WO2022230862A1 - 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置 - Google Patents

表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置 Download PDF

Info

Publication number
WO2022230862A1
WO2022230862A1 PCT/JP2022/018850 JP2022018850W WO2022230862A1 WO 2022230862 A1 WO2022230862 A1 WO 2022230862A1 JP 2022018850 W JP2022018850 W JP 2022018850W WO 2022230862 A1 WO2022230862 A1 WO 2022230862A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
film
etched
diketone
gas
Prior art date
Application number
PCT/JP2022/018850
Other languages
English (en)
French (fr)
Inventor
光 北山
邦裕 山内
亜紀応 菊池
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020237034950A priority Critical patent/KR20240000472A/ko
Priority to JP2023517546A priority patent/JPWO2022230862A1/ja
Priority to EP22795775.0A priority patent/EP4307346A4/en
Priority to CN202280028362.4A priority patent/CN117157735A/zh
Priority to US18/286,306 priority patent/US20240186147A1/en
Publication of WO2022230862A1 publication Critical patent/WO2022230862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present disclosure relates to a surface treatment method, a dry etching method, a cleaning method, a semiconductor device manufacturing method, and an etching apparatus.
  • GaN and AlGaN which are group III-V compound semiconductors, have high electron mobility and high dielectric breakdown electric field strength, and thus are expected to be applied to high electron mobility transistors (HEMTs).
  • HEMTs high electron mobility transistors
  • Patent Document 1 when a nitride semiconductor such as AlGaN is subjected to plasma etching using HCl or Cl2 , an altered layer (composition-changed layer) is formed. A method of removal with an aqueous solution is disclosed.
  • Patent Document 2 discloses a method of etching a nitride-based compound semiconductor such as GaN with HCl or Cl 2 at a high temperature of 400° C. or higher, thereby etching the semiconductor with good controllability without causing a change in composition.
  • Patent Document 1 it is necessary to remove the altered layer caused by the plasma etching by wet etching, which requires many steps and leaves room for consideration in terms of time and cost. Also, when a plasma gas is brought into contact with a semiconductor device substrate, the substrate may be electrically damaged due to the plasma gas. Therefore, a plasmaless etching method is desired.
  • the etching temperature is as high as 400° C. or higher, and the damage to the semiconductor is large. It is rare.
  • the present disclosure aims to provide a surface treatment method using a gas composition capable of removing metal nitrides at a low temperature without plasma.
  • a further object of the present disclosure is to provide a dry etching method, a cleaning method, and the like using the surface treatment method.
  • nitrides such as GaN and AlGaN can be removed at a low temperature and at a high rate by using ⁇ -diketone and NO 2 , and have completed the present disclosure. .
  • the surface treatment method of the present disclosure is characterized by bringing ⁇ -diketone and NO 2 into contact with the surface of the object to be treated.
  • the dry etching method of the present disclosure is characterized by bringing a film to be etched containing a metal nitride formed on the surface of an object to be processed into contact with ⁇ -diketone and NO 2 to etch without a plasma state.
  • the cleaning method of the present disclosure is characterized by removing the deposits deposited on the surface of the processing chamber of the substrate processing apparatus by bringing ⁇ -diketone and NO 2 into contact with the deposits. do.
  • the method of manufacturing a semiconductor device according to the present disclosure is characterized by comprising the step of reacting a film to be etched containing a metal nitride on a substrate with ⁇ -diketone and NO 2 to etch without a plasma state. .
  • the etching apparatus of the present disclosure is provided in a heatable processing container, and includes a mounting section for mounting an object to be processed having a film to be etched containing a metal nitride formed thereon; a ⁇ -diketone supply unit for supplying ⁇ -diketone into the processing vessel; and a NO 2 supply unit for supplying NO 2 into the processing container.
  • FIG. 1 is a schematic diagram schematically showing an etching apparatus according to an embodiment of the present disclosure.
  • the surface treatment method of the present disclosure is characterized by bringing the surface of an object to be treated into contact with ⁇ -diketone and NO 2 .
  • ⁇ -diketones such as HFAc
  • the mechanism of the etching technology for group 13 metal nitrides using ⁇ -diketones such as HFAc is not clear, after forming an oxide layer on the surface of the nitride with an additive gas, the oxide layer is formed by ⁇ -diketones. It is presumed that etching is performed by reacting with Therefore, if the nitride can be oxidized , it is thought that the etching will proceed. There is a problem that the nitrogen content of the film to be etched is lowered.
  • the inventors of the present invention discovered a technique of etching using .beta. - diketone and NO.sub.2 as a result of further intensive investigation into an etching method in which the composition does not change before and after etching.
  • the surface treatment method of the present disclosure is suitable as a method for removing material existing on the surface of an object to be treated from the surface of the object to be treated.
  • a metal nitride is preferable as the material.
  • the metal nitride is preferably a Group 13 metal nitride.
  • Nitrides of the above metals are selected from the group consisting of nitrides of Al (aluminum), Ga (gallium), In (indium) and Tl (thallium) (aluminum nitride, gallium nitride, indium nitride, thallium nitride). At least one selected is more desirable.
  • the material may be a nitride of the metal described above, an alloy containing two or more kinds of nitrides of the metal described above, or a nitride of an alloy. More preferably, the Group 13 metal is at least one selected from the group consisting of Al, Ga, and In. Specific examples of the material include GaN, AlGaN, InN, InGaN, AlN, InAlN, and the like.
  • ⁇ -diketone is not particularly limited, but examples include hexafluoroacetylacetone (HFAc, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), trifluoroacetylacetone (1,1 ,1-trifluoro-2,4-pentanedione), acetylacetone (2,4-pentanedione) and the like.
  • HFAc hexafluoroacetylacetone
  • TFAc 1,1,1,5,5,5-hexafluoro-2,4-pentanedione
  • trifluoroacetylacetone 1,1 ,1-trifluoro-2,4-pentanedione
  • acetylacetone 2,4-pentanedione
  • ⁇ -diketone and NO 2 may be brought into contact with the surface of the object to be treated at the same time, or ⁇ -diketone and NO 2 may be brought into contact with the surface of the object to be treated separately.
  • the surface treatment method of the present disclosure uses ⁇ -diketone and NO 2
  • at least one addition selected from the group consisting of O 2 , NO, CO, CO 2 , H 2 O, H 2 O 2 and alcohol Gases may also be used.
  • Examples of combinations of ⁇ -diketones and NO 2 with additive gases used in the surface treatment method of the present disclosure include combinations of ⁇ -diketones and NO 2 with NO, and combinations of ⁇ -diketones and NO 2 with NO and O 2 . be done.
  • at least one inert gas selected from the group consisting of N 2 , Ar, He, Ne and Kr may be used.
  • as alcohol methanol, ethanol, propanol, isopropyl alcohol, etc. can be used.
  • Objects to be processed include semiconductor device substrates, processing containers of substrate processing apparatuses, and the like.
  • the material present on the surface of the object to be processed is a film to be etched or the like.
  • the material present on the surface of the object to be processed is deposits deposited on the inner surface of the processing container due to etching of the film to be etched.
  • the ⁇ -diketone and NO 2 in a plasma state may be brought into contact with the surface of the object to be treated, or the ⁇ -diketone and NO 2 may be brought into contact with the surface of the object to be treated without being in a plasma state.
  • the surface temperature of the object to be treated when the ⁇ -diketone and NO 2 are brought into contact with the surface of the object to be treated is not particularly limited, and is, for example, 250° C. or higher and 400° C. or lower.
  • the temperature of the object to be processed is substantially equal to the temperature of the material present on the surface of the object to be processed.
  • the surface treatment method of the present disclosure described above can be used as a dry etching method for forming a predetermined pattern on a GaN film or the like formed on the surface of an object to be processed.
  • the dry etching method of the present disclosure is characterized by bringing a film to be etched containing a metal nitride formed on the surface of an object to be processed into contact with ⁇ -diketone and NO 2 to etch without a plasma state.
  • the metal nitride contained in the film to be etched include those described above for the surface treatment method.
  • the film to be etched may be a nitride film containing one kind of the Group 13 metal, or may be an alloy nitride film containing two or more kinds of the Group 13 metal.
  • the film to be etched is preferably a nitride of at least one group 13 metal selected from the group consisting of Ga, Al and In.
  • the film to be etched is preferably at least one film selected from the group consisting of a gallium nitride film, an aluminum nitride film, an indium nitride film, an aluminum gallium nitride film and an indium gallium nitride film.
  • a difficult-to-etch film to be etched containing a metal nitride can be etched without a plasma state. It is possible to provide a dry etching method capable of
  • the decomposition temperature of hexafluoroacetylacetone which is a kind of ⁇ -diketone
  • HFAc hexafluoroacetylacetone
  • the etching temperature can be lowered to 350° C. or lower by using ⁇ -diketone and NO 2 , so that formation of carbon film due to decomposition of ⁇ -diketone can be suppressed. can.
  • examples of the object to be processed include silicon substrates, compound semiconductor substrates, quartz substrates, and glass substrates.
  • a silicon film, a silicon oxide film, a silicon nitride film, a metal wiring film other than the above metals, or the like may be formed on the surface of the object to be processed, in addition to the film to be etched containing a metal nitride.
  • the object to be processed is placed, for example, on a mounting portion of an etching apparatus to be described later. The etching film is heated.
  • the method of forming the film to be etched on the surface of the object to be processed is not particularly limited, but examples thereof include a chemical vapor deposition (CVD) method and a sputtering method.
  • the thickness of the film to be etched containing the nitride of the metal is not particularly limited, but can be, for example, 0.1 nm or more and 1 ⁇ m or less.
  • the temperature of the object to be processed is substantially equal to the temperature of the film to be etched.
  • the etching gas A containing ⁇ -diketone and NO 2 is brought into contact with the film to be etched in a heated state, the ⁇ -diketone, NO 2 and the metal nitride react to form a complex on the film to be etched. Generate. Since this complex has a high vapor pressure, the film to be etched can be etched by vaporizing the complex.
  • the ⁇ -diketone contained in the etching gas A includes the same ⁇ -diketone used in the surface treatment method described above.
  • the etching gas A may consist only of ⁇ -diketone and NO 2 , but may be selected from the group consisting of O 2 , NO, N 2 O, CO, CO 2 , H 2 O, H 2 O 2 and alcohol. may further contain at least one additive gas, and may further contain at least one inert gas selected from the group consisting of N 2 , Ar, He, Ne and Kr. Moreover, as alcohol, methanol, ethanol, propanol, isopropyl alcohol, etc. can be used.
  • the total content of the additive gas is 10% by volume or more and 90% by volume or less, with the total of ⁇ -diketone, NO 2 , the additive gas, and the inert gas being 100% by volume. can.
  • the content of the inert gas contained in the etching gas A is preferably 1% by volume or more and 90% by volume or less, and is 10% by volume or more and 80% by volume or less. more preferably 30% by volume or more and 50% by volume or less.
  • examples of the object to be processed include silicon substrates, compound semiconductor substrates, quartz substrates, and glass substrates.
  • a silicon film, a silicon oxide film, a silicon nitride film, a metal wiring film other than the above metals, or the like may be formed on the surface of the object to be processed, in addition to the metal nitride film described above.
  • An object to be processed is placed on a mounting portion, and the object to be processed and a film to be etched containing a metal nitride formed on the surface of the object to be processed are heated by heating the mounting portion.
  • the temperature of the object to be processed is substantially equal to the temperature of the film to be etched.
  • NO 2 is adsorbed on the surface of the film to be etched.
  • the second etching step when the film to be etched is brought into contact with an etching gas C containing ⁇ -diketone, the metal nitride having NO 2 adsorbed on the surface reacts with the ⁇ -diketone, resulting in a second etching process.
