WO2024116958A1 - アルミナ粒子およびそれを用いた樹脂組成物 - Google Patents

アルミナ粒子およびそれを用いた樹脂組成物 Download PDF

Info

Publication number
WO2024116958A1
WO2024116958A1 PCT/JP2023/041741 JP2023041741W WO2024116958A1 WO 2024116958 A1 WO2024116958 A1 WO 2024116958A1 JP 2023041741 W JP2023041741 W JP 2023041741W WO 2024116958 A1 WO2024116958 A1 WO 2024116958A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina particles
alumina
particles
particle
less
Prior art date
Application number
PCT/JP2023/041741
Other languages
English (en)
French (fr)
Inventor
邦彦 中田
上原 みちる 大門
一郎 有瀬
友宏 伊藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024116958A1 publication Critical patent/WO2024116958A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • This disclosure relates to alumina particles and resin compositions using the same.
  • Heat generated by passing current through an electronic component is dissipated via a heat sink.
  • a technique is known in which a heat dissipation material is filled between the electronic component and the heat sink.
  • One type of heat dissipation member is a resin composition containing a resin and inorganic particles, and it is known that alumina particles can be used as the inorganic particles (for example, Patent Documents 1 to 3).
  • Patent Document 1 discloses alumina particles that have an ⁇ -phase content of 40% or less, an average circularity of 0.95 or more, and an average particle size of 100 ⁇ m or less as alumina particles that can improve the fluidity when highly filled in resin.
  • the method disclosed for producing the alumina particles is to melt pulverized electrically fused alumina using a flame fusion method, and then rapidly cool it by spraying water into a furnace.
  • Patent Document 2 discloses alumina particles that have an average sphericity of 0.93 or more and an alumina alpha ratio of 95% or more as alumina particles that can improve the viscosity and fluidity of a composition when blended with a resin or the like.
  • a method for producing alumina particles it discloses a method in which metallic aluminum powder, alumina powder or a mixture of both is used as a raw material, which is melted by a flame fusion method, cooled and solidified, and then reheated.
  • Patent Document 3 discloses a method for crushing fused alumina using a jet mill and removing the edges of the fused alumina particles to obtain rounded fused alumina particles with an average particle size of 5 to 4,000 ⁇ m.
  • Patent Documents 1 and 2 are not studied for further improving the thermal diffusivity of the resin composition.
  • the alumina particles of Patent Document 3 when mixed with a resin to form a resin composition, are not sufficient in terms of thermal diffusivity.
  • one embodiment of the present invention aims to provide alumina particles that are used as a filler for a resin composition and that can improve the thermal diffusivity of the resin composition more than conventionally. Furthermore, another embodiment of the present invention aims to provide a resin composition that uses the alumina particles.
  • Aspect 1 of the present invention is The alumina particles have a particle diameter D50 of 50% of the cumulative number from the fine particle side of the cumulative particle size distribution exceeding 200 ⁇ m, a circularity of 0.90 or more, and an alpha conversion rate of 90.0% or more.
  • Aspect 2 of the present invention is The alumina particles according to claim 1, wherein the angle of repose is less than 32°.
  • Aspect 3 of the present invention is The alumina particles according to aspect 1 or 2, having an apparent density of 3.75 g/ cm3 or more and 3.96 g/ cm3 or less.
  • Aspect 4 of the present invention is The alumina particles according to any one of Aspects 1 to 3, having a tap density of 1.70 g/ cm3 or more.
  • Aspect 5 of the present invention is The alumina particles according to any one of aspects 1 to 4, wherein a difference between a particle diameter D90 of 90% of the particles in the cumulative particle size distribution from the fine particle side and a particle diameter D10 of 10% of the particles in the cumulative particle size distribution from the fine particle side is less than 124 ⁇ m.
  • Aspect 6 of the present invention is The alumina particles according to any one of aspects 1 to 5, comprising first alumina particles having a "Threshold” value, which is a brightness parameter when a stereomicroscope image is binarized using image analysis software (ImageJ), of 100 or more and less than 200.
  • a "Threshold" value which is a brightness parameter when a stereomicroscope image is binarized using image analysis software (ImageJ), of 100 or more and less than 200.
  • the first alumina particles are the alumina particles according to claim 6, having an average Feret diameter of more than 180 ⁇ m.
  • An eighth aspect of the present invention is the alumina particles according to the sixth or seventh aspect, wherein the first alumina particles have a ratio of an average value of a minimum Feret diameter to an average value of Feret diameters of 0.70 or more.
  • Aspect 9 of the present invention is The first alumina particles are the alumina particles according to any one of Aspects 6 to 8, having an average breaking strength of more than 25.9 MPa in a particle compression test.
  • Aspect 10 of the present invention is The alumina particles according to any one of aspects 1 to 9, comprising second alumina particles having a "Threshold" value, which is a brightness parameter when a stereomicroscope image is binarized using image analysis software (ImageJ), of 200 or more and 255 or less.
  • a “Threshold” value which is a brightness parameter when a stereomicroscope image is binarized using image analysis software (ImageJ), of 200 or more and 255 or less.
  • the second alumina particles are the alumina particles according to claim 10, having an average Feret diameter of more than 180 ⁇ m.
  • Aspect 12 of the present invention is The second alumina particles are the alumina particles according to aspect 10 or 11, wherein a ratio of an average value of a minimum Feret diameter to an average value of a Feret diameter is 0.70 or more.
  • Aspect 13 of the present invention is an alumina particle according to any one of aspects 10 to 12, in which the second alumina particle has an average strain at break of less than 0.074 in a particle compression test.
  • Aspect 14 of the present invention is A resin composition comprising a resin and the alumina particles according to any one of Aspects 1 to 13.
  • a resin composition with high thermal diffusivity can be obtained.
  • FIG. 1 is an example of a plot of strain-strength (MPa) obtained by carrying out a compression test on particles in accordance with JIS R1639-5.
  • FIG. 1 is a schematic diagram of an apparatus for measuring the thermal diffusivity of a single alumina particle.
  • the alumina particles according to the embodiment of the present invention are intended to be mixed with a resin as a filler for a resin composition.
  • the alumina particles have a particle diameter D50 of 200 ⁇ m or more at the cumulative 50% of the number from the fine particle side of the cumulative particle size distribution, a circularity of 0.90 or more, and an alpha-conversion rate of 90.0% or more.
  • D50 particle diameter of 200 ⁇ m or more at the cumulative 50% of the number from the fine particle side of the cumulative particle size distribution
  • a circularity of 0.90 or more a circularity of 0.90 or more
  • an alpha-conversion rate 90.0% or more.
  • the cumulative 50% particle diameter D50 (hereinafter simply referred to as "D50") from the fine particle side of the cumulative particle size distribution is more than 200 ⁇ m.
  • D50 cumulative 50% particle diameter from the fine particle side of the cumulative particle size distribution
  • the sum of the surface areas of the alumina particles per unit mass (total surface area) will be small. Therefore, when a resin composition is produced by mixing alumina particles and resin in a specified ratio, the sum of the areas of the interfaces between the alumina particles and the resin (total area) can be reduced by using alumina particles with a large average particle size. The interface between the alumina particles and the resin scatters propagating phonons, so it is believed that the thermal diffusivity can be improved by reducing the total area of the interfaces.
  • the alumina particles according to the embodiment of the present invention have a D50 of more than 200 ⁇ m, and therefore the total interface area when mixed with a resin in a predetermined ratio can be made smaller than when the D50 is 200 ⁇ m or less, making it possible to produce a resin composition with high thermal diffusivity.
  • the D50 of the alumina particles is preferably 205 ⁇ m or more, more preferably 210 ⁇ m or more.
  • the upper limit is not particularly limited, but from the viewpoint of improving the kneadability with resin and the application to a filler for a resin composition, it is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, even more preferably 600 ⁇ m or less, and particularly preferably 500 ⁇ m or less.
  • the D50 of alumina particles is determined by measuring the particle size distribution of alumina particles based on the principle of dynamic image analysis in accordance with ISO 13322-2, and using the cumulative particle size distribution obtained from the measurement results, the particle size (D50) of the cumulative 50% of the number of particles from the finest side is calculated.
  • a CAMSIZER manufactured by VERDER Scientific
  • the samples are sequentially placed into the device, and the particles passing in front of the camera are measured while the aggregated particles are dispersed with dry air.
  • the alumina particles are suitable for use as a filler for the resin composition of electronic parts.
  • the circularity is more than 0.91.
  • alumina particles are generally hard particles, it is difficult to obtain alumina particles with a circularity of 0.90 or more by merely colliding alumina particles with low circularity with each other or crushing alumina particles with low circularity.
  • the flame fusion method described in Patent Documents 1 and 2 may provide insufficient energy (amount of heat).
  • the present inventors found that by adopting a high-frequency thermal plasma method with higher energy than the flame fusion method, it is possible to achieve a circularity of 0.90 or more while achieving a D50 of alumina particles of more than 200 ⁇ m and an alpha-phase ratio of 90.0% or more.
  • the roundness of the alumina particles is measured by a measuring device based on the principle of dynamic image analysis in accordance with ISO 13322-2 (for example, CAMSIZER X2 (manufactured by VERDER Scientific)).
  • the thermal conductivity of the alumina particles can be increased by increasing the content of ⁇ -alumina in the alumina particles.
  • the alumina particles according to the embodiment of the present invention have a high ⁇ -alumina content ratio, which is an index of the content of ⁇ -alumina, of 90.0% or more. Therefore, alumina particles with high thermal conductivity can be obtained.
  • the alpha conversion rate of the alumina particles is preferably 92.0% or more, more preferably 95.0% or more, and most preferably 100.0%.
  • the "alpha conversion rate” refers to the content (volume %) of alpha alumina relative to the total alumina contained in the alumina particles.
  • Alpha conversion rate I / ( I + I ) ⁇ 100 (%) (1)
  • the alumina particles according to the embodiment of the present invention have an alpha conversion rate of 100%.
  • the alumina particles may contain alumina other than alpha-alumina (e.g., ⁇ -alumina, ⁇ -alumina, etc.) in an amount of, for example, 10.0% or less, without interfering with the object of the present invention.
  • the alumina other than ⁇ -alumina may be contained in any form.
  • both ⁇ -alumina and alumina other than ⁇ -alumina may be contained inside one alumina particle.
  • a certain alumina particle may be composed only of ⁇ -alumina, and another alumina particle may be composed only of alumina other than ⁇ -alumina, and these alumina particles may be mixed together.
  • the alumina particles preferably have an angle of repose of less than 32°. This improves the fluidity of the alumina particles, makes them easier to knead with the resin, and makes it easier to obtain a resin composition with high thermal diffusivity.
  • the angle of repose is more preferably 30° or less.
  • the angle of repose is preferably more than 14°, more preferably 18° or more.
  • the angle of repose of the alumina particles can be adjusted by a known method, for example, by adjusting the specific surface area, particle size distribution and/or circularity of the alumina particles.
  • the angle of repose of alumina particles is measured in accordance with JIS R 9301-2-2:1999.
  • the ambient temperature during angle of repose measurement is 23°C and humidity is 40%.
  • the apparent density of the alumina particles is preferably 3.75 g/ cm3 or more, which results in alumina particles with a small amount of internal voids, i.e., alumina particles with high thermal conductivity.
  • the apparent density of the alumina particles is preferably 3.96 g/ cm3 or less, and more preferably 3.95 g/ cm3 or less.
  • the apparent density of the alumina particles is measured by the pycnometer method in accordance with JIS R 1620:1995. Measurements should be taken at least five times. For the measurement, for example, an Accupyc 1330 (Micromeritics) can be used.
  • a high tap density of alumina particles means that the alumina particles can be densely packed. If a resin composition is formed using alumina particles with a high tap density, it is expected that a larger amount of alumina particles can be mixed and the fluidity of the composite after mixing can be improved. In addition, if the tap density is high, the alumina particles are less likely to scatter and are easier to handle.
  • the tap density of the alumina particles is preferably 1.70 g/cm 3 or more, more preferably 1.80 g/cm 3 or more, even more preferably more than 2.24 g/cm 3 , and even more preferably 2.33 g/cm 3 or more.
  • the tap density of alumina particles is measured in accordance with JIS Z 2512:2012.
  • the sample volume used for tap density measurement is 20 mL.
  • the particle size distribution of the alumina particles is preferably sharp.
  • the sharper the particle size distribution of the alumina particles the higher the capture rate (recovery rate) of the particles after melting and manufacturing the alumina particles, and the better the productivity.
  • alumina particles with a sharp particle size distribution are preferable because they are easy to use as a filler for a resin composition, and the selectivity and degree of freedom when mixed with other particles are increased.
  • the difference between the particle size D90 of the cumulative 90% of the number from the fine particle side of the cumulative particle size distribution and the particle size D10 of the cumulative 10% of the number from the fine particle side of the cumulative particle size distribution is preferably less than 124 ⁇ m, more preferably less than 108 ⁇ m, and even more preferably 100 ⁇ m or less.
  • the particle size distribution of the alumina particles is somewhat broad, the filling property is improved by small particles entering the gaps between the large particles, and more alumina particles can be kneaded into the resin, which can contribute to improving the thermal diffusivity of the resin composition. Therefore, the difference between D90 and D10 is preferably more than 45 ⁇ m, and more preferably 50 ⁇ m or more.
  • D90/D50 particle size distribution: D90/D50
  • D90/D50 is preferably less than 1.28, and more preferably less than 1.21.
  • the lower limit of D90/D50 is not particularly limited, but it is preferably more than 1.15 from the viewpoint of manufacturing stability.
  • the D10 and D90 of alumina particles can be measured using the same method and equipment as the D50 measurement described above.
  • the particle size distribution of alumina particles is measured based on the principle of dynamic image analysis in accordance with ISO 13322-2, and the cumulative particle size distribution obtained from the measurement results is used to determine the particle size at 10% of the total number of particles (D10) and at 90% of the total number (D90) from the finest particle side.
  • a CAMSIZER manufactured by VERDER Scientific
  • the samples are sequentially placed into the device, and the particles passing in front of the camera are measured while the aggregated particles are dispersed using dry air.
  • an alumina particle with a small value of L2/L1 can be said to have a low content of boundary lines.
  • (L2/L1) (%) is less than 112.8%, and more preferably 100.0% or less.
