WO2023153357A1 - 球状シリカ粉末 - Google Patents

球状シリカ粉末 Download PDF

Info

Publication number
WO2023153357A1
WO2023153357A1 PCT/JP2023/003768 JP2023003768W WO2023153357A1 WO 2023153357 A1 WO2023153357 A1 WO 2023153357A1 JP 2023003768 W JP2023003768 W JP 2023003768W WO 2023153357 A1 WO2023153357 A1 WO 2023153357A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
spherical silica
less
particle diameter
sphericity
Prior art date
Application number
PCT/JP2023/003768
Other languages
English (en)
French (fr)
Inventor
孝明 南川
宏幸 塩月
源太 狩野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023153357A1 publication Critical patent/WO2023153357A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to spherical silica powder.
  • Patent Literature 1 describes a method for obtaining fused spherical silica by injecting a siliceous raw material powder into a flame to melt it.
  • the present inventor found that the fluidity can be improved by appropriately controlling the sphericity of the spherical silica powder in each particle size class, and completed the present invention.
  • S 1 is the sphericity of the spherical silica powder with a particle diameter of 5 ⁇ m or more and less than 10 ⁇ m
  • S 2 is the sphericity of the particle diameter of 10 ⁇ m or more and less than 20 ⁇ m, and the particle diameter is measured using a wet flow image analyzer.
  • the sphericity of 20 ⁇ m or more and less than 30 ⁇ m is S 3
  • the sphericity of particle diameter of 30 ⁇ m or more and less than 45 ⁇ m is S 4
  • the sphericity of particle diameter of 45 ⁇ m or more is S 5
  • at least two of S 1 , S 2 , S 3 , S 4 , and S 5 are 0.74 or greater; Spherical silica powder.
  • the spherical silica powder according to any one of A spherical silica powder having a bulk density of 1.2 g/cm 3 or more and 1.6 g/cm 3 or less as measured by the following procedure B.
  • Procedure B The spherical silica powder is allowed to fall naturally from a height of 25 cm at an input amount of 5 to 10 g per minute, and is added to the inside of a 100 cm 3 measurement cup, and continues until it overflows from the cup to prepare a heaping cup. .
  • spherical silica powder with excellent fluidity is provided.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a thermal spraying apparatus used for producing spherical silica powder
  • S 1 is the sphericity with a particle diameter of 5 ⁇ m or more and less than 10 ⁇ m
  • S 2 is the sphericity with a particle diameter of 10 ⁇ m or more and less than 20 ⁇ m, as measured using a wet flow image analyzer.
  • the sphericity with a particle diameter of 20 ⁇ m or more and less than 30 ⁇ m is S 3
  • the sphericity with a particle diameter of 30 ⁇ m or more and less than 45 ⁇ m is S 4
  • the sphericity with a particle diameter of 45 ⁇ m or more is S 5
  • At least two or more of 3 , S4 , and S5 are configured to be 0.74 or greater.
  • At least two of S 1 , S 2 , S 3 , S 4 and S 5 are 0.74 or more, preferably 0.80 or more, more preferably 0.84 or more. Thereby, fluidity can be improved.
  • S AVE be the average sphericity obtained from the average value of five of S 1 , S 2 , S 3 , S 4 , and S 5 (excluding those with a value of 0), and the wet flow image analysis device
  • S 50 ( ⁇ m) be the median diameter of the spherical silica powder measured using
  • the lower limit of SAVE is, for example, 0.77 or more, preferably 0.82 or more, and more preferably 0.87 or more. Thereby, fluidity can be improved.
  • the upper limit of SAVE may be, for example, 0.99 or less.
  • the sphericity of spherical silica powder can be measured under the conditions of room temperature of 25° C. and humidity of 60% according to the following procedure A.
  • the resulting spherical silica powder was analyzed using a wet flow image analyzer (manufactured by Sysmex Corporation, FPIA-3000) to determine the sphericity (S 1 ) of particles with a particle diameter of 5 ⁇ m or more and less than 10 ⁇ m, and a particle diameter of 10 ⁇ m or more and less than 20 ⁇ m.
  • the sphericity of each particle size class is the square of the circularity of each particle size class.
  • each particle size class of S 1 , S 2 , S 3 , S 4 , and S 5 can be obtained by appropriately selecting the raw material components of the spherical silica powder, the manufacturing method of the spherical silica powder, and the like. It is possible to control the sphericity at , S AVE , and S 50 . Among these, it is important to appropriately control melt flame conditions such as raw material supply amount, raw material particle size, flame temperature , combustible gas, combustion support gas , dispersion gas , etc. 4 and S 5 as factors for setting the sphericity, S AVE , and S 50 degrees in the desired numerical ranges.
  • reducing the raw material supply increases the sphericity, increasing it decreases the sphericity
  • particle size of the plurality of raw materials is close to the average particle size, the sphericity increases, and from there (iii) the higher the flame temperature, the higher the sphericity; the lower the flame temperature, the lower the sphericity; (iv) the higher the temperature of the combustible gas, the higher the sphericity;
  • the sphericity increases as the supporting gas approaches the stoichiometric ratio, and the sphericity decreases as it deviates from the stoichiometric ratio. .
  • the spherical silica powder of the present embodiment is obtained based on ((P ⁇ A)/P)) ⁇ 100, where A is the loose bulk density and P is the hard bulk density, which are measured by the following procedure B.
  • the degree of compression may be configured to be 15% or more and 50% or less.
  • the upper limit of the degree of compression is, for example, 50% or less, preferably 40% or less, more preferably 30% or less. Thereby, fluidity can be improved.
  • the lower limit of the firm bulk density (P) is, for example, 1.2 g/cm 3 or more, preferably 1.25 g/cm 3 or more, more preferably 1.3 g/cm 3 or more. Thereby, handling property can be improved.
  • the upper limit of the firm bulk density (P) is, for example, 1.6 g/cm 3 or less, preferably 1.5 g/cm 3 or less, more preferably 1.4 g/cm 3 or less. Thereby, the miscibility with resin can be improved.
  • the loose bulk density, hard bulk density, and degree of compaction of the spherical silica powder can be measured under the conditions of room temperature of 25° C. and humidity of 55% according to the following procedure B.
  • spherical silica powder is fed in an amount of 5 to 10 g per minute, allowed to fall naturally from a height of 25 cm, and poured into a measuring cup of 100 cm 3 until it overflows from the cup. do.