  • dry etching method 1 a complex is formed on the film to be etched.
  • the film to be etched containing the nitride of the metal can be etched by evaporating the complex.
  • the above steps may be repeated multiple times in order to repeatedly etch the film to be etched. Since it is possible to etch a constant thickness in one cycle of the etching process, it is possible to precisely etch a layer of a desired thickness by specifying the number of cycles.
  • the same ⁇ -diketone as in the above surface treatment method can be used.
  • the etching gas C may consist of ⁇ - diketone only, and the etching gas B may consist of NO 2 only. At least one additive gas selected from the group consisting of CO, CO 2 , H 2 O, H 2 O 2 and alcohol may be further included. Etching gas B and etching gas C may further contain at least one inert gas selected from the group consisting of N 2 , Ar, He, Ne and Kr. Moreover, as alcohol, methanol, ethanol, propanol, isopropyl alcohol, etc. can be used.
  • the total content of the additive gas contained in the etching gas B is 10% by volume or more and 90% by volume, where the total of NO 2 , the additive gas, and the inert gas is 100% by volume. It can be vol% or less.
  • the etching gas C contains an additive gas, the total content of the additive gas contained in the etching gas C is 10% by volume, where the total of NO 2 , the additive gas, and the inert gas is 100% by volume. It can be made more than 90 volume % or less.
  • the content of the inert gas contained in the etching gas B and the etching gas C is preferably 1% by volume or more and 90% by volume or less, and 10% by volume. It is more preferably at least 80% by volume, and even more preferably at least 30% by volume and not more than 50% by volume.
  • the dry etching method of the present disclosure can be realized, for example, by using the following etching apparatus.
  • Such an etching apparatus is also one of the present disclosure.
  • the etching apparatus of the present disclosure is provided in a heatable processing container, and includes a mounting unit for mounting an object to be processed having a film to be etched containing a metal nitride formed thereon, and a ⁇ -diketone for the above-described processing. It is characterized by comprising a ⁇ -diketone supply unit for supplying into the container, and a NO 2 gas supply unit for supplying NO 2 gas into the processing container.
  • the etching apparatus of the present disclosure may further include an inert gas supply unit that supplies inert gas into the processing container.
  • FIG. 1 is a schematic diagram schematically showing an etching apparatus according to an embodiment of the present disclosure.
  • the etching apparatus 100 shown in FIG. 1 includes a processing container 110 in which an object to be processed 10 having a metal nitride formed on its surface is placed, and a ⁇ -diketone supply unit connected to the processing container 110 to supply gaseous ⁇ -diketone.
  • a NO 2 gas supply unit 150 that supplies gaseous NO 2
  • an inert gas supply unit 160 that supplies inert gas
  • the etching apparatus 100 may not include the inert gas supply section 160 .
  • the etching apparatus 100 has a controller (not shown).
  • This control unit is composed of, for example, a computer, and includes a program, a memory, and a CPU.
  • the program incorporates a group of steps to perform a series of operations in the first etching method or the second etching method. , the flow rate of each gas, and the pressure inside the processing container 110 are adjusted.
  • This program is stored in a computer storage medium such as a compact disk, hard disk, magneto-optical disk, memory card, etc. and installed in the controller.
  • the processing vessel 110 includes a mounting portion 111 for mounting the object 10 to be processed.
  • the processing container 110 is not particularly limited as long as it is resistant to the ⁇ -diketone to be used and can be decompressed to a predetermined pressure. applies.
  • the supply pipe for supplying the etching gas and other pipes are not particularly limited as long as they are resistant to ⁇ -diketone, and common pipes can be used.
  • the ⁇ -diketone supply unit 140 adjusts the amount of supply with the valves V1 and V2 and the flow control means MFC1, and supplies ⁇ -diketone from the pipes 141 and 142 to the pipe 121.
  • the NO 2 gas supply unit 150 adjusts the supply amount with the valves V3 and V4 and the flow rate adjusting means MFC2 and supplies NO 2 from the pipes 151 and 152 to the pipe 121 .
  • the inert gas supply unit 160 adjusts the supply amount with the valves V5 and V6 and the flow rate adjusting means MFC3, and supplies the inert gas from the pipes 161 and 162 to the pipe 121.
  • a heating unit 170 for heating the processing container 110 is provided outside the processing container 110 .
  • a heater (not shown) may be provided inside the mounting section 111 as a second heating means.
  • the temperature of the object to be processed on each mounting section can be individually set to a predetermined temperature by providing a heater for each mounting section. can be done.
  • One side of the processing container 110 is provided with gas discharge means for discharging the gas after the reaction.
  • the gas after the reaction is discharged from the processing vessel 110 through the pipe 171 by a vacuum pump 173 as gas discharge means.
  • the gas after the reaction is recovered by a liquid nitrogen trap 174 arranged between the pipes 171 and 172 .
  • the pipes 171 and 172 are provided with valves V7 and V8 to adjust the pressure.
  • PI1 and PI2 are pressure gauges, and the controller can control each flow rate adjusting means and each valve based on the indicated values.
  • etching gas A containing ⁇ -diketone and NO 2 is brought into contact with the film to be etched.
  • the object to be processed 10 on which an etching target film containing a metal nitride is formed is placed in the processing container 110 .
  • the inside of the processing container 110, the pipe 121, the pipes 141 and 142, the pipes 151 and 152, the pipes 161 and 162, the liquid nitrogen trap 174, and the pipes 171 and 172 are evacuated to a predetermined pressure by the vacuum pump 173,
  • the object to be processed 10 is heated by the heating means 170 .
  • ⁇ -diketone and NO 2 gas are supplied to the pipe 121 at predetermined flow rates from the ⁇ -diketone supply unit 140 and the NO 2 gas supply unit 150 .
  • the inert gas may be supplied to the pipe 121 at a predetermined flow rate from the inert gas supply unit 160 .
  • ⁇ -diketone and NO 2 are mixed with a predetermined composition and supplied to the processing vessel 110 .
  • the pressure inside the processing chamber 110 is controlled to a predetermined pressure.
  • Etching is performed by reacting the etching gas with the film to be etched containing the metal nitride for a predetermined time to form a complex.
  • etching can be performed in a plasmaless state without plasma, and excitation of the etching gas by plasma or the like is unnecessary during etching.
  • the flow rate of the etching gas can be appropriately set based on the volume and pressure of the processing container.
  • Etching accompanied by a plasma state means that, for example, a gas or the like of about 0.01 to 1.33 kPa is introduced into the interior of the reactor, high-frequency power is applied to the outer coil or the counter electrode, and low-temperature etching is performed in the reactor. Etching is performed by generating gas plasma and using active chemical species such as ions and radicals generated in the plasma. In the dry etching method of the present disclosure, the gas is brought into contact without a plasma state, and dry etching is performed without generating the gas plasma described above.
  • a film to be etched containing a metal nitride can be etched by the first dry etching method using the etching apparatus.
  • the temperature of the film to be etched when the etching gas A is brought into contact with the film to be etched may be any temperature at which the complex can be vaporized. is preferably 250° C. or higher and 400° C. or lower, more preferably 275° C. or higher and 375° C. or lower, more preferably 275° C. or higher and 350° C. or lower, and 300° C. or higher and 350° C. or lower. is more preferable.
  • the pressure in the processing container in which the object to be processed on which the film to be etched is formed is placed is not particularly limited, but is usually 0.1 kPa or more.
  • the pressure range is 3 kPa or less.
  • the pressure in the processing container in the etching process is preferably 20 Torr or more and 300 Torr or less (2.67 kPa or more and 39.9 kPa or less), and more preferably 20 Torr or more and 200 Torr or less (2.67 kPa or more and 26.9 kPa or less). 7 kPa or less), more preferably 20 Torr or more and 100 Torr or less (2.67 kPa or more and 13.3 kPa or less).
  • the processing time of the etching step is not particularly limited, but considering the efficiency of the semiconductor device manufacturing process, it is preferably within 60 minutes.
  • the processing time of the etching step means that the etching gas is introduced into the processing chamber in which the object to be processed is installed, and then the etching gas in the processing chamber is exhausted by a vacuum pump or the like to finish the etching processing. indicates the time to
  • the object to be processed 10 on which the film to be etched containing a metal nitride is formed is placed in the processing container 110 .
  • the inside of the processing container 110, the pipe 121, the pipes 141 and 142, the pipes 151 and 152, the pipes 161 and 162, the liquid nitrogen trap 174, and the pipes 171 and 172 are evacuated to a predetermined pressure by the vacuum pump 173,
  • the object to be processed 10 is heated by the heating means 170 .
  • NO 2 gas is supplied from the NO 2 gas supply unit 150 to the pipe 121 at a predetermined flow rate.
  • the inert gas may be supplied to the pipe 121 at a predetermined flow rate from the inert gas supply unit 160 .
  • the inside of the processing container 110 is controlled to a predetermined pressure. By introducing NO 2 gas into the processing container 110 for a predetermined time, NO 2 is adsorbed on the film to be etched.
  • the ⁇ -diketone gas is supplied from the ⁇ -diketone supply unit 140 to the pipe 121 at a predetermined flow rate.
  • the inert gas may be supplied to the pipe 121 at a predetermined flow rate from the inert gas supply unit 160 . While introducing the ⁇ -diketone gas or the ⁇ -diketone gas and the inert gas into the processing container 110, the inside of the processing container 110 is controlled at a predetermined pressure.
  • NO 2 previously adsorbed on the film to be etched reacts with the ⁇ -diketone to form a complex, and the complex is further converted into the etching target. It can react with the film and etch the film to be etched.
  • the first etching step of introducing NO 2 gas into the processing container 110 and the second etching step of introducing ⁇ -diketone into the processing container 110 are set as one cycle. can be repeated for multiple cycles.
  • the second dry etching method of the present disclosure by setting the etching conditions for one cycle to predetermined conditions, the thickness of the film to be etched that can be etched in one cycle can be controlled, so etching can be performed in one cycle. By setting the thickness of the film to be etched thin, the thickness to be etched can be precisely controlled.
  • etching can be performed without plasma, and the etching gas does not need to be excited by plasma or the like during etching.
  • the flow rates of NO 2 and ⁇ -diketone can be appropriately set based on the volume and pressure of the processing container.
  • the gas can be brought into contact without a plasma state, and dry etching is performed without generating the gas plasma described above. be able to.
  • the heating by the heating means 170 is stopped to lower the temperature, the vacuum pump 173 is stopped, and the atmosphere is replaced with an inert gas to release the vacuum.
  • etching of a film to be etched containing a metal nitride can be performed.
  • the temperature of the film to be etched when performing the first etching step and the second etching step may be any temperature at which the complex can be vaporized.
  • the temperature of the etching film is preferably 250° C. or higher and 400° C. or lower, more preferably 275° C. or higher and 375° C. or lower, more preferably 275° C. or higher and 350° C. or lower, and 300° C. or higher and 350° C. or lower. The following are more preferable. It is desirable that the temperature of the film to be etched be the same in the first etching process and the second etching process.
  • the pressure in the processing container in the first etching step and the second etching step is not particularly limited, but is usually in the range of 0.1 kPa or more and 101.3 kPa or less.
  • the pressure in the processing chamber in the first etching step and the second etching step is preferably 20 Torr or more and 300 Torr or less (2.67 kPa or more and 39.9 kPa or less), and is preferably 20 Torr or more. It is more preferably 200 Torr or less (2.67 kPa or more and 26.7 kPa or less), and further preferably 20 Torr or more and 100 Torr or less (2.67 kPa or more and 13.3 kPa or less).