  • the value of L2/L1 is more than 0%, more preferably more than 18.3%, and even more preferably 20.0% or more. This can improve the kneadability with resin, and makes it easier to improve the thermal diffusivity when used as a filler for a resin composition.
  • total length of the boundary lines L2 is the sum of the boundary lines contained within the interior of the alumina particle, and does not include the outer edge of the alumina particle.
  • Alumina particles with a large L4/L1 value are preferred because they are less likely to settle when mixed with resin and are easier to disperse.
  • the L4/L1 value is greater than 16.6%, and more preferably 20.0% or greater.
  • the alumina particles according to a preferred embodiment of the present invention include alumina particles (hereinafter also referred to as "first alumina particles") having a brightness parameter "Threshold" value of 100 or more and less than 200 when a stereomicroscope image is binarized by image analysis software (ImageJ).
  • first alumina particles alumina particles having a brightness parameter "Threshold" value of 100 or more and less than 200 when a stereomicroscope image is binarized by image analysis software (ImageJ).
  • the stereomicroscope image is obtained by installing a stereomicroscope (SZ-X7 manufactured by OLYMPUS) under an environment of illuminance of 270 lx, connecting an objective lens (DF PLAPO 1X manufactured by OLYMPUS), an LED light source (LCD-21 manufactured by Hayashi Recipe), a camera (DP-22 manufactured by OLYMPUS), and a control box (DP2-SAL manufactured by OLYMPUS) to the stereomicroscope, setting the scale of the LED light source to 5, and using the control box, setting the shooting conditions to exposure compensation -3, AE mode: Auto, and white balance: Auto.
  • a stereomicroscope SZ-X7 manufactured by OLYMPUS
  • the first alumina particles having the above-mentioned "Threshold" value can be observed as semi-transparent particles in a stereomicroscope image, have a small content of boundary lines that can scatter light, and can be particles with a relatively small L1/L2. Therefore, it is thought that the first alumina particles can improve the thermal diffusivity of the particles themselves due to the small L1/L2, etc.
  • the first alumina particles preferably have an average Feret diameter of more than 180 ⁇ m, which allows the total area of the interface to be reduced when mixed with a resin at a predetermined ratio, thereby enabling the production of a resin composition with high thermal diffusivity.
  • the average value of the Feret diameter of the first alumina particles is more preferably 190 ⁇ m or more, and even more preferably 200 ⁇ m or more.
  • the upper limit is not particularly limited, but from the viewpoint of improving the kneadability with the resin and from the viewpoint of application to a filler for a resin composition, it is preferably 950 ⁇ m or less, more preferably 750 ⁇ m or less, even more preferably 550 ⁇ m or less, and particularly preferably 450 ⁇ m or less.
  • the "Feret diameter” is the horizontal tangential diameter of the particle in a stereomicroscope image of the particle.
  • the "average value of the Feret diameter of the first alumina particles” is the arithmetic average value of the Feret diameter of each of the first alumina particles, which is obtained by selecting any 50 or more first alumina particles from the stereomicroscope image taken under the above conditions.
  • the ratio of the average value of the minimum Feret diameter to the average value of the Feret diameter of the first alumina particles is preferably 0.70 or more. This allows the total area of the interface to be reduced when mixed with a resin at a predetermined ratio, and allows the production of a resin composition with a high thermal diffusivity.
  • the ratio of the average value of the minimum Feret diameter to the average value of the Feret diameter of the first alumina particles is more preferably 0.75 or more, and even more preferably 0.80 or more. There is no particular upper limit, but from the viewpoint of improving the kneadability with the resin and from the viewpoint of application to a filler for a resin composition, it is preferably 1.00 or less, and more preferably 0.95 or less.
  • the “minimum Feret diameter” is the shortest distance between any two points on the outer periphery of a particle in a stereomicroscope image of the particle.
  • the "average value of the minimum Feret diameter of the first alumina particles” is determined by selecting the same first alumina particles as those used to determine the "average value of the Feret diameter of the first alumina particles” from the stereomicroscope image taken under the above conditions, determining the minimum Feret diameter of each first alumina particle, and taking the arithmetic average value of the minimum Feret diameters.
  • the first alumina particles preferably have an average breaking strength of more than 25.9 MPa in a particle compression test. This makes the particles less susceptible to breaking, resulting in a resin composition with high thermal diffusivity.
  • the breaking strength is more preferably 50.0 MPa or more, even more preferably 75.0 MPa or more, and even more preferably 100.0 MPa or more. There is no particular upper limit to the breaking strength, but from the viewpoint of productivity it may be 500 MPa or less, or 300 MPa or less.
  • Strength [MPa] 2.48 ⁇ test force [N] / ( ⁇ ⁇ D 2 ) (3)
  • D [ ⁇ m] is the average value of the major axis and minor axis of the test particle.
  • the major axis and minor axis can be measured by observation with a stereomicroscope.
  • the breaking strength s 1 (MPa) at the breaking point P 1 of the plot is determined, and the arithmetic average value thereof is regarded as the average breaking strength of the first alumina particles.
  • the coefficient of variation CV of the fracture strength (i.e., the ratio of the standard deviation to the arithmetic mean value) is preferably 50% or less. This reduces the variation in strength, resulting in a resin composition with high thermal diffusivity. More preferably, it is 40% or less. There is no particular lower limit to the coefficient of variation, but from the viewpoint of productivity, it may be 1% or more, or 5% or more.
  • the average value of the strain at the time of fracture of the first alumina particles in a particle compression test is not particularly limited, but may be, for example, greater than 0.050, greater than 0.060, or 0.074 or greater.
  • the upper limit of the strain is not particularly limited, but may be 0.200 or less from the viewpoint of productivity.
  • the strain at the time of fracture of the first alumina particles is measured as follows. First, a compression test of particles is carried out in accordance with JIS R1639-5 to obtain a plot of strain-strength (MPa) as shown in FIG. 1, when there is one region with a constant slope, the minimum strain at which the strain exceeds 0 and the slope is constant is taken as the breaking point P1 . When there are multiple regions with a constant slope, the starting point of the region where the difference in strain between the end point and the starting point of the region is the largest is taken as the breaking point P1 . The strain d1 at the breaking point P1 is taken as the strain at the time of breaking of the first alumina particle. The strain at fracture is determined from the plot for any five or more first alumina particles, and the arithmetic average value thereof is regarded as the average value of the strain at fracture of the first alumina particles.
  • the coefficient of variation CV of the strain at break (i.e., the ratio of the standard deviation to the arithmetic mean value) is not particularly limited and may be 50% or less, or 40% or less.
  • the lower limit of the coefficient of variation is not particularly limited, but may be 1% or more, or 5% or more from the viewpoint of productivity.
  • the coefficient of variation CV (i.e., the ratio of the standard deviation to the arithmetic mean value) of the area of the first alumina particles in the stereomicroscope image is preferably 70% or less. This improves the fluidity of the alumina particles, making them easier to knead with the resin, and as a result, a resin composition with high thermal diffusivity is obtained.
  • the lower limit of the coefficient of variation is not particularly limited, but from the viewpoint of productivity, it may be more than 45%, more than 50%, or 51.5% or more.
  • the "average area of the first alumina particles” is determined by arbitrarily selecting 50 or more first alumina particles from the stereomicroscope image taken under the above conditions, determining the area of each first alumina particle, and using the arithmetic mean value, and the standard deviation is used as the "standard deviation of the area of the first alumina particles.”
  • the first alumina particles can have a thermal diffusivity of more than 3.83 ⁇ 10 ⁇ 6 m 2 /s. This makes it easier to obtain a resin composition having a high thermal diffusivity.
  • the thermal diffusivity is preferably 5.00 ⁇ 10 ⁇ 6 m 2 /s or more, more preferably 1.00 ⁇ 10 ⁇ 5 m 2 /s or more.
  • the upper limit of the thermal diffusivity is not particularly limited, but may be 1.00 ⁇ 10 ⁇ 3 m 2 /s or less, or 1.00 ⁇ 10 ⁇ 4 m 2 /s or less, from the viewpoint of productivity.
  • the thermal diffusivity of the first alumina particles can be measured by applying a temperature wave thermal analysis method (TWA method) to a microscale measurement.
  • TWA method temperature wave thermal analysis method
  • the alumina particles according to another preferred embodiment of the present invention include alumina particles (hereinafter also referred to as "second alumina particles") having a brightness parameter "Threshold" value of 200 or more and 255 or less when a stereomicroscope image is binarized by image analysis software (ImageJ).
  • second alumina particles alumina particles having a brightness parameter "Threshold" value of 200 or more and 255 or less when a stereomicroscope image is binarized by image analysis software (ImageJ).
  • the stereomicroscope image is obtained by installing a stereomicroscope (SZ-X7 manufactured by OLYMPUS) under an environment of illuminance of 270 lx, connecting an objective lens (DF PLAPO 1X manufactured by OLYMPUS), an LED light source (LCD-21 manufactured by Hayashi Recipe), a camera (DP-22 manufactured by OLYMPUS), and a control box (DP2-SAL manufactured by OLYMPUS) to the stereomicroscope, setting the scale of the LED light source to 5, and using the control box, setting the shooting conditions to exposure compensation -3, AE mode: Auto, and white balance: Auto.
  • SZ-X7 manufactured by OLYMPUS stereomicroscope
  • an objective lens DF PLAPO 1X manufactured by OLYMPUS
  • an LED light source LCD-21 manufactured by Hayashi Recipe
  • DP-22 manufactured by OLYMPUS DP-22 manufactured by OLYMPUS
  • DP2-SAL manufactured by OLYMPUS DP2-SAL manufactured by OLYMPUS
  • the second alumina particles By including the second alumina particles, the kneadability with resin can be improved, and the thermal diffusivity can be easily improved when used as a filler for a resin composition.
  • One of the reasons for this is considered to be as follows.
  • the second alumina particles having the above "Threshold" value can be observed as white particles in a stereomicroscope image, and can be particles with a large content of boundary lines that can scatter light and a relatively large L1/L2. Therefore, it is considered that the second alumina particles can improve the kneadability with resin due to the large L1/L2, etc.
  • the second alumina particles preferably have an average Feret diameter of more than 180 ⁇ m.
  • the average value of the Feret diameter of the second alumina particles is more preferably 190 ⁇ m or more, and even more preferably 200 ⁇ m or more.
  • the upper limit is not particularly limited, but from the viewpoint of improving the kneadability with the resin and from the viewpoint of application to a filler for a resin composition, it is preferably 950 ⁇ m or less, more preferably 750 ⁇ m or less, even more preferably 550 ⁇ m or less, and particularly preferably 450 ⁇ m or less.
  • the "average value of the Feret diameter of the second alumina particles” is the arithmetic average value of the Feret diameter of each of the second alumina particles selected from the stereomicroscope image taken under the above conditions and the Feret diameter of each of the second alumina particles.
  • the ratio of the average value of the minimum Feret diameter to the average value of the Feret diameter of the second alumina particles is preferably 0.70 or more. This allows the total area of the interface to be reduced when mixed with a resin at a predetermined ratio, and allows the production of a resin composition with a high thermal diffusivity.
  • the ratio of the average value of the minimum Feret diameter to the average value of the maximum Feret diameter of the second particles is more preferably 0.75 or more, even more preferably 0.80 or more, and even more preferably 0.85 or more.
  • the "average value of the minimum Feret diameter of the second alumina particles" is determined by selecting the same second alumina particles as those used to determine the "average value of the Feret diameter of the second alumina particles" from the stereomicroscope image taken under the above conditions, determining the minimum Feret diameter of each second alumina particle, and taking the arithmetic average value.
  • the average value of the strain at the time of fracture of the second alumina particles in a particle compression test is preferably less than 0.074. This allows the variance of the particle area to be reduced, and as a result, a resin composition having a high thermal diffusivity is more easily obtained.
  • the average value of the strain is more preferably 0.060 or less, and even more preferably 0.050 or less. There is no particular lower limit to the average value of the strain, but from the viewpoint of productivity, it may be 0.005 or more, or may be 0.010 or more.
  • the average value of the strain at the time of breaking of the second alumina particles is measured as follows. A particle compression test is carried out on any five or more second alumina particles in accordance with JIS R1639-5 to obtain a plot of strain-strength (MPa) as shown in Fig. 1. The strain d1 at break is obtained from each plot, and the arithmetic average value thereof is regarded as the average value of the strain at break of the second alumina particles.
  • the coefficient of variation CV of the strain at break (i.e., the ratio of the standard deviation to the arithmetic mean value) is not particularly limited and may be 50% or less, or 40% or less.
  • the lower limit of the coefficient of variation is not particularly limited, but may be 1% or more, or 5% or more from the viewpoint of productivity.
  • the second alumina particles are not particularly limited in the average value of the breaking strength in a particle compression test, but may be, for example, less than 100.0 MPa, less than 75.0 MPa, less than 50.0 MPa, or 25.9 MPa or less. There is no particular lower limit to the average value of the breaking strength, but from the viewpoint of productivity, it may be 5.0 MPa or more, or 10.0 MPa or more.
  • the average value of the breaking strength of the second alumina particles is measured as follows. A particle compression test is carried out on any five or more second alumina particles in accordance with JIS R1639-5 to obtain a strain-strength (MPa) plot as shown in Fig. 1. The breaking strength s1 (MPa) is calculated from each plot, and the arithmetic mean value thereof is regarded as the average breaking strength of the second alumina particles.
  • the coefficient of variation CV of the fracture strength (i.e., the ratio of the standard deviation to the arithmetic mean value) is preferably 50% or less. This reduces the variation in strength, resulting in a resin composition with high thermal diffusivity. More preferably, it is 40% or less. There is no particular lower limit to the coefficient of variation, but from the viewpoint of productivity, it may be 1% or more, or 5% or more.
  • the second alumina particles preferably have a thermal diffusivity of more than 1.05 ⁇ 10 ⁇ 6 m 2 /s. This makes it easier to obtain a resin composition having a high thermal diffusivity.
  • the upper limit of the thermal diffusivity is not particularly limited, but may be less than 1.00 ⁇ 10 ⁇ 5 m 2 /s, less than 5.00 ⁇ 10 ⁇ 6 m 2 /s, or 3.83 ⁇ 10 ⁇ 6 m 2 /s from the viewpoint of productivity.
  • the thermal diffusivity of the second alumina particles can be measured by applying a temperature wave thermal analysis method (TWA method) to microscale measurement.