  • the mass (g) of the spherical silica powder filled in the cup was measured, and the loose bulk density (g / cm 3 ) is calculated.
  • the volume frequency particle size distribution of the spherical silica powder was measured by a wet laser diffraction scattering method. 50 , and the particle diameter at which the cumulative value is 97% is defined as D97 .
  • S AVE and S 50 may be configured to satisfy 0.01 ⁇ S AVE /D 50 ⁇ 0.1.
  • the lower limit of S AVE /D 50 is, for example, 0.01 or more, preferably 0.015 or more, and more preferably 0.023 or more. Thereby, fluidity can be improved.
  • the upper limit of S AVE /D 50 is, for example, 0.1 or less, preferably 0.75 or less, more preferably 0.5 or less. Thereby, fluidity can be improved.
  • the upper limit of (D 97 ⁇ D 10 )/D 50 is, for example, 10.0 or less, preferably 7.0 or less, and more preferably 5.0 or less. As a result, the width of the particle size distribution becomes sharp, and the fluidity can be improved.
  • the lower limit of (D 97 ⁇ D 10 )/D 50 is, for example, 1.0 or more, preferably 1.1 or more, and more preferably 2.0 or more. As a result, the particle size distribution has a certain width, and moldability can be improved.
  • the upper limit of D97 / D50 is, for example, 30.0 or less, preferably 20.0 or less, more preferably 15.0 or less. As a result, the particle size of the coarse particles becomes sharp, and molding defects of the resin molding due to the coarse particles can be suppressed.
  • the lower limit of D97 / D50 is, for example, 2.0 or more, preferably 3.0 or more, and more preferably 5.0 or more. Thereby, the particle size distribution has a certain width, and the fluidity and moldability can be improved.
  • the particle size distribution of spherical silica powder is a value based on particle size measurement by a laser diffraction light scattering method, and can be measured using, for example, "Model LS-13-230" (manufactured by Beckman Coulter, Inc.) as a particle size distribution analyzer. can.
  • water can be used as a solvent, and as a pretreatment, a dispersion treatment can be performed by applying an output of 200 W using a homogenizer for 1 minute.
  • the PIDS (Polarization Intensity Differential Scattering) concentration is adjusted to 45 to 55%.
  • 1.33 is used as the refractive index of water, and the refractive index of the material of the powder is taken into consideration as the refractive index of the powder. For example, amorphous silica is measured with a refractive index of 1.50.
  • Spherical silica powder is also called fused spherical particles, and is produced by supplying siliceous raw material powder into a high-temperature flame formed by a combustion reaction between combustible gas and combustion supporting gas, and melting and spheroidizing it above its melting point. If necessary, the molten spherical particles thus obtained may be classified and sieved.
  • FIG. 6 An example of a schematic diagram of a thermal spraying apparatus used to produce spherical silica powder is shown in FIG.
  • the melting furnace 2 is composed of a vertical furnace body, but is not limited to this, and is made horizontal so that the flame is oriented horizontally. It may be a so-called horizontal furnace or tilt furnace that blows out.
  • the hot exhaust gas is cooled by pipes 3, 5, 7 with water cooling jackets.
  • the blower 9 may be connected to a suction gas amount control valve (not shown) and a gas exhaust port. Under the melting furnace 2, the cyclones 4 and 6, and the back filter 8, a collected powder extraction device (not shown) may be connected.
  • Classification can be performed using known equipment such as a heavy subsidence chamber, a cyclone, and a classifier having rotary blades. This classification operation may be incorporated in the transportation process of the molten spheroidized product, or may be carried out in a separate line after collective collection.
  • the combustible gas for example, one or more of acetylene, propane, butane, and the like are used, but propane, butane, or a mixed gas thereof, which has a relatively small calorific value, is preferable.
  • a gas containing oxygen for example, is used as the combustion support gas.
  • an inert gas such as air or argon can be mixed with the combustion support gas.
  • the spherical silica powder may be amorphous and/or crystalline.
  • the spherical silica powder preferably has an amorphous rate of, for example, 95% or more, more preferably 97% or more, as measured by the method described below.
  • the amorphous rate is determined by X-ray diffraction analysis using a powder X-ray diffractometer (for example, RIGAKU's trade name "Model MiniFlex") in the range of 26 ° to 27.5 ° for CuK ⁇ ray 2 ⁇ . Measured from peak intensity ratios.
  • a powder X-ray diffractometer for example, RIGAKU's trade name "Model MiniFlex”
  • crystalline silica has a main peak at 26.7°, but amorphous silica does not.
  • the spherical silica powder preferably has a ratio (S B /S C ) of the specific surface area S B measured by the BET method to the theoretical specific surface area S C calculated from the particle size distribution of, for example, 2.5 or less.
  • a large ratio means that a large amount of ultrafine particles that cannot be detected by a particle size distribution analyzer such as a laser diffraction method is contained.
  • the above S B /S C value is more preferably 2.5 or less, particularly 2.0 or less.
  • the specific surface area S B is a value based on the BET method, and can be measured using, for example, "Model 4-SORBU2" (manufactured by Yuasa Ionics Co., Ltd.) as a specific surface area measuring instrument.
  • the theoretical specific surface area SC can also be automatically calculated by the particle size distribution analyzer.
  • D is the area average particle diameter ( ⁇ m)
  • is the density (g/cm 3 ) of the spherical silica powder. For example, 2.21 if the powder is amorphous silica.
  • the spherical silica powder does not substantially contain particles of less than 50 nm. This makes it possible to suppress an increase in viscosity when blended in a resin composition.
  • substantially free of particles of less than 50 nm means that the number of particles of less than 50 nm in any 100 photographs taken with an electron microscope at a magnification of 50,000 was counted and converted as an average value per photograph. It means that the value is less than 50. Fewer particles less than 50 nm are preferred.
  • Electron micrographs should be taken using a field emission scanning electron microscope (model "FE-SEM, JSM-6301F” manufactured by JEOL Ltd.) under the conditions of an acceleration voltage of 15 kV and an irradiation current of 3 ⁇ 10-11 A. can be done.
