WO2024116956A1 - アルミナ粒子およびそれを用いた樹脂組成物 - Google Patents

アルミナ粒子およびそれを用いた樹脂組成物 Download PDF

Info

Publication number
WO2024116956A1
WO2024116956A1 PCT/JP2023/041739 JP2023041739W WO2024116956A1 WO 2024116956 A1 WO2024116956 A1 WO 2024116956A1 JP 2023041739 W JP2023041739 W JP 2023041739W WO 2024116956 A1 WO2024116956 A1 WO 2024116956A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
particles
alumina particles
particle
raw material
Prior art date
Application number
PCT/JP2023/041739
Other languages
English (en)
French (fr)
Inventor
邦彦 中田
泰治 島崎
泰広 関口
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024116956A1 publication Critical patent/WO2024116956A1/ja

Links

Images

Definitions

  • This disclosure relates to alumina particles and resin compositions using the same.
  • Heat generated by passing current through an electronic component is dissipated via a heat sink.
  • a technique is known in which a heat dissipation material is filled between the electronic component and the heat sink.
  • One type of heat dissipation material is a resin composition containing a resin and inorganic particles, and it is known that alumina particles can be used as the inorganic particles (for example, Patent Document 1).
  • Patent Document 1 discloses alumina particles that have an ⁇ -phase content of 40% or less, an average circularity of 0.95 or more, and an average particle size of 100 ⁇ m or less as alumina particles that can improve the fluidity when highly filled in resin.
  • the method disclosed for producing the alumina particles is to melt pulverized electrically fused alumina using a flame fusion method, and then rapidly cool it by spraying water into a furnace.
  • Resin compositions used as heat dissipation materials are desirably placed in the vicinity of electronic components and therefore desirably have low dielectric loss, and therefore there is a demand for alumina particles capable of forming resin compositions with low dielectric loss.
  • the gap between the electronic component and the heat sink has become narrower due to the miniaturization of electronic devices and the high integration of ICs.
  • the resin composition disposed between the electronic component and the heat sink is required to be moldable into the narrow gap (i.e., to have excellent moldability).
  • one embodiment of the present invention aims to provide alumina particles used as a filler for a resin composition, which can reduce the viscosity of a mixture with a resin and form a resin composition with low dielectric loss. Furthermore, another embodiment of the present invention aims to provide a resin composition using such alumina particles.
  • Aspect 1 of the present invention is The particle diameter D50 of the cumulative 50% of the number of particles from the fine particle side of the cumulative particle size distribution is more than 30.0 ⁇ m and 55.0 ⁇ m or less,
  • the gelatinization rate is 60.0% or more,
  • the alumina particles have a ratio (L2/L1) of a total length L2 of boundary lines inside the alumina particle to a length L1 of an outer edge of the alumina particle, which is 1.0% or more and 90.0% or less.
  • Aspect 2 of the present invention is The alumina particles according to aspect 1, wherein the intracrystalline defect rate is less than 20.0%.
  • Aspect 3 of the present invention is The alumina particles according to aspect 1 or 2, having a circularity of 0.85 or more.
  • Aspect 4 of the present invention is The alumina particles according to any one of Aspects 1 to 3, which satisfy the following formula (1): 3.00 ⁇ D50 ⁇ SA ⁇ AD ⁇ 25.00 (1)
  • D50 is the particle size D50 ( ⁇ m)
  • SA is the specific surface area of the alumina particles (m 2 /g)
  • AD is the apparent density of the alumina particles (g/cm 3 ).
  • Aspect 5 of the present invention is Alumina particles according to any one of Aspects 1 to 4, having a moisture content of less than 62 ppm.
  • Aspect 6 of the present invention is A resin composition comprising a resin and the alumina particles according to any one of aspects 1 to 5.
  • alumina particles according to one embodiment of the present invention as a filler, it is possible to reduce the viscosity of the mixture with the resin and obtain a resin composition with low dielectric loss.
  • FIG. 1 is a schematic diagram showing an apparatus for carrying out a flame fusion step in a method for producing alumina particles.
  • FIG. 2 is a schematic diagram for explaining a method for calculating the particle defect rate.
  • the alumina particles according to the first embodiment of the present invention are intended to be used as a filler for a resin composition by mixing with a resin.
  • the alumina particles have a particle diameter D50 of 50% of the cumulative number from the fine particle side of the cumulative particle size distribution of more than 30.0 ⁇ m and not more than 55.0 ⁇ m, an alpha conversion rate of 60.0% or more, and a ratio (L2/L1) of a total length L2 of the boundary lines inside the alumina particles to a length L1 of the outer edge of the alumina particles is 1.0% or more and not more than 90.0%.
  • alumina particles satisfying the above characteristics can reduce the dielectric loss (tan ⁇ ) of a resin composition using the alumina particles as a filler, and have completed the invention according to this embodiment.
  • the characteristics of the alumina particles according to the first embodiment will be described in detail below.
  • the first embodiment of the present invention is directed to alumina particles having a particle diameter D50 (hereinafter sometimes simply referred to as "D50") of 50% of the cumulative number from the fine particle side of the cumulative particle size distribution of more than 30.0 ⁇ m and not more than 55.0 ⁇ m.
  • D50 particle diameter of the alumina particles
  • the particle diameter D50 of the alumina particles is preferably 35.0 ⁇ m or more and 50.0 ⁇ m or less.
  • the D50 of alumina particles is determined by measuring the particle size distribution of alumina particles based on the principle of dynamic image analysis in accordance with ISO 13322-2, and using the cumulative particle size distribution obtained from the measurement results, the particle size (D50) of the cumulative 50% of the number of particles from the finest side is calculated.
  • a CAMSIZER manufactured by VERDER Scientific
  • the samples are sequentially placed into the device, and the particles passing in front of the camera are measured while the aggregated particles are dispersed with dry air.
  • the alumina particles according to the first embodiment of the present invention have an alpha-alumina content index of 60.0% or more, and preferably 65.0% or more.
  • the upper limit of the alpha-alumina content is not particularly limited, but may be 100% or less, or may be 99.6% or less. Since alpha-alumina has high thermal conductivity, the thermal conductivity of the alumina particles can be increased by increasing the content of alpha-alumina in the alumina particles.
  • the "alpha conversion rate” refers to the content (volume %) of alpha alumina relative to the total alumina contained in the alumina particles.
  • Alpha conversion rate I 25.6 / (I 25.6 + I 46 ) ⁇ 100 (%) (2)
  • the alumina particles according to the first embodiment of the present invention may contain alumina other than ⁇ -alumina ( ⁇ -alumina, ⁇ -alumina, etc.) in an amount of, for example, 40.0% or less, without interfering with the object of the present invention.
  • the alumina other than ⁇ -alumina may be contained in any form.
  • both ⁇ -alumina and alumina other than ⁇ -alumina may be contained inside one alumina particle.
  • one alumina particle may be made of only ⁇ -alumina, and another alumina particle may be made of only alumina other than ⁇ -alumina, and these alumina particles may be mixed together.
  • (L2/L1) (%) is preferably 1.0% or more and 90.0% or less, and when used as a filler for a resin composition, the dielectric loss of the resin composition can be further reduced.
  • (L2/L1) is more preferably 5.0% or more, even more preferably 10.0% or more, particularly preferably 20.0% or more, more preferably 80.0% or less, even more preferably 60.0% or less, even more preferably 50.0% or less, and particularly preferably 40.0% or less.
  • This L2/L1 value becomes particularly large when alumina particles are produced by the flame fusion method using granulated raw material particles or polycrystalline raw material particles, and cannot be significantly reduced even by performing a post-process such as reheating.
  • the “total length L2 of the boundary lines” is the sum of the boundary lines included inside the alumina particle, and does not include the outer edge of the alumina particle.
  • the measurements of L1, L2, L3 and L4 are preferably carried out on alumina particles made of ⁇ -alumina.
  • the alumina particles have a low intraparticle defect rate, particularly preferably less than 20.0%, more preferably less than 12.0%, and particularly preferably 10.0% or less. This can further reduce the dielectric loss of the resin composition when the alumina particles are used as a filler for the resin composition.
  • the intra-particle defect rate is determined by taking an X-ray transmission image of alumina particles thinly dispersed on a substrate using an X-ray CT scan, and checking for particle defects for all of the 20 or more alumina particles in the obtained X-ray transmission image. Particle defects are observed as light gray areas inside defect-free areas (non-defective areas: observed as white areas) in the X-ray transmission image of the alumina particles.
  • the X-ray photograph was subjected to image processing software or the like to determine the area Sa of the entire alumina particle, the area Sb of the non-defective portion in the alumina particle, and the area Sc of the defective portion in the alumina particle.
  • Sc/Sa is expressed as a percentage to give the intragranular defect rate (%).
  • the value of the middle part of formula (1) (D50 ⁇ SA ⁇ AD) is 6.
  • the specific surface area SA increases, the value of the middle part increases, and as the apparent density AD becomes smaller than the theoretical density, the value of the middle part decreases.
  • the alumina particles according to this embodiment preferably satisfy the above formula (1) (i.e., the value of D50 x SA x AD of the alumina particles is 3.00 or more and 25.00 or less), and the viscosity and dielectric loss (tan ⁇ ) of the resin composition using the alumina particles as a filler can be further reduced.
  • D50 ⁇ SA ⁇ AD of alumina particles can affect the viscosity and dielectric loss of a resin composition containing alumina particles
  • the apparent density AD and specific surface area SA of alumina particles affect the viscosity and dielectric loss of the resin composition.
  • the value of D50 ⁇ SA ⁇ AD of the alumina particles is more preferably 21.50 or less, still more preferably 18.00 or less, more preferably 3.50 or more, and still more preferably 4.00 or more.
  • the values obtained under the following conditions are used to calculate formula (1).
  • the particle diameter D50 ( ⁇ m) is measured by the above-mentioned measuring method, and the value rounded to one decimal place is used.
  • the specific surface area SA (m 2 /g) is measured by the method described below, and the value is rounded to two decimal places.
  • the apparent density AD (g/cm 3 ) is measured by the method described below, and a value rounded to two decimal places is used.
  • the specific surface area SA of the alumina particles is a BET specific surface area measured by a nitrogen adsorption method based on JIS Z 8830:2013.
  • the specific surface area is an index showing the degree of unevenness of the particles. If the surface of the alumina particles is less uneven, the interface with the resin will be smaller when the alumina particles are used as a filler for a resin composition, and as a result, it is expected that the viscosity and dielectric loss of the resin composition can be reduced.
  • the specific surface area SA of the alumina particles is preferably 5.0 m 2 /g or less, more preferably 2.0 m 2 /g or less, further preferably 1.0 m 2 /g or less, and particularly preferably 0.5 m 2 /g or less.
  • the specific surface area SA of the alumina particles may be 0.005 m 2 /g or more, or may be 0.010 m 2 /g or more.
  • the apparent density AD of the alumina particles is measured by a pycnometer method in accordance with JIS R 1620-1995. The measurements are carried out five times or more, and the average value is used. For the measurement, for example, Accupyc 1330 (Micromeritics) can be used.