  • TWA method temperature wave thermal analysis method
  • the second alumina particles can reduce the variance of the particle area, and specifically, the coefficient of variation CV (i.e., the ratio of the standard deviation to the arithmetic mean value) of the area of the second alumina particles in the stereomicroscope image can be made less than 51.5%. This improves the fluidity of the alumina particles, making them easier to knead with the resin, and as a result, a resin composition with high thermal diffusivity is obtained. More preferably, it is 50% or less, and even more preferably, it is 45% or less. There is no particular lower limit to the coefficient of variation, but from the viewpoint of productivity, it may be 5% or more, or 10% or more.
  • the "average area of the second alumina particles" is determined by arbitrarily selecting 50 or more second alumina particles from the stereomicroscope image taken under the above conditions, determining the area of each second alumina particle, and using the arithmetic mean value, and the standard deviation is used as the "standard deviation of the area of the second alumina particles.”
  • the alumina particles include both the first alumina particles and the second alumina particles. This makes it easier to obtain a resin composition with a higher thermal diffusivity.
  • the area ratio of the first alumina particles to the total of the first alumina particles and the second alumina particles is preferably 1 area% to 99 area%, more preferably 50 area% to 99 area%, even more preferably 60 area% to 95 area%, and even more preferably 70 area% to 90 area%.
  • the area ratio of the second alumina particles to the total of the first alumina particles and the second alumina particles is preferably 1 area% to 99 area%, more preferably 1 area% to 50 area%, even more preferably 5 area% to 40 area%, and even more preferably 10 area% to 30 area%.
  • the raw material for the alumina particles is alumina raw material particles containing single crystal ⁇ -alumina and having a particle diameter D50 of 200 ⁇ m or more for the cumulative 50% of the number from the fine particle side of the cumulative particle size distribution.
  • the alumina raw material particles are then melted and spheroidized by a high-frequency thermal plasma method to produce alumina particles.As a result, alumina particles having a D50 of 200 ⁇ m or more, a circularity of 0.90 or more, and an alpha conversion rate of 90.0% or more are obtained.
  • the obtained alumina particles may contain many grain boundaries and internal voids.
  • the obtained alumina particles may contain many grain boundaries and internal voids.
  • by using ungranulated single crystal ⁇ -alumina itself as the alumina raw material particles it is possible to obtain high-density alumina particles with few grain boundaries and internal voids (or no grain boundaries and no internal voids).
  • the particle size of the alumina raw material particles used, the power and atmosphere for generating plasma (plasma flame), etc. can be appropriately controlled. Note that a known high-frequency thermal plasma device can be used.
  • alumina raw material particles with a D50 of more than 200 ⁇ m for example, the particle size of the alumina raw material particles and various conditions in the high-frequency thermal plasma method are appropriately controlled. It is preferable to use alumina raw material particles with a D50 of 210 ⁇ m or more, and it is more preferable to use alumina raw material particles with a D50 of 230 ⁇ m or more.
  • the individual alumina raw material particles may include particles with a particle size of less than 210 ⁇ m. Therefore, the obtained alumina particles may include polycrystalline ⁇ -alumina and/or alumina other than ⁇ -alumina.
  • the D50 of the alumina raw material particles 210 ⁇ m or more the content of polycrystalline ⁇ -alumina and/or alumina other than ⁇ -alumina can be more reliably suppressed to a small amount acceptable to the present invention.
  • the D50 of the alumina raw material particles can be measured by the same method as the above-mentioned method for measuring the D50 of the alumina particles. It can be confirmed by SEM-EBSD that the alumina raw material particles are single crystal ⁇ -alumina. Phase MAP is used to determine whether the alumina is ⁇ -alumina or an alumina other than ⁇ -alumina, and then Image Quality (IQ) MAP is used to determine whether the alumina particles are single crystal or polycrystal based on the presence or absence of clear crystal grain boundaries in the alumina particles. Whether ⁇ -alumina is a single crystal may be confirmed by the Debye-Scherrer method.
  • the raw material for the alumina raw particles can be sapphire or single crystal ⁇ -alumina produced by melt growth methods such as the CZ method, the Verneuil method, the Chiroporus method, the Bridgman method, or the EFG method. By crushing these raw materials and sieving them through a mesh with the desired opening size, alumina raw particles with the specified D50 can be prepared.
  • the alumina raw material particles may contain small amounts (e.g., 10.0% by mass or less) of alumina other than ⁇ -alumina (e.g., ⁇ -alumina, ⁇ -alumina, etc.), and may also contain small amounts (e.g., 10.0% by mass or less) of polycrystalline ⁇ -alumina along with single-crystal ⁇ -alumina, neither of which will interfere with the objectives of the present invention.
  • alumina particles with a D50 of more than 200 ⁇ m that have the various physical properties described above that cannot be achieved by the flame fusion method.
  • such physical properties may also include characteristics such as particle hardness and appearance.
  • a high-energy high-frequency thermal plasma method it is possible to obtain the above-mentioned first alumina particles and/or second alumina particles.
  • the resin composition By using the alumina particles according to the embodiment of the present invention as a filler for a resin composition, a resin composition having a high thermal diffusivity can be obtained.
  • the resin composition contains a resin and the alumina particles according to the embodiment of the present invention.
  • the alumina particles according to the embodiment of the present invention can improve the thermal diffusivity without impairing the flexibility characteristic of resin, so the preferred compounding ratio is 5-75 volume % resin and 95-25 volume % alumina particles in the resin composition (composite).
  • a method for producing the resin composition will be described.
  • a resin composition can be obtained by mixing the alumina particles of the present invention with a resin using a commonly used known method.
  • the resin is liquid (such as liquid epoxy resin)
  • the liquid resin, alumina particles, and a curing agent are mixed, and then cured with heat or ultraviolet light to obtain a resin composition.
  • Known curing agents, mixing methods, and curing methods can be used.
  • the resin is solid (such as polyolefin resin or acrylic resin)
  • the alumina particles and the resin are mixed, and then kneaded by a known method such as melt kneading to obtain the desired resin composition.
  • the resin used in the resin composition can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
  • the resins may be used alone or in combination of two or more types.
  • Thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers; fluoropolymers such as polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymers, polyvinyl alcohol, polyvinyl acetal, polyvinylidene fluoride, and polytetrafluoroethylene; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymers, acrylonitrile-butadiene-styrene copolymer (ABS) resins, polyphenylene-ether copolymers (PPE) resins, modified PPE resins, aliphatic polyamides, aromatic polyamides, polyimides, polyamideimides, polymethacryl
  • Thermoplastic elastomers include styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, etc.
  • Thermosetting resins include cross-linked rubber, epoxy resin, phenolic resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, etc.
  • cross-linked rubber include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluororubber, urethane rubber, and silicone rubber.
  • polyolefin resins acrylic resins, polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, phenolic resins, and silicone resins are preferably used.
  • these resin compositions may contain, as necessary, known additives such as plasticizers, curing accelerators, coupling agents, fillers, pigments, flame retardants, antioxidants, surfactants, compatibilizers, weather resistance agents, antiblocking agents, antistatic agents, leveling agents, and release agents, either alone or in combination, within the scope of the invention.
  • additives such as plasticizers, curing accelerators, coupling agents, fillers, pigments, flame retardants, antioxidants, surfactants, compatibilizers, weather resistance agents, antiblocking agents, antistatic agents, leveling agents, and release agents, either alone or in combination, within the scope of the invention.
  • the alumina particles according to this embodiment and the resin composition containing the alumina particles are particularly suitable for use as heat dissipating materials.
  • heat dissipating alumina particles and a heat dissipating resin composition can be provided.
  • alumina raw material particles As a raw material for alumina particles, particles made of single crystal ⁇ -alumina and having a particle diameter D50 of more than 200 ⁇ m at the cumulative 50% of the number from the fine particle side of the cumulative particle size distribution were prepared. Then, using a known high-frequency thermal plasma device, the alumina raw material particles were melted and spheroidized by a high-frequency thermal plasma method under an Ar— O2 atmosphere to produce alumina particles of Sample No. 1. As a comparative example, alumina raw material particles melted and spheroidized by a flame fusion method were used as Sample No. 2, and the alumina raw material particles themselves were used as Sample No. 3.
  • alumina particles were prepared, each of which was made of single crystal ⁇ -alumina, had a particle diameter D50 of more than 200 ⁇ m for the cumulative 50% of the number from the fine particle side of the cumulative particle size distribution, and had a larger D50 than the raw material used for sample No. 1.
  • a known high-frequency thermal plasma device was used to melt and spheroidize the alumina raw material particles by a high-frequency thermal plasma method under an Ar—O2 atmosphere, thereby producing alumina particles for samples Nos. 4 to 8.
  • the measurement was dry, and samples were sequentially put into the device, and the particles passing in front of the camera were measured while dispersing the aggregated particles with dry air at 50 kPa. 3 g of the measurement sample was weighed and measured once. The same measurement was repeated three times, and the particle size distribution and roundness were analyzed from the cumulative average of these results.
  • the particle size was taken as the circle equivalent particle size.
  • the circle equivalent particle size is the particle size of a perfect circle that has the same area as the projected particle image.
  • the particle size was also based on the volume.
  • the total length L2 of the boundary lines was also calculated.
  • the “total length L2 of the boundary lines” is the sum of the boundary lines included inside the alumina particle, and does not include the outer edge of the alumina particle.
  • alumina particles of sample No. 1 a stereomicroscope (SZ-X7 manufactured by OLYMPUS) was installed under an environment of illuminance of 270 lx, and an objective lens (DF PLAPO 1X manufactured by OLYMPUS), an LED light source (LCD-21 manufactured by Hayashi Recipe), a camera (DP-22 manufactured by OLYMPUS), and a control box (DP2-SAL manufactured by OLYMPUS) were connected to the stereomicroscope.
  • the scale of the LED light source was set to 5, and the shooting conditions were set to exposure compensation -3, AE mode: Auto, and white balance: Auto using the control box, and a stereomicroscope image was taken.
  • the stereomicroscope images were binarized using image analysis software (ImageJ) to select particles having a "Threshold” value, which is a brightness parameter, of 100 or more and less than 200 (hereinafter also referred to as "first particles"), and particles having a "Threshold” value of 200 or more and less than 255 (hereinafter also referred to as "second particles").
  • the first particles were translucent in the stereomicroscope image
  • the second particles were white in the stereomicroscope image.
  • the average Feret diameter, the average minimum Feret diameter, the average area, and the standard deviation thereof were obtained for any 50 or more first particles.
  • the average Feret diameter, the average minimum Feret diameter, the average area, and the standard deviation thereof were obtained for any 50 or more second particles.
  • the area ratio of the first particles to the total of the first particles and the second particles was obtained, and was 84 area% or less.
  • the strength of the breaking point P1 of the plot was obtained as breaking strength s1 (MPa)
  • the arithmetic mean value was taken as the average value of the breaking strength of the first particles
  • the standard deviation was taken as the standard deviation of the breaking strength of the first particles.
  • the strain at break d1 was obtained from each plot
  • the arithmetic mean value was taken as the average value of the strain at break of the first particles
  • the standard deviation was taken as the standard deviation of the strain at break of the first particles.
  • the average value of the breaking strength of the second particles and its standard deviation, and the average value of the strain at break of the second particles and its standard deviation were obtained.
  • thermoelectromotive force type microsensor was pressed onto a sample 70 (one alumina particle).
  • the frequency dependence of the phase difference due to the propagation of a temperature wave generated by AC heating of a resistance type micro heater from a function generator was measured by a two-phase lock-in amplifier 80 to determine the thermal diffusivity.
  • particle 1 had a diameter of about 180 ⁇ m and a thickness of about 100 ⁇ m
  • particle 2 had a diameter of about 170 ⁇ m and a thickness of about 100 ⁇ m
  • the measurement frequency was 1.6 kHz to 4.9 kHz
  • the sensor size was 20 ⁇ m ⁇ 20 ⁇ m.
  • Epoxy resin main agent: room temperature curing type potting resin 53 type (manufactured by Sankei Corporation) 010-8140, hardener: room temperature curing type potting resin 53 type (manufactured by Sankei Corporation) 010-8143) and alumina particles (raw material 1, sample Nos. 1 to 8) were mixed in a compounding ratio (volume ratio) of 50:50 and stirred and mixed using a foam mixer (manufactured by Thinky Corporation) to obtain an epoxy resin-filler (alumina particles) composite.
  • a 1 cm x 10 cm mold was made on an aluminum plate, and a PET film coated with a release agent was attached to the back of the aluminum plate.
  • the stirred composite was poured into it, and a PET film coated with a release agent was attached from above.
  • a metal roller was then used to make the composite conform to the mold.
  • Another aluminum plate was then placed on top of it, and the composite was heated at 100°C for 1 hour and left to harden. After hardening was complete, the aluminum plate was left to cool, and when the temperature of the aluminum plate had dropped to room temperature, the two PET films were peeled off from both sides of the hardened composite to obtain a sheet-like sample for measuring the thermal diffusivity of the composite.
  • the thermal diffusivity of the obtained sheet sample was measured.
  • the thermal diffusivity was measured at room temperature by temperature wave thermal analysis (TWA) using a sheet sample of the resin composition, which was cut into a test piece measuring 10 mm in length, 10 mm in width, and 1 mm in thickness, using an AiPhase Mobile made by AiPhase Corporation as the measuring device.
  • TWA temperature wave thermal analysis
  • the thermal diffusivity was measured at three arbitrary points on one measurement sample piece, and the average value was calculated from the measurement results at the three points.
  • the first particles satisfying the requirements of a preferred embodiment of the present application had a high thermal diffusivity of the particles
  • the second particles satisfying the requirements of another preferred embodiment of the present application had a small variance of particle area (i.e., the coefficient of variation of the particle area).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超で、真円度が0.90以上で、α化率が90.0%以上である、アルミナ粒子。