  • FE-SEM field emission scanning electron microscope
  • JSM-6301F a field emission scanning electron microscope
  • irradiation current 3 ⁇ 10-11 A.
  • carbon is vapor-deposited on the spherical silica powder for 2 seconds using a vacuum vapor deposition apparatus (model “JEE-4X” manufactured by JEOL Ltd.), and then gold-palladium is vapor-deposited for 60 seconds.
  • a resin composition containing the spherical silica powder of the present invention can be suitably used as a resin molding material.
  • the resin composition contains, in addition to the spherical silica powder of the present invention, resins and known resin additives.
  • the spherical silica powder may be used alone in the resin composition, or may be used by mixing with other fillers.
  • the resin composition may contain 10 to 99% by mass of spherical silica powder, or may contain 10 to 99% by mass of mixed inorganic powder containing spherical silica powder and other fillers.
  • the content of other fillers in the mixed inorganic powder may be, for example, 1 to 20% by mass or 3 to 15% by mass with respect to 100% by mass of the spherical silica powder.
  • "-" means including upper and lower limits unless otherwise specified.
  • fillers include, for example, alumina, titania, silicon nitride, aluminum nitride, silicon carbide, talc, and calcium carbonate.
  • Other fillers having an average particle size of about 5 to 100 ⁇ m are used, and there are no particular restrictions on their particle size configuration and shape.
  • polyester resins examples include epoxy resins, silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluorine resins, polyamides such as polyimides, polyamideimides and polyetherimides, polybutylene terephthalate, polyethylene terephthalate, and the like.
  • the resin composition is produced by, for example, blending raw material components at a predetermined ratio using a blender, Henschel mixer, or the like, kneading the mixture using a heating roll, a kneader, a single-screw or twin-screw extruder, or the like, and then pulverizing the mixture after cooling. be able to.
  • a burner 1 is installed in the upper part of a melting furnace 2, and a collection system line consisting of cyclones 4, 6 and a bag filter 8 is directly connected to the lower part. manufactured.
  • the burner 1 has a double-tube structure capable of forming an inner flame and an outer flame, and is installed at the top of the melting furnace 2. 13 are connected.
  • the siliceous raw material powder is supplied into the high-temperature flame from the raw material supply pipe 13 and melted to form spherical molten spherical particles. Molten spherical particles that have passed through the melting furnace 2 are sucked by the blower 9 together with the combustion exhaust gas, move through the pipes 3, 5 and 7 by air, and are classified and collected by the cyclones 4 and 6 or the bag filter 8.
  • Examples 1-12, Comparative Examples 1-2 Using the above thermal spraying apparatus 100, LPG as a combustible gas is supplied from the combustible gas supply pipe 11, oxygen is supplied as a combustion supporting gas from the combustion supporting gas supply pipe 12, and in the burner 1, a high temperature is obtained by combustion of LPG and oxygen. formed a flame.
  • the raw material carrier gas was 20 Nm 3 /hr
  • the burner combustible gas was supplied at 8 Nm 3 /hr
  • the combustion support gas was supplied at 20 Nm 3 /hr.
  • Natural silica powder (average particle size 5 ⁇ m to 50 ⁇ m) was supplied to the flame formed as described above to obtain spherical amorphous silica powder. The obtained powders were classified and mixed to obtain the powders of Examples 1 to 12.
  • sphericality The sphericity of the spherical silica powder was determined as follows under conditions of room temperature of 25° C. and humidity of 60%. The resulting spherical silica powder was analyzed using a wet flow image analyzer (manufactured by Sysmex Corporation, FPIA-3000) to determine the sphericity (S 1 ) of particles with a particle size of 5 ⁇ m or more and less than 10 ⁇ m, and a particle size of 10 ⁇ m or more and less than 20 ⁇ m.
  • 0.05 g of a spherical silica powder sample is weighed into a 20 ml glass beaker container, 10 ml of a 25 mass % propylene glycol aqueous solution is added, and then dispersed for 3 minutes with an ultrasonic disperser (ASU-10M manufactured by AS ONE). All of this is placed in the FPIA-3000 and measured by the LPF mode/quantitative count (100 total counts, 1 repeated measurement) method.
  • the peripheral length of a single projected particle image and the peripheral length of a circle corresponding to the area of the projected particle image were analyzed by the above wet flow image analysis apparatus, and the degree of circularity was determined by the following formula.
  • Circularity (Perimeter of projected particle image)/(Perimeter of circle corresponding to area of projected particle image)
  • Sphericity and circularity are average values of particles within each particle size class.
  • the sphericity was the squared value of the circularity of each particle size class.
  • the average sphericity (S AVE ) was calculated from the average values of the four values of S 1 , S 3 , S 4 and S 5 (except those with a value of 0).
  • the volume frequency particle size distribution of the resulting spherical silica powder was determined by a wet laser diffraction scattering method using a particle size distribution analyzer (LS-13-230 manufactured by Beckman Coulter, Inc.). Water was used as a solvent, and as a pretreatment, a homogenizer was used to apply an output of 200 W for 1 minute to disperse and measure. Also, the PIDS (Polarization Intensity Differential Scattering) concentration was adjusted to 45 to 55% and measured. Based on the obtained volume frequency particle size distribution, the particle diameter DX at which the cumulative value is X% was calculated.
  • ⁇ Fluidity of Resin Composition 90 parts by mass of the obtained silica powder, 5.5 parts by mass of a biphenyl type epoxy resin (YX-4000HK manufactured by Japan Epoxy Resin Co., Ltd.), and a phenol resin (phenol aralkyl resin, MEHC-7800S manufactured by Meiwa Kasei Co., Ltd.)4.
  • the spherical silica powders of Examples 1 to 12 showed improved fluidity compared to Comparative Example 1, and improved moldability compared to Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明の球状シリカ粉末は、湿式フロー式画像解析装置を用いて測定される、当該球状シリカ粉末における、粒子径が5μm以上10μm未満の球形度をS1、粒子径が10μm以上20μm未満の球形度をS2、粒子径が20μm以上30μm未満の球形度をS3、粒子径が30μm以上45μm未満の球形度をS4、粒子径が45μm以上の球形度をS5としたとき、S1、S2、S3、S4、およびS5の少なくとも2つ以上が、0.74以上となるように構成される。

