は特に限定されないが、例えば90質量%以下であることができる。なお、本実施形態に係る高温型クリストバライトの結晶相の構造は、高温型クリストバライトに微量カルシウム、アルミニウムが固溶しており、室温でも安定化された構造である。そのため、220~260℃での相転移は起こらず、樹脂組成物において熱膨張率が低いと考えられる。当該結晶相の同定及び定量は、粉末X線回折/リートベルト法により行う。結晶の帰属は、例えば、X線データベース等で行うことができる。具体的には、後述する方法により分析することができる。
 前記酸化物粉末は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、Si又はSiと少なくともCaとAlのいずれか一方を含む低温型クリストバライトの結晶相を30質量%以下含むことが好ましい。前記低温型クリストバライトの結晶相の含有率が30質量%以下であることにより、樹脂組成物においてより低い熱膨張率を達成することができる。前記低温型クリストバライトの結晶相の含有率は25質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。前記低温型クリストバライトの結晶相の含有率の範囲の下限は特に限定されず、例えば1質量%以上であってもよい。また、該含有率は0質量%であってもよい。当該結晶相の同定及び定量、結晶の帰属は、前述した高温型クリストバライトの結晶相と同様の方法により行うことができる。具体的には、後述する方法により分析することができる。
 前記酸化物粉末は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、結晶相を60質量%以上含むことが好ましい。結晶相の含有率が60質量%以上であることにより、樹脂組成物においてより高い熱伝導率を達成できる。前記結晶相の含有率は65質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。前記結晶相の含有率の範囲の上限は特に限定されず、例えば99質量%以下であってもよい。また、該含有率は100質量%であってもよい。当該結晶相の含有率は、前述した高温型クリストバライトの結晶相と同様の方法により測定することができる。具体的には、後述する方法により測定することができる。
 前記酸化物粉末は、前記高温型クリストバライトの結晶相及び前記低温型クリストバライトの結晶相以外に、他の結晶相や非晶質相を更に含んでもよい。他の結晶相としては、例えば、低温型石英、CaAlSi、CaSiO等が挙げられる。他の結晶相の含有率は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、例えば0~15質量%であることができ、5~10質量%であることができる。また、非晶質相の含有率は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、例えば0~40質量%であることができ、5~35質量%であることができる。なお、前記酸化物粉末は、他の結晶相や非晶質相を含まなくてもよい。
 前記酸化物粉末は、本実施形態における効果を奏する範囲内において、Ca、Al及びSi以外に他の元素を含んでもよい。しかし、電子材料の信頼性の観点から、前記酸化物粉末のハロゲンの含有量は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.01質量%(100質量ppm)以下であることがさらに好ましく、前記酸化物粉末がハロゲンを含まないことが特に好ましい。なお、本明細書におけるハロゲン含有量とは、フッ素、塩素、臭素の総量のことを指す。また、誘電率や誘電正接の低減及び電子材料の信頼性の観点から、前記酸化物粉末のLi、Na及びKの含有量の合計は、前記酸化物粉末全体の質量を基準として(すなわち、酸化物粉末全体の質量を100質量%とする)、500質量ppm未満であることが好ましく、250質量ppm未満であることがより好ましく、100質量ppm未満であることがさらに好ましく、前記酸化物粉末がLi、Na及びKを含まないことが特に好ましい。また、前記酸化物粉末は、誘電率や誘電正接の低減及び電子材料の信頼性の観点から、Fe等の金属元素の不純物の含有量もできる限り低いことが好ましい。
