WO2023153355A1 - 球状シリカ粉末 - Google Patents

球状シリカ粉末 Download PDF

Info

Publication number
WO2023153355A1
WO2023153355A1 PCT/JP2023/003765 JP2023003765W WO2023153355A1 WO 2023153355 A1 WO2023153355 A1 WO 2023153355A1 JP 2023003765 W JP2023003765 W JP 2023003765W WO 2023153355 A1 WO2023153355 A1 WO 2023153355A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical silica
silica powder
content
less
particle size
Prior art date
Application number
PCT/JP2023/003765
Other languages
English (en)
French (fr)
Inventor
孝明 南川
宏幸 塩月
源太 狩野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023153355A1 publication Critical patent/WO2023153355A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to spherical silica powder.
  • Patent Literature 1 describes a method for obtaining fused spherical silica by injecting a siliceous raw material powder into a flame to melt it.
  • nitrogen oxides may be present in the spherical silica powder produced by the flame spraying method. It has been found that there is a risk of changing the resin properties of the resin composition. As a result of further intensive research based on such knowledge, it was found that by reducing the amount of nitrate ions contained in the spherical silica powder to a predetermined value or less, it is possible to suppress the deterioration of the curing characteristics of the resin composition, thereby improving the production stability. I found that it can be done, and came to complete the present invention.
  • the following spherical silica powder is provided.
  • a spherical silica powder that is excellent in production stability of a resin composition is provided.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a thermal spraying apparatus used for producing spherical silica powder
  • the spherical silica powder of the present embodiment is configured to have a NO 3 - content of 5 ppm or less, which is determined based on the ion chromatography method described below.
  • the nitrogen source contained in the combustion support gas is the source of NOx.
  • NOx By suppressing the occurrence of dew condensation on the surface of the silica particles, it is thought that NOx can be adsorbed during the dew condensation and can be prevented from remaining on the surface of the silica particles.
  • the cyclone and bag filter can be kept at a high temperature. environment can be controlled.
  • the upper limit of the NO 3 - content of the spherical silica powder is 5 ppm or less, preferably 3 ppm or less, more preferably 1 ppm or less. Thereby, the curability reduction of the resin composition can be suppressed.
  • the lower limit of the NO 3 ⁇ content of the spherical silica powder is not particularly limited, but may be 0 ppm or more, or 0.01 ppm or more.
  • the spherical silica powder is measured by the ion chromatography method described below.
  • N2 the content of NO 2 - contained in the spherical silica powder
  • N3 the content of NO 3 - is N3, N2 and N3 are 0.5. It may be configured to satisfy 05 ⁇ N3/N2 ⁇ 30.
  • the upper limit of N3/N2 is 30 or less, preferably 20 or less, more preferably 10 or less.
  • the lower limit of N3/N2 is not particularly limited, but may be 0 ppm or more, or 0.01 ppm or more.
  • the content of SO 3 2- and the content of SO 4 2- contained in the spherical silica powder obtained based on the following ion chromatography method are, for example, 10 ppm or less, preferably 8 ppm or less, and more preferably 6 ppm, respectively. It is below.
  • spherical silica powder is put into distilled water, this mixture is placed in a container, shaken for 1 minute, allowed to stand at 95° C. for 20 hours, and then cooled. Add the evaporated water to the container and make it a fixed amount. After that, centrifugation is performed, and the supernatant is obtained as an extract. The concentrations of NO 2 ⁇ , NO 3 ⁇ , SO 3 2 ⁇ and SO 4 2 ⁇ in the extract are then measured using ion chromatography. NO 2 - content, NO 3 - content, SO 3 2- content, and SO 4 2- content contained in the spherical silica powder based on the concentration values obtained by measurement. are calculated respectively.
  • the volume frequency particle size distribution of the spherical silica powder was measured by a wet laser diffraction scattering method. 50 , and the particle diameter at which the cumulative value is 97% is defined as D97 .
  • the upper limit of (D 97 ⁇ D 10 )/D 50 is, for example, 10.0 or less, preferably 7.0 or less, and more preferably 5.0 or less. As a result, the width of the particle size distribution becomes sharp, and the fluidity can be improved.
  • the lower limit of (D 97 ⁇ D 10 )/D 50 is, for example, 1.0 or more, preferably 1.1 or more, and more preferably 2.0 or more. As a result, the particle size distribution has a certain width, and moldability can be improved.
  • the upper limit of D97 / D50 is, for example, 30.0 or less, preferably 20.0 or less, more preferably 15.0 or less.
  • the particle size of the coarse particles becomes sharper, and it is possible to improve the suppression of defective molding of the resin molding due to the coarse particles.
  • the lower limit of D97 / D50 is, for example, 2.0 or more, preferably 3.0 or more, and more preferably 5.0 or more. Thereby, the particle size distribution has a certain width, and the fluidity and moldability can be improved.
  • the particle size distribution of spherical silica powder is a value based on particle size measurement by a laser diffraction light scattering method, and can be measured using, for example, "Model LS-13-230" (manufactured by Beckman Coulter, Inc.) as a particle size distribution analyzer. can.
  • water can be used as a solvent, and as a pretreatment, a dispersion treatment can be performed by applying an output of 200 W using a homogenizer for 1 minute.
  • the PIDS (Polarization Intensity Differential Scattering) concentration is adjusted to 45 to 55%.
  • 1.33 is used as the refractive index of water, and the refractive index of the material of the powder is taken into consideration as the refractive index of the powder. For example, amorphous silica is measured with a refractive index of 1.50.
  • Spherical silica powder is also called fused spherical particles, and is produced by supplying siliceous raw material powder into a high-temperature flame formed by a combustion reaction between combustible gas and combustion supporting gas, and melting and spheroidizing it above its melting point. If necessary, the molten spherical particles thus obtained may be classified and sieved.