Description

球状シリカ粉末
 本発明は、球状シリカ粉末に関する。
 これまで球状について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、シリカ質原料粉末を火炎中に噴射して溶融することにより、溶融球状シリカが得られる方法が記載されている。
特開2001-261328号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の溶融球状シリカにおいて、流動性の点で改善の余地があることが判明した。
 本発明者はさらに検討したところ、各粒子径クラスにおける球状シリカ粉末の球形度を適切に制御することにより、流動性を向上できることを見出し、本発明を完成するに至った。
 本発明の一態様によれば、以下の球状シリカ粉末が提供される。
1. 湿式フロー式画像解析装置を用いて測定される、当該球状シリカ粉末における、粒子径が5μm以上10μm未満の球形度をS、粒子径が10μm以上20μm未満の球形度をS、粒子径が20μm以上30μm未満の球形度をS、粒子径が30μm以上45μm未満の球形度をS、粒子径が45μm以上の球形度をSとしたとき、
 S、S、S、S、およびSの少なくとも2つ以上が、0.74以上である、
球状シリカ粉末。
2. 1.に記載の球状シリカ粉末であって、
 S、S、S、S、およびSの5つ(ただし値が0のものを除外する)の平均値から求められる平均球形度をSAVEとしたとき、SAVEが、0.77以上である、球状シリカ粉末。
3. 2.に記載の球状シリカ粉末であって、
 湿式によるレーザー回折散乱法で測定される当該球状シリカ粉末の体積頻度粒度分布において、累積値が50%となる粒子径をD50としたとき、
 SAVEおよびD50が、0.01≦SAVE/D50≦0.1を満たすように構成される、球状シリカ粉末。
4. 1.~3.のいずれか一つに記載の球状シリカ粉末であって、
 下記の手順Bで測定されるかため嵩密度が、1.2g/cm以上1.6g/cm以下である、球状シリカ粉末。
(手順B)
 当該球状シリカ粉末を、1分間に5~10gの投入量で、高さ25cmから自然落下させ、100cmの測定用カップの内部に投入し、カップから溢れ出るまで続けて、山盛りカップを準備する。
 続いて、山盛りカップについて、タッピングせずに、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、ゆるめ嵩密度(g/cm)を算出する。
 一方、山盛りカップについて、上下方向に180回の条件(ストローク長2cm、1秒/回)でタッピングした後で、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、かため嵩密度(g/cm)を算出する。
5. 1.~4.に記載の球状シリカ粉末であって、
 下記の手順Bで測定される、ゆるめ嵩密度をA、かため嵩密度をPとしたとき、
 ((P-A)/P)×100に基づいて求められる圧縮度が、15%以上50%以下である、球状シリカ粉末。
6. 1.~5.のいずれか一つに記載の球状シリカ粉末であって、
 湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
 (D97-D10)/D50が、1.0以上10.0以下である、球状シリカ粉末。
7. 1.~6.のいずれか一つに記載の球状シリカ粉末であって、
 湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
 D97/D50が、2.0以上30.0以下である、球状シリカ粉末。
 本発明によれば、流動性に優れた球状シリカ粉末が提供される。
球状シリカ粉末を製造するために用いる溶射装置の構成を示す模式的断面図である。
 本実施形態の球状シリカ粉末の概要を説明する。
 本実施形態の球状シリカ粉末は、湿式フロー式画像解析装置を用いて測定される、粒子径が5μm以上10μm未満の球形度をS、粒子径が10μm以上20μm未満の球形度をS、粒子径が20μm以上30μm未満の球形度をS、粒子径が30μm以上45μm未満の球形度をS、粒子径が45μm以上の球形度をSとしたとき、S、S、S、S、およびSの少なくとも2つ以上が、0.74以上となるように構成される。
 S、S、S、S、およびSの少なくとも2つ以上が、0.74以上、好ましくは0.80以上、より好ましくは0.84以上である。これにより、流動性を向上できる。
 また、S、S、S、S、およびS中、0.74以上を満たすものは、少なくとも2つ以上、好ましくは3つ以上、より好ましくは4つ以上となるように構成される。これにより、流動性を向上できる。
 S、S、S、S、およびSの5つ(ただし値が0のものを除外する)の平均値から求められる平均球形度をSAVEとし、湿式フロー式画像解析装置を用いて測定される、球状シリカ粉末の中位径をS50(μm)とする。
 SAVEの下限は、例えば、0.77以上、好ましくは0.82以上、より好ましくは0.87以上である。これにより、流動性を向上できる。なお、SAVEの上限は、例えば、0.99以下としてもよい。
 球状シリカ粉末の球形度は、室温25℃、湿度60%の条件下、次の手順Aに従って測定できる。
 得られた球状シリカ粉末について、湿式フロー式画像解析装置(シスメックス社製、FPIA-3000)を用いて、粒子径が5μm以上10μm未満の球形度(S)、粒子径が10μm以上20μm未満の球形度(S)、粒子径が20μm以上30μm未満の球形度(S)、粒子径が30μm以上45μm未満の球形度(S)、粒子径が45μm以上の球形度(S)を測定する。
 各粒子径クラスの球形度は、各粒子径クラスの円形度の2乗した値とする。
 本実施形態では、たとえば球状シリカ粉末の原料成分や、球状シリカ粉末の製造方法等を適切に選択することにより、上記S、S、S、S、およびSの各粒径クラスにおける球形度、SAVE、およびS50を制御することが可能である。これらの中でも、たとえば原料供給量、原料粒径、火炎温度、可燃性ガス、助燃ガス、分散ガス等の溶融火炎条件を適切に制御すること等が、上記S、S、S、S、およびSの各粒径クラスにおける球形度、SAVE、およびS50度を所望の数値範囲とするための要素として挙げられる。たとえば、(i)原料供給量を低減させると球形度は上がり、増大させると球形度は下がる、(ii)複数の原料の粒径が、平均粒径に近いと球形度は上がり、そこからから外れるほど球形度は下がる、(iii)火炎温度が高いほど球形度が上がり、低いと球形度が下がる、(iv)可燃性ガスの温度が高いほど球形度が上がり、低いと球形度が下がる、(v)助燃ガスが理論比に近いほど球形度は上がり、そこから外れるほど球形度は下がる、(vi)分散ガスを適切に導入することで合着が減り、球形度が上がる等が挙げられる。
 本実施形態の球状シリカ粉末は、下記の手順Bで測定される、ゆるめ嵩密度をA、かため嵩密度をPとしたとき、((P-A)/P))×100に基づいて求められる圧縮度が、例えば、15%以上50%以下となるように構成されてもよい。
 上記圧縮度の上限は、例えば、50%以下、好ましくは40%以下、より好ましくは30%以下である。これにより、流動性を向上できる。
 上記かため嵩密度(P)の下限は、例えば、1.2g/cm以上、好ましくは1.25g/cm以上、より好ましくは1.3g/cm以上である。これにより、ハンドリング性を向上できる。
 上記かため嵩密度(P)の上限は、例えば、1.6g/cm以下、好ましくは1.5g/cm以下、より好ましくは1.4g/cm以下である。これにより、樹脂との混合性を向上できる。
 球状シリカ粉末のゆるめ嵩密度、かため嵩密度、圧縮度は、室温25℃、湿度55%の条件下、次の手順Bに従って測定できる。
 まず、球状シリカ粉末を、1分間に5~10gの投入量で、高さ25cmから自然落下させ、100cmの測定用カップの内部に投入し、カップから溢れ出るまで続けて、山盛りカップを準備する。
 続いて、山盛りカップについて、タッピングせずに、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、ゆるめ嵩密度(g/cm)を算出する。
 一方、山盛りカップについて、上下方向に180回の条件(ストローク長2cm、1秒/回)でタッピングした後で、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、かため嵩密度(g/cm)を算出する。