 前記酸化物粉末の平均粒子径は、0.1~20μmであることが好ましい。該平均粒子径が0.1μm以上であることにより、樹脂への配合が容易になる。また、該平均粒子径が20μm以下であることにより、酸化物粉末の製造時において酸化物粉末が結晶化しやすく、Ca、Al及びSiを含む高温型クリストバライトの結晶相の含有量を増加させることができる。該平均粒子径は、0.5~18μmであることがより好ましく、1~15μmであることがさらに好ましく、3~10μmであることが特に好ましい。なお、該平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定される。具体的には、後述する方法により測定することができる。
 前記酸化物粉末の平均円形度は、0.60以上であることが好ましく、0.70以上であることが好ましく、0.80以上であることがさらに好ましい。該平均円形度が0.60以上であることにより、樹脂の溶融粘度の低下や流動性が向上することで、樹脂への配合が容易になる。該平均円形度の範囲の上限は特に限定されず、平均円形度はより高い値の方が好ましく、1であってもよい。後述するように、酸化物粉末の製造において球状の原料SiOを用いることで、酸化物粉末の平均円形度を高くすることができる。平均円形度は以下の方法により測定される。電子顕微鏡を用いて撮影した酸化物粒子の投影面積(S)と投影周囲長(L)を求め、以下の式(1)に当てはめることにより円形度を算出する。そして、一定の投影面積円(100個以上の酸化物粒子を含む面積)に含まれる酸化物粒子全ての円形度の平均値を算出し、当該平均値を平均円形度とする。平均円形度は具体的には後述する方法により測定することができる。
  円形度=4πS/L   (1)
 本実施形態に係る酸化物粉末は、樹脂と混合した際に樹脂組成物が低い熱膨張率、高い熱伝導率、及び低い誘電正接を示すことができるため、これらの物性が求められる樹脂組成物に充填されるフィラーとして有用である。
 [酸化物粉末の製造方法]
 本実施形態に係る酸化物粉末の製造方法は、以下の工程を含む。比表面積が2m/g以上であるCa化合物、比表面積が2m/g以上であるAl化合物及びSiOを混合して混合物を得る工程(以下、混合物製造工程ともいう。);前記混合物を1000~1300℃にて加熱する工程(以下、加熱工程ともいう。)。本実施形態に係る方法によれば、本実施形態に係る酸化物粉末を容易にかつ効率よく製造することができる。
 (混合物製造工程)
 本工程では、比表面積が2m/g以上であるCa化合物、比表面積が2m/g以上であるAl化合物及びSiOを混合して混合物を得る。原料として使用されるCa化合物は特に限定されないが、CaO、又は高温でCaOを生成する化合物が好ましく、例えば、CaO、CaCO、Ca(OH)、Ca(CHCOO)等が挙げられる。これらのCa化合物は一種を用いてもよく、二種以上を併用してもよい。また、Ca化合物としては、反応性向上の観点から、原料SiOの平均粒子径よりも小さい粉末を用いることが好ましい。水やアルコール等の溶媒に溶解する粉末、例えば、Ca(CHCOO)等を用い、水やアルコール等の溶媒に溶解させた状態で添加しても良いが、量産性・コストの観点から、粉末状態で添加する方法が好ましい。
 Ca化合物の比表面積は、SiOとの反応性の観点から、2m/g以上が好ましく、5~100m/gがより好ましく、10~50m/gがさらに好ましい。なお、該比表面積はガス吸着法により測定される。
 原料として使用されるAl化合物は特に限定されないが、Al、又は高温でAlを生成する化合物が好ましく、例えば、Al、Al(OH)、AlO(OH)、Al(CHCOO)等が挙げられる。これらのAl化合物は一種を用いてもよく、二種以上を併用してもよい。また、Al化合物としては、反応性向上の観点から、原料SiOの平均粒子径よりも小さい粉末を用いることが好ましい。水やアルコール等の溶媒に溶解する粉末、例えば、Al(CHCOO)3、アセトアルコキシアルミニウムジイソプロピレート等を用い、水やアルコール等の溶媒に溶解させた状態で添加しても良いが、量産性・コストの観点から、粉末状態で添加する方法が好ましい。
 Al化合物の比表面積は、SiOとの反応性の観点から、2m/g以上が好ましく、10~500m/gがより好ましく、50~300m/gがさらに好ましい。なお、該比表面積はガス吸着法により測定される。
 原料として使用されるSiOは、非晶質、石英、クリストバライト等の結晶系は特に限定されず、SiOの製法も特に限定されないが、非晶質相を90質量%以上含むSiOを使用することが好ましく、非晶質相からなるSiOを使用することがより好ましい。非晶質相を90質量%以上含むSiOとしては、火炎溶融法、爆燃法、気相法、湿式法等で製造されたSiOが挙げられる。また、前述したように、誘電率や誘電正接の低減及び電子材料の信頼性の観点から、原料SiOのLi、Na及びKの合計の含有量は低いことが好ましく、100質量ppm未満であることが好ましい。