  • FIG. 6 An example of a schematic diagram of a thermal spraying apparatus used to produce spherical silica powder is shown in FIG.
  • the melting furnace 2 is composed of a vertical furnace body, but is not limited to this, and is made horizontal so that the flame is oriented horizontally. It may be a so-called horizontal furnace or tilt furnace that blows out.
  • the hot exhaust gas is cooled by pipes 3, 5, 7 with water cooling jackets.
  • the blower 9 may be connected to a suction gas amount control valve (not shown) and a gas exhaust port. Under the melting furnace 2, the cyclones 4 and 6, and the back filter 8, a collected powder extraction device (not shown) may be connected.
  • Classification can be performed using known equipment such as a heavy subsidence chamber, a cyclone, and a classifier having rotary blades. This classification operation may be incorporated in the transportation process of the molten spheroidized product, or may be carried out in a separate line after collective collection.
  • the combustible gas for example, one or more of acetylene, propane, butane, and the like are used, but propane, butane, or a mixed gas thereof, which has a relatively small calorific value, is preferable.
  • a gas containing oxygen for example, is used as the combustion support gas.
  • an inert gas such as air or argon can be mixed with the combustion support gas.
  • the spherical silica powder may be amorphous and/or crystalline.
  • the spherical silica powder preferably has an amorphous rate of, for example, 95% or more, more preferably 97% or more, as measured by the method described below.
  • the amorphous rate is determined by X-ray diffraction analysis using a powder X-ray diffractometer (for example, RIGAKU's trade name "Model MiniFlex") in the range of 26 ° to 27.5 ° for CuK ⁇ ray 2 ⁇ . Measured from peak intensity ratios.
  • a powder X-ray diffractometer for example, RIGAKU's trade name "Model MiniFlex”
  • crystalline silica has a main peak at 26.7°, but amorphous silica does not.
  • the spherical silica powder preferably has a ratio (S B /S C ) of the specific surface area S B measured by the BET method to the theoretical specific surface area S C calculated from the particle size distribution of, for example, 2.5 or less.
  • a large ratio means that a large amount of ultrafine particles that cannot be detected by a particle size distribution analyzer such as a laser diffraction method is contained.
  • the above S B /S C value is more preferably 2.5 or less, particularly 2.0 or less.
  • the specific surface area S B is a value based on the BET method, and can be measured using, for example, "Model 4-SORBU2" (manufactured by Yuasa Ionics Co., Ltd.) as a specific surface area measuring instrument.
  • the theoretical specific surface area SC can also be automatically calculated by the particle size distribution analyzer.
  • D is the area average particle diameter ( ⁇ m)
  • is the density (g/cm 3 ) of the spherical silica powder. For example, 2.21 if the powder is amorphous silica.
  • the spherical silica powder does not substantially contain particles of less than 50 nm. This makes it possible to suppress an increase in viscosity when blended in a resin composition.
  • substantially free of particles of less than 50 nm means that the number of particles of less than 50 nm in any 100 photographs taken with an electron microscope at a magnification of 50,000 was counted and converted as an average value per photograph. It means that the value is less than 50. Fewer particles less than 50 nm are preferred.
  • Electron micrographs should be taken using a field emission scanning electron microscope (model "FE-SEM, JSM-6301F” manufactured by JEOL Ltd.) under the conditions of an acceleration voltage of 15 kV and an irradiation current of 3 ⁇ 10-11 A.
  • FE-SEM field emission scanning electron microscope
  • JSM-6301F a field emission scanning electron microscope
  • irradiation current 3 ⁇ 10-11 A.
  • As a pretreatment for photographing there is a method of evaporating carbon onto spherical silica powder for 2 seconds using a vacuum evaporator (model “JEE-4X” manufactured by JEOL Ltd.) and then evaporating gold-palladium for 60 seconds.
  • the degree of "sphericity" in the spherical silica powder for example, the average sphericity of particles having a cumulative particle size distribution of less than 75% (d75) is 0.90 or more, and the average sphericity of particles having a particle size of d75 or more It is preferable that the degree is 0.85 or more.
  • the average sphericity of spherical silica powder is increased, the fluidity tends to be improved.
  • the average sphericity of coarse particles having a particle size of d75 or more to 0.85 or more the effect of the present embodiment is obtained. can be further enhanced.
  • the average sphericity is obtained by taking a particle image taken with a stereoscopic microscope (for example, model "SMZ-10" manufactured by Nikon Corporation), a scanning electron microscope, etc. can be measured as That is, the projected area (A) and perimeter (PM) of the grain are measured from the photograph. Assuming that the area of the perfect circle corresponding to the perimeter (PM) is (B), the circularity of the particle can be expressed as A/B.
  • a resin composition containing the spherical silica powder of the present invention can be suitably used as a resin molding material.
  • the resin composition contains, in addition to the spherical silica powder of the present invention, resins and known resin additives.
  • the spherical silica powder may be used alone in the resin composition, or may be used by mixing with other fillers.
  • the resin composition may contain 10 to 99% by mass of spherical silica powder, or may contain 10 to 99% by mass of mixed inorganic powder containing spherical silica powder and other fillers.
  • the content of other fillers in the mixed inorganic powder may be, for example, 1 to 20% by mass or 3 to 15% by mass with respect to 100% by mass of the spherical silica powder.
  • "-" means including upper and lower limits unless otherwise specified.
  • fillers include, for example, alumina, titania, silicon nitride, aluminum nitride, silicon carbide, talc, and calcium carbonate.