  • the apparent density of the alumina particles is preferably 3.60 g/ cm3 or more and 3.96 g/ cm3 or less, more preferably 3.95 g/ cm3 or less, even more preferably 3.93 g/ cm3 or less, still more preferably 3.65 g/ cm3 or more and 3.90 g/ cm3 or less, and particularly preferably 3.70 g/ cm3 or more and 3.87 g/ cm3 or less.
  • the apparent density of the alumina particles is preferably 3.60 g/ cm3 or more and 3.96 g/ cm3 or less, more preferably 3.95 g/ cm3 or less, even more preferably 3.93 g/ cm3 or less, still more preferably 3.65 g/ cm3 or more and 3.90 g/ cm3 or less, and particularly preferably 3.70 g/ cm3 or more and 3.87 g/ cm3 or less.
  • the circularity of the alumina particles is preferably 0.90 or more, and more preferably 0.91 to 1.00. When the circularity is within this range, the alumina particles can be well kneaded with the resin, the fluidity of the composite after kneading can be increased, and abrasion of other members caused by the alumina particles can be reduced, making the alumina particles suitable for use as a filler for the resin composition of electronic components.
  • alumina particles are generally hard particles, it is difficult to obtain alumina particles with a circularity of 0.90 or more by simply colliding alumina particles with low circularity with each other or by crushing alumina particles with low circularity. In order to improve the circularity of alumina particles by collision and crushing, it is necessary to carry out the collision and crushing for a long period of time, but in that case, a large amount of fine alumina powder is generated, which may cause the particle size D50 of the alumina particles to decrease too much or increase the viscosity and dielectric loss of the resin composition.
  • the new hydrophilic surface generated on the surface of the alumina particles by crushing may reduce the miscibility of the alumina particles with resin, and therefore may not be suitable as a filler for resin compositions.
  • the hydrophilic surface may have many small defects, which may increase the dielectric loss.
  • the roundness of the alumina particles is measured by a measuring device based on the principle of dynamic image analysis in accordance with ISO 13322-2 (for example, CAMSIZER X2 (manufactured by VERDER Scientific)).
  • moisture content of the alumina particles (the moisture content of the alumina particles) If the moisture content of the alumina particles (the moisture content of the alumina particles) is large, the viscosity and dielectric loss of the resin composition made using the alumina particles will be large. Also, if the moisture content of the alumina particles is large, moisture may seep out of the resin, adversely affecting electronic components and the like arranged adjacent to the resin composition. Furthermore, if the moisture content of the alumina particles is large, the kneadability with the resin may be poor, and the viscosity may increase. Therefore, it is preferable that the moisture content of the alumina particles is small.
  • the moisture content of the alumina particles is preferably 62 ppm or less, more preferably 60 ppm or less, further preferably 55 ppm or less, and particularly preferably 50 ppm or less.
  • the moisture content of the alumina particles is measured based on the Karl Fischer method in accordance with the description of JIS K 0068:2001 "Method for measuring moisture content in chemical products.”
  • the alumina particles according to the first embodiment can be used as a filler for a resin composition to produce a resin composition having low dielectric loss.
  • the alumina particles according to the first embodiment can further reduce the viscosity of the mixture when mixed (kneaded) with a resin, so that even if the gap between the electronic component and the heat sink is narrow, the resin composition can be appropriately disposed in the narrow gap.
  • the raw material for the alumina particles is alumina raw material particles mainly made of single crystal ⁇ -alumina, and having a particle size D50 of more than 29.0 ⁇ m and not more than 70.0 ⁇ m for the cumulative 50% of the number of particles counted from the fine particle side in the cumulative particle size distribution.
  • Alumina particles are produced from the alumina raw material particles by a flame fusion method.
  • the D50 of the resulting alumina particles can also be controlled by the conditions (such as the supply amounts of alumina raw material particles, fuel gas, and oxygen gas) when the flame melting step is carried out.
  • alumina particles having a gelatinization rate of 60.0% or more and satisfying the above formula (1) can be obtained.
  • Single crystal alumina raw material particles are used, and in order to utilize the characteristics of the crystal structure of single crystal alumina even after spheroidization, the particle size of the alumina raw material particles used, the supply rate of the alumina raw material particles into the flame melting furnace of the device, the flame strength, the distance between the flame and the alumina raw material particles, etc. are controlled.
  • alumina raw material particles with a D50 of, for example, more than 29.0 ⁇ m and not more than 70.0 ⁇ m are used.
  • the D50 of the alumina raw material particles is preferably 32.0 ⁇ m or more and 68.0 ⁇ m or less, for example 37.0 ⁇ m.
  • the individual alumina raw material particles may include particles with a particle size of 29.0 ⁇ m or less and particles with a particle size of more than 70.0 ⁇ m. Therefore, the obtained alumina particles may include polycrystalline ⁇ -alumina and/or alumina other than ⁇ -alumina.
  • the content of polycrystalline ⁇ -alumina and/or alumina other than ⁇ -alumina can be kept small enough to be tolerated by the present invention.
  • a method of producing alumina particles by flame fusion using granulated raw material particles or polycrystalline raw material particles is known, but the alumina particles obtained may contain many grain boundaries and internal voids.
  • single crystal ⁇ -alumina that has not been granulated is used as the alumina raw material particles, so alumina particles with a small L2/L1 value can be obtained.
  • the D50 of the alumina raw material particles can be measured by the same method as the above-mentioned method for measuring the D50 of the alumina particles. It can be confirmed by SEM-EBSD that the alumina raw material particles are single crystal ⁇ -alumina. Phase MAP is used to determine whether the alumina is ⁇ -alumina or an alumina other than ⁇ -alumina, and then Image Quality (IQ) MAP is used to determine whether the alumina particles are single crystal or polycrystal based on the presence or absence of clear crystal grain boundaries in the alumina particles. Whether ⁇ -alumina is a single crystal may be confirmed by the Debye-Scherrer method.
  • the raw material for the alumina raw particles can be sapphire or single crystal ⁇ -alumina produced by melt growth methods such as the CZ method, the Verneuil method, the Chiroporus method, the Bridgman method, or the EFG method. By crushing these raw materials and sieving them through a mesh with the desired opening size, alumina raw particles with the specified D50 can be prepared.
  • the alumina raw material particles may contain small amounts (e.g., about 10% by mass or less) of alumina other than ⁇ -alumina (e.g., ⁇ -alumina, ⁇ -alumina, etc.), and may also contain small amounts (e.g., about 10% by mass or less) of polycrystalline ⁇ -alumina along with single crystal ⁇ -alumina, neither of which will interfere with the objectives of the present invention.
  • the supply amounts of the alumina raw material particles, the fuel gas, and the oxygen gas satisfy the following formulas (3) and (4).
  • F is the amount of fuel gas supplied (Nm 3 /hour)
  • S is the amount of oxygen gas supplied (Nm 3 /hour)
  • R is the amount of alumina raw material particles supplied (kg/hour).
  • the supply amount of oxygen gas (S) is the sum of the supply amount of the combustion oxygen gas and the supply amount of the carrier oxygen gas.
  • the carrier oxygen gas is an oxygen gas whose main purpose is to transport the alumina raw material particles, but after transportation, it is used for combustion in the same way as the combustion oxygen gas.
  • the ratio (R/F) of the supply amount of the alumina raw material particles to the supply amount of the fuel gas is preferably 0.625 kg/ Nm3 or more and 17.000 kg/ Nm3 or less.
  • the ratio (R/S) of the supply amount of the alumina raw material particles to the supply amount of the oxygen gas is preferably 0.125 kg/ Nm3 or more and 3.400 kg/ Nm3 or less.
  • the fuel gas supply rate F ( Nm3 /hour) and the oxygen gas supply rate S ( Nm3 /hour) are factors that determine the flame strength in the furnace during the flame melting process. Both R/F and R/S are indicators of the relationship between the flame strength in the furnace and the supply rate of alumina raw material particles during the flame melting process. When R/F and R/S are large, the supply amount of alumina raw material particles is large, and the amount of energy imparted from the flame to each alumina raw material particle is small (i.e., melting of the alumina raw material particles is suppressed). When R/F and R/S are small, the supply amount of alumina raw material particles is small, and the amount of energy imparted from the flame to each alumina raw material particle is large (that is, melting of the alumina raw material particles is promoted).
  • controlling R/F and R/S is one method of controlling the molten state of the alumina raw material particles in the flame melting process.
  • the alumina raw material particles can be spheroidized in the flame melting process while preserving the characteristics of the crystal structure of the raw material particles.
  • R/F is more preferably 1.000 kg/Nm 3 or more and 10.000 kg/Nm 3 or less, and particularly preferably 2.000 kg/Nm 3 or more and 10.000 kg/Nm 3 or less.
  • R/S is more preferably 0.300 kg/Nm 3 or more and 3.000 kg/Nm 3 or less, and particularly preferably 0.500 kg/Nm 3 or more and 3.000 kg/Nm 3 or less.
  • the fuel gas supply rate F is preferably less than 20 Nm 3 /hour.
  • the flame length can be changed by the fuel gas supply rate, and the greater the fuel gas supply rate, the longer the flame length and the longer the residence time of the particles in the flame.
  • the smaller the fuel gas supply rate the shorter the flame length and the shorter the residence time of the particles in the flame. That is, the residence time of the alumina raw material particles in the flame can be changed, and the degree of melting (time) of the alumina raw material particles in the flame can be changed.
  • alumina particles having a small L2/L1 value can be obtained while maintaining the characteristics of the crystal structure of the raw material particles of the alumina raw material particles.
  • Fuel gases in the present invention include, for example, propane, butane, propylene, acetylene, and hydrogen.
  • propane e.g., liquefied propane gas (LPG)
  • LPG liquefied propane gas
  • the molten alumina raw material particles when they are solidified, they may be passed through a region of 600°C to 1500°C, preferably a region of 800°C to 1400°C, and more preferably a region of 1000°C to 1300°C, in order to slow down the cooling rate.
  • the alpha conversion rate By passing through such a region and solidifying the spheroidized alumina particles, the alpha conversion rate can be increased.
  • a process of reheating the cooled and solidified alumina particles before recovery may be added.
  • the temperature of the reheating process is preferably, for example, 900°C or higher, and more preferably 1000°C or higher.
  • Methods of reheating that can be used include external heating using a heater or heating by gas combustion again.
  • alumina particles according to the first embodiment of the present invention As a filler for a resin composition, a resin composition having low dielectric loss can be obtained.
  • the alumina particles according to the first embodiment of the present invention can keep the viscosity of a mixture mixed with a resin low.
  • the resin composition contains a resin and the alumina particles according to the first embodiment of the present invention.
  • alumina particles according to embodiment 1 of the present invention can reduce dielectric loss without impairing the flexibility inherent to resin, so the preferred compounding ratio is 5-75 volume % resin and 95-25 volume % alumina particles in the resin composition (composite).