Description

アルミナ粒子およびそれを用いた樹脂組成物
 本開示は、アルミナ粒子およびそれを用いた樹脂組成物に関する。
 電子部品に通電することにより発生する熱は、ヒートシンクを介して放熱される。放熱効率を向上する目的で、電子部品とヒートシンクとの間を放熱材料で充填する技術が知られている。
 放熱部材の1つとして、樹脂と無機粒子とを含む樹脂組成物があり、無機粒子としてはアルミナ粒子が利用できることが知られている(例えば特許文献1~3)。
 特許文献1には、樹脂中に高充填したときの流動性を改善することができるアルミナ粒子として、α相含有率が40%以下であり、平均円形度が0.95以上であり、平均粒径が100μm以下のアルミナ粒子が開示されている。アルミナ粒子を製造する方法としては、電融アルミナの粉砕物を火炎溶融法で溶融し、炉内に水を噴霧して急冷する手法が開示されている。
 特許文献2には、樹脂等に配合したときの組成物の粘性と流動性を改善することができるアルミナ粒子として、平均球形度が0.93以上でかつアルミナのα率が95%以上であるアルミナ粒子が開示されている。アルミナ粒子を製造する方法として、金属アルミニウム粉末、アルミナ粉末または両者の混合物を原料とし、それを火炎溶融法で溶融し冷却固化し、その後に再加熱処理を行う方法が開示されている。
 特許文献3には、電融アルミナを、ジェットミルを用いて破砕し、その電融アルミナ粒子のエッジを取り除くことで平均粒径が5~4000μmの丸味状電融アルミナ粒子を得る方法が開示されている。
国際公開第2009/133904号 国際公開第2008/053536号 特開2006-169090号公報
 近年、電子機器のIC高集積化によるICでの発熱量の増加、および電気自動車、航空機等の電動化により高電流駆動の電子部品が使用されるようになったことに起因する電子部品での発熱量の増加が問題となっている。より効果的な放熱を実現するために、樹脂組成物の熱拡散率をさらに向上することが求められている。より効果的な放熱を実現するために、樹脂組成物に用いられる樹脂とフィラー(アルミナ粒子)の界面をできるだけ少なくすること、すなわちアルミナ粒子の大粒径化も併せて求められている。
 しかしながら、特許文献1および2に開示されたアルミナ粒子は、樹脂組成物の熱拡散率のさらなる向上について検討されていない。
 特許文献3のアルミナ粒子は、樹脂と混合して樹脂組成物を形成した場合、熱拡散率の点で十分とは言い難い。
 このような状況を鑑みて、本発明の一実施形態は、樹脂組成物用フィラーとして使用されるアルミナ粒子であって、樹脂組成物の熱拡散率を従来よりも向上することのできるアルミナ粒子を提供することを目的とする。さらに、本発明の別の実施形態は、当該アルミナ粒子を用いた樹脂組成物を提供することを目的とする。
 本発明の態様1は、
 累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超で、真円度が0.90以上で、α化率が90.0%以上である、アルミナ粒子である。
 本発明の態様2は、
 安息角が32°未満である、態様1に記載のアルミナ粒子である。
 本発明の態様3は、
 見かけ密度が3.75g/cm以上3.96g/cm以下である、態様1または2に記載のアルミナ粒子である。
 本発明の態様4は、
 タップ密度が1.70g/cm以上である、態様1~3のいずれか1つに記載のアルミナ粒子である。
 本発明の態様5は、
 累積粒度分布の微粒側から個数の累積90%の粒径D90と、累積粒度分布の微粒側から個数の累積10%の粒径D10との差が124μm未満である、態様1~4のいずれか1つに記載のアルミナ粒子である。
 本発明の態様6は、
 実体顕微鏡像を画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が100以上200未満である、第1アルミナ粒子を含む、態様1~5のいずれか1つに記載のアルミナ粒子である。
 本発明の態様7は、
 前記第1アルミナ粒子は、フェレー径の平均値が180μm超である、態様6に記載のアルミナ粒子である。
 本発明の態様8は
 前記第1アルミナ粒子は、フェレー径の平均値に対する最小フェレー径の平均値の比が0.70以上である、態様6又は7に記載のアルミナ粒子である。
 本発明の態様9は、
 前記第1アルミナ粒子は、粒子の圧縮試験において破壊強度の平均値が25.9MPa超である、態様6~8のいずれか1つに記載のアルミナ粒子である。
 本発明の態様10は、
 実体顕微鏡像を画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が200以上255以下である、第2アルミナ粒子を含む、態様1~9のいずれか1つに記載のアルミナ粒子である。
 本発明の態様11は、
 前記第2アルミナ粒子は、フェレー径の平均値が180μm超である、態様10に記載のアルミナ粒子である。
 本発明の態様12は、
 前記第2アルミナ粒子は、フェレー径の平均値に対する最小フェレー径の平均値の比が0.70以上である、態様10又は11に記載のアルミナ粒子である。
 本発明の態様13は、前記第2アルミナ粒子は、粒子の圧縮試験において破壊時の歪の平均値が0.074未満である、態様に10~12いずれか1つに記載のアルミナ粒子である。
 本発明の態様14は、
 樹脂と、態様1~13のいずれか1つに記載のアルミナ粒子とを含む樹脂組成物である。
 本発明の一実施形態に係るアルミナ粒子をフィラーとして使用することにより、高い熱拡散率を有する樹脂組成物を得ることができる。
JISR1639-5に準拠して、粒子の圧縮試験を行って得られた歪-強度(MPa)のプロットの例である。 1個のアルミナ粒子の熱拡散率を測定するための装置の概念図である。
[アルミナ粒子]
 本発明の実施形態に係るアルミナ粒子は、樹脂組成物用フィラーとして、樹脂と混合して使用するためのものである。アルミナ粒子は、累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超で、真円度が0.90以上で、α化率が90.0%以上である。これらの特徴を有することにより、樹脂組成物の熱拡散率を向上することができる。各特徴について以下に詳しく説明する。
(累積粒度分布の微粒側から個数の累積50%の粒径D50)
 本発明の実施形態に係るアルミナ粒子では、累積粒度分布の微粒側から個数の累積50%の粒径D50(以下単に「D50」と記載することがある)は200μm超である。樹脂組成物用フィラーとして使用したときに、以下の理由から、熱拡散率の高い樹脂組成物を得られると推測される。
 アルミナ粒子のD50が大きいと、単位質量当たりのアルミナ粒子の表面積の合計(総表面積)が小さくなる。そのため、アルミナ粒子と樹脂とを所定の比率で混合して樹脂組成物を製造するとき、平均粒子が大きいアルミナ粒子を用いることにより、アルミナ粒子と樹脂との界面の面積の合計(総面積)を小さくすることができる。アルミナ粒子と樹脂との界面は、伝搬するフォノンを散乱させるため、界面の総面積を小さくすることにより、熱拡散率を向上することができると考えられる。
 本発明の実施形態に係るアルミナ粒子は、D50が200μm超であることにより、D50が200μm以下の場合に比べて、所定の比率で樹脂と混合したときの界面の総面積を小さくすることができ、熱拡散率の高い樹脂組成物を製造することができる。
 アルミナ粒子のD50は、好ましくは205μm以上、より好ましくは210μm以上である。上限は特に限定されないが、樹脂との混錬性を良好にする観点、および樹脂組成物用フィラーへの適用の観点から、好ましくは1000μm以下、より好ましくは800μm以下、更に好ましくは600μm以下、特に好ましくは500μm以下である。
 アルミナ粒子のD50は、ISO 13322-2に準拠した動的画像解析の原理に基づいてアルミナ粒子の粒度分布を測定し、測定結果から得た累積粒度分布を用いて、微粒側から個数の累積50%の粒径(D50)を求める。測定装置としては、例えば、CAMSIZER(VERDER Scientific製)を用い、装置内に試料を順次投入して、ドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定する。
(真円度)
 アルミナ粒子の真円度が0.90以上であることにより、樹脂との混錬性を良好にでき、かつ、混練後のコンポジットの流動性を高めることができ、さらにアルミナ粒子による他の部材の摩耗を低減することもできる。また電子部品の樹脂組成物用フィラーに使用するのに好適である。好ましくは、真円度は0.91超である。
 また、アルミナ粒子は一般的に硬い粒子であるため、真円度の低いアルミナ粒子同士を衝突させたり、または真円度の低いアルミナ粒子を粉砕するだけでは、真円度が0.90以上のアルミナ粒子を得ることは困難である。さらには、そのような衝突および粉砕を長時間行うことにより、微粉が多量に生じるおそれがある。また、粉砕により生じた新たな親水面が樹脂との混和性を低下させるおそれがある。
 さらに、本発明者らは、D50を200μm超及びα化率を90.0%以上としつつ、真円度を0.90以上にするために、例えば特許文献1および2に記載のような火炎溶融法では、エネルギー(熱量)が不十分であり得ることがわかった。そこで、本発明者らは、火炎溶融法よりも高エネルギーの高周波熱プラズマ法を採用することにより、アルミナ粒子のD50を200μm超及びα化率を90.0%以上としつつ、真円度を0.90以上にできることを見出した。
 真円度(SPHT)はISO 9276-6に準拠して解析した。SPHT=4πA/Pから求められる。式中のAは投影粒子画像の面積の測定値であり、Pは粒子投影画像の外周長の測定値である。
 アルミナ粒子の真円度は、ISO 13322-2に準拠した動的画像解析の原理に基づく測定装置(例えば、CAMSIZER X2(VERDER Scientific製))により測定する。
(α化率)
 α-アルミナは熱伝導率が高いため、アルミナ粒子中のα-アルミナの含有量を高くすることにより、アルミナ粒子の熱伝導率を高くすることができる。本発明の実施形態に係るアルミナ粒子は、α-アルミナの含有量の指標であるα化率が、90.0%以上と高い。そのため、熱伝導率の高いアルミナ粒子を得ることができる。
 アルミナ粒子のα化率は、好ましくは92.0%以上、更に好ましくは95.0%以上、最も好ましくは100.0%である。
 本明細書において「α化率」とは、アルミナ粒子に含まれる全てのアルミナに対するα-アルミナの含有率(体積%)である。
 α化率は、アルミナ粒子を粉末X線回折法により測定し、得られた回折スペクトルから、2θ=25.6°の位置に現れるα相(012)面のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相に起因して形成されるピーク高さ(I46)を求め、以下の式(1)により算出する。