  • Other fillers having an average particle size of about 5 to 100 ⁇ m are used, and there are no particular restrictions on their particle size configuration and shape.
  • polyester resins examples include epoxy resins, silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluorine resins, polyamides such as polyimides, polyamideimides and polyetherimides, polybutylene terephthalate, polyethylene terephthalate, and the like.
  • the resin composition is produced by, for example, blending raw material components at a predetermined ratio using a blender, Henschel mixer, or the like, kneading the mixture using a heating roll, a kneader, a single-screw or twin-screw extruder, or the like, and then pulverizing the mixture after cooling. be able to.
  • a burner 1 is installed in the upper part of a melting furnace 2, and a collection system line consisting of cyclones 4, 6 and a bag filter 8 is directly connected to the lower part. manufactured.
  • the burner 1 has a double-tube structure capable of forming an inner flame and an outer flame, and is installed at the top of the melting furnace 2. 13 are connected.
  • the siliceous raw material powder is supplied into the high-temperature flame from the raw material supply pipe 13 and melted to form spherical molten spherical particles. Molten spherical particles that have passed through the melting furnace 2 are sucked by the blower 9 together with the combustion exhaust gas, move through the pipes 3, 5 and 7 by air, and are classified and collected by the cyclones 4 and 6 or the bag filter 8.
  • Example 1 Using the above thermal spraying apparatus 100, LPG is supplied as a combustible gas from the combustible gas supply pipe 11, air or oxygen is supplied as a combustion supporting gas from the combustion supporting gas supply pipe 12, and in the burner 1, LPG and oxygen are burned. formed a high temperature flame. Secondary air is supplied to the cyclone 4 (first cyclone) by a rotary valve (not shown) installed in the pipe 3 . Atmospheric air was used as the secondary air. The opening/closing degree (lower opening degree) of the lower valves of cyclones 4 and 6 (second cyclone) was set to 100%. Secondary air was also supplied from the pipe 7 in the same manner.
  • siliceous raw material powder pulverized natural silica stone with an average particle size (D 50 ) of 5 to 40 ⁇ m is used, and molten spherical particles collected by cyclones 4 and 6 and bag filter 8 are Each was recovered as a spherical silica powder.
  • Table 1 Thirteen types of powder shown in Table 1 were produced by adjusting the flame forming conditions, raw material particle size, raw material supply amount, classification conditions, mixing conditions, and the like. The median diameter is adjusted by adjusting the particle size of the raw material, multistage sieving operation of the powder after spheroidizing treatment, and adjusting the mixed amount of coarse particles, medium particles, fine particles, ultrafine particles, etc. obtained by the above operation. Ta.
  • Example 2 When the secondary air supply rate of Example 1 is V (kg/h), Example 2 has 1.3 times the amount of 1.3 V, Example 3 has 0.6 times the amount of 0.6 V, and Example 4 has 1.1 times the amount of 1.1 V, 0.9 times the amount of 0.9 V in Example 5, 0.7 times the amount of 0.7 V in Example 6, and 1 times the amount of 1 V in Examples 7 to 12. After that, a spherical silica powder was obtained in the same manner as in Example 1 above, except that the particle size was adjusted.
  • Example 1 The same as Example 7 above, except that a large amount of secondary air was supplied and the particle size was adjusted so that the secondary air supply amount V (kg / h) of Example 1 was 1 V, which was three times the amount. to obtain a spherical silica powder.
  • ⁇ Content NO 2 ⁇ , NO 3 ⁇ , SO 3 2 ⁇ , SO 4 2 ⁇ > 10 g of the obtained spherical silica powder and 70 g of distilled water are placed in a polyethylene container, shaken for 1 minute, placed in a dryer, allowed to stand at 95° C. for 20 hours, and then cooled. Add the amount of water that evaporates and make it a fixed amount. After that, centrifugation was performed, and the supernatant was used as an extract. Each concentration of NO 2 ⁇ , NO 3 ⁇ , SO 3 2 ⁇ and SO 4 2 ⁇ in the extract was measured by ion chromatography. Based on the measured concentration values, the NO 2 - content, NO 3 - content, SO 3 2- content, and SO 4 2- content contained in the spherical silica powder were calculated. . Table 1 shows the results of the examples.
  • the volume frequency particle size distribution of the resulting spherical silica powder was determined by a wet laser diffraction scattering method using a particle size distribution analyzer (LS-13-230 manufactured by Beckman Coulter, Inc.). Water was used as a solvent, and as a pretreatment, a homogenizer was used to apply an output of 200 W for 1 minute to disperse and measure. Also, the PIDS (Polarization Intensity Differential Scattering) concentration was adjusted to 45 to 55% and measured. Based on the obtained volume frequency particle size distribution, the particle diameter DX at which the cumulative value is X% was calculated.
  • ⁇ Production stability of resin composition > 4,4′-bis(2,3-epoxypropoxy)-3,3′,5,5′-tetramethylbiphenyl type epoxy resin 4.2% by weight, phenolic resin 4.3% by mass, 0.2% by mass of triphenylphosphine, 0.5% by mass of ⁇ -glycidoxypropyltrimethoxysilane, 0.3% by mass of carbon black, and 0.5% by mass of carnauba wax were added, and a Henschel mixer was added.
  • the resulting compound is heated and kneaded with a twin-screw extruder kneader (heater temperature 105 to 110 ° C.), and the product is cooled with a cooling press and then pulverized to obtain a resin composition. got It was confirmed that the resin compositions using the spherical silica powder of Examples 1 to 12 had no curing failure and could be used practically without problems (good). On the other hand, it was confirmed that the resin composition using the spherical silica powder of Comparative Example 1 caused poor curing (defective).
  • the spherical silica powders of Examples 1 to 12 showed results that compared to Comparative Example 1, the production stability of the resin composition could be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本実施形態の球状シリカ粉末は、イオンクロマトグラフィ法に基づいて求められる、NO の含有量が、5ppm以下である。