  • a method for producing the resin composition will be described.
  • a resin composition can be obtained by mixing the alumina particles according to the first embodiment of the present invention with a resin using a commonly used known method.
  • the resin is liquid (such as liquid epoxy resin)
  • the liquid resin, the alumina particles, and the curing agent are mixed, and then cured with heat or ultraviolet light to obtain a resin composition.
  • the curing agent, mixing method, and curing method can be known and used.
  • the resin is solid (such as polyolefin resin or acrylic resin)
  • the alumina particles and the resin are mixed, and then kneaded by a known method such as melt kneading to obtain the desired resin composition.
  • the resin used in the resin composition can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
  • the resins may be used alone or in combination of two or more types.
  • Thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers; fluoropolymers such as polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymers, polyvinyl alcohol, polyvinyl acetal, polyvinylidene fluoride, and polytetrafluoroethylene; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymers, acrylonitrile-butadiene-styrene copolymer (ABS) resins, polyphenylene-ether copolymers (PPE) resins, modified PPE resins, aliphatic polyamides, aromatic polyamides, polyimides, polyamideimides, polymethacryl
  • Thermoplastic elastomers include styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, etc.
  • Thermosetting resins include cross-linked rubber, epoxy resin, phenolic resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, etc.
  • cross-linked rubber include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluororubber, urethane rubber, and silicone rubber.
  • polyolefin resins acrylic resins, polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, phenolic resins, and silicone resins are preferably used.
  • these resin compositions may contain, as necessary, known additives such as plasticizers, curing accelerators, coupling agents, fillers, pigments, flame retardants, antioxidants, surfactants, compatibilizers, weather resistance agents, antiblocking agents, antistatic agents, leveling agents, and release agents, either alone or in combination, within the scope of the invention.
  • additives such as plasticizers, curing accelerators, coupling agents, fillers, pigments, flame retardants, antioxidants, surfactants, compatibilizers, weather resistance agents, antiblocking agents, antistatic agents, leveling agents, and release agents, either alone or in combination, within the scope of the invention.
  • the alumina particles according to this embodiment and the resin composition containing the alumina particles are particularly suitable for use as heat dissipation materials with low dielectric loss.
  • Alumina raw material particles (raw material particles 1, 3, and 4) made of single crystal alumina and raw material particles (raw material particles 2) made of polycrystalline alumina were prepared.
  • the D50 of each raw material particle was measured and summarized in Table 1.
  • the D50 of the alumina raw material particles was measured by the laser diffraction method. A laser beam was irradiated onto a sample dispersed in water, and the diffraction was measured to determine the particle size.
  • the measuring device used was the CILAS Model 1090L.
  • Alumina particles were prepared from alumina raw material particles using an apparatus as shown in FIG. 1.
  • Oxygen gas from an oxygen gas supply system 10 was branched, and one (carrier oxygen gas 11) was supplied to a feeder 30, and the other (combustion oxygen gas 12) was supplied to a burner 41 of a flame melting furnace 40.
  • the alumina raw material particles supplied to the feeder 30 were transported to the burner 41 of the flame melting furnace 40 by the carrier oxygen gas 11.
  • fuel gas (LPG) was supplied to the burner 41 from the gas supply system 20.
  • LPG fuel gas
  • a high-temperature flame of 2150°C or higher was formed by the fuel gas and the combustion oxygen gas 12, and the alumina raw material particles dispersed in the carrier oxygen gas 11 were supplied thereto.
  • the alumina raw material particles were melted and spheroidized in the flame melting furnace 40.
  • the spheroidized alumina particles were then classified in a cyclone 50 to obtain alumina particles captured in the cyclone 50.
  • Sample No. 6 did not undergo flame melting.
  • Table 2 summarizes the alumina raw material particles used, the fuel gas supply rate F ( Nm3 /hour), the oxygen gas supply rate S ( Nm3 /hour), and the alumina raw material particle supply rate R (kg/hour) ratios R/F and R/S in the flame melting process.
  • the oxygen gas supply rate S is the sum of the carrier oxygen gas 11 supply rate and the combustion oxygen gas 12 supply rate.
  • the fuel gas supply rate F was less than 20 Nm3 /hour.
  • the R/F and R/S columns are marked "-" which means that flame melting was not performed.
  • alumina particles samples No. 1 to 11
  • alumina particles "sample No. 6" are the same as raw material particles 1.
  • a portion of the alumina particles of sample No. 5 was set aside and subjected to additional heat treatment to examine the change in the state of the alumina particles before and after heating.
  • the alumina particles of sample No. 5 were in powder form before heat treatment, but when heat treated at 1350°, the alumina particles fused together. For this reason, it was not possible to perform various measurements, as described below, on the alumina particles after heat treatment.
  • SPHT Circularity
  • the particle size D50 and circularity of each alumina particle are shown in Table 3.
  • the alpha-phase ratio of alumina particles was measured. The measurement was not performed for sample No. 6.
  • the alpha-phase ratio was measured by measuring the alumina particle sample with a powder X-ray diffractometer (manufactured by Rigaku Denki) to obtain a diffraction spectrum. The measurement conditions were as follows: X-ray source: CuK ⁇ , X-ray output: 45 kV, 200 mA, scanning speed: 10 deg/min.
  • the alpha conversion rate of the alumina particles of samples Nos. 1 to 5 and 7 to 11 was within the preferred range specified in embodiment 1.
  • the total length L2 of the boundary lines was also calculated.
  • the “total length L2 of the boundary lines” is the sum of the boundary lines contained inside the alumina particle, and does not include the outer edges of the alumina particle.
  • the total length L2 of the boundary lines was calculated by adding the total length of the grain boundaries inside the alumina particle and the total length of the inner walls of the cavities (if there are cavities inside the alumina particle).
  • the ratio (L2/L1) of the total length L2 of the boundary lines to the length L1 of the outer edge is expressed as a percentage (%).
  • the alumina particles of samples No. 1 to 4 and 7 to 11 had L2/L1 within the numerical range specified in embodiment 1, but the alumina particles of sample No. 5 exceeded the numerical range, and the alumina particles of sample No. 6 fell below the numerical range. This is because the alumina particles of sample No. 5 used polycrystalline alumina (raw material particles 2) as the alumina raw material particles, and many boundary lines originating from the raw material remained even after the flame melting process. This is because the alumina particles of sample No. 6 (alumina raw material particles) were single-crystalline alumina, and there were almost no boundary lines inside the alumina particles.
  • the specific surface area SA of the alumina particles was measured.
  • the specific surface area of a powder (solid) was measured by gas adsorption in accordance with JIS Z 8830: 2013, using nitrogen as the adsorption gas.
  • 1 g of alumina particles was placed in a sample tube, an adsorption/desorption isotherm was obtained, and the specific surface area SA ( m2 /g) was calculated by a multipoint plot method.
  • the moisture content of the alumina particles of samples Nos. 1 to 4 and 7 to 11 was within the preferred range specified in embodiment 1, but the moisture content of the alumina particles of samples Nos. 5 and 6 exceeded the preferred range.
  • the intra-particle defect rate of alumina particles was measured.
  • Alumina particles thinly dispersed on a substrate were subjected to an X-ray transmission image in an area of 0.7 mm x 0.7 mm using a high-sensitivity X-ray CT scanner (model: nano3DX) manufactured by Rigaku Corporation. All of the 20 or more alumina particles in the obtained X-ray transmission image were confirmed to have defects.
  • Particle defects refer to voids or amorphous layers present inside the particles, and are observed as light gray areas inside the non-defective areas (non-defective areas: observed as white areas) in the X-ray transmission image of the alumina particles.
  • the X-ray radiograph was processed using image processing software Image J (manufactured by the National Institute of Health) to determine the area Sa of the entire alumina particle, the area Sb of the non-defective portion in the alumina particle, and the area Sc of the defective portion in the alumina particle.
  • Sc/Sa was expressed as a percentage to give the intragranular defect rate (%).
  • the image processing method for determining the areas Sa, Sb and Sc will be described below.
  • image processing software "Image J” an image of one alumina particle including voids was cut out from the image obtained by X-ray radiography, binarized, and the area Sa of the entire alumina particle was obtained using the analysis of "Analyze Particles".
  • the non-defective part of the alumina particle has the lowest brightness
  • the defective part in the particle has the next highest brightness
  • the surrounding (background) part of the alumina particle has the highest brightness. Therefore, image processing is required to convert the brightness of the defective part and the background to the same level when performing the binarization process.
  • Such image processing was performed by adjusting the contrast and the filter "Convolve”. As a result, the area of the range in which the light gray part, which is the defective part, was hollowed out from the alumina particle (i.e., the area Sb of the non-defective part) was measured.
  • the area Sa of the alumina particle including both the non-defective parts (area Sb) and the defective parts (area Sc) inside the alumina particle (with Include holes checked ON) and the area of the alumina particle not including the defective parts inside the alumina particle (i.e. the area Sb of the non-defective parts) (with Include holes checked OFF) were measured.
  • the shear rate-viscosity measurement of the mixed sample was carried out using a HAAKEMARSID (manufactured by Thermo Fisher Scientific).
  • the measurement conditions were as follows: Geometry: ⁇ 20mm parallel plate Shear rate: 0.001s -1 to 100s -1 Measurement temperature: 23°C Measurement time: 4 minutes. The sample was set on the plate stabilized at the measurement temperature within 10 minutes, and the measurement was started.
  • Resin compositions (composites) were prepared using the alumina particles of Samples No. 1 to 4 and 7 to 11, and the dielectric loss was measured. Note that no resin compositions (composites) were prepared for the alumina particles of Samples No. 5 to 6, which had high viscosity when mixed with the resin. Polypropylene resin (J105G manufactured by Prime Polymer Co., Ltd.) and alumina particles were mixed in a volume ratio of 60:40. Using a press molding machine, vacuum press molding was performed under the following conditions to produce an alumina-resin composite with a thickness of 600 ⁇ m.
  • the dielectric loss (tan ⁇ ) of the composite was measured under the following measurement conditions. Measurement equipment: Network analyzer 8720ES (manufactured by Agilent Technologies) ⁇ Test piece dimensions: 50mm x 50mm Measurement frequency: 12 GHz Test environment: 22°C/59% RH
  • the alumina particles of samples No. 1 to 4 and 7 to 11 had D50, alpha conversion rate, and L2/L1 values within the ranges specified in embodiment 1.
  • the value of the middle part of formula (1) was also within the preferred range of embodiment 1. Therefore, the resin compositions using the alumina particles of samples No. 1 to 4 and 7 to 11 had low dielectric loss.