 加熱後に得られる酸化物粉末の粒子径は、主に原料SiOの粒子径を反映するため、原料SiOの平均粒子径は0.1~20μmであることが好ましく、0.5~18μmであることがより好ましく、1~15μmであることがさらに好ましく、3~10μmであることが特に好ましい。なお、該平均粒子径は酸化物粉末の平均粒子径と同様に測定される。また、加熱後に得られる酸化物粉末の形状は、主に原料SiOの形状を反映するため、球状の原料SiOを用いることが、酸化物粉末の平均円形度を高くすることができるため好ましい。原料SiOの平均円形度は、0.60以上であることが好ましく、0.70以上であることが好ましく、0.80以上であることがさらに好ましい。なお、該平均円形度は酸化物粉末の平均円形度と同様に測定される。
 Ca化合物、Al化合物及びSiOの混合方法は、乾式混合、湿式混合のいずれでもよいが、乾式混合の方が溶媒を用いないため、溶媒を乾燥する必要がなく、酸化物粉末の製造コストを低減できるため好ましい。なお、湿式混合により混合する場合には、例えばCa化合物とAl化合物を水やアルコール等の溶媒に溶解させた後、SiOと混合し、乾燥することができる。混合方法としては、例えば、メノウ乳鉢やボールミル、振動ミル等の粉砕機、各種ミキサー類が挙げられる。Ca化合物、Al化合物及びSiOの混合比率は、得られる酸化物粉末のCa、Al及びSiの含有量が、本実施形態の範囲内となるように適宜選択することができる。
 (加熱工程)
 本工程では、前記混合物製造工程で得られた混合物を、1000~1300℃にて加熱する。混合物を加熱する加熱装置としては、高温での加熱が可能な装置であれば特に限定されないが、例えば、電気炉、ロータリーキルン、プッシャー炉等が挙げられる。加熱雰囲気は特に限定されず、例えば、大気、N、Ar、真空下等が挙げられる。
 加熱温度は1000~1300℃が好ましく、1050~1250℃がより好ましく、1100℃~1200℃がさらに好ましい。加熱温度が1000℃以上であることにより、結晶化に要する時間が短くなり、また、十分に結晶化を行うことができるため、高温型クリストバライトの結晶相の含有率を向上させることができる。また、加熱温度が1300℃以下であることにより、粒子間の融着を抑制でき、凝集体の形成を低減できるため、得られる酸化物粉末の樹脂との混合を容易とすることができる。加熱時間は、加熱温度にもよるが1~24時間が好ましく、2~15時間がより好ましく、3~10時間がさらに好ましい。加熱時間が1時間以上であることにより、高温型クリストバライトへの結晶化を十分に行うことができる。また、加熱時間が24時間以下であることにより、生産能力を向上させることができる。
 加熱後に得られる酸化物粉末は、複数の粒子が凝集した凝集体となっていることがある。凝集体自体を酸化物粉末として利用してもよいが、必要に応じて凝集体を解砕してから、これを酸化物粉末として用いてもよい。凝集体の解砕方法は特に限定されないが、例えばメノウ乳鉢、ボールミル、振動ミル、ジェットミル、湿式ジェットミル等により解砕する方法が挙げられる。解砕は乾式で行われてもよいが、水又はアルコール等の液体と混合して湿式で行われてもよい。湿式による解砕では、解砕後に乾燥することで酸化物粉末が得られる。乾燥方法は特に限定されないが、例えば加熱乾燥、真空乾燥、凍結乾燥、超臨界二酸化炭素乾燥等が挙げられる。
 (その他の工程)
 本実施形態に係る酸化物粉末の製造方法は、前記混合物製造工程及び前記加熱工程以外に、所望の平均粒子径が得られるように酸化物粉末を分級する分級工程、カップリング剤を用いた表面処理工程、不純物低減のための洗浄工程等の他の工程をさらに含んでもよい。表面処理工程を実施することにより、酸化物粒子の樹脂への配合量(充填量)を更に高めることができる。表面処理に用いられるカップリング剤としてはシランカップリング剤が好ましく、例えばチタネートカップリング剤、アルミネート系カップリング剤等を用いることができる。
 [樹脂組成物]
 本実施形態に係る樹脂組成物は、本実施形態に係る酸化物粉末と、樹脂とを含む。本実施形態に係る樹脂組成物は、本実施形態に係る酸化物粉末を含むため、低い熱膨張率、高い熱伝導率、及び低い誘電正接を示すことができる。また、本実施形態に係る樹脂組成物は、低粘度であるため流動性が高く、成形性に優れる。