  • the pressure inside the processing container in the second etching step is preferably higher than the pressure inside the processing container in the first etching step.
  • the processing time in the first etching step and the second etching step is not particularly limited, but the processing time in one cycle of the first etching step is preferably within 60 minutes.
  • the treatment time in the cycle is preferably within 60 minutes.
  • the processing time of the etching step means that the etching gas is introduced into the processing chamber in which the object to be processed is installed, and then the etching gas in the processing chamber is exhausted by a vacuum pump or the like to finish the etching processing. indicates the time to
  • the dry etching method of the present disclosure described above can be used as an etching method for forming a predetermined pattern on a gallium nitride film or an aluminum gallium nitride film of a semiconductor device.
  • a semiconductor device can be manufactured at low cost by etching a gallium nitride film, an aluminum gallium nitride film, or the like on a substrate using the dry etching method of the present disclosure.
  • the method of manufacturing a semiconductor device according to the present disclosure is characterized by comprising the step of reacting a film to be etched containing a metal nitride on a substrate with ⁇ -diketone and NO 2 to etch without a plasma state. .
  • the step of reacting the film to be etched with ⁇ -diketone and NO 2 to etch without plasma can be performed by the above-described dry etching method of the present disclosure.
  • the above-described surface treatment method of the present disclosure can be used as a cleaning method for removing deposits deposited on the surface of the processing container in the processing container of the substrate processing apparatus.
  • materials with excellent chemical stability such as gallium nitride and aluminum gallium nitride can also be removed.
  • the cleaning method of the present disclosure is characterized by removing the deposits deposited on the surface of the processing chamber of the substrate processing apparatus by bringing ⁇ -diketone and NO 2 into contact with the deposits. do.
  • the conditions and procedures for bringing ⁇ -diketone and NO 2 into contact with deposits deposited on the surface of the processing container in the processing container of the substrate processing apparatus, and the deposits are the object to be processed in the surface treatment method described above.
  • the conditions and procedures for contacting the surface of ⁇ -diketone and NO 2 are the same as the materials formed on the surface of the object to be treated.
  • the ⁇ -diketone and NO 2 in a plasma state may be brought into contact with the deposit, or the ⁇ -diketone and NO 2 may be brought into contact with the deposit without a plasma state. good.
  • the temperature of the deposit when the ⁇ -diketone and NO 2 are brought into contact is not particularly limited, and is, for example, 250° C. or higher and 400° C. or lower.
  • a surface treatment method comprising contacting the surface of an object to be treated with ⁇ -diketone and NO 2 .
  • the metal nitride is a Group 13 metal nitride.
  • the dry etching method according to any one of [9] to [12] above.
  • [14] The dry etching gas according to any one of [9] to [13] above, wherein the etching gas A further contains at least one inert gas selected from the group consisting of N 2 , Ar, He, Ne and Kr. etching method.
  • the dry etching method according to any one of the above [6] to [8].
  • a cleaning method characterized by removing deposits deposited on the surface of a processing chamber of a substrate processing apparatus by bringing ⁇ -diketone and NO 2 into contact with the deposits.
  • the cleaning method according to [20] above, wherein the deposit is a metal nitride.
  • the cleaning method according to [20] or [21] above, wherein the metal nitride is a Group 13 metal nitride.
  • the Group 13 metal is at least one selected from the group consisting of Al, Ga and In.
  • a method of manufacturing a semiconductor device comprising the step of reacting a film to be etched containing a metal nitride on a substrate with ⁇ -diketone and NO 2 to etch without plasma.
  • a mounting unit provided in a heatable processing container for mounting an object to be processed on which a film to be etched containing a metal nitride is formed, and supplying ⁇ -diketone into the processing container. and a NO 2 supply unit for supplying NO 2 into the processing container.
  • Example 1 Using the etching apparatus 100 shown in FIG. 1, a gallium nitride (GaN) film (shape 1 cm ⁇ 1 cm, thickness 3.4 ⁇ m) formed on the surface of a sapphire wafer (shape 1 cm ⁇ 1 cm, thickness 650 ⁇ m). Etching was performed on the object to be processed 10 having an etching film.
  • GaN gallium nitride
  • Example 1 As the operation of Example 1, a first dry etching method in which the etching gas containing the ⁇ -diketone and NO 2 is brought into contact with the film to be etched will be described.
  • the insides of the processing container 110, the pipes 121 and 171, the pipe 142, the pipe 152, the pipe 162, and the liquid nitrogen trap 174 were evacuated to less than 10 Pa. Thereafter, the object to be processed 10 mounted on the mounting section 111 was heated by the heating means 170 and the heater provided inside the mounting section 111 .
  • gaseous hexafluoroacetylacetone (HFAc) is supplied from the ⁇ -diketone supply unit 140 and NO 2 gas is supplied from the NO 2 gas supply unit 150 at a predetermined flow rate.
  • HFAc gaseous hexafluoroacetylacetone
  • NO 2 gas is supplied from the NO 2 gas supply unit 150 at a predetermined flow rate.
  • the introduction of the etching gas was stopped. After that, the inside of the processing container 110 was evacuated to less than 10 Pa and replaced with N 2 gas supplied from the inert gas supply unit 160, and then the object to be processed 10 was taken out, and the etching amount and composition ratio were measured.
  • the composition ratio was measured by X-ray Photoelectron Spectroscopy (XPS). Table 1 shows the results.
  • Example 1 the first dry etching method in which the etching gas A containing ⁇ -diketone and NO 2 is brought into contact with the film to be etched is adopted, and a comparative example described later is used.
  • a comparative example described later an etching gas containing ⁇ -diketone and nitrogen monoxide (NO) was brought into contact with the film to be etched, and in Comparative Examples 2 and 4 described later, an etching gas containing ⁇ -diketone and oxygen (O 2 ) was brought into contact with the film to be etched.
  • NO nitrogen monoxide
  • Example 1 Comparative Examples 1 and 2
  • Table 1 shows the type of gas, the flow rate of HFAc, the flow rate of gas, and the etching rate in the etching described above. Differences between Example 1 and Comparative Examples 1 and 2 will be described.
  • HFAc and NO2 are supplied.
  • Comparative Example 1 uses HFAc and NO
  • Comparative Example 2 uses HFAc and O 2 . Otherwise, the same operations as in Example 1 were performed, and the etching amount and composition ratio of the gallium nitride (GaN) film were measured. Table 1 shows the results.
  • Example 2 Comparative Examples 3 and 4
  • An object to be processed having a film to be etched made of an aluminum gallium nitride (AlGaN) film having a shape of 1 cm ⁇ 1 cm and a film thickness of 1.2 ⁇ m formed on the surface of a sapphire wafer using the etching apparatus 100 shown in FIG. etching was performed.
  • AlGaN aluminum gallium nitride
  • the etching rate and composition ratio of the film to be etched were measured in the same manner as in Example 1 except that the material of the film to be etched and the type and flow rate of the etching gas were changed as shown in Table 1. Table 1 shows the results.
  • Example 1 Comparing Example 1 and Comparative Example 1, the mixed gas of HFAc and NO (Comparative Example 1) cannot etch the GaN film, whereas the etching gas of HFAc and NO 2 (Example 1) can etch the GaN film. It turns out you can. Further, when comparing Example 1 and Comparative Example 2, the mixed gas of HFAc and NO 2 (Example 1) had an etching rate of 0.41 nm/min, and the composition ratio (N/Ga) of the GaN film after etching was 0. 91, the mixed gas of HFAc and O 2 (Comparative Example 2) had an etching rate of 0.26 nm/min and a composition ratio (N/Ga) of the GaN film of 0.76.
  • the etching rate is increased compared to the case of using a mixed gas of HFAc and O 2 , and it is possible to suppress the decrease in the N content of the film to be etched.
  • the mixed gas of HFAc and NO (Comparative Example 3) cannot etch the AlGaN film, whereas the etching gas of HFAc and NO 2 (Example 2) does not etch the AlGaN film. It turns out you can.
  • the mixed gas of HFAc and NO 2 had an etching rate of 0.48 nm/min, and the composition ratio (N/Ga) of the AlGaN film after etching was 1.
  • the mixed gas of HFAc and O 2 (Comparative Example 4) has an etching rate of 0.13 nm/min and a composition ratio (N/Ga) of 0.86, and NO 2 is added to HFAc.
  • the etching rate is increased as compared with the case of using a mixed gas of HFAc and O 2 , and it is possible to suppress the decrease in the N content of the film to be etched.
  • Example 3 the operation of Example 3 will be described.
  • the first etching step of bringing the etching gas B containing NO 2 into contact with the film to be etched and the second etching step of bringing the etching gas C containing ⁇ -diketone into contact with the film to be etched are repeated. Etching was performed using the second dry etching method.
  • the insides of the processing container 110, the pipes 121 and 171, the pipe 142, the pipe 152, the pipe 162, and the liquid nitrogen trap 174 were evacuated to less than 10 Pa. Thereafter, the object to be processed 10 mounted on the mounting section 111 was heated by the heating means 170 and the heater provided inside the mounting section 111 . After confirming that the temperature of the object 10 to be processed has reached 350° C., the NO 2 gas is supplied from the NO 2 gas supply unit 150 to the pipe 152, and the pressure inside the processing vessel 110 is controlled to 4.0 kPa while the process is performed. NO 2 gas was introduced into the interior of container 110 .
  • gaseous HFAc was supplied from the ⁇ -diketone supply unit 140 to the pipe 142, and the HFAc gas was allowed to flow inside the processing container 110 while controlling the pressure inside the processing container 110 at 8.0 kPa.
  • the temperature of the object to be processed was 350° C.
  • the operation of introducing the NO 2 gas into the processing container 110 and the step of introducing the HFAc gas into the processing container 110 as one cycle was repeated 25 times (number of cycles: 25). After the inside of the processing chamber 110 was evacuated to less than 10 Pa and the interior of the processing chamber 110 was replaced with N 2 gas supplied from the inert gas supply unit 160, the object to be processed 10 was taken out, and the etching amount and composition ratio were evaluated.
  • Example 3 Table 2 below shows the flow rate of NO 2 and HFAc per cycle in the above etching, the pressure in the processing chamber, the temperature during etching, the flow time, the number of cycles, the etching thickness, and the composition ratio before and after etching. ing.
  • the same film as in Example 1 was used as the film to be etched.
  • Example 4 An object to be processed having a film to be etched made of an aluminum gallium nitride (AlGaN) film having a shape of 1 cm ⁇ 1 cm and a film thickness of 1.2 ⁇ m formed on the surface of a sapphire wafer using the etching apparatus 100 shown in FIG. etching was performed. Except that the film to be etched was changed to the same one as in Example 2, the same operation as in Example 3 was performed, and the etching thickness and composition ratio of the film to be etched were measured. Table 2 shows the results.
  • AlGaN aluminum gallium nitride
  • Example 3 in which etching was performed by the second dry etching method can etch the GaN film in the same manner as Example 1 in which etching is performed by the first dry etching method. I found out.
  • the composition ratio (N/Ga) of the GaN film after etching was 0.94, and it was found that the decrease in the N content can be suppressed even in the second etching method.
  • Example 4 in which etching is performed by the second dry etching method can etch the AlGaN film in the same manner as Example 2 in which etching is performed by the first dry etching method. I found out.
  • Example 4 the composition ratio (N/Ga) of the GaN film after etching was 1.05, and it was found that the decrease in the N content can be suppressed even in the second etching method. From the above results, it was found that when HFAc and NO 2 were used as the etching gas, the GaN film and the AlGaN film could be etched at a temperature of the object to be processed of 350° C. or less without lowering the N content.
  • Etching device 110 Processing vessel 111 Mounting unit 121 Pipe 140 ⁇ -diketone supply units 141 and 142 Pipe 150 NO 2 gas supply units 151 and 152 Pipe 160 Inert gas supply units 161 and 162 Pipe 170 Heating means 171 , 172 piping 173 vacuum pump 174 liquid nitrogen trap MFC1, MFC2, MFC3 flow control means PI1, PI2 pressure gauges V1, V2, V3, V4, V5, V6, V7, V8 valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本開示の目的は、金属窒化物をプラズマレスで、かつ低温で除去することが可能なガス組成物による表面処理方法を提供することである。 本開示は、被処理体の表面にβ-ジケトン及びNO2を接触させることを特徴とする表面処理方法である。