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

累積粒度分布の微粒側から個数の累積50%の粒径D50が30.0μm超55.0μm以下で、α化率が60.0%以上であり、アルミナ粒子の外縁の長さL1に対する、アルミナ粒子内部の境界線の合計長さL2の比(L2/L1)が1.0%以上90.0%以下である、アルミナ粒子。 樹脂組成物用フィラーとして使用したとき、樹脂との混合物の粘度を低下させることができ、かつ低誘電損失の樹脂組成物を形成できるアルミナ粒子を提供することを目的とする。

Description

アルミナ粒子およびそれを用いた樹脂組成物
 本開示は、アルミナ粒子およびそれを用いた樹脂組成物に関する。
 電子部品に通電することにより発生する熱は、ヒートシンクを介して放熱される。放熱効率を向上する目的で、電子部品とヒートシンクとの間を放熱材料で充填する技術が知られている。
 放熱材料の1つとして、樹脂と無機粒子とを含む樹脂組成物があり、無機粒子としてはアルミナ粒子が利用できることが知られている(例えば特許文献1)。
 特許文献1には、樹脂中に高充填したときの流動性を改善することができるアルミナ粒子として、α相含有率が40%以下であり、平均円形度が0.95以上であり、平均粒径が100μm以下のアルミナ粒子が開示されている。アルミナ粒子を製造する方法としては、電融アルミナの粉砕物を火炎溶融法で溶融し、炉内に水を噴霧して急冷する手法が開示されている。
国際公開第2009/133904号
 放熱材料として使用される樹脂組成物は、電子部品の近傍に配置されるため、誘電損失が低いことが望まれる。そのため、低誘電損失の樹脂組成物を形成することができるアルミナ粒子が求められている。
 また近年、電子機器の小型化およびIC高集積化により、電子部品とヒートシンクとの間の隙間が狭くなっている。電子部品とヒートシンクとの間に配置される樹脂組成物は、その狭い隙間に成形可能であること(つまり、優れた成形性を有すること)求められている。そのためには、アルミナ粒子と樹脂との混合物の粘度を低く抑えることが望ましく、混合物の粘度を低下させることのできるアルミナ粒子が求められている。
 それらの要求を満たすために、樹脂との混合物の粘度を低下させることができ、かつ低誘電損失の樹脂組成物を形成することができるアルミナ粒子が求められている。
 しかしながら、特許文献1に記載されたアルミナ粒子は、低誘電損失の樹脂組成物を形成することについて検討されていない。
 このような状況を鑑みて、本発明の一実施形態は、樹脂組成物用フィラーとして使用されるアルミナ粒子であって、樹脂との混合物の粘度を低下させることができ、かつ低誘電損失の樹脂組成物を形成できるアルミナ粒子を提供することを目的とする。さらに、本発明の別の実施形態は、そのようなアルミナ粒子を用いた樹脂組成物を提供することを目的とする。
 本発明の態様1は、
 累積粒度分布の微粒側から個数の累積50%の粒径D50が30.0μm超55.0μm以下で、
 α化率が60.0%以上であり、
 アルミナ粒子の外縁の長さL1に対する、アルミナ粒子内部の境界線の合計長さL2の比(L2/L1)が1.0%以上90.0%以下である、アルミナ粒子である。
 本発明の態様2は、
 結晶内欠陥率が20.0%未満である、態様1に記載のアルミナ粒子である。
 本発明の態様3は、
 真円度が0.85以上である、態様1または2に記載のアルミナ粒子である。
 本発明の態様4は、
 下記の式(1)を満たす、態様1~3のいずれか1つに記載のアルミナ粒子である。

 3.00≦D50×SA×AD≦25.00   (1)

ここで、D50は、前記粒径D50(μm)であり、
SAは、アルミナ粒子の比表面積(m/g)であり、
ADは、アルミナ粒子の見かけ密度(g/cm)である。
 本発明の態様5は、
 水分量が62ppm未満である、態様1~4のいずれか1つに記載のアルミナ粒子である。
 本発明の態様6は、
 樹脂と、態様1~5のいずれか1つに記載のアルミナ粒子とを含む樹脂組成物である。
 本発明の一実施形態に係るアルミナ粒子をフィラーとして使用することにより、樹脂との混合物の粘度を低下させることができ、かつ低誘電損失を有する樹脂組成物を得ることができる。
図1は、アルミナ粒子の製造方法において、火炎溶融工程を実施するための装置を示す概略図である。 図2は、粒子欠陥率の計算方法を説明するための模式図である。
[実施形態1:アルミナ粒子]
 本発明の実施形態1に係るアルミナ粒子は、樹脂組成物用フィラーとして、樹脂と混合して使用するためのものである。アルミナ粒子は、累積粒度分布の微粒側から個数の累積50%の粒径D50が30.0μm超55.0μm以下で、α化率が60.0%以上であり、アルミナ粒子の外縁の長さL1に対する、アルミナ粒子内部の境界線の合計長さL2の比(L2/L1)が1.0%以上90.0%以下である。
 本発明者らは、上記の特徴を満足するアルミナ粒子はアルミナ粒子をフィラーとして用いた樹脂組成物の誘電損失(tanδ)を低減できることを初めて見いだして、本実施の形態に係る発明を完成するに至った。
 実施形態1に係るアルミナ粒子の特徴について、以下に詳しく説明する。
(累積粒度分布の微粒側から個数の累積50%の粒径D50)
 本発明の実施形態1は、累積粒度分布の微粒側から個数の累積50%の粒径D50(以下単に「D50」と記載することがある)は30.0μm超55.0μm以下のアルミナ粒子を対象としている。アルミナ粒子の粒径D50は、好ましくは35.0μm以上50.0μm以下である。
 アルミナ粒子のD50は、ISO 13322-2に準拠した動的画像解析の原理に基づいてアルミナ粒子の粒度分布を測定し、測定結果から得た累積粒度分布を用いて、微粒側から個数の累積50%の粒径(D50)を求める。測定装置としては、例えば、CAMSIZER(VERDER Scientific製)を用い、装置内に試料を順次投入して、ドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定する。
(α化率)
 本発明の実施形態1に係るアルミナ粒子は、α-アルミナの含有量の指標であるα化率が、60.0%以上であり、好ましくは65.0%以上である。α化率の上限は特に限定されないが、100%以下であってよく、99.6%以下であってもよい。 α-アルミナは熱伝導率が高いため、アルミナ粒子中のα-アルミナの含有量を高くすることにより、アルミナ粒子の熱伝導率を高くすることができる。
 本明細書において「α化率」とは、アルミナ粒子に含まれる全てのアルミナに対するα-アルミナの含有率(体積%)である。
 α化率は、アルミナ粒子を粉末X線回折法により測定し、得られた回折スペクトルから、2θ=25.6°の位置に現れるα相((012)面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相に起因して形成されるピーク高さ(I46)を求め、以下の式(2)により算出する。