 前記樹脂としては、特に限定されないが、例えばポリエチレン、ポリプロピレン、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。これらの樹脂は一種を用いてもよく、二種以上を併用してもよい。
 前記樹脂組成物中の酸化物粉末の含有量は、目的とする熱膨張率、熱伝導率、誘電率、誘電正接等の物性に応じて適宜選択されるが、2~89質量%であることが好ましく、10~79質量%であることがより好ましく、20~72質量%であることがさらに好ましい。前記樹脂組成物中の樹脂の含有量は、11~98質量%であることが好ましく、21~90質量%であることがより好ましく、28~80質量%であることがさらに好ましい。
 本実施形態に係る樹脂組成物は、本実施形態に係る酸化物粉末及び樹脂以外の他の成分を含むことができる。他の成分としては、例えば、カップリング剤、難燃剤、ガラスクロス等が挙げられる。また、本実施形態に係る酸化物粉末以外に、組成や比表面積、平均粒子径が異なる他の粉末をさらに混合することで、樹脂組成物の誘電率、誘電正接、熱膨張率、熱伝導率、充填率等をより容易に調整することができる。
 本実施形態に係る樹脂組成物の熱膨張率は、40×10-6/℃以下であることが好ましく、35×10-6/℃以下であることがより好ましい。本実施形態に係る樹脂組成物の熱伝導率は、0.75W/m・K以上であることが好ましく、0.80W/m・K以上であることがより好ましい。本実施形態に係る樹脂組成物の誘電正接は、4.0×10-4以下であることが好ましく、3.5×10-4以下であることがより好ましい。なお、前記樹脂組成物の熱膨張率、熱伝導率及び誘電正接は、後述する方法により測定される値である。
 本実施形態に係る樹脂組成物は、低い熱膨張率、高い熱伝導率、及び低い誘電正接を示すため、特に高周波基板用の樹脂組成物として有用である。高周波基板としては、具体的にはフッ素基板、PPE基板、セラミックス基板等が挙げられる。
 以下、実施例により本発明の実施形態をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 CaCO(商品名:CWS-20、堺化学製、比表面積:20m/g)、Al(商品名:AEROXIDE AluC、日本アエロジル社製、比表面積:100m/g)、及び球状の非晶質SiO(商品名:AF-6C、鈴木油脂製、平均粒子径:4μm、平均円形度:0.95)を、表1に示される添加量で、それぞれ原料として用いた。これらの原料にエタノール及びアルミナビーズ(5mmφ)を加え、振動ミキサー(Resodyn社製、商品名:低周波共振音響ミキサーLab RAM II)で混合した。得られた混合物からアルミナビーズを取り除き、エタノールを乾燥させた。この混合物10gをアルミナ坩堝に入れ、室温から10℃/minで昇温させ、電気炉で加熱した。このとき、加熱温度は1200℃、加熱時間は4時間であった。加熱後自然放冷し、試料が冷却された後、メノウ乳鉢にて解砕して酸化物粉末を得た。該酸化物粉末を後述する方法により評価した。
 [実施例2、3及び7~9、並びに比較例1~5]
 原料の添加量、加熱時間及び加熱温度を表1又は表2に示した条件に変更した以外は、実施例1と同様の方法により酸化物粉末を調製し、評価した。
 [実施例4]
 原料SiOとして、球状の非晶質SiO(商品名:E-90C、鈴木油脂製、平均粒子径:19μm、平均円形度:0.95)を用い、加熱時間を表1に示した条件に変更した以外は、実施例1と同様の方法により酸化物粉末を調製し、評価した。
 [実施例5]
 原料SiOとして、球状の非晶質SiO(商品名:SFP-30M、デンカ製、平均粒子径:0.6μm、平均円形度:0.95)を使用した以外は、実施例1と同様の方法により酸化物粉末を調製し、評価した。
 [実施例6]
 原料SiOとして、球状の非晶質SiO(商品名:Sciqas、堺化学製、平均粒子径:0.1μm、平均円形度:1.00)を用い、加熱温度を表1に示した条件に変更した以外は、実施例1と同様の方法により酸化物粉末を調製し、評価した。
 [実施例10]
 原料SiOとして、球状の非晶質SiO(商品名:B-6C、鈴木油脂製、平均粒子径:4μm、平均円形度:0.95)を用い、加熱温度を表1に示した条件に変更した以外は、実施例1と同様の方法により酸化物粉末を調製し、評価した。
 [比較例6]
 原料SiOとして、球状の非晶質SiO(商品名:FB-40R、デンカ製、平均粒子径:40μm、平均円形度:0.95)を使用した以外は、実施例1と同様の方法により酸化物粉末を調製し、評価した。
 [比較例7]