Description

球状シリカ粉末
 本発明は、球状シリカ粉末に関する。
 これまで球状について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、シリカ質原料粉末を火炎中に噴射して溶融することにより、溶融球状シリカが得られる方法が記載されている。
特開2000-191317号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の溶融球状シリカにおいて、樹脂組成物の製造安定性の点で改善の余地があることが判明した。
 本発明者はさらに検討したところ、火炎溶射法により製造された球状シリカ粉末中に窒素酸化物(NOx)が存在することがあり、この窒素酸化物が、球状シリカ粉末を樹脂中に配合してなる樹脂組成物の樹脂特性を変動させる恐れがあることを見出した。このような知見に基づきさらに鋭意研究したところ、球状シリカ粉末中に含まれる硝酸イオン量を所定値以下とすることにより、樹脂組成物の硬化特性の低減を抑制できるため、その製造安定性を向上できることを見出し、本発明を完成するに至った。
 本発明の一態様によれば、以下の球状シリカ粉末が提供される。
1. 下記のイオンクロマトグラフィ法に基づいて求められる、NO の含有量が、5ppm以下である、球状シリカ粉末。
(イオンクロマトグラフィ法)
 当該球状シリカ粉末を蒸留水に入れ、それを加熱、冷却した後、遠心分離により得られた上澄み液を、抽出液として取得する。その抽出液中のNO 濃度、およびNO 濃度をイオンクロマトグラフィ法で求める。得られたNO 濃度、NO 濃度に基づいて、当該球状シリカ粉末に含まれるNO の含有量、NO の含有量を算出する。
2. 1.に記載の球状シリカ粉末であって、
 前記イオンクロマトグラフィ法に基づいて求められる、当該球状シリカ粉末に含まれるNO の含有量をN2、NO の含有量をN3としたとき、N2,N3が、0.05≦N3/N2≦30を満たすように構成される、球状シリカ粉末。
3. 1.又は2.に記載の球状シリカ粉末であって、
 湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
 (D97-D10)/D50が、1.0以上10.0以下である、球状シリカ粉末。
4. 1.~3.のいずれか一つに記載の球状シリカ粉末であって、
 湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
 D97/D50が、2.0以上30.0以下である、球状シリカ粉末。
5. 1.~4.のいずれか一つに記載の球状シリカ粉末であって、
 非晶質率が95%以上である、球状シリカ粉末。
6. 1.~5.のいずれか一つに記載の球状シリカ粉末であって、
 前記イオンクロマトグラフィ法と同様にして求められる、当該球状シリカ粉末に含まれるSO 2-の含有量、およびSO 2-の含有量が、それぞれ10ppm以下である、球状シリカ粉末。
 本発明によれば、樹脂組成物の製造安定性に優れた球状シリカ粉末が提供される。
球状シリカ粉末を製造するために用いる溶射装置の構成を示す模式的断面図である。
 本実施形態の球状シリカ粉末の概要を説明する。
 本実施形態の球状シリカ粉末は、下記のイオンクロマトグラフィ法に基づいて求められる、NO の含有量が5ppm以下となるように構成される。
 本発明者の知見によれば、火炎溶射法により球状シリカ粉末を製造するプロセスにおいて、例えば、二次エアーを導入し、その導入量を適切に制御して、粉末を捕集するサイクロンやバグフィルター中の温度を高く調整することにより、NO の含有量を低減できることが判明した。
 詳細なメカニズムは定かではないが、助燃ガスに含まれる窒素源がNOxの由来になることが知られているが、高温環境に制御されたサイクロンやバグフィルターにおいて、捕集されたシリカ粒子の表面に結露が発生することを抑制することで、結露中にNOxが吸着し、シリカ粒子の表面にNOxが残存することを防止できると、考えられる。たとえば、大気中の比較的低温の空気(冷却用媒体)を二次導入する量を抑えること、および/または、比較的高温の燃焼排ガスを二次導入すること等により、サイクロンやバグフィルターが高温環境となるように制御することが可能である。
 球状シリカ粉末のNO の含有量の上限は、5ppm以下、好ましくは3ppm以下、より好ましくは1ppm以下である。これにより、樹脂組成物の硬化性の低減を抑制できる。
 一方、球状シリカ粉末のNO の含有量の下限は、とくに限定されないが、0ppm以上でもよく、0.01ppm以上でもよい。
 球状シリカ粉末は、下記のイオンクロマトグラフィ法で測定される、当該球状シリカ粉末に含まれるNO の含有量をN2、NO の含有量をN3としたとき、N2,N3が、0.05≦N3/N2≦30を満たすように構成されてもよい。
 N3/N2の上限は、30以下、好ましくは20以下、より好ましくは10以下である。これにより、銅ワイヤ腐食など、樹脂組成物による金属材料の腐食を抑制できる。
 一方、N3/N2の下限は、とくに限定されないが、0ppm以上でもよく、0.01ppm以上でもよい。
 下記のイオンクロマトグラフィ法に基づいて求められる、当該球状シリカ粉末に含まれるSO 2-の含有量およびSO 2-の含有量は、例えば、それぞれ10ppm以下、好ましくは8ppm以下、より好ましくは6ppm以下である。このような球状シリカ粉末を含む樹脂組成物を用いて電子装置の一部を形成することにより、電子装置の信頼性を向上できることが期待される。