  α化率=I25.6/(I25.6+I46)×100(%)   (2)
 なお、本発明の実施形態1に係るアルミナ粒子は、α-アルミナ以外のアルミナ(δ-アルミナ、θ-アルミナ等)を例えば40.0%以下で含んでいてもよく、本発明の目的の妨げにならない。
 また、α-アルミナ以外のアルミナは、どのような態様で含まれていてもよい。例えば、1つのアルミナ粒子の内部に、α-アルミナと、α-アルミナ以外のアルミナとが共に含まれていてもよい。また、ある粒のアルミナ粒子はα-アルミナのみからなり、別の粒のアルミナ粒子はα-アルミナ以外のアルミナのみからなり、それらのアルミナ粒子が混在していてもよい。
(アルミナ粒子の外縁の長さL1に対する粒子内部の境界線の合計長さL2の比)
 アルミナ粒子内部の粒界および空洞が少ないほど、アルミナ粒子の誘電損失が低くなる。そこで、アルミナ粒子内部の粒界の含有量の指標として、外縁の長さL1に対する境界線の合計長さL2の比(L2/L1)を導入する。L1およびL2は、アルミナ粒子の断面観察から求める。
 1つのアルミナ粒子の外縁の長さをL1、そのアルミナ粒子が有する境界線の合計長さをL2としたとき、L2/L1の値が小さいアルミナ粒子は、境界線の含有量が少なく、誘電損失の低いアルミナ粒子といえる。特に、(L2/L1)(%)が1.0%以上90.0%以下であることが好ましく、樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。(L2/L1)は、より好ましくは5.0%以上であり、更に好ましくは10.0%以上であり、特に好ましくは20.0%以上であり、より好ましくは80.0%以下、更に好ましくは60.0%以下、より更に好ましくは50.0%以下、特に好ましくは40.0%以下である。このL2/L1は、造粒した原料粒子や多結晶である原料粒子を用いて火炎溶融法でアルミナ粒子を製造した場合に特に値が大きくなってしまい、再加熱等の後工程を行っても大きく低減することはできない。
 なお、「境界線の合計長さL2」は、アルミナ粒子の内部に含まれる境界線の総和であり、アルミナ粒子の外縁を含まない。境界線の合計長さL2は、アルミナ粒子内部の粒界の合計長さL3と、(アルミナ粒子の内部に空洞がある場合は)その空洞の内壁の合計長さL4とを加算したものとする(つまり、L2=L3+L4)。
 L1、L2、L3およびL4の測定は、α-アルミナからなるアルミナ粒子で行うことが好ましい。
(粒子内欠陥率)
 アルミナ粒子の内部に空隙または非晶質層(これらを「粒子の欠陥」と称する)が含まれると、誘電損失を増加させる原因となる。そのため、アルミナ粒子の粒子内欠陥率が低いことが好ましく、特に、20.0%未満であることが好ましく、12.0%未満であることがより好ましく、10.0%以下であることが特に好ましい。これにより、アルミナ粒子を樹脂組成物用フィラーとして使用したときに、樹脂組成物の誘電損失をより低下させ得る。
 粒子内欠陥率は、基板上に薄く分散させた状態のアルミナ粒子を、X線CTスキャンを用いてX線透過像を撮影し、得られたX線透過像内の20個以上の全てのアルミナ粒子について、粒子の欠陥を確認する。粒子の欠陥は、アルミナ粒子のX線透過像において、アルミナ粒子内で欠陥のない部分(非欠陥部分:白色部分として観察される)の内部に、薄灰色部として観察される。
 X線透過写真を画像処理ソフト等により、アルミナ粒子全体の面積Saと、アルミナ粒子内の非欠陥部分の面積Sbと、アルミナ粒子内の欠陥部分の面積Scとを求めた。なお、各面積の間には、Sa=Sb+Scとの式が成立する。
 そして、Sc/Saを百分率で表し、粒子内欠陥率(%)とする。
(式(1):3.00≦D50×SA×AD≦25.00を満たす)
 以下の式(1)は、粒子の粒径と比表面積との関係を示す一般式に基づいて、変形したものである。

 3.00≦D50×SA×AD≦25.00   (1)

ここで、D50は、前記粒径D50(μm)であり、
SAは、アルミナ粒子の比表面積(m/g)であり、
ADは、アルミナ粒子の見かけ密度(g/cm)である。
 粒子の粒径と比表面積との関係を示す一般式によれば、アルミナ粒子が真球状で、アルミナ粒子の表面が滑らかで、かつアルミナ粒子の見かけ密度が理論密度(3.98g/cm)の場合、式(1)の中辺(D50×SA×AD)の値は6になる。比表面積SAが大きくなると中辺の値は大きくなり、見かけ密度ADが理論密度より小さくなると中辺の値は小さくなる。
 本実施の形態に係るアルミナ粒子は、上記の式(1)を満たしている(つまり、アルミナ粒子のD50×SA×ADの値は3.00以上25.00以下である)ことが好ましく、アルミナ粒子をフィラーとして用いた樹脂組成物の粘度および誘電損失(tanδ)をさらに低下させることができる。
 アルミナ粒子のD50×SA×ADの値が、アルミナ粒子を含む樹脂組成物の粘度および誘電損失に影響を及ぼし得る理由は定かではないが、アルミナ粒子の見かけ密度ADおよび比表面積SAは、樹脂組成物の粘度および誘電損失に影響を及ぼすと考えられる。例えば、アルミナ粒子の見かけ密度ADが低すぎると、樹脂組成物の誘電損失が増加し得る。アルミナ粒子の比表面積SAが高すぎると、樹脂との界面が増加するため、樹脂組成物の粘度および誘電損失が高くなると推測される。
 アルミナ粒子のD50×SA×ADの値は、より好ましくは21.50以下であり、更に好ましくは18.00以下であり、より好ましくは3.50以上であり、更に好ましくは4.00以上である。
 式(1)の算出には、以下の条件で取得した数値を用いる。
 粒径D50(μm)は、上述した測定方法で測定し、小数点以下1桁で丸めた値を用いる。
 比表面積SA(m/g)は、後述する方法で測定し、小数点以下2桁で丸めた値を用いる。
 見かけ密度AD(g/cm)は、後述する方法で測定し、小数点以下2桁で丸めた値を用いる。
(アルミナ粒子の比表面積SA)
 アルミナ粒子の比表面積SAは、JIS Z 8830:2013に基づいて、窒素吸着法により測定したBET比表面積である。
 比表面積は粒子の凹凸の程度を示す指標となる。アルミナ粒子の表面の凹凸が少ないと、樹脂組成物用フィラーとして使用したときに樹脂との界面が少なくなり、結果として樹脂組成物の粘度および誘電損失を低くできると期待できる。
 アルミナ粒子の比表面積SAは、好ましくは5.0m/g以下であり、より好ましくは2.0m/g以下であり、更に好ましくは1.0m/g以下であり、特に好ましくは0.5m/g以下である。
 アルミナ粒子の比表面積SAは、0.005m/g以上であってもよく、0.010m/g以上であってもよい。
(アルミナ粒子の見かけ密度AD)
 アルミナ粒子の見かけ密度ADは、JIS R 1620-1995に準拠してピクノメータ法により測定する。測定回数は5回以上とし、その平均値を用いる。測定には、例えばアキュピック1330(Micromeritics社)を用いることができる。