 球状の非晶質SiO(鈴木油脂製、平均粒子径:4μm、平均円形度:0.95)を実施例1と同様の方法により評価した。
 [比較例8]
 球状の非晶質SiO(商品名:FB-5D、デンカ社製、平均粒子径:5μm)と、Al(商品名:AEROXIDE AluC、日本アエロジル社製、比表面積:100m/g)を、SiO:98.5質量部、Al:1.5質量部の比率で、混合機(日本アイリッヒ社製、商品名:EL-1)を用いて十分に混合した。得られた混合物を1300℃で2時間加熱して酸化物粉末を調製し、実施例1と同様の方法により評価した。
 各実施例、比較例で調製した酸化物粉末の各特性を、以下の方法で評価した。各評価結果を表1及び表2に示す。
 [結晶相の同定及び結晶相の含有量の測定]
 酸化物粉末に含まれる結晶相の同定及び結晶相の含有量の測定は、粉末X線回折測定/リートベルト法により行った。測定装置として、試料水平型多目的X線回折装置(リガク社製、商品名:RINT-UltimaIV)を用いた。測定は、X線源:CuKα、管電圧:40kV、管電流:40mA、スキャン速度:10.0°/min、2θスキャン範囲:10°~80°の条件で行った。実施例1の粉末のX線回折パターンを図1に示す。結晶相の定量分析には、リートベルト法ソフトウェア(MDI社製、商品名:統合粉末X線ソフトウェアJade+9.6)を使用した。各種結晶相の割合(質量%)は、NIST製X線回折用標準試料であるα-アルミナ(内標準物質)を含有量が50質量%(添加後の試料全量基準)となるように酸化物粉末に添加した試料をX線回折測定し、リートベルト解析により算出した。
 [Ca、Al及びSiの換算含有量並びに不純物(Li、Na及びK)含有量の測定]
 Ca、Al及びSiの、CaO、Al、SiOとしての換算含有量、並びに不純物(Li、Na及びK)含有量の測定は、誘導結合プラズマ発光分光分析により行った。分析装置としては、ICP発光分光分析装置(SPECTRO社製、商品名:CIROS-120)を用いた。Ca、Al及びSiの換算含有量の測定では、酸化物粉末0.01gを白金坩堝に量り取り、炭酸カリウム、炭酸ナトリウム、及びホウ酸を混合した融剤にて融解後、更に塩酸を加えて溶解することで測定溶液を調製した。また、不純物含有量の測定では、酸化物粉末0.1gを白金坩堝に量り取り、フッ酸及び硫酸を用い、200℃で加圧酸分解することにより測定溶液を調製した。不純物(Li、Na及びK)含有量については、表1及び表2ではLi、Na及びKの合計の含有量を示す。
 [不純物(ハロゲン)含有量の測定]
 不純物(ハロゲン)含有量の測定は、燃焼イオンクロマトグラフィーにより行った。分析装置としては、燃焼-イオンクロマトグラフ分析装置(燃焼部:三菱ケミカルアナリティク社製、商品名:AQF-2100H/測定部:ThermoFisher社製、商品名:ICS-1500)を用いた。ハロゲン(フッ素、塩素、臭素)含有量の測定では、試料0.1gをアルミナボートに秤量し、燃焼分解ユニット内に設置し、酸素を含む燃焼ガス気流中で燃焼させて、発生したガスを吸収液にて捕集した。吸収液にて捕集した各種ハロゲンイオンをイオンクロマトグラフィーにて分離、定量した。
 [平均円形度]
 酸化物粉末をカーボンテープで試料台に固定後、オスミウムコーティングを行い、走査型電子顕微鏡(日本電子社製、商品名:JSM-7001F SHL)で撮影した倍率500~5000倍、解像度2048×1356ピクセルの画像をパソコンに取り込んだ。この画像を、画像解析装置(日本ローパー社製、商品名:Image-Pro Premier Ver.9.3)を使用し、酸化物粒子の投影面積(S)と酸化物粒子の投影周囲長(L)を算出してから、下記式(1)より円形度を算出した。このようにして得られた任意の投影面積円相当径0.1μm以上の酸化物粒子100個の円形度を求め、その平均値を平均円形度とした。
   円形度=4πS/L   (1)
 [平均粒子径]
 レーザー回折式粒度分布測定装置(ベックマンコールター社製、商品名:LS 13 320)を用いて平均粒子径の測定を行った。ガラスビーカーに50cmの純水と、酸化物粉末0.1gとを入れ、超音波ホモジナイザー(BRANSON社製、商品名:SFX250)で1分間、分散処理を行った。分散処理を行った酸化物粉末の分散液を、レーザー回折式粒度分布測定装置にスポイトで一滴ずつ添加し、所定量添加してから30秒後に測定を行った。レーザー回折式粒度分布測定装置内のセンサで検出した酸化物粒子による回折/散乱光の光強度分布のデータから、粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。なお、ここでの%は体積%である。