Description

表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
本開示は、表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置に関する。
III-V族化合物半導体であるGaNやAlGaNは電子移動度が高く、絶縁破壊電界強度も高いため、高電子移動度トランジスタ(HEMT)への適用が期待されている。GaNなどを用いてHEMTを製造する際には、GaNを一部残してエッチング(リセスエッチング)する必要があるが、GaNは化学的に非常に安定であり、室温での薬液によるエッチングが困難である。
特許文献1では、AlGaN等の窒化物半導体に対してHCl又はClを用いたプラズマエッチングを行うと変質層(組成変化層)が形成され、この変質層を、硫酸、弗酸、アンモニアを含む水溶液で除去する方法が開示されている。
特許文献2では、GaN等の窒化物系化合物半導体をHCl又はClを用いて400℃以上の高温で処理することで、組成変化を伴うことなく良好な制御性でエッチングする方法が開示されている。
特開2018-60854号公報 特開平9-33916号公報
このように窒化物半導体をエッチングする技術が開発されているが、工程が複雑である点、エッチング温度が高い点に関して改良が望まれている。
特許文献1に記載の発明では、プラズマエッチングにより生じる変質層の除去をウエットエッチングで行う必要があり、工程が多く、時間やコストの面でも検討の余地がある。また半導体デバイス基板にプラズマガスを接触させると、プラズマガスに起因する電気的ダメージを基板に与えてしまうおそれがあるため、プラズマレスでエッチングできる方法が望まれている。
特許文献2に記載の発明では、エッチング温度が400℃以上の高温であり、半導体へのダメージが大きいため、400℃未満、より好ましくは350℃以下の低温で窒化物半導体をエッチングできる方法が望まれている。
本開示は、上記した課題に鑑み、金属窒化物をプラズマレスで、かつ低温で除去することが可能なガス組成物による表面処理方法を提供することを目的とする。さらに、本開示は、上記表面処理方法を用いたドライエッチング方法、クリーニング方法などを提供することを目的とする。
本発明者らは、鋭意検討の結果、β-ジケトン及びNOを用いることにより、GaN、AlGaN等の窒化物を低温でかつ、高い速度で除去できることを見出し、本開示を完成させるに至った。
具体的には、本開示の表面処理方法は、被処理体の表面にβ-ジケトン及びNOを接触させることを特徴とする。
本開示のドライエッチング方法は、被処理体の表面に形成された金属の窒化物を含む被エッチング膜に、β-ジケトン及びNOを接触させて、プラズマ状態を伴わずにエッチングすることを特徴とする。
本開示のクリーニング方法は、基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してβ-ジケトン及びNOを接触させることにより、該付着物を取り除くことを特徴とする。
本開示の半導体デバイスの製造方法は、基板上の金属の窒化物を含む被エッチング膜にβ-ジケトン及びNOを反応させて、プラズマ状態を伴わずにエッチングする工程を備えることを特徴とする。
本開示のエッチング装置は、加熱可能な処理容器内に設けられ、金属の窒化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、
β-ジケトンを前記処理容器内に供給するβ-ジケトン供給部と、
NOを前記処理容器内に供給するNO供給部と、を備えることを特徴とする。
本開示によれば、金属窒化物膜をプラズマレスで、かつ低温で除去することが可能なガス組成物による表面処理方法を提供することができる。
図1は、本開示の一実施形態に係るエッチング装置を模式的に示す概略図である。
以下、本開示の実施形態について具体的に説明する。
しかしながら、本開示は、以下の実施形態に限定されるものではなく、本開示の要旨を変更しない範囲において適宜変更して適用することができる。
[表面処理方法]
本開示の表面処理方法は、被処理体の表面にβ-ジケトン及びNOを接触させることを特徴とする。
HFAc等のβ-ジケトンを用いた第13族金属の窒化物のエッチング技術のメカニズムについては明らかではないが、添加ガスにより窒化物の表面に酸化層を形成させたのち、酸化層がβ-ジケトンと反応することによりエッチングされているものと推察される。したがって、窒化物を酸化することができれば、エッチングが進行すると考えられるが、本発明者らが実験を試みたところ、酸化層を形成可能なOをβ-ジケトンと共に用いた場合、エッチングに伴い被エッチング膜のN含有率が低下してしまうという問題があった。エッチング前後で組成変化がないエッチング方法を更に鋭意検討したところ、本発明者らは、β-ジケトン及びNOを用いてエッチングする技術を見出した。
本開示の表面処理方法は、被処理体の表面に存在する材料を被処理体の表面から除去するための方法として好適である。
上記材料としては、金属の窒化物が好ましい。上記金属の窒化物は、第13族の金属の窒化物であることが望ましい。上記金属の窒化物は、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)及びTl(タリウム)の窒化物(アルミニウム窒化物、ガリウム窒化物、インジウム窒化物、タリウム窒化物)からなる群から選択される少なくとも1種であることがより望ましい。上記材料は、上記した金属の窒化物であってもよく、上記金属の窒化物を2種以上含む合金又は合金の窒化物であってもよい。第13族の金属は、Al、Ga、及びInからなる群より選ばれる少なくとも1種であることが更に望ましい。上記材料の具体例としては、例えば、GaN、AlGaN、InN、InGaN、AlN、InAlN等が挙げられる。
β-ジケトンの種類は、特に限定されないが、例えば、ヘキサフルオロアセチルアセトン(HFAc、1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオン)、トリフルオロアセチルアセトン(1,1,1-トリフルオロ-2,4-ペンタンジオン)、アセチルアセトン(2,4-ペンタンジオン)等が挙げられる。β-ジケトンとして、1種の化合物を用いてもよいし、2種以上の化合物を用いてもよい。
β-ジケトン及びNOは、同時に被処理体の表面に接触させてもよいし、β-ジケトンとNOとを別に被処理体の表面に接触させてもよい。
本開示の表面処理方法では、β-ジケトン及びNOを用いるが、O、NO、CO、CO、HO、H及びアルコールからなる群より選択される少なくとも1種の添加ガスをさらに用いてもよい。本開示の表面処理方法で用いるβ-ジケトン及びNOと添加ガスとの組み合わせとしては、例えば、β-ジケトン及びNOとNO、β-ジケトン及びNOとNO及びOの組み合わせ等が挙げられる。
本開示の表面処理方法では、β-ジケトンとNOの他に、N、Ar、He、Ne及びKrからなる群より選択される少なくとも1種の不活性ガスをさらに用いてもよい。また、アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコールなどを使用することができる。
被処理体としては、半導体デバイス基板、基板処理装置の処理容器等が挙げられる。例えば被処理体が半導体デバイス基板である場合、被処理体の表面に存在する材料とは被エッチング膜等である。また、例えば被処理体が基板処理装置の処理容器である場合、被処理体の表面に存在する材料とは、被エッチング膜のエッチングにより処理容器の内側表面に堆積した付着物等である。
本開示の表面処理方法では、プラズマ状態であるβ-ジケトン及びNOを被処理体の表面に接触させてもよいし、プラズマ状態を伴わずにβ-ジケトン及びNOを被処理体の表面に接触させてもよいが、プラズマ状態を伴わずに被処理体の表面にβ-ジケトン及びNOを接触させることが好ましい。被処理体が半導体デバイス基板である場合、プラズマガスを接触させると、プラズマガスに起因する電気的ダメージを基板に与えてしまうおそれがあるからである。
被処理体の表面にβ-ジケトンとNOを接触させる際の被処理体の表面温度は特に限定されず、例えば250℃以上、400℃以下である。被処理体の温度は、実質的に被処理体の表面に存在する材料の温度に等しい。加熱した状態の該材料にβ-ジケトン及びNOを接触させると、ガスと上記金属の窒化物とが反応して、該材料の表面に錯体を生成する。この錯体は蒸気圧が高いため、錯体が気化することにより該材料を除去することができる。
[ドライエッチング方法]
上述した本開示の表面処理方法は、被処理体の表面に形成されたGaN膜等に所定のパターンを形成するためのドライエッチング方法として使用可能である。
本開示のドライエッチング方法は、被処理体の表面に形成された金属の窒化物を含む被エッチング膜に、β-ジケトン及びNOを接触させて、プラズマ状態を伴わずにエッチングすることを特徴とする。
被エッチング膜に含まれる金属の窒化物は、表面処理方法について上述したものが挙げられる。上記の被エッチング膜は、上記した第13族の金属を1種含む窒化物膜であってもよく、上記第13族の金属を2種以上含む合金の窒化物膜であってもよい。
上記被エッチング膜は、Ga、Al及びInからなる群より選ばれる少なくとも1種の第13族の金属の窒化物であることが望ましい。上記被エッチング膜は、ガリウム窒化物膜、アルミニウム窒化物膜、インジウム窒化物膜、アルミニウムガリウム窒化物膜及びインジウムガリウム窒化物膜からなる群から選択される少なくとも1種の膜であることが望ましい。
本開示のドライエッチング方法によれば、温度が400℃以下、さらには350℃以下であっても、金属の窒化物を含む難エッチング性の被エッチング膜を、プラズマ状態を伴わずにエッチングすることが可能なドライエッチング方法を提供することができる。
β-ジケトンの一種であるヘキサフルオロアセチルアセトン(以下、HFAcともいう)の分解温度は375℃であるため、エッチング温度が400℃を超える温度である場合、HFAcの分解が生じ、エッチング対象である被エッチング膜上に炭素成分が堆積し、その後のプロセスにおいて、不都合が発生することが充分に想定される。
一方、本開示のドライエッチング方法では、β-ジケトン及びNOを用いることにより、エッチング温度を350℃以下まで低下させることができるため、β-ジケトンの分解による炭素膜の形成を抑制することができる。
本開示のドライエッチング方法において、被処理体としては、シリコン基板、化合物半導体基板、石英基板、ガラス基板等を挙げることができる。被処理体の表面には、金属の窒化物を含む被エッチング膜以外に、シリコン膜、シリコン酸化物膜、シリコン窒化物膜、上記金属以外の金属配線膜などが形成されていてもよい。被処理体は、例えば後述のエッチング装置の載置部に載置され、載置部を加熱することで、被処理体、及び、被処理体の表面に形成された金属の窒化物を含む被エッチング膜が加熱される。
被処理体表面への被エッチング膜の形成方法は特に限定されないが、例えば、化学的気相成長(CVD)法や、スパッタリング法を挙げることができる。また、上記金属の窒化物を含む被エッチング膜の厚さも特に限定されないが、例えば、0.1nm以上1μm以下の厚さとすることができる。
[第1のドライエッチング方法]
まず、本開示のドライエッチング方法として、上記β-ジケトン及びNOを含むエッチングガスAを上記被エッチング膜と接触させる第1のドライエッチング方法について説明する。