 上記のイオンクロマトグラフィ法の手順の一例を説明する。
 まず、球状シリカ粉末を蒸留水に入れ、この混合液を容器に入れ1分間振とう後、95℃にて20時間静置後、冷却する。蒸発した分の水を容器に追加し定量とする。その後、遠心分離を行い、上澄み液を抽出液として取得する。
 続いて、その抽出液中のNO 、NO 、SO 2-、およびSO 2-の各濃度を、イオンクロマトグラフィ法を用いて測定する。
 測定により得られた濃度の値に基づいて、球状シリカ粉末中に含まれる、NO の含有量、NO の含有量、SO 2-の含有量、およびSO 2-の含有量をそれぞれ算出する。
 球状シリカ粉末における体積頻度粒度分布を湿式によるレーザー回折散乱法により測定し、かかる体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97とする。
 (D97-D10)/D50の上限は、例えば、10.0以下、好ましくは7.0以下、より好ましくは5.0以下である。これにより、粒度分布の幅がシャープになり、流動性が向上できる。
 一方、(D97-D10)/D50の下限は、例えば、1.0以上、好ましくは1.1以上、より好ましくは2.0以上である。これにより、粒度分布が一定の幅を持ち、成形性が向上できる。
 D97/D50の上限は、例えば、30.0以下、好ましくは20.0以下、より好ましくは15.0以下である。これにより、粗大な粒子の粒度がシャープになり、粗大な粒子による樹脂成型物の成型不良を抑制が向上できる。
 一方、D97/D50の下限は、例えば、2.0以上、好ましくは3.0以上、より好ましくは5.0以上である。これにより、粒度分布が一定の幅を持ち、流動性および成形性が向上できる。
 球状シリカ粉末の粒度分布は、レーザー回折光散乱法による粒度測定に基づく値であり、粒度分布測定機としては、例えば「モデルLS-13-230」(ベックマンコールター社製)にて測定することができる。測定に際しては、溶媒には水を用い、前処理として、1分間、ホモジナイザーを用いて200Wの出力をかけて分散処理することができる。また、PIDS(PolarizationIntensityDifferentialScattering)濃度を45~55%になるように調製する。なお、水の屈折率には1.33を用い、粉末の屈折率については粉末の材質の屈折率を考慮する。たとえば、非晶質シリカについては屈折率を1.50として測定する。
 本実施形態の球状シリカ粉末の製造方法について説明する。
 球状シリカ粉末は、溶融球状粒子とも呼称され、可燃ガスと助燃ガスとの燃焼反応によって形成される高温火炎中に、シリカ質原料粉末を供給し、その融点以上で溶融球状化して製造される。必要なら、このようにして得られた溶融球状粒子を、分級・篩分処理してもよい。
 球状シリカ粉末を製造するために用いる溶射装置の概略図の一例を図1に示す。
 図1の溶射装置100は、バーナー1が設置された溶融炉2と、火炎の高温排ガスで生成した溶融球状粒子を、ブロワー9の吸引にて分級するためのサイクロン4,6と、サイクロン4,6で捕集できなかった微粉を回収するバッグフィルター8と、により構成されている
 溶融炉2は、縦型炉体で構成されるが、これに限定されず、横型にして火炎を水平方向に吹き出す、いわゆる横型炉又は傾斜炉であってもよい。
 高温排ガスは、水冷ジャケットを備える配管3,5,7によって冷却される。
 ブロワー9には、不図示の吸引ガス量制御バルブ、およびガス排気口が接続されていてもよい。
 溶融炉2、サイクロン4,6、およびバックフィルター8の下部には、不図示の捕集粉抜き出し装置が接続されていてもよい。
 分級は、重沈室、サイクロン、回転翼を有する分級機等公知の機器を用いて行うことができる。この分級操作は、溶融球状化品の輸送工程に織り込んで行ってもよく、また一括捕集してから別ラインで行ってもよい。
 可燃ガスとしては、例えば、アセチレン、プロパン、ブタン等の1種又は2種以上が使用されるが発熱量の比較的小さいプロパン、ブタン又はその混合ガスが好ましい。
 助燃ガスとしては、例えば、酸素を含むガスが使用される。一般的には、99重量%以上の純酸素を用いるのが安価で最も好ましい。ガスの発熱量低減を目的とし、空気やアルゴン等の不活性ガスを助燃ガスに混合することもできる。
 球状シリカ粉末は、非晶質及び/又は結晶質のいずれであってもよい。
 球状シリカ粉末は、例えば、下記方法で測定された非晶質率が95%以上であることが好ましく、97%以上であることがより好ましい。非晶質率は、粉末X線回折装置(例えばRIGAKU社製商品名「モデルMiniFlex」)を用い、CuKα線の2θが26°~27.5°の範囲においてX線回折分析を行い、特定回折ピークの強度比から測定する。シリカ質粉末の場合、結晶質シリカは、26.7°に主ピークが存在するが、非晶質シリカではピークは存在しない。非晶質シリカと結晶質シリカが混在していると、結晶質シリカの割合に応じた26.7°のピーク高さが得られるので、結晶質シリカ標準試料のX線強度に対する試料のX線強度の比から、結晶質シリカ混在比(試料のX線回折強度/結晶質シリカのX線回折強度)を算出し、式、非晶質率(%)=(1-結晶質シリカ混在比)×100から非晶質率を求める。