  α化率=I25.6/(I25.6+I46)×100(%)   (1)
 なお、本発明の実施形態に係るアルミナ粒子は、α化率が100%であることが最も望ましいものの、α-アルミナ以外のアルミナ(δ-アルミナ、θ-アルミナ等)を例えば10.0%以下で含んでいてもよく、本発明の目的の妨げにならない。
 また、α-アルミナ以外のアルミナは、どのような態様で含まれていてもよい。例えば、1つのアルミナ粒子の内部に、α-アルミナと、α-アルミナ以外のアルミナとが共に含まれていてもよい。また、とある粒のアルミナ粒子はα-アルミナのみからなり、別の粒のアルミナ粒子はα-アルミナ以外のアルミナのみからなり、それらのアルミナ粒子が混在していてもよい。
(安息角)
 アルミナ粒子は、安息角が32°未満であることが好ましい。これにより、アルミナ粒子の流動性が向上し、樹脂と混錬させやすくなり、熱拡散率の高い樹脂組成物を得られやすくなる。安息角は、より好ましくは30°以下である。一方、安息角を所定値以上にしておくことで、例えばアルミナ粒子の飛散を抑制できるなど、ハンドリング性を向上させることができ、樹脂組成物の熱拡散率の向上にも寄与し得る。安息角は、好ましくは14°超であり、より好ましくは18°以上である。
 アルミナ粒子の安息角は、公知の方法で調整し得る。例えば、アルミナ粒子の比表面積、粒度分布及び/又は真円度等を調整することにより安息角を調整してもよい。
 アルミナ粒子の安息角は、JIS R 9301-2-2:1999の記載に準拠して測定する。安息角測定時の周囲雰囲気としては、温度23℃、湿度40%とする。
(見かけ密度)
 アルミナ粒子の見かけ密度は3.75g/cm以上であることが好ましく、これにより内部空隙の量が少ないアルミナ粒子、つまり、熱伝導率の高いアルミナ粒子が得られる。一方で、アルミナ粒子は、見かけ密度が高すぎないことで、樹脂と混合したときに沈降しにくく、分散させやすくなる。そのため、アルミナ粒子の見かけ密度は、3.96g/cm以下であることが好ましく、3.95g/cm以下であることがより好ましい。
 アルミナ粒子の見かけ密度は、JIS R 1620:1995に準拠してピクノメータ法により測定する。測定回数は5回以上とする。測定には、例えばアキュピック1330(Micromeritics社)を用いることができる。
(タップ密度)
 アルミナ粒子のタップ密度が高いことは、アルミナ粒子を密に充填できることを意味する。タップ密度が高いアルミナ粒子を用いて樹脂組成物を形成すると、より多くのアルミナ粒子を混練でき、かつ、混練後のコンポジットの流動性を高めることができると期待される。また、タップ密度が高いと、アルミナ粒子が飛散しにくく、取り扱い易くなる。
 アルミナ粒子のタップ密度は、好ましくは1.70g/cm以上であり、より好ましくは、1.80g/cm以上であり、更に好ましくは2.24g/cm超であり、よ一層好ましくは2.33g/cm以上である。
 アルミナ粒子のタップ密度は、JIS Z 2512:2012の記載に準拠して測定する。タップ密度測定時のサンプル量は、20mLとする。
(粒度分布:D90-D10)
 アルミナ粒子の粒度分布はシャープであることが好ましい。シャープな粒度分布を持つアルミナ粒子である程、そのアルミナ粒子を溶融製造した後の粒子の補足率(回収率)を向上でき、生産性が良くなる。また、粒度分布がシャープなアルミナ粒子は、樹脂組成物用フィラーとして使用しやすく、他の粒子と混合する際の選択性および自由度が増えるので好ましい。例えば、累積粒度分布の微粒側から個数の累積90%の粒径D90と、累積粒度分布の微粒側から個数の累積10%の粒径D10との差が124μm未満であることが好ましく、108μ未満であることがより好ましく、100μm以下であることがさらに好ましい。一方で、アルミナ粒子の粒度分布がある程度ブロードである方が大粒子間の隙間に小粒子が入り込む等により充填性が向上し、アルミナ粒子を樹脂により多く混錬させることができ、樹脂組成物の熱拡散率の向上に寄与し得る。そのため、D90とD10との差は45μm超であることが好ましく、50μm以上であることがより好ましい。
(粒度分布:D90/D50)
 アルミナ粒子の粒度分布のうち大粒径側がシャープであると、アルミナ粒子を溶融製造した後の粒子の補足率(回収率)をより向上でき、生産性が良くなる。また、アルミナ粒子を樹脂に充填した際に、粒子の樹脂中での偏りを抑制し、樹脂中に均一に存在させることができ、樹脂組成物の熱拡散率の向上に寄与し得る。そのため、例えば、D90/D50は1.28未満であることが好ましく、1.21未満であることがより好ましい。D90/D50の下限値は特に制限されないが、製造安定性の観点から1.15超とすることが好ましい。
 アルミナ粒子のD10およびD90の測定は、上述したD50の測定と同様の方法、装置によって行うことができる。ISO 13322-2に準拠した動的画像解析の原理に基づいてアルミナ粒子の粒度分布を測定し、測定結果から得た累積粒度分布を用いて、微粒側から個数の累積10%の粒径(D10)および累積90%の粒径(D90)を求める。測定装置としては、例えば、CAMSIZER(VERDER Scientific製)を用い、装置内に試料を順次投入して、ドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定する。
(アルミナ粒子の外縁の長さL1に対する粒子内部の境界線の合計長さL2の比)
 アルミナ粒子内部の粒界および空洞が少ないほど、アルミナ粒子の熱拡散率の向上に寄与し得る。そこで、アルミナ粒子内部の粒界の含有量の指標として、外縁の長さL1に対する境界線の合計長さL2の比(L2/L1)を導入する。L1およびL2は、アルミナ粒子の断面観察から求める。
 1つのアルミナ粒子の外縁の長さL1、そのアルミナ粒子が有する境界線の合計長さL2としたとき、L2/L1の値が小さいアルミナ粒子は、境界線の含有量が少ないアルミナ粒子といえる。特に、(L2/L1)(%)が112.8%未満であることが好ましく、より好ましくは100.0%以下である。一方で、L2/L1の値は0%超であることが好ましく、18.3%超であることがより好ましく、20.0%以上であることがさらに好ましい。これにより、樹脂との混錬性が向上し得、樹脂組成物用フィラーとして使用したときに熱拡散率を向上させやすくなる。
 なお、「境界線の合計長さL2」は、アルミナ粒子の内部に含まれる境界線の総和であり、アルミナ粒子の外縁を含まない。境界線の合計長さL2は、アルミナ粒子内部の粒界の合計長さL3と、(アルミナ粒子の内部に空洞がある場合は)その空洞の内壁の合計長さL4とを加算したものとする(つまり、L2=L3+L4)。
 L4/L1の値が大きいアルミナ粒子は、樹脂と混合したときに沈降しにくく、分散させやすくなるため好ましい。特に、L4/L1の値が16.6%超であることが好ましく、より好ましくは20.0%以上である。L4/L1の上限値は特に制限されないが、例えば100.0%以下であり得る。
[好ましい実施形態1]
 以下、本発明の好ましい実施形態について説明する。本発明の好ましい実施形態に係るアルミナ粒子は、実体顕微鏡像を画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が100以上200未満である、アルミナ粒子(以下、「第1アルミナ粒子」とも称する)を含む。前記実体顕微鏡像は、照度270lxの環境下に実体顕微鏡(OLYMPUS製SZ―X7)を設置し、前記実体顕微鏡に、対物レンズ(OLYMPUS製DF PLAPО 1X)、LED光源(ハヤシレシピック製LCD―21)、カメラ(OLYMPUS製DP―22)、および、コントロールボックス(OLYMPUS製DP2―SAL)を接続し、LED光源の目盛りを5に設定し、コントロールボックスを用いて、撮影条件を、露出補正-3、AEモード:Auto、ホワイトバランス:Autoの条件に設定して撮像して得る。
 第1アルミナ粒子を含むことにより、粒子自体の熱拡散率をより向上させることができる。その要因の1つとして以下のように考えられる。上記「Threshold」の値を有する第1アルミナ粒子は、実体顕微鏡像において半透明粒子として観察され得、光を散乱させ得る境界線の含有量が少なく、L1/L2が比較的小さい粒子であり得る。そのため、第1アルミナ粒子は、L1/L2が小さいこと等に起因して、粒子自体の熱拡散率を向上させることができると考えられる。
 第1アルミナ粒子のフェレー径の平均値は180μm超であることが好ましい。これにより、所定の比率で樹脂と混合したときの界面の総面積を小さくすることができ、熱拡散率の高い樹脂組成物を製造することができる。
 第1アルミナ粒子のフェレー径の平均値は、より好ましくは190μm以上、更に好ましくは200μm以上である。上限は特に限定されないが、樹脂との混錬性を良好にする観点、および樹脂組成物用フィラーへの適用の観点から、好ましくは950μm以下、より好ましくは750μm以下、更に好ましくは550μm以下、特に好ましくは450μm以下である。なお、本明細書において「フェレー径」とは、粒子の実体顕微鏡像において、粒子の水平方向の接線径である。「第1アルミナ粒子のフェレー径の平均値」は、前記条件にて撮像した実体顕微鏡像から、任意の50個以上の第1アルミナ粒子を選択し、各第1アルミナ粒子のフェレー径を求め、その算術平均値とする。
 第1アルミナ粒子のフェレー径の平均値に対する最小フェレー径の平均値の比は0.70以上であることが好ましい。これにより、所定の比率で樹脂と混合したときの界面の総面積を小さくすることができ、熱拡散率の高い樹脂組成物を製造することができる。第1アルミナ粒子のフェレー径の平均値に対する最小フェレー径の平均値の比は、より好ましくは0.75以上、更に好ましくは0.80以上である。上限は特に限定されないが、樹脂との混錬性を良好にする観点、および樹脂組成物用フィラーへの適用の観点から、好ましくは1.00以下、より好ましくは0.95以下である。なお、「最小フェレー径」は、粒子の実体顕微鏡像において、粒子の外周上の任意の2点間の距離のうち、最短のものである。「第1アルミナ粒子の最小フェレー径の平均値」は、前記条件にて撮像した実体顕微鏡像から、「第1アルミナ粒子のフェレー径の平均値」を求めたものと同じ第1アルミナ粒子を選択し、各第1アルミナ粒子の最小フェレー径を求め、その算術平均値とする。
 第1アルミナ粒子は、粒子の圧縮試験において破壊強度の平均値が25.9MPa超であることが好ましい。これにより、粒子が破壊されにくくなり、結果として高い熱拡散率を有する樹脂組成物が得られる。当該破壊強度は、50.0MPa以上がより好ましく、75.0MPa以上が更に好ましく、100.0MPa以上が更により好ましい。当該破壊強度の上限は特に制限されないが、生産性の観点から500MPa以下であってもよく、300MPa以下であってもよい。
 第1アルミナ粒子の破壊強度は、以下のようにして測定する。
 まず、JISR1639-5に準拠して、粒子の圧縮試験を行い、変位-試験力のプロットを得る。当該プロットの変位を下記式(2)に基づいて歪に変換し、当該プロットの試験力を下記式(3)に基づいて強度に変換し、図1に示すような歪-強度(MPa)のプロットを得る。