 [樹脂組成物の熱膨張率]
 ビスフェノールF型液状エポキシ樹脂(三菱化学社製、商品名:JER807)25.6質量部、4、4’-ジアミノフェニルメタン(東京化成社製)6.4質量部を95℃で溶融させながら混合した。この混合物に酸化物粉末を63質量%になるように加え、遊星式撹拌機(シンキー社、商品名:あわとり練太郎AR-250、回転数2000rpm)にて混合した。予め加熱しておいたシリコーン製の型枠(3cm角×5mm厚)に得られた混合物を流し込み、80℃で20分間静置した。その後、真空加熱プレス機(井元製作所社製、商品名:IMC-1674-A型)で、80℃/1時間/1.5MPa、150℃/1時間/2.5MPa、200℃/0.5時間/5MPaの順でプレス加熱硬化した。硬化後のサンプルを測定用サンプルサイズに加工(4×4×15mm)し、TMA(ブルカー社製、商品名:TMA4000SA)にて熱膨張率を測定した。昇温条件は5℃/min、測定温度は-10℃~280℃、雰囲気は窒素雰囲気で測定し、得られたTMA測定チャートから0℃~100℃の熱膨張率を算出した。
 [樹脂組成物の熱伝導率]
 樹脂組成物の熱伝導率は、熱拡散率、比重、比熱を全て乗じて算出した。樹脂組成物の配合、硬化は熱膨張率の評価と同条件で実施した。熱拡散率は、試料を幅10mm×10mm×厚み1mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447 NanoFlash)を用いた。比重はアルキメデス法を用いて求めた。比熱は、示差走査熱量計(ティー・エイ・インスツルメント社製、商品名:Q2000)を用い、窒素雰囲気下、昇温速度10℃/分で室温~200℃まで昇温させて求めた。
 [樹脂組成物の誘電率、誘電正接]
 酸化物粉末の充填量が52質量%になるように、酸化物粉末及びポリエチレン粉末(住友精化社製、商品名:フローセンUF-20S)を計量し、Resodyn社製振動式ミキサーにて混合した(加速度60g、処理時間2分)。得られた混合粉末を所定体積分(厚みが約0.5mmになるように)計量し、直径3cmの金枠内に入れ、ナノインプリント装置(SCIVAX社製、商品名:X-300)にて140℃、5分、30000Nの条件でシート化し、評価試料とした。評価試料のシートの厚さは約0.5mmである。形状やサイズは測定器に搭載できれば評価結果に影響しないが、1~3cm角程度である。
 誘電特性の測定は、以下の方法により行った。36GHz空洞共振器(サムテック社製)をベクトルネットワークアナライザ(商品名:85107、キーサイトテクノロジー社製)に接続し、評価試料(1.5cm角、厚さ0.5mm)を共振器に設けられた直径10mmの穴をふさぐようセットし、共振周波数(f0)、無負荷Q値(Qu)を測定した。測定ごとに評価試料を回転させ、同様に測定を5回繰り返し、得られたf0、Quの平均をとって測定値とした。f0より誘電率、Quより誘電正接(tanδc)を解析ソフト(サムテック社製ソフトウェア)にて算出した。測定温度は20℃、湿度は60%RHであった。
 [総合評価]
 樹脂組成物の熱膨張率が40×10-6/℃以下、熱伝導率が0.75W/m・K以上、誘電正接が4.0×10-4以下、これら全てを満たす場合は「A」、2つ満たす場合は「B」、1つ又は全て満たさない場合は「C」、として評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示されるように、本発明の実施形態である実施例1~10の酸化物粉末を含有する樹脂組成物は、熱膨張率及び誘電正接が低く、熱伝導率が高いことが分かった。

Claims (10)

  1.  Ca、Al及びSiを含む酸化物粉末であって、
     前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、Ca、Al及びSiを含む高温型クリストバライトの結晶相を40質量%以上含み、
     前記酸化物粉末におけるCa、Al及びSiの含有量は、それぞれCaO、Al及びSiOの含有量として換算したとき、CaO:1~5モル%、Al:1~5モル%、SiO:90~98モル%(CaO、Al及びSiOの含有量の合計を100モル%とする)である、酸化物粉末。
  2.  前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、結晶相を60質量%以上含む、請求項1に記載の酸化物粉末。