 球状シリカ粉末における体積頻度粒度分布を湿式によるレーザー回折散乱法により測定し、かかる体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97とする。
 SAVEおよびS50が、0.01≦SAVE/D50≦0.1を満たすように構成されてもよい。
 SAVE/D50の下限は、例えば、0.01以上、好ましくは0.015以上、より好ましくは0.023以上である。これにより、流動性を向上できる。
 SAVE/D50上限は、例えば、0.1以下、好ましくは0.75以下、より好ましくは0.5以下である。これにより、流動性を向上できる。
 (D97-D10)/D50の上限は、例えば、10.0以下、好ましくは7.0以下、より好ましくは5.0以下である。これにより、粒度分布の幅がシャープになり、流動性が向上できる。
 一方、(D97-D10)/D50の下限は、例えば、1.0以上、好ましくは1.1以上、より好ましくは2.0以上である。これにより、粒度分布が一定の幅を持ち、成形性が向上できる。
 D97/D50の上限は、例えば、30.0以下、好ましくは20.0以下、より好ましくは15.0以下である。これにより、粗大な粒子の粒度がシャープになり、粗大な粒子による樹脂成型物の成型不良を抑制できる。
 一方、D97/D50の下限は、例えば、2.0以上、好ましくは3.0以上、より好ましくは5.0以上である。これにより、粒度分布が一定の幅を持ち、流動性および成形性が向上できる。
 球状シリカ粉末の粒度分布は、レーザー回折光散乱法による粒度測定に基づく値であり、粒度分布測定機としては、例えば「モデルLS-13-230」(ベックマンコールター社製)にて測定することができる。測定に際しては、溶媒には水を用い、前処理として、1分間、ホモジナイザーを用いて200Wの出力をかけて分散処理することができる。また、PIDS(PolarizationIntensityDifferentialScattering)濃度を45~55%になるように調製する。なお、水の屈折率には1.33を用い、粉末の屈折率については粉末の材質の屈折率を考慮する。たとえば、非晶質シリカについては屈折率を1.50として測定する。
 本実施形態の球状シリカ粉末の製造方法について説明する。
 球状シリカ粉末は、溶融球状粒子とも呼称され、可燃ガスと助燃ガスとの燃焼反応によって形成される高温火炎中に、シリカ質原料粉末を供給し、その融点以上で溶融球状化して製造される。必要なら、このようにして得られた溶融球状粒子を、分級・篩分処理してもよい。
 球状シリカ粉末を製造するために用いる溶射装置の概略図の一例を図1に示す。
 図1の溶射装置100は、バーナー1が設置された溶融炉2と、火炎の高温排ガスで生成した溶融球状粒子を、ブロワー9の吸引にて分級するためのサイクロン4,6と、サイクロン4,6で捕集できなかった微粉を回収するバッグフィルター8と、により構成されている
 溶融炉2は、縦型炉体で構成されるが、これに限定されず、横型にして火炎を水平方向に吹き出す、いわゆる横型炉又は傾斜炉であってもよい。
 高温排ガスは、水冷ジャケットを備える配管3,5,7によって冷却される。
 ブロワー9には、不図示の吸引ガス量制御バルブ、およびガス排気口が接続されていてもよい。
 溶融炉2、サイクロン4,6、およびバックフィルター8の下部には、不図示の捕集粉抜き出し装置が接続されていてもよい。
 分級は、重沈室、サイクロン、回転翼を有する分級機等公知の機器を用いて行うことができる。この分級操作は、溶融球状化品の輸送工程に織り込んで行ってもよく、また一括捕集してから別ラインで行ってもよい。
 可燃ガスとしては、例えば、アセチレン、プロパン、ブタン等の1種又は2種以上が使用されるが発熱量の比較的小さいプロパン、ブタン又はその混合ガスが好ましい。
 助燃ガスとしては、例えば、酸素を含むガスが使用される。一般的には、99重量%以上の純酸素を用いるのが安価で最も好ましい。ガスの発熱量低減を目的とし、空気やアルゴン等の不活性ガスを助燃ガスに混合することもできる。
 球状シリカ粉末は、非晶質及び/又は結晶質のいずれであってもよい。
 球状シリカ粉末は、例えば、下記方法で測定された非晶質率が95%以上であることが好ましく、97%以上であることがより好ましい。非晶質率は、粉末X線回折装置(例えばRIGAKU社製商品名「モデルMiniFlex」)を用い、CuKα線の2θが26°~27.5°の範囲においてX線回折分析を行い、特定回折ピークの強度比から測定する。シリカ質粉末の場合、結晶質シリカは、26.7°に主ピークが存在するが、非晶質シリカではピークは存在しない。非晶質シリカと結晶質シリカが混在していると、結晶質シリカの割合に応じた26.7°のピーク高さが得られるので、結晶質シリカ標準試料のX線強度に対する試料のX線強度の比から、結晶質シリカ混在比(試料のX線回折強度/結晶質シリカのX線回折強度)を算出し、式、非晶質率(%)=(1-結晶質シリカ混在比)×100から非晶質率を求める。
 球状シリカ粉末は、BET法により測定した比表面積Sと粒度分布により計算した理論比表面積Sとの比(S/S)が、例えば、2.5以下であることが好ましい。この比が大きいということはレーザー回折法などの粒度分布測定機では検出できないような超微粒子を多く含有することを意味する。球状シリカ粒子を樹脂組成物に配合したときの粘度上昇を抑制する観点から、上記のS/Sの値は2.5以下、特に2.0以下であることがより好ましい。
 比表面積Sは、BET法に基づく値であり、比表面積測定機としては、例えば「モデル4-SORBU2」(湯浅アイオニクス社製)を用いて測定することができる。
 理論比表面積Sについても、上記粒度分布測定機によって自動計算が可能である。この測定機の原理は、式、S=6/(ρ・D)、に基づいている。式中、Dは面積平均粒子径(μm)、ρは球状シリカ粉末の密度(g/cm)である。たとえば、粉末が非晶質シリカであれば2.21である。
 なお、Dは、式、D=Σ(ni・ai・di)/Σ(ni・ai)、で求められる。これは、一つの粉末の集団において、粒子径の小さい順からd1、d2、・・・di、・・dkの粒子径を持つ粒子が、それぞれn1、n2、・・・ni、・・nk個あり、また、粒子1個当たりの表面積をそれぞれa1、a2、・・・ai、・・akとした場合、DはD=(n1・a1・d1+n2・a2・d2+・・・+ni・ai・di+・・・+nk・ak・dk)/(n1・a1・+n2・a2+・・・+ni・ai+・・・+nk・ak)で求められることになる。
 球状シリカ粉末においては、50nm未満の粒子を実質的に含有しないことが好ましい。これにより、樹脂組成物に配合したときの粘度上昇を抑制することができる。
 50nm未満の粒子を実質的に含有しないこととは、電子顕微鏡により倍率50,000倍で撮影した任意の写真100枚中の50nm未満の粒子個数を数え、写真1枚あたりの平均値として換算した値が50個未満であることを意味する。50nm未満の粒子はより少ない方が好ましい。
 電子顕微鏡写真の撮影には、電界放射型走査電子顕微鏡(日本電子社製モデル「FE-SEM、JSM-6301F」)を用い、加速電圧15kV、照射電流3×10-11Aの条件で撮影することができる。撮影の前処理として真空蒸着装置(日本電子社製モデル「JEE-4X」)で球状シリカ粉末に2秒間炭素を蒸着した後、さらに金-パラジウムを60秒間蒸着させる。
 本発明の球状シリカ粉末を樹脂組成物に配合したものを、樹脂成形材料として好適に使用できる。
 次に、本実施形態の樹脂組成物について説明する。
 樹脂組成物は、本発明の球状シリカ粉末の他に、樹脂や公知の樹脂添加剤などを含む。
 樹脂組成物中に、球状シリカ粉末は、単独で使用してもよいが、その他のフィラーと混合して使用してもよい。樹脂組成物中には、球状シリカ粉末が10~99質量%含まれていてもよく、または球状シリカ粉末およびその他のフィラーを含む混合無機粉末が10~99質量%含まれていてもよい。また、混合無機粉末中、その他のフィラーの含有量は、球状シリカ粉末100質量%に対して、例えば、1~20質量%、3~15質量%であってもよい。
 なお、本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 他のフィラーとして、例えば、アルミナ、チタニア、窒化珪素、窒化アルミニウム、炭化珪素、タルク、炭酸カルシウム等が挙げられる。他のフィラーの平均粒子径は5~100μm程度のものが使用され、その粒度構成及び形状については特に制約はない。