 歪=変位[μm]/D[μm]・・・(2)
 強度[MPa]=2.48×試験力[N]/(π×D)・・・(3)

 ここで、D[μm]は、試験対象の粒子の長径と短径の平均値である。なお、当該長径および短径は、実体顕微鏡で観察することにより測定できる。
 任意の5個以上の第1アルミナ粒子について、当該プロットの破壊点Pの強度である破壊強度s(MPa)を求め、それらの算術平均値を、第1アルミナ粒子の破壊強度の平均値とする。
 上記任意の5個以上の第1アルミナ粒子について、破壊強度の変動係数CV(すなわち算術平均値に対する標準偏差の比)は、50%以下であることが好ましい。これにより強度ばらつきが少なくなり、結果として高い熱拡散率を有する樹脂組成物が得られる。より好ましくは、40%以下である。当該変動係数の下限は特に制限されないが、生産性の観点から1%以上であってもよく、5%以上であってもよい。
 粒子の圧縮試験における第1アルミナ粒子の破壊時の歪の平均値は特に制限されないが、例えば0.050超であってもよく、0.060超であってもよく、0.074以上であってもよい。当該歪の上限は特に制限されないが、生産性の観点から0.200以下であってもよい。
 第1アルミナ粒子の破壊時の歪は、以下のようにして測定する。
 まず、JISR1639-5に準拠して、粒子の圧縮試験を行い、図1に示すような歪-強度(MPa)のプロットを得る。
 図1において、傾きが一定となる領域が一つ存在する場合は、歪が0を超え、かつ、傾きが一定となる最小の歪を破壊点Pとする。なお、傾きが一定となる領域が複数存在する場合は、前記領域の終点と起点の歪の差が最大となる領域の起点を破壊点Pとする。破壊点Pにおける歪dを、第1アルミナ粒子の破壊時の歪とする。
 任意の5個以上の第1アルミナ粒子について、当該プロットから破壊時の歪を求め、それらの算術平均値を、第1アルミナ粒子の破壊時の歪の平均値とする。
 上記任意の5個以上の第1アルミナ粒子について、破壊時の歪の変動係数CV(すなわち算術平均値に対する標準偏差の比)は、特に制限されず、50%以下であってもよく、40%以下であってもよい。当該変動係数の下限は特に制限されないが、生産性の観点から1%以上であってもよく、5%以上であってもよい。
 第1アルミナ粒子は、実体顕微鏡像における第1アルミナ粒子の面積の変動係数CV(すなわち算術平均値に対する標準偏差の比)は、70%以下であることが好ましい。これによりアルミナ粒子の流動性が向上し、樹脂と混錬させやすくなり、結果として高い熱拡散率を有する樹脂組成物が得られる。当該変動係数の下限は特に制限されないが、生産性の観点から45%超であってもよく、50%超であってもよく、51.5%以上であってもよい。なお、「第1アルミナ粒子の面積の平均値」は、前記条件にて撮像した実体顕微鏡像から、任意の50個以上の第1アルミナ粒子を選択し、各第1アルミナ粒子の面積を求め、その算術平均値とし、その標準偏差を「第1アルミナ粒子の面積の標準偏差」とする。
 第1アルミナ粒子は、粒子の熱拡散率を3.83×10-6/s超にすることができる。これにより、高い熱拡散率を有する樹脂組成物が得られやすくなる。当該熱拡散率は、5.00×10-6/s以上が好ましく、1.00×10-5/s以上がより好ましい。当該熱拡散率の上限は特に制限されないが、生産性の観点から1.00×10-3/s以下であってもよく、1.00×10-4/s以下であってもよい。なお、第1アルミナ粒子の熱拡散率は、温度波熱分析法(TWA法)をミクロスケール測定へ適用して測定することができる。
[好ましい実施形態2]
 以下、本発明の別の好ましい実施形態について説明する。本発明の別の好ましい実施形態に係るアルミナ粒子は、実体顕微鏡像を画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が200以上255以下である、アルミナ粒子(以下、「第2アルミナ粒子」とも称する)を含む。前記実体顕微鏡像は、照度270lxの環境下に実体顕微鏡(OLYMPUS製SZ―X7)を設置し、前記実体顕微鏡に、対物レンズ(OLYMPUS製DF PLAPО 1X)、LED光源(ハヤシレシピック製LCD―21)、カメラ(OLYMPUS製DP―22)、および、コントロールボックス(OLYMPUS製DP2―SAL)を接続し、LED光源の目盛りを5に設定し、コントロールボックスを用いて、撮影条件を、露出補正-3、AEモード:Auto、ホワイトバランス:Autoの条件に設定して撮像して得る。
 第2アルミナ粒子を含むことにより、樹脂との混錬性が向上し得、樹脂組成物用フィラーとして使用したときに熱拡散率を向上させやすくなる。その要因の1つとして以下のように考えられる。上記「Threshold」の値を有する第2アルミナ粒子は、実体顕微鏡像において白色粒子として観察され得、光を散乱させ得る境界線の含有量が多く、L1/L2が比較的大きい粒子であり得る。そのため、第2アルミナ粒子は、L1/L2が大きいこと等に起因して、樹脂との混錬性が向上し得ると考えられる。
 第2アルミナ粒子のフェレー径の平均値は180μm超であることが好ましい。このような第2アルミナ粒子を含むことにより、所定の比率で樹脂と混合したときの界面の総面積を小さくすることができ、熱拡散率の高い樹脂組成物を製造することができる。
 第2アルミナ粒子のフェレー径の平均値は、より好ましくは190μm以上、更に好ましくは200μm以上である。上限は特に限定されないが、樹脂との混錬性を良好にする観点、および樹脂組成物用フィラーへの適用の観点から、好ましくは950μm以下、より好ましくは750μm以下、更に好ましくは550μm以下、特に好ましくは450μm以下である。なお、「第2アルミナ粒子のフェレー径の平均値」は、前記条件にて撮像した実体顕微鏡像から、任意の50個以上の第2アルミナ粒子を選択し、各第2アルミナ粒子のフェレー径を求め、その算術平均値とする。
 第2アルミナ粒子のフェレー径の平均値に対する最小フェレー径の平均値の比は0.70以上であることが好ましい。これにより、所定の比率で樹脂と混合したときの界面の総面積を小さくすることができ、熱拡散率の高い樹脂組成物を製造することができる。第2粒子の最大フェレー径の平均値に対する最小フェレー径の平均値の比は、より好ましくは0.75以上、更に好ましくは0.80以上であり、更により好ましくは0.85以上である。上限は特に限定されないが、樹脂との混錬性を良好にする観点、および樹脂組成物用フィラーへの適用の観点から、好ましくは1.00以下、より好ましくは0.95以下である。なお、「第2アルミナ粒子の最小フェレー径の平均値」は、前記条件にて撮像した実体顕微鏡像から、「第2アルミナ粒子のフェレー径の平均値」を求めたものと同じ第2アルミナ粒子を選択し、各第2アルミナ粒子の最小フェレー径を求め、その算術平均値とする。
 粒子の圧縮試験における第2アルミナ粒子の破壊時の歪の平均値は、0.074未満であることが好ましい。これにより、粒子面積の分散を小さくすることができ、結果として高い熱拡散率を有する樹脂組成物が得られやすくなる。当該歪の平均値は、0.060以下がより好ましく、0.050以下が更に好ましい。当該歪の平均値の下限は特に制限されないが、生産性の観点から0.005以上であってもよく、0.010以上であってもよい。
 第2アルミナ粒子の破壊時の歪の平均値は、以下のようにして測定する。
 任意の5個以上の第2アルミナ粒子について、JISR1639-5に準拠して、粒子の圧縮試験を行い、図1に示すような歪-強度(MPa)のプロットを得る。各プロットから破壊時の歪dを求め、それらの算術平均値を、第2アルミナ粒子の破壊時の歪の平均値とする。
 上記任意の5個以上の第2アルミナ粒子について、破壊時の歪の変動係数CV(すなわち算術平均値に対する標準偏差の比)は、特に制限されず、50%以下であってもよく、40%以下であってもよい。当該変動係数の下限は特に制限されないが、生産性の観点から1%以上であってもよく、5%以上であってもよい。
 第2アルミナ粒子は、粒子の圧縮試験において破壊強度の平均値について特に制限されないが、例えば100.0MPa未満であってもよく、75.0MPa未満であってもよく、50.0MPa未満であってもよく、25.9MPa以下であってもよい。当該破壊強度の平均値の下限は特に制限されないが、生産性の観点から5.0MPa以上であってもよく、10.0MPa以上であってもよい。
 第2アルミナ粒子の破壊強度の平均値は、以下のようにして測定する。
 任意の5個以上の第2アルミナ粒子について、JISR1639-5に準拠して、粒子の圧縮試験を行い、図1に示すような歪-強度(MPa)のプロットを得る。各プロットから破壊強度s(MPa)を求め、それらの算術平均値を、第2アルミナ粒子の破壊強度の平均値とする。
 上記任意の5個以上の第2アルミナ粒子について、破壊強度の変動係数CV(すなわち算術平均値に対する標準偏差の比)は、50%以下であることが好ましい。これにより強度ばらつきが少なくなり、結果として高い熱拡散率を有する樹脂組成物が得られる。より好ましくは、40%以下である。当該変動係数の下限は特に制限されないが、生産性の観点から1%以上であってもよく、5%以上であってもよい。
 第2アルミナ粒子は、粒子の熱拡散率が1.05×10-6/s超であることが好ましい。これにより、高い熱拡散率を有する樹脂組成物が得られやすくなる。当該熱拡散率の上限は特に制限されないが、生産性の観点から1.00×10-5/s未満であってもよく、5.00×10-6/s未満であってもよく、3.83×10-6/s以下であってもよい。なお、第2アルミナ粒子の熱拡散率は、温度波熱分析法(TWA法)をミクロスケール測定へ適用して測定することができる。
 第2アルミナ粒子は、粒子面積の分散を小さくすることができ、具体的には、実体顕微鏡像における第2アルミナ粒子の面積の変動係数CV(すなわち算術平均値に対する標準偏差の比)を、51.5%未満にすることができる。これによりアルミナ粒子の流動性が向上し、樹脂と混錬させやすくなり、結果として高い熱拡散率を有する樹脂組成物が得られる。より好ましくは50%以下であり、更に好ましくは45%以下である。当該変動係数の下限は特に制限されないが、生産性の観点から5%以上であってもよく、10%以上であってもよい。なお、「第2アルミナ粒子の面積の平均値」は、前記条件にて撮像した実体顕微鏡像から、任意の50個以上の第2アルミナ粒子を選択し、各第2アルミナ粒子の面積を求め、その算術平均値とし、その標準偏差を「第2アルミナ粒子の面積の標準偏差」とする。
 以上、本発明の好ましい実施形態1および2を説明したが、本発明のより好ましい実施形態は、本発明の好ましい実施形態1および2をどちらも満たす(すなわち、アルミナ粒子が、第1アルミナ粒子と第2アルミナ粒子とを共に含む)ことである。これにより、さらに高い熱拡散率を有する樹脂組成物が得られやすくなる。アルミナ粒子の実体顕微鏡像において、第1アルミナ粒子および第2アルミナ粒子の合計に対する第1アルミナ粒子の面積比は1面積%以上99面積%以下であることが好ましく、50面積%以上99面積%以下であることがより好ましく、60面積%以上95面積%以下であることが更に好ましく、70面積%以上90面積%以下であることが一層好ましい。アルミナ粒子の実体顕微鏡像において、第1アルミナ粒子および第2アルミナ粒子の合計に対する第2アルミナ粒子の面積比は1面積%以上99面積%以下であることが好ましく、1面積%以上50面積%以下であることがより好ましく、5面積%以上40面積%以下であることが更に好ましく、10面積%以上30面積%以下であることが一層好ましい。
[アルミナ粒子の製造方法]
 本発明の実施形態に係るアルミナ粒子の製造方法について説明する。
 アルミナ粒子の原料には、単結晶α-アルミナを含み、且つ累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超のアルミナ原料粒子を使用する。そして、高周波熱プラズマ法により、アルミナ原料粒子を溶融・球状化することによりアルミナ粒子を製造する。これにより、D50が200μm超で、真円度が0.90以上で、α化率が90.0%以上であるアルミナ粒子が得られる。
 従来から、造粒した原料粒子を用いてアルミナ粒子を製造する方法が知られているが、得られるアルミナ粒子の内部に粒界および内部空隙が多く含まれることがある。本発明の実施形態では、アルミナ原料粒子として、造粒を行っていない単結晶α-アルミナそのものを使用することにより、粒界および内部空隙の少ない(または粒界および内部空隙のない)、密度の高いアルミナ粒子を得ることができる。単結晶アルミナの原料粒子を使用し、球状化後も、単結晶アルミナの結晶構造の素性を活かすために、使用するアルミナ原料粒子の粒径、プラズマ(プラズマフレーム)発生のための電力および雰囲気等が適宜制御され得る。なお、高周波熱プラズマ装置としては公知のものを使用できる。
 D50が200μm超のアルミナ粒子を製造するためには、例えば、アルミナ原料粒子の粒径、高周波熱プラズマ法における各種条件等を適宜制御する。アルミナ原料粒子については、D50が210μm以上のアルミナ原料粒子を用いることが好ましく、D50が230μm以上のアルミナ原料粒子を用いることがより好ましい。
 なお、アルミナ原料粒子のD50が例えば210μm以上であっても、個々のアルミナ原料粒子としては、210μm未満の粒径のものも含まれ得る。そのため、得られたアルミナ粒子には、多結晶のα-アルミナおよび/またはα-アルミナ以外のアルミナなどを含み得る。しかしながら、アルミナ原料粒子のD50を210μm以上とすることにより、多結晶のα-アルミナおよび/またはα-アルミナ以外のアルミナの含有量を、本発明で許容される程度の少量に、より確実に抑えることができる。
 アルミナ原料粒子のD50は、上述のアルミナ粒子のD50の測定方法と同じ方法で測定できる。
 アルミナ原料粒子が単結晶のα-アルミナであることは、SEM-EBSD法により確認することができる。Phase MAPにて、α-アルミナであるか、α-アルミナ以外のアルミナであるかを判断し、次いで、Image Quality(IQ)MAPにて、アルミナ粒子中の明確な結晶粒界の有無により、単結晶であるか、多結晶であるかを判断することができる。
 α-アルミナが単結晶であることは、デバイ・シェラー法により確認しても良い。
 アルミナ原料粒子の原材料としては、サファイア、およびCZ法、ベルヌーイ法、カイロポーラス法、ブリッジマン法、EFG法等の融液成長法で作製した単結晶のα-アルミナ等を用いることができる。それらの原材料を粉砕して、所望の目開きのメッシュで篩別することで、所定のD50のアルミナ原料粒子を準備することができる。
 アルミナ原料粒子は、α-アルミナ以外のアルミナ(δ-アルミナ、θ-アルミナ等)を少量(例えば10.0質量%以下)含んでいてもよく、また、単結晶のα-アルミナと共に、少量(例えば10.0質量%以下)の多結晶のα-アルミナを含んでいてもよく、いずれも本発明の目的の妨げにならない。
 このように高エネルギーの高周波熱プラズマ法を採用することにより、火炎溶融法では実現できない前記各種物性を有するD50が200μm超のアルミナ粒子を得ることができる。また、このような物性としては、前記各種物性以外にも粒子の硬さや外観などの素性も含み得る。例えば、高エネルギーの高周波熱プラズマ法を採用することにより、上述の第1アルミナ粒子及び/又は第2アルミナ粒子を得ることができる。
[樹脂組成物]
 本発明の実施形態に係るアルミナ粒子を樹脂組成物用フィラーとして使用することにより、熱拡散率の高い樹脂組成物を得ることができる。樹脂組成物は、樹脂と、本発明の実施形態に係るアルミナ粒子とを含んでいる。
 本発明の実施形態に係るアルミナ粒子は、樹脂特有のしなやかさを損なうことなく熱拡散率を向上させることができるため、その配合比率は樹脂組成物(コンポジット)に対して樹脂5~75体積%、アルミナ粒子95~25体積%の割合であることが好ましい。
 樹脂組成物の製造方法について説明する。
 一般的に用いられる公知の方法を使用して、本発明のアルミナ粒子と樹脂を混合することにより樹脂組成物を得ることができる。例えば、樹脂が液状の場合(例えば液状エポキシ樹脂など)は、液状樹脂とアルミナ粒子と硬化剤とを混合した後、熱または紫外線などで硬化させることにより樹脂組成物を得ることができる。硬化剤や混合方法、硬化方法は公知のものおよび方法を用いることができる。一方、樹脂が固体状の場合(例えばポリオレフィン樹脂やアクリル樹脂など)は、アルミナ粒子と樹脂を混合した後に、溶融混練などの公知の方法により混練することで目的とする樹脂組成物を得ることができる。
 樹脂組成物に使用する樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。なお、樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
 熱可塑性エラストマーとしては、スチレン-ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
 加工性や特性の観点から、ポリオレフィン系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、フェノール系樹脂、シリコーン樹脂が好ましく用いられる。
 さらに、これらの樹脂組成物には、必要に応じて、発明の効果を損なわない範囲で可塑剤、硬化促進剤、カップリング剤、充填剤、顔料、難燃剤、酸化防止剤、界面活性剤、相溶化剤、耐候剤、抗ブロッキング剤、帯電防止剤、レベリング剤、離型剤などの公知の添加剤を単独または二種以上を適宜配合しても良い。
 本実施の形態に係るアルミナ粒子、および当該アルミナ粒子を含む樹脂組成物は、特に、放熱材料用途に好適である。よって、本開示の一態様では、放熱性アルミナ粒子および放熱性樹脂組成物を提供することができる。
(アルミナ粒子の製造)
 アルミナ粒子の原料として、単結晶α-アルミナから成り、且つ累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超の粒子を準備した。そして、公知の高周波熱プラズマ装置を用いて、Ar-O雰囲気下で、アルミナ原料粒子を高周波熱プラズマ法により溶融・球状化することで試料No.1のアルミナ粒子を製造した。また、比較例として、アルミナ原料粒子を火炎溶融法により溶融・球状化したものを試料No.2とし、アルミナ原料粒子そのものを試料No.3とした。
 また、アルミナ粒子の原料として、単結晶α-アルミナから成り、累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超の粒子であり、且つ試料No.1で用いた原料よりもD50が大きいものを5種類準備した。それぞれの原料に対し、公知の高周波熱プラズマ装置を用いて、Ar-O雰囲気下で、アルミナ原料粒子を高周波熱プラズマ法により溶融・球状化することで、試料No.4~8のアルミナ粒子を製造した。
(1)アルミナ粒子の粒径D10、D50、D90、および真円度の測定
 試料No.1~8のアルミナ粒子の粒度分布を測定し、アルミナ粒子の平均値、個数の累積10%の粒径D10、累積50%の粒径D50および累積90%の粒径D90を求めた。
 アルミナ粒子の粒度分布および真円度は、ISO 13322-2に準拠した動的画像解析の原理に基づく装置CAMSIZER X2(VERDER Scientific製)により測定した。測定は乾式とし、装置内に試料を順次投入して、50kPaのドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定した。測定試料は3g秤量し、1回測定とした。同じ測定を3回繰返し行い、これらの結果の積算平均から粒度分布および真円度を解析した。粒子径は円相当粒子径とした。円相当粒子径とは投影粒子画像と同じ面積となる真円の粒子径のことである。また、粒子径の基準は体積とした。
 真円度(SPHT)はISO 9276-6に準拠して解析した。SPHT=4πA/Pから求めた。式中のAは投影粒子画像の面積の測定値であり、Pは粒子投影画像の外周長の測定値である。
(2)アルミナ粒子のα化率の測定
 試料No.1~8のアルミナ粒子のα化率を測定した。
 α化率は、アルミナ粒子の試料を、粉末X線回折装置(理学電機製)により測定して、回折スペクトルを得た。測定条件は、X線源:CuKα、X線出力:45kV、200mA、走査速度:10deg/分で行った。
 得られた回折スペクトルから、2θ=25.6°の位置に現れるα相(012)面のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相に起因して形成されるピーク高さ(I46)を求め、以下の式(1)により算出した。