  3.  前記酸化物粉末は、前記酸化物粉末全体の質量を基準として、Si又はSiと少なくともCaとAlのいずれか一方を含む低温型クリストバライトの結晶相を30質量%以下含む、請求項1又は2に記載の酸化物粉末。
  4.  前記酸化物粉末の平均粒子径が0.1~20μmである、請求項1~3のいずれか一項に記載の酸化物粉末。
  5.  前記酸化物粉末のハロゲンの含有量が、前記酸化物粉末全体の質量を基準として、0.1質量%以下である、請求項1~4のいずれか一項に記載の酸化物粉末。
  6.  前記酸化物粉末のLi、Na及びKの含有量の合計が、前記酸化物粉末全体の質量を基準として、500質量ppm未満である、請求項1~5のいずれか一項に記載の酸化物粉末。
  7.  請求項1~6のいずれか一項に記載の酸化物粉末の製造方法であって、
     比表面積が2m/g以上であるCa化合物、比表面積が2m/g以上であるAl化合物及びSiOを混合して混合物を得る工程と、
     前記混合物を1000~1300℃にて加熱する工程と、
    を含む、酸化物粉末の製造方法。
  8.  請求項1~6のいずれか一項に記載の酸化物粉末と、樹脂とを含む樹脂組成物。
  9.  前記樹脂組成物中の酸化物粉末の含有量が2~89質量%である、請求項8に記載の樹脂組成物。
  10.  高周波基板用の樹脂組成物である、請求項8又は9に記載の樹脂組成物。
PCT/JP2021/034745 2020-09-25 2021-09-22 酸化物粉末及びその製造方法、並びに樹脂組成物 WO2022065349A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180065775.5A CN116323486A (zh) 2020-09-25 2021-09-22 氧化物粉末及其制造方法以及树脂组合物
KR1020237005198A KR20230070445A (ko) 2020-09-25 2021-09-22 산화물 분말 및 그 제조 방법, 그리고 수지 조성물
US18/026,889 US20230332032A1 (en) 2020-09-25 2021-09-22 Oxide powder and method for producing same, and resin composition
JP2022552022A JPWO2022065349A1 (ja) 2020-09-25 2021-09-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020160393 2020-09-25
JP2020-160393 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065349A1 true WO2022065349A1 (ja) 2022-03-31

Family

ID=80845517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034745 WO2022065349A1 (ja) 2020-09-25 2021-09-22 酸化物粉末及びその製造方法、並びに樹脂組成物

Country Status (6)

Country Link
US (1) US20230332032A1 (ja)
JP (1) JPWO2022065349A1 (ja)
KR (1) KR20230070445A (ja)
CN (1) CN116323486A (ja)
TW (1) TW202225119A (ja)
WO (1) WO2022065349A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292440A (ja) * 1990-10-22 1992-10-16 E I Du Pont De Nemours & Co 化学的に安定化されたクリストバライト
JP2005163006A (ja) * 2003-12-04 2005-06-23 Chung Yuan Christian Univ 中孔性シリカ/フッ素化ポリマー複合材料
JP2007161518A (ja) * 2005-12-13 2007-06-28 Sumitomo Osaka Cement Co Ltd 低誘電率フィラーと、これを用いた低誘電率組成物および低誘電率膜
JP2019019222A (ja) * 2017-07-18 2019-02-07 デンカ株式会社 球状シリカフィラー用粉末及びその製造方法