 上記の樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴムースチレン)樹脂等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 樹脂組成物は、例えば、所定量比の原料成分をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、粉砕することによって製造することができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<球状シリカ粉末の製造>
 溶融炉2の上部にバーナー1が設置されており、下部にサイクロン4,6、バグフィルター8からなる捕集系ラインが直結された、図1に示す溶射装置100を用いて、球状シリカ粉末を製造した。
 バーナー1は、内炎と外炎とを形成できる二重管構造を有していて、溶融炉2の頂上部に設置されており、可燃ガス供給管11、助燃ガス供給管12、原料供給管13の各々が接続されている。
 溶融炉2内では、原料供給管13よりシリカ質原料粉末を高温火炎中に供給し、溶融させて、球状化した溶融球状粒子を形成できる。溶融炉2を通過した溶融球状粒子は、燃焼排ガスとともにブロワー9により吸引され、配管3,5,7内を空気により移動し、サイクロン4,6またはバグフィルター8にて分級・捕集される。
(実施例1~12、比較例1~2)
 上記の溶射装置100を用いて、可燃性ガスとしてLPGを可燃ガス供給管11から供給し、助燃ガスとして酸素を助燃ガス供給管12から供給し、バーナー1において、LPGと酸素との燃焼により高温火炎を形成した。原料のキャリアガスとして、20Nm/hr、バーナーの可燃性ガスの供給量を8Nm/hr、助燃ガスの供給量を20Nm/hrとした。上記により形成された火炎に天然珪石粉末(平均粒径5μm~50μm)を供給して球状非晶質シリカ粉末を得た。得られた粉末を分級および分級されたものの混合により、実施例1~12の粉体を得た。
(比較例1~2)
 粉体供給量と火炎形成条件以外は、上記の実施例と同様にして、球状シリカ粉末を得た。
 比較例1は粉体供給量を実施例1の2.0倍量とし、原料のキャリアガスとして、20Nm/hr、バーナーの可燃性ガスの供給量を5Nm/hr、助燃ガスの供給量を15Nm/hrとした。
 比較例2は粉体供給量を実施例1の3.3倍量とし、原料のキャリアガスとして、15Nm/hr、バーナーの可燃性ガスの供給量を4Nm/hr、助燃ガスの供給量を15Nm/hrとした。
Figure JPOXMLDOC01-appb-T000001
<球形度>
 室温25℃、湿度60%の条件下、次のようにして、球状シリカ粉末の球形度を求めた。
 得られた球状シリカ粉末について、湿式フロー式画像解析装置(シスメックス社製、FPIA-3000)を用いて、粒子径が5μm以上10μm未満の球形度(S)、粒子径が10μm以上20μm未満の球形度(S)、粒子径が20μm以上30μm未満の球形度(S)、粒子径が30μm以上45μm未満の球形度(S)、粒子径が45μm以上の球形度(S)を測定した。
[測定手順]
 上記の湿式フロー式画像解析装置に用いる測定サンプルは、次のように調整した。
 20mlのガラスビーカー容器に球状シリカ粉末のサンプルを0.05g計量し、プロピレングリコール25質量%水溶液を10ml加えた後、超音波分散器で(アズワン社製ASU-10M)3分間分散させる。これをFPIA-3000に全量入れ、LPFモード/定量カウント(トータルカウント数100個、繰返し測定回数1回)方式で測定する。
 上記の湿式フロー式画像解析装置により、一個の粒子投影像の周囲長と粒子投影像の面積に相当する円の周囲長を解析し、下式により円形度を求めた。
 円形度=(粒子投影像の周囲長)/(粒子投影像の面積に相当する円の周囲長)
 球形度および円形度は、各粒子径クラスの範囲に含まれる粒子の平均値である。
 球形度は、各粒子径クラスの円形度の2乗した値とした。
 また、S、S、S、およびSの4つ(ただし値が0のものを除外する)の平均値から、平均球形度(SAVE)を算出した。
<ゆるめ嵩密度、かため嵩密度、圧縮度>
 室温25℃、湿度60%の条件下、次のようにして、球状シリカ粉末のゆるめ嵩密度、かため嵩密度、圧縮度を求めた。
 得られた球状シリカ粉末を、1分間に5~10gの投入量で、高さ25cmから自然落下させ、100cmの測定用カップの内部に投入し、カップから溢れ出るまで続けて、山盛りカップを準備した。
 続いて、山盛りカップについて、タッピングせずに、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、ゆるめ嵩密度(g/cm)を算出した。
 一方、山盛りカップについて、上下方向に180回の条件(ストローク長2cm、1秒/回)でタッピングした後で、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、かため嵩密度(g/cm)を算出した。
 上記の手順で求められた、ゆるめ嵩密度をA、かため嵩密度をPとしたとき、圧縮度(%)を、式:((P-A)/P)×100に基づいて求めた。
<粒度分布>
 得られた球状シリカ粉末をについて、粒度分布測定装置(ベックマンコールター社製、LS-13-230)を用いて、湿式によるレーザー回折散乱法により体積頻度粒度分布を求めた。溶媒には水を用い、前処理として、1分間、ホモジナイザーを用いて200Wの出力をかけて分散処理して測定した。また、PIDS(Polarization Intensity Differential Scattering)濃度を45~55%になるように調製して測定した。
 得られた体積頻度粒度分布に基づいて、累積値がX%となる粒子径Dを算出した。
<樹脂組成物の流動性>
 得られたシリカ粉末90質量部と、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製YX-4000HK)5.5質量部と、フェノール樹脂(フェノールアラルキル樹脂、明和化成株式会社製MEHC-7800S)4.8質量部と、トリフェニルホスフィン(北興化学工業株式会社製:TPP)0.15質量部と、N-フェニル-3-アミノプロピルトリメトキシシラン信越化学工業株式会社製:KBM-573)0.35質量部とを、ヘンシェルミキサー(日本コークス工業社製「FM-20C/I」)を用いて、常温、回転数2000rpmの条件下で混合し、得られた混合物を、同方向噛み合い二軸押出混練機(スクリュー径D=25mm、L/D=10.2、パドル回転数50~120rpm、吐出量3.0kg/Hr、混練物温度98~100℃)で加熱混練して、樹脂組成物を得た。
 得られた樹脂組成物を使用し、スパイラルフロー金型を用い、EMMI-1-66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠して行った。金型温度は175℃、成型圧力7.4MPa、保圧時間90秒とした。
 スパイラルフローが120cm以上であるものを良好とし、120cm未満であるものと不良として評価した。
<樹脂組成物の成形性>
 上記<樹脂組成物の流動性>の評価で得られた樹脂組成物を使用し、チップ上下の樹脂厚が70μmである金型を用い、トランスファー成形機を用いて模擬素子を封止した48ピンTSOPを作製し、未充填などの外観不良が無いか目視により検査を行った。外観不良がないものを良好とし、外観不良があるものを不良として評価した。
 なお、金型温度は175℃、成型圧力7.4MPa、保圧時間120秒とした。成型後、155℃で6時間のアフターキュアを行った。
 実施例1~12の球状シリカ粉末は、比較例1と比べて流動性を向上でき、比較例2と比べて成形性を向上できる結果を示した。
 この出願は、2022年2月9日に出願された日本出願特願2022-018509号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 バーナー
2 溶融炉
3 配管
4 サイクロン
5 配管
6 サイクロン
7 配管
8 バグフィルター
9 ブロワー
11 可燃ガス供給管
12 助燃ガス供給管
13 原料供給管
100 溶射装置