  α化率=I25.6/(I25.6+I46)×100(%)   (1)
(3)アルミナ粒子の安息角の測定
 試料No.1~8のアルミナ粒子の安息角を、JIS R 9301-2-2:1999の記載に準拠して測定した。安息角測定時の周囲雰囲気としては、温度23℃、湿度40%とした。
(4)アルミナ粒子の見かけ密度の測定
 試料No.1~8のアルミナ粒子の見かけ密度をJIS R 1620:1995に準拠して測定した。測定方法、測定条件は以下の通りとした。
・測定方法:気体置換法
・試料の乾燥:200℃、8時間以上
・使用装置:アキュピック1330(Micromeritics社)
・測定条件
 パージ回数10回
 パージ充填圧力:15.0psig
 測定回数:5回
 測定充填圧力:15.0psig
 平衡圧:0.005psig/分
 精度を設定しての測定:Yes
 バラつき許容誤差:0.05%
 試料セル寸法:10cm
(5)アルミナ粒子のタップ密度の測定
 試料No.1~8のアルミナ粒子のタップ密度を、JIS Z 2512:2012の記載に準拠して測定した。タップ密度測定時のサンプル量は、20mLとした。
(6)アルミナ粒子の外縁の長さL1と粒子内部の境界線の合計長さL2の測定
 試料No.1~8のアルミナ粒子を用いて断面観察用試料を作製した。断面観察用試料の作製では、アルミナ粒子を樹脂包埋後、樹脂とアルミナ粒子をダイヤモンドカッターにて切断した。その後、断面に保護膜としてPtを蒸着し、Arイオンミリングにて断面調製を行い、SEM試料台にCu両面テープにて固定し、無蒸着にてSEM-EBSD測定を行った。観察領域内に2つ以上のアルミナ粒子が完全に入るように(つまり、2つ以上のアルミナ粒子が、観察領域の枠と接触しないように)、観察位置を決定した。測定はα-アルミナ粒子で行った。
 サンプルの前処理およびEBSD測定には、以下の機器を使用した。
・使用機器
 イオンミリング装置:IM-4000(株式会社日立製作所製)
 イオンスパッタ装置:E-1030(株式会社日立製作所製)
 超高分解能電界放出形走査電子顕微鏡:JSM-7800F Prime(日本電子株式会社製)
 後方散乱電子回折装置:Digiview V(TSL製)
 EBSD測定の条件は以下の通りとした。
・測定領域:500.0μm×400.0μm
・加速電圧:20.0kV
・倍率:×500
・真空度:30Pa
 得られたEBSD像において、観察領域の枠と接触していないアルミナ粒子を2つ以上選択して、各アルミナ粒子の外縁の長さL1を、画像処理ソフトImageJ(National Institute of Health製)の平均を算出した。また境界線の合計長さL2についても算出した。「境界線の合計長さL2」は、アルミナ粒子の内部に含まれる境界線の総和であり、アルミナ粒子の外縁を含まないものとした。境界線の合計長さL2は、アルミナ粒子内部の粒界の合計長さL3と、(アルミナ粒子の内部に空洞がある場合は)その空洞の内壁の合計長さL4とを加算して求めた(つまり、L2=L3+L4)。
 上記のようにして求めたL1、L2およびL4を用いて、L2/L1およびL4/L1を算出した。
(7)アルミナ粒子の実体顕微鏡観察(各粒子のフェレー径、面積の測定)
 試料No.1のアルミナ粒子について、照度270lxの環境下に実体顕微鏡(OLYMPUS製SZ―X7)を設置し、前記実体顕微鏡に、対物レンズ(OLYMPUS製DF PLAPО 1X)、LED光源(ハヤシレシピック製LCD―21)、カメラ(OLYMPUS製DP―22)、および、コントロールボックス(OLYMPUS製DP2―SAL)を接続した。LED光源の目盛りを5に設定し、コントロールボックスを用いて、撮影条件を、露出補正-3、AEモード:Auto、ホワイトバランス:Autoの条件に設定し、実体顕微鏡像を撮像した。当該実体顕微鏡像を、画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が100以上200未満であるもの(以下、「第1粒子」とも称する)と、「Threshold」の値が200以上255未満であるもの(以下、「第2粒子」とも称する)とを選別した。第1粒子は、実体顕微鏡像において半透明であり、第2粒子は、実体顕微鏡像において白色であった。
 上記実体顕微鏡像から、任意の50個以上の第1粒子について、フェレー径の平均値、最小フェレー径の平均値、面積の平均値およびその標準偏差を求めた。同様に、任意の50個以上の第2粒子について、フェレー径の平均値、最小フェレー径の平均値、面積の平均値およびその標準偏差を求めた。また、第1粒子および第2粒子の合計に対する第1粒子の面積比を求めた結果、84面積%以下であった。
(8)アルミナ粒子の圧縮試験(破壊強度の平均値および破壊時の歪の平均値の測定)
 JISR1639-5に準拠して、第1粒子および第2粒子の圧縮試験を行い、変位-試験力のプロットを得た。当該プロットの変位を下記式(2)に基づいて歪に変換し、当該プロットの試験力を下記式(3)に基づいて強度に変換し、歪-強度のプロットを得た。