WO2019177112A1 (ja) * 2018-03-16 2019-09-19 デンカ株式会社 粉末及び混合粉末

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538719A (en) 1978-09-08 1980-03-18 Sony Corp Vtr
JPS58138740A (ja) 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk 樹脂組成物
JP2002154818A (ja) 2000-11-09 2002-05-28 Kawai Sekkai Kogyo Kk β−クリストバライト及びその製造方法並びに非酸化物系セラミックス材料
CN110636989B (zh) 2017-04-05 2023-08-29 日铁化学材料株式会社 球状结晶性二氧化硅粒子及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292440A (ja) * 1990-10-22 1992-10-16 E I Du Pont De Nemours & Co 化学的に安定化されたクリストバライト
JP2005163006A (ja) * 2003-12-04 2005-06-23 Chung Yuan Christian Univ 中孔性シリカ/フッ素化ポリマー複合材料
JP2007161518A (ja) * 2005-12-13 2007-06-28 Sumitomo Osaka Cement Co Ltd 低誘電率フィラーと、これを用いた低誘電率組成物および低誘電率膜
JP2019019222A (ja) * 2017-07-18 2019-02-07 デンカ株式会社 球状シリカフィラー用粉末及びその製造方法
WO2019177112A1 (ja) * 2018-03-16 2019-09-19 デンカ株式会社 粉末及び混合粉末

Also Published As

Publication number Publication date
TW202225119A (zh) 2022-07-01
US20230332032A1 (en) 2023-10-19
CN116323486A (zh) 2023-06-23
JPWO2022065349A1 (ja) 2022-03-31
KR20230070445A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
JP6934344B2 (ja) 球状シリカフィラー用粉末及びその製造方法
KR102653986B1 (ko) 분말 및 혼합 분말
WO2022065349A1 (ja) 酸化物粉末及びその製造方法、並びに樹脂組成物
WO2022137949A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2023286565A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
CN116648429A (zh) 氧化物复合粒子及其制造方法、以及树脂组合物
WO2023286566A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2022249941A1 (ja) 無機酸化物粉末及びその製造方法、並びに樹脂組成物
WO2022249940A1 (ja) 無機酸化物粉末及びその製造方法、並びに樹脂組成物
WO2023022215A1 (ja) 球状結晶質シリカ粉末及びその製造方法
JP7473725B1 (ja) シリカ粉末
JP7473726B1 (ja) シリカ粉末
WO2023189965A1 (ja) 球状チタン酸カルシウム粉末及びそれを用いた樹脂組成物
WO2023157574A1 (ja) 粉末及び粉末の製造方法
CN116829510A (zh) 球状氧化铝粒子及其制造方法以及树脂组合物
WO2023243572A1 (ja) 球状シリカ粉末の製造方法
KR20240027772A (ko) 분말
JP2023146761A (ja) 球状アルミナ粒子、その製造方法、球状アルミナ粒子原料の表面処理方法、並びに、当該球状アルミナ粒子を含む樹脂複合組成物、及び樹脂複合組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872478

Country of ref document: EP

Kind code of ref document: A1