 アルミナ粒子の見かけ密度は、好ましくは3.60g/cm以上3.96g/cm以下、より好ましくは3.95g/cm以下、更に好ましくは3.93g/cm以下、一層好ましくは3.65g/cm以上3.90g/cm以下、特に好ましくは3.70g/cm以上3.87g/cm以下である。密度が上記範囲にあると、樹脂組成物用フィラーとして用いたときに、粘度および誘誘電損失の低い樹脂組成物を得やすい。
(アルミナ粒子の真円度)
 アルミナ粒子の真円度は、好ましくは0.90以上であり、より好ましくは0.91以上1.00以下である。この範囲にあると、樹脂との混練性を良好にでき、かつ、混練後のコンポジットの流動性を高めることができ、さらにアルミナ粒子による他の部材の摩耗を低減することもできるため、電子部品の樹脂組成物用フィラーに好適である。
 なお、アルミナ粒子は一般的に硬い粒子であるため、真円度の低いアルミナ粒子同士を衝突させたり、または真円度の低いアルミナ粒子を粉砕するだけでは、真円度が0.90以上のアルミナ粒子を得ることは困難である点に留意すべきである。衝突および粉砕によってアルミナ粒子の真円度を向上させるためには、衝突および粉砕を長時間行う必要があるが、その場合はアルミナの微粉が多量に生じて、アルミナ粒子の粒径D50が低下しすぎたり、樹脂組成物の粘度や誘電損失が高くなる可能性がある。また、粉砕によりアルミナ粒子の表面に生じる新たな親水面は、アルミナ粒子樹脂との混和性を低下させ得るため、樹脂組成物用フィラーに適さない可能性がある。更に、前記親水面には微小な欠陥が多く、誘電損失が高くなる可能性がある。
 真円度(SPHT)はISO 9276-6に準拠して解析した。SPHT=4πA/Pから求められる。式中のAは投影粒子画像の面積の測定値であり、Pは粒子投影画像の外周長の測定値である。
 アルミナ粒子の真円度は、ISO 13322-2に準拠した動的画像解析の原理に基づく測定装置(例えば、CAMSIZER X2(VERDER Scientific製))により測定する。
(アルミナ粒子の水分量)
 アルミナ粒子の水分量(アルミナ粒子に含まれる水分量)が多いと、そのアルミナ粒子を用いて作製した樹脂組成物の粘度および誘誘電損失が大きくなる。また、アルミナ粒子の持ち込み水分量が多いと、樹脂から水分が滲出して、樹脂組成物に隣接して配置される電子部品等に悪影響を及ぼす恐れがある。更に、アルミナ粒子の持ち込み水分量が多いと、樹脂との混練性が悪くなり、粘度が上昇し得る。そのため、アルミナ粒子の持ち込み水分量は少ない方が好ましい。
 アルミナ粒子の水分量は、好ましくは62ppm以下であり、より好ましくは60ppm以下であり、更に好ましくは55ppm以下であり、特に好ましくは50ppm以下である。
 アルミナ粒子の水分量は、JIS K 0068:2001「化学製品の水分測定方法」の記載に準拠してカールフィッシャー法に基づいて測定を行う。
 実施形態1に係るアルミナ粒子は、上述したように、樹脂組成物のフィラーとして使用することにより、低誘電損失の樹脂組成物を製造できる。
 実施形態1に係るアルミナ粒子は、さらに、樹脂と混合(混練)したときに、混合物の粘度を低く抑え得る。そのため、電子部品とヒートシンクとの間の隙間が狭い場合であっても、その狭い隙間に樹脂組成物を適切に配置し得る。
[アルミナ粒子の製造方法]
 本発明の実施形態1に係るアルミナ粒子の製造方法について説明する。
 アルミナ粒子の原料には、主に単結晶α-アルミナから成り、累積粒度分布の微粒側から個数の累積50%の粒径D50が29.0μm超70.0μm以下のアルミナ原料粒子を使用する。そして、火炎溶融法により、アルミナ原料粒子からアルミナ粒子を製造する。
 なお、火炎溶融工程を行う際の条件(アルミナ原料粒子、燃料ガスおよび酸素ガスの供給量など)によっても、得られるアルミナ粒子のD50を制御し得る。
 これまでは、原料粒子を火炎に入れると溶融されて、原料粒子の結晶構造がリセットされるので、原料粒子の結晶構造の素性は、火炎で球状化した後の粒子の結晶構造に影響を及ぼすことはない、というのが通説だった。しかしながら、原料粒子として単結晶粒子を用いると、球状化後も原料粒子の結晶構造の素性が引き継がれ得ることを思いがけなく見出した。
 火炎溶融工程では、例えば、図1に示すような装置を用いる。火炎溶融工程により、α化率が60.0%以上で、上述した式(1)を満たすアルミナ粒子を得ることができる。
 単結晶アルミナの原料粒子を使用し、球状化後も、単結晶アルミナの結晶構造の素性を活かすために、使用するアルミナ原料粒子の粒径、装置の火炎溶融炉内へのアルミナ原料粒子の供給速度、火炎の強さ、火炎とアルミナ原料粒子との距離などを制御する。
 D50が30.0μm超55.0μm以下のアルミナ粒子を製造するためには、D50が、例えば29.0μm超70.0μm以下のアルミナ原料粒子を用いる。アルミナ原料粒子のD50は、好ましくは32.0μm以上68.0μm以下であり、例えば37.0μmである。
 なお、アルミナ原料粒子のD50が例えば29.0μm超70.0μm以下であっても、個々のアルミナ原料粒子としては、29.0μm以下の粒径のもの、および70.0μm超のものが含まれ得る。そのため、得られたアルミナ粒子には、多結晶のα-アルミナおよび/またはα-アルミナ以外のアルミナなどを含み得る。しかしながら、アルミナ原料粒子のD50を29.0μm超70.0μm以下とすることにより、多結晶のα-アルミナおよび/またはα-アルミナ以外のアルミナの含有量を、本発明で許容される程度の少量に抑えることができる。
 また、従来から、造粒した原料粒子、または多結晶である原料粒子を用いて火炎溶融法でアルミナ粒子を製造する方法が知られているが、得られるアルミナ粒子の内部に粒界および内部空隙が多く含まれることがある。本発明では、アルミナ原料粒子として、造粒を行っていない単結晶α-アルミナそのものを使用するので、L2/L1の値が小さいアルミナ粒子を得ることができる。
 アルミナ原料粒子のD50は、上述のアルミナ粒子のD50の測定方法と同じ方法でも測定できる。
 アルミナ原料粒子が単結晶のα-アルミナであることは、SEM-EBSD法により確認することができる。Phase MAPにて、α-アルミナであるか、α-アルミナ以外のアルミナであるかを判断し、次いで、Image Quality(IQ)MAPにて、アルミナ粒子中の明確な結晶粒界の有無により、単結晶であるか、多結晶であるかを判断することができる。
 α-アルミナが単結晶であることは、デバイ・シェラー法により確認しても良い。
 アルミナ原料粒子の原材料としては、サファイア、およびCZ法、ベルヌーイ法、カイロポーラス法、ブリッジマン法、EFG法等の融液成長法で作製した単結晶のα-アルミナ等を用いることができる。それらの原材料を粉砕して、所望の目開きのメッシュで篩別することで、所定のD50のアルミナ原料粒子を準備することができる。
 アルミナ原料粒子は、α-アルミナ以外のアルミナ(δ-アルミナ、θ-アルミナ等)を少量(例えば約10質量%以下)含んでいてもよく、また、単結晶のα-アルミナと共に、少量(例えば約10質量%以下)の多結晶のα-アルミナを含んでいてもよく、いずれも本発明の目的の妨げにならない。
 火炎溶融工程において、アルミナ原料粒子、燃料ガスおよび酸素ガスの供給量が以下の式(3)および式(4)を満たすことが好ましい。