Claims (7)

  1.  湿式フロー式画像解析装置を用いて測定される、当該球状シリカ粉末における、粒子径が5μm以上10μm未満の球形度をS、粒子径が10μm以上20μm未満の球形度をS、粒子径が20μm以上30μm未満の球形度をS、粒子径が30μm以上45μm未満の球形度をS、粒子径が45μm以上の球形度をSとしたとき、
     S、S、S、S、およびSの少なくとも2つ以上が、0.74以上である、
    球状シリカ粉末。
  2.  請求項1に記載の球状シリカ粉末であって、
     S、S、S、S、およびSの5つ(ただし値が0のものを除外する)の平均値から求められる平均球形度をSAVEとしたとき、SAVEが、0.77以上である、球状シリカ粉末。
  3.  請求項2に記載の球状シリカ粉末であって、
     湿式によるレーザー回折散乱法で測定される当該球状シリカ粉末の体積頻度粒度分布において、累積値が50%となる粒子径をD50としたとき、
     SAVEおよびD50が、0.01≦SAVE/D50≦0.1を満たすように構成される、球状シリカ粉末。
  4.  請求項1~3のいずれか一項に記載の球状シリカ粉末であって、
     下記の手順Bで測定されるかため嵩密度が、1.2g/cm以上1.6g/cm以下である、球状シリカ粉末。
    (手順B)
     当該球状シリカ粉末を、1分間に5~10gの投入量で、高さ25cmから自然落下させ、100cmの測定用カップの内部に投入し、カップから溢れ出るまで続けて、山盛りカップを準備する。
     続いて、山盛りカップについて、タッピングせずに、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、ゆるめ嵩密度(g/cm)を算出する。
     一方、山盛りカップについて、上下方向に180回の条件(ストローク長2cm、1秒/回)でタッピングした後で、カップの上面に溢れた分をすり切った後、カップに充填された球状シリカ粉末の質量(g)を測定し、かため嵩密度(g/cm)を算出する。
  5.  請求項4に記載の球状シリカ粉末であって、
     下記の手順Bで測定される、ゆるめ嵩密度をA、かため嵩密度をPとしたとき、
     ((P-A)/P)×100に基づいて求められる圧縮度が、15%以上50%以下である、球状シリカ粉末。
  6.  請求項1~5のいずれか一項に記載の球状シリカ粉末であって、
     湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
     (D97-D10)/D50が、1.0以上10.0以下である、球状シリカ粉末。
  7.  請求項1~6のいずれか一項に記載の球状シリカ粉末であって、
     湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
     D97/D50が、2.0以上30.0以下である、球状シリカ粉末。
PCT/JP2023/003768 2022-02-09 2023-02-06 球状シリカ粉末 WO2023153357A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018509 2022-02-09
JP2022018509 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153357A1 true WO2023153357A1 (ja) 2023-08-17