 歪=変位[m]/D[m]・・・(2)
 強度[MPa]=2.48×試験力[N]/(π×D)・・・(3)

 ここで、D[m]は、試験対象の粒子の長径と短径の平均値である。なお、当該長径および短径は、実体顕微鏡で観察することにより測定した。
 任意の5個の第1粒子について、当該プロットの破壊点Pの強度を破壊強度s(MPa)として求め、それらの算術平均値を、第1粒子の破壊強度の平均値とし、その標準偏差を第1粒子の破壊強度の標準偏差とした。また、任意の5個の第1粒子について、各プロットから破壊時の歪dを求め、それらの算術平均値を、第1粒子の破壊時の歪の平均値とし、その標準偏差を第1粒子の破壊時の歪の標準偏差とした。また、同様にして、第2粒子の破壊強度の平均値およびその標準偏差、第2粒子の破壊時の歪の平均値およびその標準偏差を得た。
(9)アルミナ粒子の熱拡散率の測定
 第1粒子および第2粒子の熱拡散率は、温度波熱分析法(TWA法)をミクロスケール測定へ適用して測定した。具体的には、1個のアルミナ粒子の熱拡散率を測定するための装置の概念図(図2)において、熱起電力型ミクロセンサーを、試料70(1個のアルミナ粒子)に圧着した。ファンクションジェネレータから抵抗型ミクロヒーターの交流通電加熱により発生させた温度波の伝播による位相差の周波数依存性を、2位相ロックインアンプ80により測定し、熱拡散率を決定した。試料70については、粒子1は直径約180μm、厚さ約100μm、粒子2は直径約170μm、厚さ約100μm、測定周波数は1.6kHz~4.9kHz、センサーサイズは20μm×20μmであった。
(10)樹脂組成物(コンポジット)の熱拡散率の測定
 エポキシ樹脂(主剤:常温硬化型埋込樹脂53型(三啓社製)010-8140、硬化剤:常温硬化型埋込樹脂53型(三啓社製)010-8143)と、アルミナ粒子(原料1、試料No.1~8)とを、50:50の配合比(体積比)で混合し、泡とり練太郎(株式会社シンキー製)を用いて攪拌混合して、エポキシ樹脂-フィラー(アルミナ粒子)のコンポジットを得た。
 アルミ板に1cm×10cmの型枠を作製し、アルミ板の裏面に離型剤を塗ったPETフィルムを貼り付けた。撹拌したコンポジットを流し込み、上から離型剤を塗ったPETフィルムを貼り付けた。さらに、金属製のローラーを用いて、コンポジットを型枠になじませた。さらにその上に別のアルミ板を載せ、100℃で1時間加熱して静置してコンポジットを硬化させた。硬化完了後に放冷し、アルミ板の温度が室温程度まで下がったら、硬化後のコンポジットの両面からPETフィルム2枚を剥離し、コンポジットの熱拡散率測定用のシート状試料を得た。
 得られたシート状試料について、熱拡散率を測定した。
 熱拡散率は、上述の樹脂組成物のシート状試料から、縦10mm×横10mm×厚さ1mmの測定用試料片を作製し、温度波熱分析法(TWA法)により、室温で測定した。測定装置としては、アイフェイズ社製のアイフェイズ・モバイルを用いた。
 熱拡散率については、1つの測定用試料片について、任意の3点で測定し、その3点の測定結果から、平均値を測定値として算出した。
 これらの測定結果および計算結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 測定結果について、以下に検討する。
 表1に示すように、本願実施形態の要件を満たす試料No.1、および4~8のアルミナ粒子を用いたコンポジットは、優れた熱拡散率を示した。一方、本願実施形態の要件を満たさなかった試料No.2および3のアルミナ粒子を用いたコンポジットは、熱拡散率に劣っていた。
 また、表2に示すように、本願の好ましい実施形態の要件を満たす第1粒子は、粒子の熱拡散率が高かった。また、本願の別の好ましい実施形態の要件を満たす第2粒子は、粒子面積の分散(すなわち粒子面積の変動係数)が小さかった。

Claims (14)

  1.  累積粒度分布の微粒側から個数の累積50%の粒径D50が200μm超で、真円度が0.90以上で、α化率が90.0%以上である、アルミナ粒子。
  2.  安息角が32°未満である、請求項1に記載のアルミナ粒子。
  3.  見かけ密度が3.75g/cm以上3.96g/cm以下である、請求項1に記載のアルミナ粒子。
  4.  タップ密度が1.70g/cm以上である、請求項1に記載のアルミナ粒子。
  5.  累積粒度分布の微粒側から個数の累積90%の粒径D90と、累積粒度分布の微粒側から個数の累積10%の粒径D10との差が124μm未満である、請求項1に記載のアルミナ粒子。
  6.  実体顕微鏡像を画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が100以上200未満である、第1アルミナ粒子を含む、請求項1に記載のアルミナ粒子。
  7.  前記第1アルミナ粒子は、フェレー径の平均値が180μm超である、請求項6に記載のアルミナ粒子。
  8.  前記第1アルミナ粒子は、フェレー径の平均値に対する最小フェレー径の平均値の比が0.70以上である、請求項6に記載のアルミナ粒子。
  9.  前記第1アルミナ粒子は、粒子の圧縮試験において破壊強度の平均値が25.9MPa超である、請求項6に記載のアルミナ粒子。
  10.  実体顕微鏡像を画像解析ソフト(ImageJ)で2値化処理したときの輝度パラメータである「Threshold」の値が200以上255以下である、第2アルミナ粒子を含む、請求項1に記載のアルミナ粒子。
  11.  前記第2アルミナ粒子は、フェレー径の平均値が180μm超である、請求項10に記載のアルミナ粒子
  12.  前記第2アルミナ粒子は、フェレー径の平均値に対する最小フェレー径の平均値の比は0.70以上である、請求項10に記載のアルミナ粒子。
  13.  前記第2アルミナ粒子は、粒子の圧縮試験において破壊時の歪の平均値が0.074未満である、請求項10記載のアルミナ粒子。
  14.  樹脂と、請求項1~13のいずれか1項に記載のアルミナ粒子とを含む樹脂組成物。
PCT/JP2023/041741 2022-12-02 2023-11-21 アルミナ粒子およびそれを用いた樹脂組成物 WO2024116958A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022193428 2022-12-02
JP2022-193428 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024116958A1 true WO2024116958A1 (ja) 2024-06-06

Family

ID=91323952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041741 WO2024116958A1 (ja) 2022-12-02 2023-11-21 アルミナ粒子およびそれを用いた樹脂組成物

Country Status (2)

Country Link
JP (1) JP2024080633A (ja)
WO (1) WO2024116958A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053536A1 (fr) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Poudre d'alumine, son procédé de fabrication et son utilisation
JP2008162825A (ja) * 2006-12-27 2008-07-17 Kao Corp 球状セラミックス粒子
JP2013519612A (ja) * 2010-02-11 2013-05-30 バイコウスキー αアルミナ、その合成方法、および装置
JP2015083532A (ja) * 2013-09-19 2015-04-30 太平洋セメント株式会社 微小アルミナ中空粒子
JP2017190267A (ja) * 2016-04-14 2017-10-19 株式会社アドマテックス アルミナ粒子材料及びその製造方法
JP2018069116A (ja) * 2016-10-25 2018-05-10 日本軽金属株式会社 触媒担体用αアルミナ造粒品及びその製造方法
JP2019182714A (ja) * 2018-04-12 2019-10-24 株式会社アドマテックス 粒子材料、及びその製造方法、並びに熱伝導物質
WO2020170307A1 (ja) * 2019-02-18 2020-08-27 株式会社アドマテックス 粒子材料及び熱伝導物質
CN113060746A (zh) * 2021-04-14 2021-07-02 雅安百图高新材料股份有限公司 一种大粒径氧化铝原料制备方法及其球形氧化铝产品
CN113184886A (zh) * 2021-04-14 2021-07-30 雅安百图高新材料股份有限公司 一种高导热球形氧化铝的制备方法及产品
WO2022255226A1 (ja) * 2021-06-04 2022-12-08 住友化学株式会社 アルミナ粒子およびそれを用いた樹脂組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053536A1 (fr) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Poudre d'alumine, son procédé de fabrication et son utilisation
JP2008162825A (ja) * 2006-12-27 2008-07-17 Kao Corp 球状セラミックス粒子
JP2013519612A (ja) * 2010-02-11 2013-05-30 バイコウスキー αアルミナ、その合成方法、および装置
JP2015083532A (ja) * 2013-09-19 2015-04-30 太平洋セメント株式会社 微小アルミナ中空粒子
JP2017190267A (ja) * 2016-04-14 2017-10-19 株式会社アドマテックス アルミナ粒子材料及びその製造方法
JP2018069116A (ja) * 2016-10-25 2018-05-10 日本軽金属株式会社 触媒担体用αアルミナ造粒品及びその製造方法
JP2019182714A (ja) * 2018-04-12 2019-10-24 株式会社アドマテックス 粒子材料、及びその製造方法、並びに熱伝導物質
WO2020170307A1 (ja) * 2019-02-18 2020-08-27 株式会社アドマテックス 粒子材料及び熱伝導物質
CN113060746A (zh) * 2021-04-14 2021-07-02 雅安百图高新材料股份有限公司 一种大粒径氧化铝原料制备方法及其球形氧化铝产品
CN113184886A (zh) * 2021-04-14 2021-07-30 雅安百图高新材料股份有限公司 一种高导热球形氧化铝的制备方法及产品
WO2022255226A1 (ja) * 2021-06-04 2022-12-08 住友化学株式会社 アルミナ粒子およびそれを用いた樹脂組成物

Also Published As

Publication number Publication date
JP2024080633A (ja) 2024-06-13

Similar Documents

Publication Publication Date Title
JP2024003261A (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
JP7145315B2 (ja) 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
WO2014003193A1 (ja) 凹部付きbn球状焼結粒子およびその製造方法ならびに高分子材料
TW202313472A (zh) 氧化鋁粒子及使用其之樹脂組成物
JP6616344B2 (ja) 熱伝導性複合材料
JP2007197714A (ja) 液晶性樹脂アロイ組成物及びフィルム
JP3937494B2 (ja) アルミナ充填樹脂またはゴム組成物
JP2017036190A (ja) 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP6905719B2 (ja) 六方晶窒化ホウ素単結晶、該六方晶窒化ホウ素単結晶を配合した複合材組成物および該複合材組成物を成形してなる放熱部材
WO2024116958A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
JP2008127257A (ja) 多面体形状α−アルミナ及びその製造方法
JP2021109825A (ja) 熱伝導性フィラー、及びそれを含有する熱伝導性組成物
WO2024116954A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
JP2007197715A (ja) 耐熱性樹脂組成物及びプリント配線板
WO2024116955A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116956A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116957A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2023210493A1 (ja) 樹脂組成物およびそれに用いるアルミナ粉末
WO2023210492A1 (ja) 樹脂組成物およびそれに用いるアルミナ粉末
JP2017216422A (ja) シート材の製造方法およびシート材
JP7119386B2 (ja) 複合材料シートの製造方法
WO2024143105A1 (ja) アルミナ粉末および樹脂組成物
CN117425622A (zh) 氧化铝粒子和使用其的树脂组合物
JP7252358B2 (ja) 熱伝導性改良剤、熱伝導性改良方法、熱伝導性樹脂組成物および熱伝導性樹脂成形体
WO2024048663A1 (ja) 窒化アルミニウム粉末及び樹脂組成物