 球状シリカ粉末は、BET法により測定した比表面積Sと粒度分布により計算した理論比表面積Sとの比(S/S)が、例えば、2.5以下であることが好ましい。この比が大きいということはレーザー回折法などの粒度分布測定機では検出できないような超微粒子を多く含有することを意味する。球状シリカ粒子を樹脂組成物に配合したときの粘度上昇を抑制する観点から、上記のS/Sの値は2.5以下、特に2.0以下であることがより好ましい。
 比表面積Sは、BET法に基づく値であり、比表面積測定機としては、例えば「モデル4-SORBU2」(湯浅アイオニクス社製)を用いて測定することができる。
 理論比表面積Sについても、上記粒度分布測定機によって自動計算が可能である。この測定機の原理は、式、S=6/(ρ・D)、に基づいている。式中、Dは面積平均粒子径(μm)、ρは球状シリカ粉末の密度(g/cm)である。たとえば、粉末が非晶質シリカであれば2.21である。
 なお、Dは、式、D=Σ(ni・ai・di)/Σ(ni・ai)、で求められる。これは、一つの粉末の集団において、粒子径の小さい順からd1、d2、・・・di、・・dkの粒子径を持つ粒子が、それぞれn1、n2、・・・ni、・・nk個あり、また、粒子1個当たりの表面積をそれぞれa1、a2、・・・ai、・・akとした場合、DはD=(n1・a1・d1+n2・a2・d2+・・・+ni・ai・di+・・・+nk・ak・dk)/(n1・a1・+n2・a2+・・・+ni・ai+・・・+nk・ak)で求められることになる。
 球状シリカ粉末においては、50nm未満の粒子を実質的に含有しないことが好ましい。これにより、樹脂組成物に配合したときの粘度上昇を抑制することができる。
 50nm未満の粒子を実質的に含有しないこととは、電子顕微鏡により倍率50,000倍で撮影した任意の写真100枚中の50nm未満の粒子個数を数え、写真1枚あたりの平均値として換算した値が50個未満であることを意味する。50nm未満の粒子はより少ない方が好ましい。
 電子顕微鏡写真の撮影には、電界放射型走査電子顕微鏡(日本電子社製モデル「FE-SEM、JSM-6301F」)を用い、加速電圧15kV、照射電流3×10-11Aの条件で撮影することができる撮影の前処理として真空蒸着装置(日本電子社製モデル「JEE-4X」)で球状シリカ粉末に2秒間炭素を蒸着した後、さらに金-パラジウムを60秒間蒸着する方法がある。
 球状シリカ粉末における「球状」の程度としては、例えば、累積粒度分布75%(d75)未満の粒子径を持つ粒子の平均球形度が0.90以上、d75以上の粒子径を持つ粒子の平均球形度が0.85以上であることが好ましい。一般に球状シリカ粉末の平均球形度を上げれば流動性が向上する傾向にあるが、特にd75以上の粒子径を持つ粗い粒子の平均球形度を0.85以上とすることで、本実施形態の効果をより高めることができるものである。
 平均球形度は、実体顕微鏡(たとえば、ニコン社製モデル「SMZ-10型」)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置(たとえば、日本アビオニクス社製など)に取り込み、次のようにして測定することができる。すなわち、写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができる。このようにして得られた任意の粒子200個の真円度を求めその平均値を平均球形度とできる。
 なお、上記以外の真円度の測定法としては、粒子像分析装置(たとえば、シスメックス社製モデル「FPIA-1000」)にて定量的に自動計測された個々の粒子の円形度から、式、真円度=(円形度)により換算して求めることもできる。
 本発明の球状シリカ粉末を樹脂組成物に配合したものを、樹脂成形材料として好適に使用できる。
 次に、本実施形態の樹脂組成物について説明する。
 樹脂組成物は、本発明の球状シリカ粉末の他に、樹脂や公知の樹脂添加剤などを含む。
 樹脂組成物中に、球状シリカ粉末は、単独で使用してもよいが、その他のフィラーと混合して使用してもよい。樹脂組成物中には、球状シリカ粉末が10~99質量%含まれていてもよく、または球状シリカ粉末およびその他のフィラーを含む混合無機粉末が10~99質量%含まれていてもよい。また、混合無機粉末中、その他のフィラーの含有量は、球状シリカ粉末100質量%に対して、例えば、1~20質量%、3~15質量%であってもよい。
 なお、本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 他のフィラーとして、例えば、アルミナ、チタニア、窒化珪素、窒化アルミニウム、炭化珪素、タルク、炭酸カルシウム等が挙げられる。他のフィラーの平均粒子径は5~100μm程度のものが使用され、その粒度構成及び形状については特に制約はない。
 上記の樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴムースチレン)樹脂等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 樹脂組成物は、例えば、所定量比の原料成分をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、粉砕することによって製造することができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<球状シリカ粉末の製造>