被処理体の温度は、実質的に上記被エッチング膜の温度に等しい。加熱した状態の上記被エッチング膜にβ-ジケトンとNOを含むエッチングガスAを接触させると、β-ジケトンとNOと金属の窒化物とが反応して、上記被エッチング膜上に錯体を生成する。この錯体は蒸気圧が高いため、錯体が気化することにより被エッチング膜をエッチングすることができる。
エッチングガスA中に含まれるβ-ジケトンは、上述の表面処理方法で用いるβ-ジケトンと同じものが挙げられる。
エッチングガスA中に含まれるβ-ジケトンとNOの体積比は、β-ジケトン:NO=10:0.1以上100以下であることが好ましく、β-ジケトン:NO=10:0.01以上10以下であることがより好ましく、β-ジケトン:NO=10:0.1以上10以下であることがさらに好ましい。エッチングガスA中にβ-ジケトンの割合が少なすぎると、エッチング速度が低下する傾向にあり、多すぎるとエッチングガスが高価になりすぎてしまう。また、エッチングガス中のNOが少なすぎても多すぎてもエッチングが進みにくくなってしまう。
上記エッチングガスAは、β-ジケトンとNOのみからなっていてもよいが、O、NO、NO、CO、CO、HO、H及びアルコールからなる群より選ばれる少なくとも1種の添加ガスをさらに含んでもよいし、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含んでもよい。また、アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコールなどを使用することができる。
添加ガスを用いる場合、添加ガスの合計の含有率は、β-ジケトン、NO、上記添加ガス、上記不活性ガスの合計を100体積%として、10体積%以上90体積%以下とすることができる。
エッチングガスAが不活性ガスを含む場合、エッチングガスA中に含まれる不活性ガスの含有率は、1体積%以上90体積%以下であることが好ましく、10体積%以上80体積%以下であることがより好ましく、30体積%以上50体積%以下であることがさらに好ましい。
[第2のドライエッチング方法]
次に、本開示のドライエッチング方法として、NOを含むエッチングガスBを被エッチング膜と接触させる第1のエッチング工程と、β-ジケトンを含むエッチングガスCを被エッチング膜と接触させる第2のエッチング工程とを備える第2のドライエッチング方法について説明する。
本開示の第2のドライエッチング方法において、被処理体としては、第1のドライエッチング方法の場合と同様、シリコン基板、化合物半導体基板、石英基板、ガラス基板を挙げることができる。被処理体の表面には、上記した金属の窒化物の膜以外に、シリコン膜、シリコン酸化物膜、シリコン窒化物膜、上記金属以外の金属配線膜などが形成されていてもよい。被処理体は載置部に載置され載置部を加熱することで被処理体及び被処理体の表面に形成された金属の窒化物を含む被エッチング膜が加熱される。
被処理体の温度は、実質的に上記被エッチング膜の温度に等しい。加熱した状態の上記被エッチング膜に、第1のエッチング工程として、NOを含むエッチングガスBを接触させると、被エッチング膜の表面にNOが吸着する。この後、第2のエッチング工程として、β-ジケトンを含むエッチングガスCを上記被エッチング膜と接触させると、表面にNOが吸着した金属の窒化物と、β-ジケトンとが反応し、第1のドライエッチング方法の場合と同様に、被エッチング膜上に錯体が生成する。この錯体は蒸気圧が高いため、錯体が気化することにより上記金属の窒化物を含む被エッチング膜をエッチングすることができる。
本開示の第2のドライエッチング方法では、被エッチング膜を繰り返しエッチングするために、上記工程を複数回繰り返してもよい。1サイクルのエッチング工程において、一定厚さエッチングすることが可能であるので、サイクル数を特定することにより、精密に所望の厚さの層をエッチングすることができる。
β-ジケトンとしては、上記の表面処理方法での場合と同様のものを用いることができる。
上記エッチングガスCは、β-ジケトンのみからなっていてもよく、エッチングガスBはNOのみからなっていてもよいが、エッチングガスB及びエッチングガスCは、O、NO、NO、CO、CO、HO、H及びアルコールからなる群より選ばれる少なくとも1種の添加ガスをさらに含んでもよい。エッチングガスB及びエッチングガスCは、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含んでもよい。また、アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコールなどを使用することができる。
エッチングガスBが添加ガスを含む場合、エッチングガスB中に含まれる添加ガスの合計の含有率は、NO、上記添加ガス、上記不活性ガスの合計を100体積%として、10体積%以上90体積%以下とすることができる。
また、エッチングガスCが添加ガスを含む場合、エッチングガスC中に含まれる添加ガスの合計の含有率は、NO、上記添加ガス、上記不活性ガスの合計を100体積%として、10体積%以上90体積%以下とすることができる。
エッチングガスB及びエッチングガスCが不活性ガスを含む場合、エッチングガスB及びエッチングガスCに含まれる不活性ガスの含有率は、1体積%以上90体積%以下であることが好ましく、10体積%以上80体積%以下であることがより好ましく、30体積%以上50体積%以下であることがさらに好ましい。
[エッチング装置]
本開示のドライエッチング方法は、例えば、下記のエッチング装置を使用することにより実現することができる。このようなエッチング装置も、本開示の1つである。
本開示のエッチング装置は、加熱可能な処理容器内に設けられ、金属の窒化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、β-ジケトンを上記処理容器内に供給するβ-ジケトン供給部と、NOガスを上記処理容器内に供給するNOガス供給部と、を備えることを特徴とする。本開示のエッチング装置は、不活性ガスを上記処理容器内に供給する不活性ガス供給部を、さらに備えていてもよい。
図1は、本開示の一実施形態に係るエッチング装置を模式的に示す概略図である。
図1に示すエッチング装置100は、金属の窒化物が表面に形成された被処理体10を配置する処理容器110と、処理容器110に接続して気体のβ-ジケトンを供給するβ-ジケトン供給部140と、気体のNOを供給するNOガス供給部150と、不活性ガスを供給する不活性ガス供給部160と、処理容器110を加熱する加熱手段170と、を備える。なお、エッチング装置100は、不活性ガス供給部160を備えていなくてもよい。
さらにエッチング装置100は、図示しない制御部を備えている。この制御部は、例えばコンピュータからなり、プログラム、メモリ、CPUを備えている。プログラムは、第1のエッチング方法又は第2のエッチング方法における一連の動作を実施するようにステップ群が組み込まれており、プログラムに従って、被処理体10の温度の調整、各供給部のバルブの開閉、各ガスの流量の調整、処理容器110内の圧力の調整などを行う。このプログラムは、コンピュータ記憶媒体、例えばコンパクトディスク、ハードディスク、光磁気ディスク、メモリーカード等に収納され制御部にインストールされる。
処理容器110は、被処理体10を載置するための載置部111を具備する。処理容器110は、使用するβ-ジケトンに対する耐性があり、所定の圧力に減圧できるものであれば特に限定されるものではないが、通常、半導体のエッチング装置に備えられた一般的な処理容器などが適用される。また、エッチングガスを供給する供給管やその他の配管などもβ-ジケトンに対する耐性にあるものであれば特に限定されるものではなく一般的なものを使用することができる。
β-ジケトン供給部140は、バルブV1及びV2と流量調整手段MFC1で供給量を調整して、β-ジケトンを配管141及び142から配管121に供給する。
NOガス供給部150は、バルブV3及びV4と流量調整手段MFC2で供給量を調整して、NOを配管151及び152から配管121に供給する。
不活性ガス供給部160は、バルブV5及びV6と流量調整手段MFC3で供給量を調整して、不活性ガスを配管161及び162から配管121に供給する。
処理容器110の外部には、処理容器110を加熱する加熱手段170が配設される。また、載置部111の内部には、第2の加熱手段として、ヒーター(図示せず)を備えてもよい。なお、複数の載置部を処理容器110に配置する場合は、載置部毎にヒーターを備えることにより、それぞれの載置部上の被処理体の温度を個別に所定の温度に設定することができる。
処理容器110の一方には、反応後のガスを排出するためのガス排出手段が配設される。ガス排出手段の真空ポンプ173により、配管171を介して処理容器110から反応後のガスが排出される。反応後のガスは、配管171と配管172との間に配設された液体窒素トラップ174により回収される。配管171及び172には、バルブV7及びV8を配設して、圧力を調整することができる。また、図1中、PI1及びPI2は、圧力計であり、その指示値を基に、制御部が各流量調整手段及び各バルブを制御することができる。
このエッチング装置100を例として、具体的にエッチング方法を説明する。
[上記エッチング装置を用いた第1のドライエッチング方法]
本開示の第1のドライエッチング方法では、β-ジケトン及びNOを含むエッチングガスAを被エッチング膜と接触させる。
第1のドライエッチング方法では、まず、金属の窒化物を含む被エッチング膜が形成された被処理体10を処理容器110内に配置する。次に、真空ポンプ173により、処理容器110、配管121、配管141及び142、配管151及び152、配管161及び162、液体窒素トラップ174、配管171及び172の内部を所定の圧力まで真空排気後、加熱手段170により、被処理体10を加熱する。
被処理体10が所定の温度に到達したら、β-ジケトン供給部140とNOガス供給部150とからβ-ジケトンとNOガスを所定の流量で配管121に供給する。なお、不活性ガス供給部160から不活性ガスを所定の流量で配管121に供給してもよい。
β-ジケトンとNOは所定の組成で混合され、処理容器110に供給される。混合されたエッチングガスを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、エッチングガスと金属の窒化物を含む被エッチング膜とを反応させることにより、錯体を形成させ、エッチングを行う。このエッチング方法では、プラズマ状態を伴わないプラズマレスでエッチング可能であり、エッチングの際、プラズマ等でのエッチングガスの励起は不要である。エッチングガスの流量は、処理容器の容積と圧力などに基づいて適宜設定することができる。
なお、プラズマ状態を伴うエッチングとは、反応装置の内部に、例えば、0.01~1.33kPa程度のガス等を入れ、外側のコイルあるいは対向電極に高周波電力を与えて反応装置中に低温のガスプラズマを発生させ、その中にできるイオンやラジカルなど活性化学種によりエッチングを行うことをいう。
本開示のドライエッチング方法では、ガスを、プラズマ状態を伴わずに接触させ、上記したガスプラズマを発生させることなく、ドライエッチングを行う。
エッチング工程が終了した後、加熱手段170による加熱を停止し降温するとともに、真空ポンプ173を停止し、不活性ガスで置換して真空を開放する。以上のように、上記エッチング装置を用いた第1のドライエッチング方法により、金属の窒化物を含む被エッチング膜のエッチングを行うことができる。
(第1のドライエッチング方法におけるエッチング条件)