  0.625≦R/F(kg/Nm)≦17.000   (3)
  0.125≦R/S(kg/Nm)≦3.400   (4)

ここで、Fは燃料ガスの供給量(Nm/時間)、Sは酸素ガスの供給量(Nm/時間)、Rはアルミナ原料粒子の供給量(kg/時間)である。
 なお、酸素ガスの供給量(S)は、燃焼酸素ガスの供給量と、キャリア酸素ガスの供給量の合計である。キャリア酸素ガスは、アルミナ原料粒子を運搬することを主目的とする酸素ガスであるが、運搬した後は、燃焼酸素ガスと同様に燃焼に利用される。
 式(3)で規定したように、燃料ガスの供給量に対するアルミナ原料粒子の供給量の比率(R/F)は、0.625kg/Nm以上17.000kg/Nm以下であることが好ましい。また、式(4)で規定したように、酸素ガスの供給量に対するアルミナ原料粒子の供給量の比率(R/S)は、0.125kg/Nm以上3.400kg/Nm以下であることが好ましい。
 燃料ガスの供給量F(Nm/時間)と、酸素ガスの供給量S(Nm/時間)は、火炎溶融工程において、炉内の火炎の強さを決定する因子である。R/FおよびR/Sはいずれも、火炎溶融工程において、炉内における火炎の強さとアルミナ原料粒子の供給量との関係性の指標となる。
 R/FおよびR/Sが大きくなる場合、アルミナ原料粒子の供給量が多く、各アルミナ原料粒子に対して火炎から与えられるエネルギー量が小さくなる(つまり、アルミナ原料粒子の溶融が抑制される)。
 R/FおよびR/Sが小さくなる場合、アルミナ原料粒子の供給量が少なく、各アルミナ原料粒子に対して火炎から与えられるエネルギー量が大きくなる(つまり、アルミナ原料粒子の溶融が促進される)。
 よって、R/FおよびR/Sを制御することは、火炎溶融工程におけるアルミナ原料粒子の溶融状態を制御する1つの手法である。R/FおよびR/Sの各々が好ましい範囲内にあると、火炎溶融工程において、アルミナ原料粒子の原料粒子の結晶構造の素性を活かしたまま球状化することができる。
 R/Fは、より好ましくは1.000kg/Nm以上10.000kg/Nm以下であり、特に好ましくは2.000kg/Nm以上10.000kg/Nm以下である。
 R/Sは、より好ましくは0.300kg/Nm以上3.000kg/Nm以下であり、特に好ましくは0.500kg/Nm以上3.000kg/Nm以下である。
 さらに、燃料ガスの供給量Fは、20Nm/時間未満であることが好ましい。燃料ガスの供給量により、火炎長を変えることができ、燃料ガスの供給量が多くなるほど、火炎長が長くなり、粒子の火炎中の滞留時間が長くなる。燃料ガスの供給量が小さくなるほど、火炎長が短くなり、粒子の火炎中の滞留時間が短くできる。すなわち、アルミナ原料粒子の火炎中の滞留時間を変えることができ、アルミナ原料粒子の火炎中の溶融度合い(時間)を変化させることができる。また、アルミナ原料粒子の原料粒子の結晶構造の素性を活かしたままL2/L1の値が小さいアルミナ粒子を得ることができる。
 本発明における燃料ガスとしては、例えば、プロパン、ブタン、プロピレン、アセチレン、水素などが挙げられる。特に、プロパン(例えば、液化プロパンガス(LPG))が好ましい。
 火炎溶融工程において、溶融されたアルミナ原料粒子を固化させる際、冷却速度を遅くするために、600℃~1500℃の領域、好ましくは800℃~1400℃の領域、より好ましくは1000℃~1300℃の領域を通過させてもよい。このような領域を通過させて、球状化したアルミナ粒子を固化させることにより、α化率をより高くすることができる。
 上述の火炎溶融工程の後工程として、冷却固化されたアルミナ粒子を、回収する前に再加熱する工程を入れてもよい。冷却固化されたアルミナ粒子を再加熱することで、α-アルミナ以外のアルミナの割合を低減でき、α化率をより高くすることができる。再加熱する工程の温度としては、例えば900℃以上が好ましく、1000℃以上がより好ましい。再加熱する方法としては、ヒーター等を使った外部からの加熱、再度のガス燃焼による加熱などが適用できる。
[実施形態2:樹脂組成物]
 本発明の実施形態1に係るアルミナ粒子を樹脂組成物用フィラーとして使用することにより、誘電損失の低い樹脂組成物を得ることができる。また、本発明の実施形態1に係るアルミナ粒子は、樹脂と混合した混合物の粘度を低く抑え得る。樹脂組成物は、樹脂と、本発明の実施形態1に係るアルミナ粒子とを含んでいる。
 本発明の実施形態1に係るアルミナ粒子は、樹脂特有のしなやかさを損なうことなく誘電損失を低下させることができるため、その配合比率は樹脂組成物(コンポジット)に対して樹脂5~75体積%、アルミナ粒子95~25体積%の割合であることが好ましい。
 樹脂組成物の製造方法について説明する。
 一般的に用いられる公知の方法を使用して、本発明の実施形態1に係るアルミナ粒子と樹脂を混合することにより樹脂組成物を得ることができる。例えば、樹脂が液状の場合(例えば液状エポキシ樹脂など)は、液状樹脂とアルミナ粒子と硬化剤とを混合した後、熱または紫外線などで硬化させることにより樹脂組成物を得ることができる。硬化剤や混合方法、硬化方法は公知のものおよび方法を用いることができる。一方、樹脂が固体状の場合(例えばポリオレフィン樹脂やアクリル樹脂など)は、アルミナ粒子と樹脂を混合した後に、溶融混練などの公知の方法により混練することで目的とする樹脂組成物を得ることができる。
 樹脂組成物に使用する樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。なお、樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
 熱可塑性エラストマーとしては、スチレン- ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
 加工性や特性の観点から、ポリオレフィン系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、フェノール系樹脂、シリコーン樹脂が好ましく用いられる。
 さらに、これらの樹脂組成物には、必要に応じて、発明の効果を損なわない範囲で可塑剤、硬化促進剤、カップリング剤、充填剤、顔料、難燃剤、酸化防止剤、界面活性剤、相溶化剤、耐候剤、抗ブロッキング剤、帯電防止剤、レベリング剤、離型剤などの公知の添加剤を単独または二種以上を適宜配合しても良い。
 本実施の形態に係るアルミナ粒子、および当該アルミナ粒子を含む樹脂組成物は、特に、低誘電損失の放熱材料用途に好適である。
(1)アルミナ粒子の製造
 単結晶のアルミナからなるアルミナ原料粒子(原料粒子1、3および4)と、多結晶のアルミナからなる原料粒子(原料粒子2)を準備した。各原料粒子のD50を測定し、表1にまとめた。アルミナ原料粒子のD50はレーザー回折法により測定を行った。水中に分散させた試料にレーザー光線を照射し、その回折を測定して粒度を求めた。測定装置はCILAS製1090L型を用いた。
Figure JPOXMLDOC01-appb-T000001
 図1に示すような装置を用いて、アルミナ原料粒子からアルミナ粒子を調製した。酸素ガス供給システム10からの酸素ガスを分岐して、一方(キャリア酸素ガス11)をフィーダ30に、他方(燃焼酸素ガス12)を火炎溶融炉40のバーナー41に供給した。フィーダ30に供給されたアルミナ原料粒子は、キャリア酸素ガス11によって火炎溶融炉40のバーナー41まで運搬された。また、ガス供給システム20から燃料ガス(LPG)をバーナー41に供給した。バーナー41では、燃料ガスと燃焼酸素ガス12によって2150℃以上の高温火炎が形成され、そこに、キャリア酸素ガス11中に分散させたアルミナ原料粒子を供給した。これにより、火炎溶融炉40内において、アルミナ原料粒子を溶融して球状化した。その後、球状化したアルミナ粒子をサイクロン50にて分級を行い、サイクロン50に補足したアルミナ粒子を得た。なお、試料No.6は、火炎溶融を行わなかった。
 使用したアルミナ原料粒子、火炎溶融工程における燃料ガスの供給量F(Nm/時間)、酸素ガスの供給量S(Nm/時間)、およびアルミナ原料粒子の供給量R(kg/時間)の比であるR/FおよびR/Sを表2にまとめた。なお、酸素ガスSの供給量は、キャリア酸素ガス11の供給量と燃焼酸素ガス12の供給量の合計である。燃料ガスの供給量Fは20Nm/時間未満であった。表2の試料No.6において、R/FおよびR/Sの欄が「-」となっているのは、火炎溶融を行わなかったことを意味している。
 得られたアルミナ粒子(試料No.1~11)について各種測定を行った。なお、アルミナ粒子の「試料No.6」は、原料粒子1と同一のものである。
 なお、試料No.5のアルミナ粒子の一部を取り分けて、追加の加熱処理を行って、加熱前後のアルミナ粒子の状態変化を調べた。試料No.5のアルミナ粒子は、加熱処理前は粉末状であったが、1350°で加熱処理すると、アルミナ粒子同士が融着した。そのため、加熱処理後のアルミナ粒子は、後述するような各種測定を行うことができなかった。
(2)アルミナ粒子の粒径D50、および真円度の測定
 アルミナ粒子の粒度分布を測定し、粒径D50を求めた。
 アルミナ粒子の粒度分布および真円度は、ISO 13322-2に準拠した動的画像解析の原理に基づく装置CAMSIZER X2(VERDER Scientific製)により測定した。測定は乾式とし、装置内に試料を順次投入して、50kPaのドライエアーにより凝集粒子を分散させながらカメラ前を通過する粒子を測定した。測定試料は3g秤量し、1回測定とした。同じ測定を3回繰返し行い、これらの結果の積算平均から粒度分布および真円度を解析した。粒子径は円相当粒子径とした。円相当粒子径とは投影粒子画像と同じ面積となる真円の粒子径のことである。また、粒子径の基準は体積とした。
 真円度(SPHT)はISO 9276-6に準拠して解析した。SPHT=4πA/Pから求めた。式中のAは投影粒子画像の面積の測定値であり、Pは粒子投影画像の外周長の測定値である。
 各アルミナ粒子の粒径D50、よび真円度を表3に示す。
(3)アルミナ粒子の見かけ密度ADの測定
 アルミナ粒子の見かけ密度ADを測定した。
 見かけ密度ADは、JIS R 1620-1995に準拠して測定した。測定方法、測定条件は以下の通りとした。
・測定方法:気体置換法
・試料の乾燥:200℃、8時間以上
・使用装置:アキュピック1330(Micromeritics社)
・測定条件
 パージ回数10回
 パージ充填圧力:15.0psig
 測定回数:5回
 測定充填圧力:15.0psig
 平衡圧:0.005psig/分
 精度を設定しての測定:Yes
 バラつき許容誤差:0.05%
 試料セル寸法:10cm
 測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(4)アルミナ粒子のα化率の測定
 アルミナ粒子のα化率を測定した。なお、試料No.6については測定していない
 α化率は、アルミナ粒子の試料を、粉末X線回折装置(理学電機製)により測定して、回折スペクトルを得た。測定条件は、X線源:CuKα、X線出力:45kV、200mA、走査速度:10deg/分で行った。
 得られた回折スペクトルから、2θ=25.6°の位置に現れるα相(012面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相に起因して形成されるピーク高さ(I46)を求め、以下の式(2)により算出した。