Family

ID=87564424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003768 WO2023153357A1 (ja) 2022-02-09 2023-02-06 球状シリカ粉末

Country Status (1)

Country Link
WO (1) WO2023153357A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108437A1 (ja) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kabushiki Kaisha シリカ粉末及びその用途
JP2019052051A (ja) * 2017-09-13 2019-04-04 デンカ株式会社 球状シリカフィラー用粉末及びその製造方法
WO2020241902A1 (ja) * 2019-05-31 2020-12-03 日鉄ケミカル&マテリアル株式会社 球状結晶性シリカ粒子、球状シリカ粒子混合物およびコンポジット材料
JP2021066831A (ja) * 2019-10-25 2021-04-30 帝人株式会社 ポリカーボネート樹脂組成物
JP2021067737A (ja) * 2019-10-18 2021-04-30 株式会社リコー トナー、トナーの製造方法、現像剤、トナー収容ユニット、画像形成装置並びに画像形成方法
WO2021200491A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 アルミナ粉末、樹脂組成物、及び放熱部品
JP2021161005A (ja) * 2020-04-01 2021-10-11 株式会社アドマテックス 粒子材料、その製造方法、フィラー材料及び熱伝導物質

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108437A1 (ja) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kabushiki Kaisha シリカ粉末及びその用途
JP2019052051A (ja) * 2017-09-13 2019-04-04 デンカ株式会社 球状シリカフィラー用粉末及びその製造方法
WO2020241902A1 (ja) * 2019-05-31 2020-12-03 日鉄ケミカル&マテリアル株式会社 球状結晶性シリカ粒子、球状シリカ粒子混合物およびコンポジット材料
JP2021067737A (ja) * 2019-10-18 2021-04-30 株式会社リコー トナー、トナーの製造方法、現像剤、トナー収容ユニット、画像形成装置並びに画像形成方法
JP2021066831A (ja) * 2019-10-25 2021-04-30 帝人株式会社 ポリカーボネート樹脂組成物
WO2021200491A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 アルミナ粉末、樹脂組成物、及び放熱部品
JP2021161005A (ja) * 2020-04-01 2021-10-11 株式会社アドマテックス 粒子材料、その製造方法、フィラー材料及び熱伝導物質

Similar Documents

Publication Publication Date Title
TWI412506B (zh) 陶瓷粉末及其用途
US8480990B2 (en) Silica powder, process for its production, and composition employing it
JP4880268B2 (ja) 無機粉末およびその用途
KR20110008199A (ko) 알루미나 분말, 그의 제조 방법 및 그것을 사용한 수지 조성물
JP2004244491A (ja) 高熱伝導性無機質粉末およびその樹脂組成物
JP6771078B1 (ja) アルミナ粒子材料及びその製造方法
JP3446951B2 (ja) 無機質粉末及びそれが充填された樹脂組成物
WO2023153357A1 (ja) 球状シリカ粉末
JP4395114B2 (ja) 球状金属酸化物粉末の製造方法
JP2011102215A (ja) 球状アルミナ粉末、その製造方法及び用途。
WO2023153356A1 (ja) 球状シリカ粉末
TW200838801A (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
WO2023153351A1 (ja) 無機質粉末
JP6612919B2 (ja) 非晶質シリカ粉末、樹脂組成物、及び半導体封止材
WO2023153353A1 (ja) 無機質粉末
WO2023153352A1 (ja) 無機質粉末
JP5767863B2 (ja) 球状アルミナ粉末、その製造方法及びそれを用いた組成物
WO2023153355A1 (ja) 球状シリカ粉末
WO2022137949A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2023286565A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2022065349A1 (ja) 酸化物粉末及びその製造方法、並びに樹脂組成物
EP4299520A1 (en) Silicon dioxide powder
WO2024029464A1 (ja) アルミナ粉末、樹脂組成物、およびアルミナ粉末の製造方法
CN116648429A (zh) 氧化物复合粒子及其制造方法、以及树脂组合物
TW202313472A (zh) 氧化鋁粒子及使用其之樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752821

Country of ref document: EP

Kind code of ref document: A1