本開示の第1のドライエッチング方法において、エッチングガスAを前記被エッチング膜と接触させる際の被エッチング膜の温度は、錯体が気化可能な温度であればよく、特に、除去対象の被エッチング膜の温度が、250℃以上400℃以下であることが好ましく、275℃以上375℃以下であることがより好ましく、275℃以上350℃以下であることがより好ましく、300℃以上350℃以下であることがより好ましい。
また、被エッチング膜に、前記エッチングガスAを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力は、特に限定されないが、通常、0.1kPa以上101.3kPa以下の圧力範囲である。
充分なエッチング速度を得る観点から、エッチング工程における処理容器内の圧力は、20Torr以上300Torr以下(2.67kPa以上39.9kPa以下)であることが好ましく、20Torr以上200Torr以下(2.67kPa以上26.7kPa以下)であることがより好ましく、20Torr以上100Torr以下(2.67kPa以上13.3kPa以下)であることがさらに好ましい。
エッチング工程の処理時間は、特に限定されないが、半導体デバイス製造プロセスの効率を考慮すると、60分以内であることが好ましい。ここで、エッチング工程の処理時間とは、被処理体が設置されている処理容器内にエッチングガスを導入し、その後、エッチング処理を終えるために処理容器内のエッチングガスを真空ポンプ等により排気するまでの時間を指す。
[上記エッチング装置を用いた第2のドライエッチング方法]
本開示の第2のドライエッチング方法では、NOを含むエッチングガスBを被エッチング膜と接触させる第1のエッチング工程と、β-ジケトンを含むエッチングガスCを被エッチング膜と接触させる第2のエッチング工程とを備える。
第2のドライエッチング方法では、まず、金属の窒化物を含む被エッチング膜が形成された被処理体10を処理容器110内に配置する。次に、真空ポンプ173により、処理容器110、配管121、配管141及び142、配管151及び152、配管161及び162、液体窒素トラップ174、配管171及び172の内部を所定の圧力まで真空排気後、加熱手段170により、被処理体10を加熱する。
被処理体10が所定の温度に到達したら、最初に、NOガス供給部150からNOガスを所定の流量で配管121に供給する。なお、不活性ガス供給部160から不活性ガスを所定の流量で配管121に供給してもよい。NOガス又はNOガスと不活性ガスとを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、NOガスを処理容器110内に導入することにより、NOを被エッチング膜に吸着させる。
NOガスを含むガスを真空排気した後、β-ジケトン供給部140からβ-ジケトンガスを所定の流量で配管121に供給する。なお、不活性ガス供給部160から不活性ガスを所定の流量で配管121に供給してもよい。β-ジケトンガス又はβ-ジケトンガスと不活性ガスとを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、β-ジケトンガスを処理容器110内に導入することにより、被エッチング膜に先に吸着したNOとβ-ジケトンとが反応して錯体を形成し、さらに、上記錯体が上記被エッチング膜と反応し、上記被エッチング膜をエッチングすることができる。
本開示の第2のドライエッチング方法では、NOガスを処理容器110内に導入する第1のエッチング工程とβ-ジケトンを処理容器110内に導入する第2のエッチング工程を1サイクルとする工程を複数サイクル繰り返して行うことができる。
本開示の第2のドライエッチング方法では、1サイクルのエッチング条件を所定の条件に設定することにより、1サイクルでエッチングできる被エッチング膜の厚さをコントロールすることができるので、1サイクルでエッチングできる被エッチング膜の厚さを薄く設定することにより、精密にエッチングする厚さをコントロールすることができる。
なお、第2のドライエッチング方法でも、プラズマ状態を伴わないプラズマレスでエッチング可能であり、エッチングの際、プラズマ等でのエッチングガスの励起は不要である。NOとβ-ジケトンとの流量は、処理容器の容積と圧力などに基づいて適宜設定することができる。
このように、上記エッチング装置を用いた本開示の第2のドライエッチング方法では、ガスを、プラズマ状態を伴わずに接触させることができ、上記したガスプラズマを発生させることなく、ドライエッチングを行うことができる。
エッチング工程が終了した後、加熱手段170による加熱を停止し降温するとともに、真空ポンプ173を停止し、不活性ガスで置換して真空を開放する。以上により、金属の窒化物を含む被エッチング膜のエッチングを行うことができる。
(第2のドライエッチング方法におけるエッチング条件)
本開示の第2のドライエッチング方法において、第1のエッチング工程及び第2のエッチング工程を行う際の被エッチング膜の温度は、錯体が気化可能な温度であればよく、特に、除去対象の被エッチング膜の温度が、250℃以上400℃以下であることがより好ましく、275℃以上375℃以下であることがより好ましく、275℃以上350℃以下であることがより好ましく、300℃以上350℃以下であることがより好ましい。第1のエッチング工程と第2のエッチング工程における被エッチング膜の温度は、同じであることが望ましい。
また、第1のエッチング工程及び第2のエッチング工程における処理容器内の圧力は、特に限定されないが、通常、0.1kPa以上101.3kPa以下の圧力範囲である。
充分なエッチング速度を得る観点から、第1のエッチング工程及び第2のエッチング工程における処理容器内の圧力は、20Torr以上300Torr以下(2.67kPa以上39.9kPa以下)であることが好ましく、20Torr以上200Torr以下(2.67kPa以上26.7kPa以下)であることがより好ましく、20Torr以上100Torr以下(2.67kPa以上13.3kPa以下)であることがさらに好ましい。第2のエッチング工程における処理容器内の圧力は、第1のエッチング工程における処理容器内の圧力より高いことが望ましい。
第1のエッチング工程及び第2のエッチング工程における処理時間は、特に限定されないが、第1のエッチング工程の1サイクルにおける処理時間は、60分以内であることが好ましく、第2のエッチング工程の1サイクルにおける処理時間は、60分以内であることが好ましい。ここで、エッチング工程の処理時間とは、被処理体が設置されている処理容器内にエッチングガスを導入し、その後、エッチング処理を終えるために処理容器内のエッチングガスを真空ポンプ等により排気するまでの時間を指す。
[半導体デバイスの製造方法]
上述した本開示のドライエッチング方法は、半導体デバイスの窒化ガリウム膜や窒化アルミニウムガリウム膜に所定のパターンを形成するためのエッチング方法として使用可能である。本開示のドライエッチング方法を用いて基板上の窒化ガリウム膜や窒化アルミニウムガリウム膜等をエッチングすることにより、半導体デバイスを安価に製造することができる。
本開示の半導体デバイスの製造方法は、基板上の金属の窒化物を含む被エッチング膜にβ-ジケトン及びNOを反応させて、プラズマ状態を伴わずにエッチングする工程を備えることを特徴とする。
上記被エッチング膜にβ-ジケトン及びNOを反応させて、プラズマ状態を伴わずにエッチングする工程は、上述した本開示のドライエッチング方法により行うことができる。
[クリーニング方法]
上述した本開示の表面処理方法は、基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物を取り除くためのクリーニング方法として使用可能である。本開示のクリーニング方法を用いて処理容器内の付着物を取り除くことにより、窒化ガリウムや窒化アルミニウムガリウム等の化学的安定性に優れた材料も取り除くことができる。
本開示のクリーニング方法は、基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してβ-ジケトン及びNOを接触させることにより、該付着物を取り除くことを特徴とする。
上記基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してβ-ジケトン及びNOを接触させる条件や手順、付着物は、上述した表面処理方法において、被処理体の表面にβ-ジケトン及びNOを接触させる条件や手順、被処理体の表面に形成された材料と同様である。
本開示のクリーニング方法では、プラズマ状態であるβ-ジケトン及びNOを該付着物に接触させてもよいし、プラズマ状態を伴わずにβ-ジケトン及びNOを該付着物に接触させてもよい。β-ジケトン及びNOを接触させる際の付着物の温度は特に限定されず、例えば250℃以上、400℃以下である。
〔1〕被処理体の表面にβ-ジケトン及びNOを接触させることを特徴とする表面処理方法。
〔2〕上記β-ジケトン及びNOを、プラズマ状態を伴わずに上記被処理体の表面に接触させる、上記〔1〕に記載の表面処理方法。
〔3〕上記被処理体の表面に存在する金属の窒化物に上記β-ジケトン及びNOを接触させる、上記〔1〕又は〔2〕に記載の表面処理方法。
〔4〕上記金属の窒化物が、第13族の金属の窒化物である、上記〔3〕に記載の表面処理方法。
〔5〕上記第13族の金属が、Al、Ga、及びInからなる群より選ばれる少なくとも1種である、上記〔4〕に記載の表面処理方法。
〔6〕被処理体の表面に形成された金属の窒化物を含む被エッチング膜に、β-ジケトン及びNOを接触させて、プラズマ状態を伴わずにエッチングすることを特徴とする、ドライエッチング方法。
〔7〕上記被エッチング膜が、Ga、Al及びInからなる群より選ばれる少なくとも1種の第13族の金属の窒化物膜であることを特徴とする上記〔6〕に記載のドライエッチング方法。
〔8〕上記β-ジケトンが、ヘキサフルオロアセチルアセトン、トリフルオロアセチルアセトン及びアセチルアセトンからなる群より選ばれる少なくとも1種の化合物であることを特徴とする上記〔6〕又は〔7〕に記載のドライエッチング方法。
〔9〕上記β-ジケトン及びNOを含むエッチングガスAを上記被エッチング膜に接触させる上記〔6〕~〔8〕のいずれかに記載のドライエッチング方法。
〔10〕上記エッチングガスAを上記被エッチング膜と接触させる際の上記被エッチング膜の温度が、250℃以上400℃以下である、上記〔9〕に記載のドライエッチング方法。
〔11〕上記エッチングガスAにおける上記β-ジケトンと上記NOの体積比は、β-ジケトン:NO=10:0.1以上100以下である、上記〔9〕又は〔10〕に記載のドライエッチング方法。
〔12〕上記エッチングガスAにおける上記β-ジケトンと上記NOの体積比は、β-ジケトン:NO=10:0.01以上10以下である、上記〔9〕~〔11〕のいずれかに記載のドライエッチング方法。
〔13〕上記被エッチング膜に、上記エッチングガスAを接触させる際、上記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、上記〔9〕~〔12〕のいずれかに記載のドライエッチング方法。
〔14〕上記エッチングガスAはN、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含む、上記〔9〕~〔13〕のいずれかに記載のドライエッチング方法。
〔15〕上記NOを含むエッチングガスBを上記被エッチング膜に接触させる第1のエッチング工程と、上記β-ジケトン含むエッチングガスCを上記被エッチング膜に接触させる第2のエッチング工程とを備える、上記〔6〕~〔8〕のいずれかに記載のドライエッチング方法。