  α化率=I25.6/(I25.6+I46)×100(%)   (2)
 測定結果を表5に示す。
 α化率について、試料No.1~5、7~11のアルミナ粒子は、実施形態1で規定した好ましい数値範囲内にあった。
(5)アルミナ粒子の外縁の長さL1と粒子内部の境界線の合計長さL2の測定
 各アルミナ粒子を用いて断面観察用試料を作製した。断面観察用試料の作製では、アルミナ粒子を樹脂包埋後、樹脂とアルミナ粒子をダイヤモンドカッターにて切断した。その後、断面に保護膜としてPtを蒸着し、Arイオンミリングにて断面調製を行い、SEM試料台にCu両面テープにて固定し、無蒸着にてSEM-EBSD測定を行った。観察領域内に2つ以上のアルミナ粒子が完全に入るように(つまり、2つ以上のアルミナ粒子が、観察領域の枠と接触しないように)、観察位置を決定した。測定はα-アルミナ粒子で行った。
 サンプルの前処理およびEBSD測定には、以下の機器を使用した。
・使用機器
 イオンミリング装置:IM-4000(株式会社日立製作所製)
 イオンスパッタ装置:E-1030(株式会社日立製作所製)
 超高分解能電界放出形走査電子顕微鏡:JSM-7800F Prime(日本電子株式会社製)
 後方散乱電子回折装置:Digiview V (TSL製)
 EBSD測定の条件は以下の通りとした。
・測定領域:500.0μm×400.0μm
・加速電圧:20.0kV
・倍率:×500
・真空度:30Pa
 得られたEBSD像において、観察領域の枠と接触していないアルミナ粒子を2つ以上選択して、各アルミナ粒子の外縁の長さL1を、画像処理ソフトImage J(National Institute of Health製)の平均を算出した。また境界線の合計長さL2についても算出した。「境界線の合計長さL2」は、アルミナ粒子の内部に含まれる境界線の総和であり、アルミナ粒子の外縁を含まないものとした。境界線の合計長さL2は、アルミナ粒子内部の粒界の合計長さと、(アルミナ粒子の内部に空洞がある場合は)その空洞の内壁の合計長さとを加算して求めた。
 外縁の長さL1に対する境界線の合計長さL2の比(L2/L1)を百分率(%)で表した。アルミナ粒子内部の粒界および空洞が多いほど、L2/L1(%)の値が大きくなる。
 測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 L2/L1について、試料No.1~4、7~11のアルミナ粒子は、実施形態1で規定した数値範囲内にあったが、試料No.5のアルミナ粒子は、その数値範囲を上回っており、試料No.6のアルミナ粒子は、その数値範囲を下回っていた。試料No.5のアルミナ粒子は、アルミナ原料粒子として多結晶アルミナ(原料粒子2)を用いたため、火炎溶融工程後も、原料由来の境界線が多数残ったためである。試料No.6のアルミナ粒子(アルミナ原料粒子)が単結晶アルミナであり、アルミナ粒子内部に境界線がほとんど存在しなかったためである。
(6)アルミナ粒子の比表面積SAの測定
 アルミナ粒子の比表面積SAを測定した。
 ガス吸着による粉体(固体)の比表面積測定法はJIS Z 8830:2013に準拠し、吸着ガスとして窒素を用いた。測定に際し、1gのアルミナ粒子をサンプル管にいれて、吸脱着等温線を取得し、多点プロット法により、比表面積SA(m/g)を算出した。
 比表面積SAの測定結果を表7に示す。また、式(1)の中辺(粒径D50×比表面積AS×見かけ密度AD)も共に示す。
Figure JPOXMLDOC01-appb-T000007
(7)アルミナ粒子の水分量の測定
 アルミナ粒子の水分量を、JIS K 0068:2001「化学製品の水分測定方法」の記載に準拠してカールフィッシャー法に基づいて測定を行った。
 装置名:カールフィッシャー水分計(三菱アナリテック製VA-236S)
 測定方式:加熱気化式電量法
 陰極液:三菱化学製の「アクアミクロンAX」(商品名)
 陽極液:三菱化学製「アクアミクロンCXU」(商品名)
 サンプル量:2g
 測定結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 水分量について、試料No.1~4、7~11のアルミナ粒子は、実施形態1で規定した好ましい数値範囲内にあったが、試料No.5~6のアルミナ粒子、好ましい数値範囲を上回っていた。
(8)粒子内欠陥率の測定
 アルミナ粒子の粒子内欠陥率を測定した。
 基板上に薄く分散させた状態のアルミナ粒子を、株式会社リガク製高感度X線CTスキャン(形式:nano3DX)を用いて0.7mm×0.7mmの範囲におけるX線透過像を撮影した。得られたX線透過像内の20個以上の全てのアルミナ粒子について、粒子の欠陥を確認した。粒子の欠陥とは、粒子内部に存在する空隙または非晶質層のことであり、アルミナ粒子のX線透過像において、アルミナ粒子内で欠陥のない部分(非欠陥部分:白色部分として観察される)の内部に、薄灰色部として観察される。
 X線透過写真を画像処理ソフトImage J(National Institute of Health製)により、アルミナ粒子全体の面積Saと、アルミナ粒子内の非欠陥部分の面積Sbと、アルミナ粒子内の欠陥部分の面積Scとを求めた。なお、各面積の間には、Sa=Sb+Scとの式が成立する(図2参照)。
 そして、Sc/Saを百分率で表し、粒子内欠陥率(%)とした。
 面積Sa、SbおよびScを求めるための画像処理方法を以下に説明する。
 画像処理ソフト「Image J」を用い、X線透過写真で得られた画像から、空隙を含むアルミナ粒子1粒の画像を切り出して二値化し、「Analyze Particles」の解析を用いて、アルミナ粒子全体の面積Saを求めた。X線透過写真で得られた画像では、アルミナ粒子の非欠陥部分が最も輝度が低く、次に、粒子内の欠陥の部分の輝度が高く、そしてアルミナ粒子の周囲(背景)の部分は最も輝度が高い。そこで、二値化の処理に際して、欠陥部分と背景の輝度を同程度に変換する画像処理が必要となる。そのような画像処理は、コントラストの調整とフィルター「Convolve」の調整により行った。これにより、アルミナ粒子から、欠陥部分である薄灰色部をくりぬいた範囲の面積(つまり、非欠陥部分の面積Sb)を測定した。
 粒子解析コマンドにおいて、アルミナ粒子のうち、アルミナ粒子内部の非欠陥部分(面積Sb)と欠陥部分(面積Sc)の両方を含む場合の面積Sa(Include holesのチェックをONにする)と、アルミナ粒子内部の欠陥部分を含まない場合の面積(つまり、非欠陥部分の面積Sb)(Include holesのチェックをOFFにする)を計測した。得られた面積Sa、Sbから、面積Sc(=Sa-Sb)を計算した。
 計算結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
(9)アルミナ粒子と樹脂との混合物の粘度測定
 アルミナ粒子とエポキシ樹脂との混合物のせん断速度-粘度測定を行った。
 エポキシ樹脂(三菱化学製エポキシバインダーjER828)とルミナ粒子とを、体積%で45:55の配合比(エポキシ樹脂約0.5g:アルミナ粒子約2.0gに相当)で混合した。アルミナ粒子とエポキシ樹脂を、乳鉢を用いて、手動で10~20分程度混合して、粘度測定用の混合試料を準備した。
 HAAKEMARSID(サーモフィッシャーサイエンティフィック社製)を用いて、混合試料のせん断速度-粘度測定を行った。
 測定条件は以下の通りとした。
・ジオメトリー:Φ20mmパラレルプレート
・せん断速度:0.001s-1~100s-1
・測定温度:23℃
・測定時間:4分
 測定温度で安定したプレート上に、10分以内にサンプルセットを完了し、測定を開始した。
 せん断速度10s―1での粘度の測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
(10)樹脂組成物(コンポジット)の誘電損失の測定
 試料No.1~4、7~11のアルミナ粒子を用いて樹脂組成物(コンポジット)を作製し、その誘電損失を測定した。なお、樹脂との混合物の粘度が高かった試料No.5~6のアルミナ粒子については、樹脂組成物(コンポジット)を作製しなかった。
 ポリプロピレン樹脂(プライムポリマー社製J105G)とアルミナ粒子とを、体積%で60:40の配合比で混合した。プレス成形機を用いて、下記の条件で真空プレス成形を行い、厚さ600μmのアルミナ-樹脂のコンポジットを作製した。
 以下の測定条件にて、コンポジットの誘電損失(tanδ)を測定した。
・測定装置:ネットワークアナライザー8720ES(アジレント・テクノロジー製)
・試験片寸法 :50mm×50mm
・測定周波数 :12GHz 
・試験環境:22℃/59%RH
 誘電損失の測定結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 試料No.1~4、7~11のアルミナ粒子は、D50、α化率およびL2/L1の値が実施形態1に規定した範囲内にあった。また、式(1)の中辺の値も、実施形態1の好ましい範囲内にあった。そのため、試料No.1~4、7~11のアルミナ粒子を用いた樹脂組成物は、誘電損失が低かった。
  10 酸素ガス供給システム
  11 キャリア酸素ガス
  12 燃焼酸素ガス
  20 燃料ガス供給システム
  30 フィーダ
  40 火炎溶融炉
  50 サイクロン

Claims (6)

  1.  累積粒度分布の微粒側から個数の累積50%の粒径D50が30.0μm超55.0μm以下で、
     α化率が60.0%以上であり、
     アルミナ粒子の外縁の長さL1に対する、アルミナ粒子内部の境界線の合計長さL2の比(L2/L1)が1.0%以上90.0%以下である、アルミナ粒子。
  2.  結晶内欠陥率が20.0%未満である、請求項1に記載のアルミナ粒子。
  3.  真円度が0.85以上である、請求項1に記載のアルミナ粒子。
  4.  下記の式(1)を満たす、請求項1に記載のアルミナ粒子。

     3.00≦D50×SA×AD≦25.00   (1)

    ここで、D50は、前記粒径D50(μm)であり、
    SAは、アルミナ粒子の比表面積(m/g)であり、
    ADは、アルミナ粒子の見かけ密度(g/cm)である。
  5.  水分量が62ppm未満である、請求項1に記載のアルミナ粒子。
  6.  樹脂と、請求項1~5のいずれか1項に記載のアルミナ粒子とを含む樹脂組成物。
PCT/JP2023/041739 2022-12-02 2023-11-21 アルミナ粒子およびそれを用いた樹脂組成物 WO2024116956A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022193692 2022-12-02
JP2022-193692 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024116956A1 true WO2024116956A1 (ja) 2024-06-06

Family

ID=91323943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041739 WO2024116956A1 (ja) 2022-12-02 2023-11-21 アルミナ粒子およびそれを用いた樹脂組成物

Country Status (1)

Country Link
WO (1) WO2024116956A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053536A1 (fr) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Poudre d'alumine, son procédé de fabrication et son utilisation
WO2022163505A1 (ja) * 2021-01-27 2022-08-04 デンカ株式会社 球状アルミナ粒子及びその製造方法、並びに樹脂組成物
WO2022210928A1 (ja) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 球状アルミナ粒子混合物及びその製造方法、並びに当該球状アルミナ粒子混合物を含む樹脂複合組成物及び樹脂複合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053536A1 (fr) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Poudre d'alumine, son procédé de fabrication et son utilisation
WO2022163505A1 (ja) * 2021-01-27 2022-08-04 デンカ株式会社 球状アルミナ粒子及びその製造方法、並びに樹脂組成物
WO2022210928A1 (ja) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 球状アルミナ粒子混合物及びその製造方法、並びに当該球状アルミナ粒子混合物を含む樹脂複合組成物及び樹脂複合体

Similar Documents

Publication Publication Date Title
WO2022255226A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
US7977410B2 (en) Fine pore formation agent for porous resin film and composition containing the same for porous resin film
KR101398682B1 (ko) 육방 격자 질화붕소 분말 및 그 제조방법
EP2868641B1 (en) Sintered spherical bn particles with concave part, method for producing same, and polymer material comprising them
US20220204830A1 (en) Boron nitride powder, method for producing same, composite material, and heat dissipation member
US20220388845A1 (en) Boron nitride powder and production method therefor, boron carbonitride powder, composite material, and heat dissipating member
WO2024116956A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116955A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
JP4395114B2 (ja) 球状金属酸化物粉末の製造方法
JP2024080630A (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116957A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
JP2024080631A (ja) アルミナ粒子およびそれを用いた樹脂組成物
WO2024116954A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
JP2024080629A (ja) アルミナ粒子およびそれを用いた樹脂組成物
US20240199436A1 (en) Alumina particles and resin composition using same
FR2993263A1 (fr) Charges minerales ignifuges et compositions polymeres ignifugees
US20230142330A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
WO2024116958A1 (ja) アルミナ粒子およびそれを用いた樹脂組成物
EP4269346A1 (en) Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder
JP2024080632A (ja) アルミナ粒子およびそれを用いた樹脂組成物
TW202323193A (zh) 電子材料用二氧化矽及其製造方法
CN117425622A (zh) 氧化铝粒子和使用其的树脂组合物
WO2023210493A1 (ja) 樹脂組成物およびそれに用いるアルミナ粉末
JP2023164332A (ja) 樹脂組成物およびそれに用いるアルミナ粉末
JP7203290B2 (ja) シート状の六方晶窒化ホウ素焼結体、及びその製造方法