 溶融炉2の上部にバーナー1が設置されており、下部にサイクロン4,6、バグフィルター8からなる捕集系ラインが直結された、図1に示す溶射装置100を用いて、球状シリカ粉末を製造した。
 バーナー1は、内炎と外炎とを形成できる二重管構造を有していて、溶融炉2の頂上部に設置されており、可燃ガス供給管11、助燃ガス供給管12、原料供給管13の各々が接続されている。
 溶融炉2内では、原料供給管13よりシリカ質原料粉末を高温火炎中に供給し、溶融させて、球状化した溶融球状粒子を形成できる。溶融炉2を通過した溶融球状粒子は、燃焼排ガスとともにブロワー9により吸引され、配管3,5,7内を空気により移動し、サイクロン4,6またはバグフィルター8にて分級・捕集される。
(実施例1)
 上記の溶射装置100を用いて、可燃性ガスとしてLPGを可燃ガス供給管11から供給し、助燃ガスとして空気または酸素を助燃ガス供給管12から供給し、バーナー1において、LPGと酸素との燃焼により高温火炎を形成した。
 サイクロン4(第一サイクロン)に対して、配管3に設置された不図示のロータリーバルブにより二次エアーを供給する。二次エアーには、大気中の空気を使用した。また、サイクロン4およびサイクロン6(第二サイクロン)における下部の弁の開閉度合(下部開度)を100%とした。さらに配管7からも同様に二次エアーを供給した。シリカ質原料粉末として、天然珪石を粉砕し、平均粒径(D50)が5~40μmの粉砕物を使用し、サイクロン4およびサイクロン6、バグフィルター8にて捕集された溶融球状粒子を、球状シリカ粉末としてそれぞれ回収した。
 このように火炎形成条件、原料粒度、原料供給量、分級条件、混合条件などを調整して表1に示される13種類の粉体を製造した。中位径の調整は原料粒度の調整と球状化処理後の粉体の多段篩分け操作および前記操作で得られた粗粒子、中粒子、微粒子、超微粒子などの混合量を調整することにより行った。
(実施例2~12)
 実施例1の二次エアー供給量V(kg/h)としたとき、実施例2では1.3倍量の1.3V、実施例3では0.6倍量の0.6V、例4では1.1倍量の1.1V、実施例5では0.9倍量の0.9V、実施例6では0.7倍量の0.7V、実施例7~12では1倍量の1Vとした上で、粒度調整した以外は、上記の実施例1と同様にして、球状シリカ粉末を得た。
(比較例1)
 実施例1の二次エアー供給量V(kg/h)としたと3倍量の1Vとなるように、二次エアーを多量に供給し、粒度調整した以外は、上記の実施例7と同様にして、球状シリカ粉末を得た。
Figure JPOXMLDOC01-appb-T000001
<含有量:NO 、NO 、SO 2-、SO 2-
 得られた球状シリカ粉末10gと蒸留水70gをポリエチレン容器に入れ1分間振とう後、乾燥機に入れ95℃にて20時間静置後冷却する。蒸発した分の水を追加し定量とする。その後遠心分離を行い、上澄み液を抽出液とした。
 その抽出液中のNO 、NO 、SO 2-、およびSO 2-の各濃度を、イオンクロマトグラフィ法により測定した。測定した濃度の値に基づいて、当該球状シリカ粉末に含まれる、NO の含有量、NO の含有量、SO 2-の含有量、およびSO 2-の含有量を算出した。実施例の結果を表1に示す。
<粒度分布>
 得られた球状シリカ粉末をについて、粒度分布測定装置(ベックマンコールター社製、LS-13-230)を用いて、湿式によるレーザー回折散乱法により体積頻度粒度分布を求めた。溶媒には水を用い、前処理として、1分間、ホモジナイザーを用いて200Wの出力をかけて分散処理して測定した。また、PIDS(Polarization Intensity Differential Scattering)濃度を45~55%になるように調製して測定した。
 得られた体積頻度粒度分布に基づいて、累積値がX%となる粒子径Dを算出した。
<樹脂組成物の製造安定性>
 得られた球状シリカ粉末90質量%に、4,4'-ビス(2,3-エポキシプロポキシ)-3,3'、5,5'-テトラメチルビフェニル型エポキシ樹脂4.2質量%、フェノール樹脂4.3質量%、トリフェニルホスフィン0.2質量%、γ-グリシドキシプロピルトリメトキシシラン0.5質量%、カーボンブラック0.3質量%、カルナバワックス0.5質量%を加え、ヘンシェルミキサーにてドライブレンドした後、得られた配合物を二軸押出混練機(ヒーター温度105~110℃)で加熱混練し、出物を冷却プレス機にて冷却した後、粉砕して、樹脂組成物を得た。
 実施例1~12の球状シリカ粉末を用いた樹脂組成物は、硬化不良がなく、実用上問題なく使用できることを確認した(良好)。一方、比較例1の球状シリカ粉末を用いた樹脂組成物は、硬化不良が生じることが確認された(不良)。
 実施例1~12の球状シリカ粉末は、比較例1と比べて、樹脂組成物の製造安定性を向上できる結果を示した。
 この出願は、2022年2月9日に出願された日本出願特願2022-018506号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 バーナー
2 溶融炉
3 配管
4 サイクロン
5 配管
6 サイクロン
7 配管
8 バグフィルター
9 ブロワー
11 可燃ガス供給管
12 助燃ガス供給管
13 原料供給管
100 溶射装置