〔16〕上記第1のエッチング工程と上記第2のエッチング工程とを繰り返し行う上記〔15〕に記載のドライエッチング方法。
〔17〕上記エッチングガスBを上記被エッチング膜と接触させる際の上記被エッチング膜の温度、及び、上記エッチングガスCを上記被エッチング膜と接触させる際の上記被エッチング膜の温度が、250℃以上400℃以下である、上記〔15〕又は〔16〕に記載のドライエッチング方法。
〔18〕上記被エッチング膜に上記エッチングガスBを接触させる際、及び、上記被エッチング膜に上記エッチングガスCを接触させる際、上記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、上記〔15〕~〔17〕のいずれかに記載のドライエッチング方法。
〔19〕上記エッチングガスB及び上記エッチングガスCは、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含む、上記〔15〕~〔18〕のいずれかに記載のドライエッチング方法。
〔20〕基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してβ-ジケトン及びNOを接触させることにより、該付着物を取り除くことを特徴とするクリーニング方法。
〔21〕上記付着物が、金属の窒化物である、上記〔20〕に記載のクリーニング方法。
〔22〕上記金属の窒化物が、第13族の金属の窒化物である、上記〔20〕又は〔21〕に記載のクリーニング方法。
〔23〕上記第13族の金属が、Al、Ga及びInからなる群より選ばれる少なくとも1種である、上記〔22〕に記載のクリーニング方法。
〔24〕基板上の金属の窒化物を含む被エッチング膜にβ-ジケトン及びNOを反応させて、プラズマ状態を伴わずにエッチングする工程を備えることを特徴とする半導体デバイスの製造方法。
〔25〕加熱可能な処理容器内に設けられ、金属の窒化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、β-ジケトンを上記処理容器内に供給するβ-ジケトン供給部と、NOを上記処理容器内に供給するNO供給部と、を備えることを特徴とするエッチング装置。
〔26〕不活性ガスを上記処理容器内に供給する不活性ガス供給部を、さらに備える上記〔25〕に記載のエッチング装置。
以下、本開示をより具体的に開示した実施例を示す。なお、本開示は、これらの実施例のみに限定されるものではない。
(実施例1)
図1に示すエッチング装置100を用いて、サファイアウエハ(形状1cm×1cm、厚さ650μm)の表面に形成された窒化ガリウム(GaN)膜(形状1cm×1cm、膜厚3.4μm)からなる被エッチング膜を有する被処理体10のエッチングを行った。
実施例1の操作として、上記β-ジケトン及び上記NOを含むエッチングガスを上記被エッチング膜と接触させる第1のドライエッチング方法について説明する。処理容器110、配管121および171、配管142、配管152、配管162、液体窒素トラップ174の内部を10Pa未満まで真空引きした。その後、加熱手段170及び載置部111の内部に配設したヒーターにより、載置部111に載置している被処理体10を加熱した。被処理体10の温度が350℃に達したことを確認後、β-ジケトン供給部140から気体のヘキサフルオロアセチルアセトン(HFAc)と、NOガス供給部150からNOガスとを所定の流量で配管142、配管152にそれぞれ供給することで、エッチングガスを処理容器110内に導入しながら、処理容器110内部の圧力を12.0kPaに制御し、エッチング工程を行った。被処理体の温度は350℃とし、エッチングガスの流量は、HFAc=10sccm、NO=5sccmとした。エッチングガスの導入を開始して30分が経過した後、エッチングガスの導入を停止した。その後、処理容器110の内部を10Pa未満まで真空引きし、不活性ガス供給部160から供給するNガスで置換した後に被処理体10を取り出し、エッチング量及び組成比を測定した。組成比は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)にて測定した。結果を表1に示す。
なお、下記の実施例2を含む実施例1及び2では、β-ジケトンとNOを含むエッチングガスAを被エッチング膜と接触させる第1のドライエッチング方法を採用しており、後述の比較例1及び3では、β-ジケトンと一酸化窒素(NO)からなるエッチングガスを、後述の比較例2及び4ではβ-ジケトンと酸素(O)からなるエッチングガスを被エッチング膜と接触させている。
(実施例1、比較例1及び2)
下記の表1には、上記したエッチングにおけるガスの種類、HFAcの流量、ガスの流量、及びエッチング速度を示している。
実施例1と比較例1及び2との相違点を説明する。実施例1では、HFAcとNOを供給している。一方で、比較例1ではHFAcとNOを、比較例2ではHFAcとOを用いている。その他の点については、実施例1と同様の操作を実施し、窒化ガリウム(GaN)膜のエッチング量及び組成比を測定した。結果を表1に示す。
(実施例2、比較例3及び4)
図1に示すエッチング装置100を用いて、サファイアウエハの表面に形成された、形状が1cm×1cm、膜厚1.2μmの窒化アルミニウムガリウム(AlGaN)膜からなる被エッチング膜を有する被処理体のエッチングを行った。
被エッチング膜の材料、エッチングガスの種類と流量を表1に示す様に変更した他は、実施例1と同様の操作を行い、被エッチング膜のエッチング速度及び組成比を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1と比較例1とを比較すると、HFAcとNOの混合ガス(比較例1)ではGaN膜をエッチングできないのに対し、HFAcとNOのエッチングガス(実施例1)ではGaN膜をエッチングできることがわかった。また、実施例1と比較例2を比較すると、HFAcとNOの混合ガス(実施例1)ではエッチング速度が0.41nm/min、エッチング後のGaN膜の組成比(N/Ga)が0.91であるのに対し、HFAcとOの混合ガス(比較例2)ではエッチング速度が0.26nm/min、GaN膜の組成比(N/Ga)が0.76であり、HFAcにNOを添加することで、HFAcとOの混合ガスを用いる場合と比べてエッチング速度が大きくなり、被エッチング膜のNの含有率低下を抑制することができることがわかった。
実施例2と比較例3とを比較すると、HFAcとNOの混合ガス(比較例3)ではAlGaN膜がエッチングできないのに対し、HFAcとNOのエッチングガス(実施例2)ではAlGaN膜がエッチングできることがわかった。また、実施例2と比較例4を比較すると、HFAcとNOの混合ガス(実施例2)ではエッチング速度が0.48nm/min、エッチング後のAlGaN膜の組成比(N/Ga)が1.02であるのに対し、HFAcとOの混合ガス(比較例4)ではエッチング速度が0.13nm/min、組成比(N/Ga)が0.86であり、HFAcにNOを添加することで、HFAcとOの混合ガスを用いる場合と比べてエッチング速度が大きくなり、被エッチング膜のNの含有率低下を抑制することができることがわかった。
次に実施例3の操作について説明する。実施例3では、NOを含むエッチングガスBを被エッチング膜と接触させる第1のエッチング工程と、β-ジケトンを含むエッチングガスCを被エッチング膜と接触させる第2のエッチング工程とを繰り返し行う第2のドライエッチング方法を採用してエッチングを行った。
まず、処理容器110、配管121および171、配管142、配管152、配管162、液体窒素トラップ174の内部を10Pa未満まで真空引きした。その後、加熱手段170及び載置部111の内部に配設したヒーターにより、載置部111に載置している被処理体10を加熱した。
被処理体10の温度が350℃に達したことを確認後、NOガス供給部150からNOガスを配管152に供給し、処理容器110内部の圧力を4.0kPaに制御しながら、処理容器110の内部にNOガスを導入した。被処理体の温度は350℃とし、エッチングガスBの流量は、NO=5sccmとした。2分間NOガスを流し、被エッチング膜と接触させた後、NOガスの導入を停止し、処理容器110の内部を10Pa未満まで真空引きした。
次に、β-ジケトン供給部140から気体のHFAcを配管142に供給し、処理容器110内部の圧力を8.0kPaに制御しながら、処理容器110の内部にHFAcガスを流した。被処理体の温度は350℃とし、エッチングガスCの流量は、HFAc=10sccmとした。2分間、HFAcガスを流し、被エッチング膜と接触させた後、HFAcガスの導入を停止し、処理容器110の内部を10Pa未満まで真空引きした。
上記したNOガスを処理容器110内部に導入する工程とHFAcガスを処理容器110内部に導入する工程とを1サイクルとする操作を25回(サイクル数:25)繰り返した後、処理容器110の内部を10Pa未満まで真空引きし、不活性ガス供給部160から供給されるNガスで処理容器110の内部を置換した後に被処理体10を取り出し、エッチング量及び組成比を評価した。
(実施例3)
下記の表2には、上記したエッチングにおける1サイクル当たりのNO及びHFAcの流量、処理容器内の圧力、エッチング時の温度、流通時間、サイクル数、エッチング厚さ及びエッチング前後の組成比を示している。被エッチング膜は、実施例1と同じものを用いた。
(実施例4)
図1に示すエッチング装置100を用いて、サファイアウエハの表面に形成された、形状が1cm×1cm、膜厚1.2μmの窒化アルミニウムガリウム(AlGaN)膜からなる被エッチング膜を有する被処理体のエッチングを行った。被エッチング膜を実施例2と同じものに変更した他は、実施例3と同様の操作を行い、被エッチング膜のエッチング厚さ及び組成比を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例3と実施例1とを比較すると、第2のドライエッチング方法でエッチングを行った実施例3は、第1のドライエッチング方法でエッチングを行った実施例1と同様にGaN膜をエッチングできることがわかった。また、実施例3でエッチング後のGaN膜の組成比(N/Ga)は0.94であり、第2のエッチング方法においても、Nの含有率低下を抑制できることがわかった。
実施例4と実施例2とを比較すると、第2のドライエッチング方法でエッチングを行った実施例4は、第1のドライエッチング方法でエッチングを行った実施例2と同様にAlGaN膜をエッチングできることがわかった。また、実施例4でエッチング後のGaN膜の組成比(N/Ga)は1.05であり、第2のエッチング方法においても、Nの含有率低下を抑制できることがわかった。
以上の結果から、エッチングガスとしてHFAcとNOを用いた場合には、350℃以下の被処理体温度で、N含有率が低下することなく、GaN膜、AlGaN膜をエッチングできることがわかった。 
本願は、2021年4月28日に出願された日本国特許出願2021-075900号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
10 被処理体
100 エッチング装置
110 処理容器
111 載置部
121 配管
140 β-ジケトン供給部
141、142 配管
150 NOガス供給部
151、152 配管
160 不活性ガス供給部
161、162 配管
170 加熱手段
171、172 配管
173 真空ポンプ
174 液体窒素トラップ
MFC1、MFC2、MFC3 流量調整手段
PI1、PI2 圧力計
V1、V2、V3、V4、V5、V6、V7、V8 バルブ