Claims (6)

  1.  下記のイオンクロマトグラフィ法に基づいて求められる、NO の含有量が、5ppm以下である、球状シリカ粉末。
    (イオンクロマトグラフィ法)
     当該球状シリカ粉末を蒸留水に入れ、それを加熱、冷却した後、遠心分離により得られた上澄み液を、抽出液として取得する。その抽出液中のNO 濃度、およびNO 濃度をイオンクロマトグラフィ法で求める。得られたNO 濃度、NO 濃度に基づいて、当該球状シリカ粉末に含まれるNO の含有量、NO の含有量を算出する。
  2.  請求項1に記載の球状シリカ粉末であって、
     前記イオンクロマトグラフィ法に基づいて求められる、当該球状シリカ粉末に含まれるNO の含有量をN2、NO の含有量をN3としたとき、N2,N3が、0.05≦N3/N2≦30を満たすように構成される、球状シリカ粉末。
  3.  請求項1又は2に記載の球状シリカ粉末であって、
     湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
     (D97-D10)/D50が、1.0以上10.0以下である、球状シリカ粉末。
  4.  請求項1~3のいずれか一項に記載の球状シリカ粉末であって、
     湿式によるレーザー回折散乱法で測定される体積頻度粒度分布において、累積値が50%となる粒子径をD50、累積値が97%となる粒子径をD97としたとき、
     D97/D50が、2.0以上30.0以下である、球状シリカ粉末。
  5.  請求項1~4のいずれか一項に記載の球状シリカ粉末であって、
     非晶質率が95%以上である、球状シリカ粉末。
  6.  請求項1~5のいずれか一項に記載の球状シリカ粉末であって、
     前記イオンクロマトグラフィ法と同様にして求められる、当該球状シリカ粉末に含まれるSO 2-の含有量、およびSO 2-の含有量が、それぞれ10ppm以下である、球状シリカ粉末。
PCT/JP2023/003765 2022-02-09 2023-02-06 球状シリカ粉末 WO2023153355A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018506 2022-02-09
JP2022-018506 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153355A1 true WO2023153355A1 (ja) 2023-08-17

Family

ID=87564420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003765 WO2023153355A1 (ja) 2022-02-09 2023-02-06 球状シリカ粉末

Country Status (1)

Country Link
WO (1) WO2023153355A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086228A (ja) * 1998-09-10 2000-03-28 Denki Kagaku Kogyo Kk 球状シリカ粒子及びその製造方法
JP2002037620A (ja) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd 真球状シリカ粒子集合体、その製造方法およびそれを用いた樹脂組成物
JP2007099548A (ja) * 2005-10-03 2007-04-19 Shikoku Res Inst Inc シリカ粉体の製法およびそれによって得られたシリカ粉体
JP2017178703A (ja) * 2016-03-30 2017-10-05 日揮触媒化成株式会社 シリカ系複合粒子分散液の製造方法
JP2019081672A (ja) * 2017-10-30 2019-05-30 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
WO2019167618A1 (ja) * 2018-03-01 2019-09-06 株式会社トクヤマ 溶融球状シリカ粉末およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086228A (ja) * 1998-09-10 2000-03-28 Denki Kagaku Kogyo Kk 球状シリカ粒子及びその製造方法
JP2002037620A (ja) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd 真球状シリカ粒子集合体、その製造方法およびそれを用いた樹脂組成物
JP2007099548A (ja) * 2005-10-03 2007-04-19 Shikoku Res Inst Inc シリカ粉体の製法およびそれによって得られたシリカ粉体
JP2017178703A (ja) * 2016-03-30 2017-10-05 日揮触媒化成株式会社 シリカ系複合粒子分散液の製造方法
JP2019081672A (ja) * 2017-10-30 2019-05-30 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
WO2019167618A1 (ja) * 2018-03-01 2019-09-06 株式会社トクヤマ 溶融球状シリカ粉末およびその製造方法

Similar Documents

Publication Publication Date Title
TW201202144A (en) Method for producing spherical alumina powder
KR20070122453A (ko) 실리카·티타니아 복합 산화물 입자
WO2019009136A1 (ja) 金属粉末、及びその製造方法
JP6771078B1 (ja) アルミナ粒子材料及びその製造方法
WO2010038538A1 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
WO2023153355A1 (ja) 球状シリカ粉末
JP5504600B2 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
JP6901853B2 (ja) 親水性乾式シリカ粉末
JP6612919B2 (ja) 非晶質シリカ粉末、樹脂組成物、及び半導体封止材
JP2011098841A (ja) 球状アルミナ粉末、その製造方法及び用途
CN112601713B (zh) 分散性优异的二氧化硅粉末及使用其的树脂组合物、以及其制造方法
WO2023153357A1 (ja) 球状シリカ粉末
WO2023153356A1 (ja) 球状シリカ粉末
WO2023153352A1 (ja) 無機質粉末
WO2023153351A1 (ja) 無機質粉末
WO2023153353A1 (ja) 無機質粉末
JP2004203664A (ja) 球状シリカ質粉末及びその製造方法、用途
JP7082257B1 (ja) 半導体実装材料用フィラー及びその製造方法並びに半導体実装材料
WO2023286565A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
WO2022137949A1 (ja) 酸化物複合粒子及びその製造方法、並びに樹脂組成物
EP4299520A1 (en) Silicon dioxide powder
WO2023095868A1 (ja) アルミナ粉末
WO2022124350A1 (ja) 半導体実装材料用フィラー及びその製造方法並びに半導体実装材料
WO2022249941A1 (ja) 無機酸化物粉末及びその製造方法、並びに樹脂組成物
WO2022249940A1 (ja) 無機酸化物粉末及びその製造方法、並びに樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752819

Country of ref document: EP

Kind code of ref document: A1