 

Claims (26)

  1. 被処理体の表面にβ-ジケトン及びNOを接触させることを特徴とする表面処理方法。
  2. 前記β-ジケトン及びNOを、プラズマ状態を伴わずに前記被処理体の表面に接触させる、請求項1に記載の表面処理方法。
  3. 前記被処理体の表面に存在する金属の窒化物に前記β-ジケトン及びNOを接触させる、請求項1又は2に記載の表面処理方法。
  4. 前記金属の窒化物が、第13族の金属の窒化物である、請求項3に記載の表面処理方法。
  5. 前記第13族の金属が、Al、Ga、及びInからなる群より選ばれる少なくとも1種である、請求項4に記載の表面処理方法。
  6. 被処理体の表面に形成された金属の窒化物を含む被エッチング膜に、β-ジケトン及びNOを接触させて、プラズマ状態を伴わずにエッチングすることを特徴とする、ドライエッチング方法。
  7. 前記被エッチング膜が、Ga、Al及びInからなる群より選ばれる少なくとも1種の第13族の金属の窒化物膜であることを特徴とする請求項6に記載のドライエッチング方法。
  8. 前記β-ジケトンが、ヘキサフルオロアセチルアセトン、トリフルオロアセチルアセトン及びアセチルアセトンからなる群より選ばれる少なくとも1種の化合物であることを特徴とする請求項6又は7に記載のドライエッチング方法。
  9. 前記β-ジケトン及びNOを含むエッチングガスAを前記被エッチング膜に接触させる請求項6又は7に記載のドライエッチング方法。
  10. 前記エッチングガスAを前記被エッチング膜と接触させる際の前記被エッチング膜の温度が、250℃以上400℃以下である、請求項9に記載のドライエッチング方法。
  11. 前記エッチングガスAにおける前記β-ジケトンと前記NOの体積比は、β-ジケトン:NO=10:0.1以上100以下である、請求項9に記載のドライエッチング方法。
  12. 前記エッチングガスAにおける前記β-ジケトンと前記NOの体積比は、β-ジケトン:NO=10:0.01以上10以下である、請求項9に記載のドライエッチング方法。
  13. 前記被エッチング膜に、前記エッチングガスAを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、請求項9に記載のドライエッチング方法。
  14. 前記エッチングガスAはN、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含む、請求項9に記載のドライエッチング方法。
  15. 前記NOを含むエッチングガスBを前記被エッチング膜に接触させる第1のエッチング工程と、
    前記β-ジケトン含むエッチングガスCを前記被エッチング膜に接触させる第2のエッチング工程とを備える、請求項6又は7に記載のドライエッチング方法。
  16. 前記第1のエッチング工程と前記第2のエッチング工程とを繰り返し行う請求項15に記載のドライエッチング方法。
  17. 前記エッチングガスBを前記被エッチング膜と接触させる際の前記被エッチング膜の温度、及び、前記エッチングガスCを前記被エッチング膜と接触させる際の前記被エッチング膜の温度が、250℃以上400℃以下である、請求項15に記載のドライエッチング方法。
  18. 前記被エッチング膜に前記エッチングガスBを接触させる際、及び、前記被エッチング膜に前記エッチングガスCを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、請求項15に記載のドライエッチング方法。
  19. 前記エッチングガスB及び前記エッチングガスCは、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含む、請求項15に記載のドライエッチング方法。
  20. 基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してβ-ジケトン及びNOを接触させることにより、該付着物を取り除くことを特徴とするクリーニング方法。
  21. 前記付着物が、金属の窒化物である、請求項20に記載のクリーニング方法。
  22. 前記金属の窒化物が、第13族の金属の窒化物である、請求項21に記載のクリーニング方法。
  23. 前記第13族の金属が、Al、Ga及びInからなる群より選ばれる少なくとも1種である、請求項22に記載のクリーニング方法。
  24. 基板上の金属の窒化物を含む被エッチング膜にβ-ジケトン及びNOを反応させて、プラズマ状態を伴わずにエッチングする工程を備えることを特徴とする半導体デバイスの製造方法。
  25. 加熱可能な処理容器内に設けられ、金属の窒化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、
    β-ジケトンを前記処理容器内に供給するβ-ジケトン供給部と、
    NOを前記処理容器内に供給するNO供給部と、を備えることを特徴とするエッチング装置。
  26. 不活性ガスを前記処理容器内に供給する不活性ガス供給部を、さらに備える請求項25に記載のエッチング装置。

     
PCT/JP2022/018850 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置 WO2022230862A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237034950A KR20240000472A (ko) 2021-04-28 2022-04-26 표면 처리 방법, 드라이 에칭 방법, 클리닝 방법, 반도체 디바이스의 제조 방법 및 에칭 장치
JP2023517546A JPWO2022230862A1 (ja) 2021-04-28 2022-04-26
EP22795775.0A EP4307346A4 (en) 2021-04-28 2022-04-26 SURFACE TREATMENT METHOD, DRY ETCHING METHOD, CLEANING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ETCHING DEVICE
CN202280028362.4A CN117157735A (zh) 2021-04-28 2022-04-26 表面处理方法、干式蚀刻方法、清洁方法、半导体装置的制造方法及蚀刻装置
US18/286,306 US20240186147A1 (en) 2021-04-28 2022-04-26 Surface treatment method, dry etching method, cleaning method, semiconductor device manufacturing method, and etching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021075900 2021-04-28
JP2021-075900 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230862A1 true WO2022230862A1 (ja) 2022-11-03

Family

ID=83848428

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/018850 WO2022230862A1 (ja) 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
PCT/JP2022/018847 WO2022230859A1 (ja) 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018847 WO2022230859A1 (ja) 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置

Country Status (7)

Country Link
US (2) US20240186147A1 (ja)
EP (1) EP4307346A4 (ja)
JP (2) JPWO2022230862A1 (ja)
KR (2) KR20240004298A (ja)
CN (2) CN117136426A (ja)
TW (2) TW202303722A (ja)
WO (2) WO2022230862A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933916A (ja) 1995-07-19 1997-02-07 Casio Comput Co Ltd 反射型カラー液晶表示素子
JP2013194307A (ja) * 2012-03-22 2013-09-30 Central Glass Co Ltd 成膜装置内の金属膜のドライクリーニング方法
US20150270140A1 (en) * 2014-06-09 2015-09-24 American Air Liquide, Inc. Atomic layer or cyclic plasma etching chemistries and processes
JP2018060854A (ja) 2016-10-03 2018-04-12 Jsr株式会社 半導体素子用基板、エッチング方法、及びエッチング液
WO2020179449A1 (ja) * 2019-03-01 2020-09-10 セントラル硝子株式会社 ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
JP2021075900A (ja) 2019-11-08 2021-05-20 パナソニックIpマネジメント株式会社 水洗便器及び便器装置
JP2022018973A (ja) * 2020-07-16 2022-01-27 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091829A (ja) 2002-08-30 2004-03-25 Tokyo Electron Ltd エッチング方法及びエッチング装置
JP4260590B2 (ja) 2003-09-25 2009-04-30 東京エレクトロン株式会社 基板処理装置のクリーニング方法
US11335573B2 (en) * 2017-01-04 2022-05-17 Cental Glass Company, Limited Dry etching method and β-diketone-filled container
WO2019003662A1 (ja) * 2017-06-27 2019-01-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933916A (ja) 1995-07-19 1997-02-07 Casio Comput Co Ltd 反射型カラー液晶表示素子
JP2013194307A (ja) * 2012-03-22 2013-09-30 Central Glass Co Ltd 成膜装置内の金属膜のドライクリーニング方法
US20150270140A1 (en) * 2014-06-09 2015-09-24 American Air Liquide, Inc. Atomic layer or cyclic plasma etching chemistries and processes
JP2018060854A (ja) 2016-10-03 2018-04-12 Jsr株式会社 半導体素子用基板、エッチング方法、及びエッチング液
WO2020179449A1 (ja) * 2019-03-01 2020-09-10 セントラル硝子株式会社 ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
JP2021075900A (ja) 2019-11-08 2021-05-20 パナソニックIpマネジメント株式会社 水洗便器及び便器装置
JP2022018973A (ja) * 2020-07-16 2022-01-27 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4307346A4

Also Published As

Publication number Publication date
KR20240004298A (ko) 2024-01-11
US20240194490A1 (en) 2024-06-13
US20240186147A1 (en) 2024-06-06
TW202303721A (zh) 2023-01-16
WO2022230859A1 (ja) 2022-11-03
TW202303722A (zh) 2023-01-16
CN117157735A (zh) 2023-12-01
EP4307346A4 (en) 2024-10-09
JPWO2022230862A1 (ja) 2022-11-03
EP4307346A1 (en) 2024-01-17
KR20240000472A (ko) 2024-01-02
JPWO2022230859A1 (ja) 2022-11-03
CN117136426A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US10192735B2 (en) Substrate processing method and substrate processing apparatus
US20200402792A1 (en) Wafer treatment for achieving defect-free self-assembled monolayers
CN110581067B (zh) 蚀刻方法及蚀刻装置
CN108573866B (zh) 氧化膜去除方法和装置以及接触部形成方法和系统
JP4914902B2 (ja) シリサイド形成方法とその装置
JP6997372B2 (ja) ドライエッチング方法及びエッチング装置
JP2018110230A (ja) ドライエッチング方法及びβ−ジケトン充填済み容器
US7172657B2 (en) Cleaning method of treatment equipment and treatment equipment
WO2015001991A1 (ja) 被処理体の処理方法
WO2020179449A1 (ja) ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
US20200071816A1 (en) Methods for selective deposition using molybdenum hexacarbonyl
JP2018041898A (ja) 成膜方法および成膜システム
JP2017147417A (ja) 基板処理方法
JP2008031510A (ja) 成膜装置のクリーニング方法および成膜装置
WO2022230862A1 (ja) 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
WO2021079624A1 (ja) ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
JP2004039976A (ja) 基板処理装置のクリーニング方法
JP7572633B2 (ja) ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
TWI857130B (zh) 乾式蝕刻方法、半導體裝置之製造方法及蝕刻裝置
WO2024019025A1 (ja) ドライエッチング方法、クリーニング方法及び半導体デバイスの製造方法
US20240258164A1 (en) Methods of forming interconnect structures
WO2022190889A1 (ja) 成膜方法および成膜システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286306

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022795775

Country of ref document: EP

Ref document number: 2023517546

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022795775

Country of ref document: EP

Effective date: 20231012

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202307710W

Country of ref document: SG