WO2022230859A1 - 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置 - Google Patents

表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置 Download PDF

Info

Publication number
WO2022230859A1
WO2022230859A1 PCT/JP2022/018847 JP2022018847W WO2022230859A1 WO 2022230859 A1 WO2022230859 A1 WO 2022230859A1 JP 2022018847 W JP2022018847 W JP 2022018847W WO 2022230859 A1 WO2022230859 A1 WO 2022230859A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
metal
oxide
etching
Prior art date
Application number
PCT/JP2022/018847
Other languages
English (en)
French (fr)
Inventor
邦裕 山内
光 北山
亜紀応 菊池
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020237034945A priority Critical patent/KR20240004298A/ko
Priority to JP2023517545A priority patent/JPWO2022230859A1/ja
Priority to CN202280028361.XA priority patent/CN117136426A/zh
Priority to US18/286,310 priority patent/US20240194490A1/en
Publication of WO2022230859A1 publication Critical patent/WO2022230859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present disclosure relates to a surface treatment method, a dry etching method, a cleaning method, a semiconductor device manufacturing method, and an etching apparatus.
  • Patent Document 1 describes a cleaning method for removing deposits (HfO 2 and the like) inside the processing container, in which processing is performed with a first cleaning gas containing ⁇ -diketone, O 2 , N 2 and H 2 O, and cleaning cannot be performed.
  • a method of cleaning the residue using a plasma containing F radicals and Ar ions is disclosed.
  • Patent Document 2 describes a method for manufacturing a MOS transistor, etc., in which a metal film and a metal oxide film containing at least one of Al, Zr, Hf, Y, La, Ce, and Pr formed on a substrate are etched.
  • the method describes using an etching gas containing ⁇ -diketones to reduce substrate damage, and an example includes a wafer temperature of about 450° C. and oxygen added to the hexafluoroacetylacetone gas to remove HfO.
  • a method for etching two films is disclosed.
  • etching must be performed at a high temperature of 380 to 420° C. in order to obtain a high etch rate in etching HfO 2 .
  • the etching gas preferably contains at least one of water and alcohol in addition to oxygen, and that etching does not progress at a low wafer temperature of 400° C. or lower. It is That is, from FIG. 9 of Patent Document 2, it can be seen that in the case of a mixed gas of hexafluoroacetylacetone and oxygen, etching does not progress at a wafer temperature of 400° C. or lower.
  • An object of the present disclosure is to provide a surface treatment method using a gas composition capable of removing metal oxides or metals at a low temperature without plasma.
  • a further object of the present disclosure is to provide a dry etching method, a cleaning method, and the like using the surface treatment method.
  • the present inventors have found that by using a mixed gas containing ⁇ -diketone, NO, O 2 and/or NO 2 , a material with excellent stability such as HfO x can be produced at a low temperature and at a low temperature. , can be removed at a high rate, leading to the completion of the present disclosure.
  • the surface treatment method of the present disclosure is a surface treatment method in which a gas is brought into contact with the surface of the object to be treated, wherein the gas contains ⁇ -diketone, a first additive gas, and a second additive gas,
  • the first additive gas is NO
  • the second additive gas is at least one selected from the group consisting of O2 and NO2.
  • the dry etching method of the present disclosure is a dry etching method in which an etching gas is brought into contact with a film to be etched containing a metal or an oxide of the metal formed on the surface of an object to be processed to etch without a plasma state.
  • said etching gas comprises ⁇ -diketone, a first additive gas and a second additive gas, wherein said first additive gas is NO and said second additive gas is selected from the group consisting of O 2 and NO 2 It is characterized by being at least one kind.
  • a cleaning method of the present disclosure is a cleaning method for removing deposits deposited on the surface of a processing container of a substrate processing apparatus by bringing a gas into contact with the deposits deposited on the surface of the processing container.
  • ⁇ -diketone a first additive gas and a second additive gas, wherein the first additive gas is NO and the second additive gas is at least one selected from the group consisting of O 2 and NO 2 It is characterized by
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device including a step of etching without plasma by causing an etching gas to react with a film to be etched containing a metal or an oxide of the above metal on a substrate.
  • the etching gas comprises ⁇ -diketone, a first additive gas and a second additive gas, wherein the first additive gas is NO and the second additive gas is selected from the group consisting of O 2 and NO 2 It is characterized by being at least one kind of
  • the etching apparatus of the present disclosure is provided in a heatable processing container, and includes a mounting section for mounting an object to be processed having a film to be etched containing a metal or an oxide of the above metal formed thereon, and ⁇ -diketone. into the processing vessel, a first additive gas supply section that supplies the first additive gas into the processing vessel, and a second additive gas that supplies the second additive gas into the processing vessel and a gas supply unit, wherein the first additive gas is NO and the second additive gas is at least one selected from the group consisting of O 2 and NO 2 .
  • FIG. 1 is a schematic diagram schematically showing an etching apparatus according to an embodiment of the present disclosure.
  • a surface treatment method of the present disclosure is a surface treatment method in which a gas is brought into contact with the surface of an object to be treated, wherein the gas contains ⁇ -diketone, a first additive gas, and a second additive gas, and the first additive gas is NO, and the second additive gas is at least one selected from the group consisting of O 2 and NO 2 .
  • the surface treatment method of the present disclosure is suitable as a method for removing material present on the surface of an object to be treated from the surface of the object to be treated.
  • the material include metals and oxides of the above metals.
  • the metal or oxide of the above metal is at least one selected from the group consisting of Group 4 metals, Group 12 metals, Group 13 metals, Group 14 metals and oxides of these metals. It is desirable to have The above metals or oxides of these metals include Hf (hafnium), Zr (zirconium), Ti (titanium), Ga (gallium), Al (aluminum), In (indium), Zn (zinc), and oxides of these metals.
  • the material may be a single metal or metal oxide as described above, or an alloy containing two or more of the above metals or an oxide of an alloy.
  • hafnium oxide examples include hafnium oxide (HfO x (x is 1 or more and 3 or less), particularly HfO 2 ), silicon hafnium oxide, aluminum hafnium oxide, zirconium hafnium oxide, and the like.
  • Silicon hafnium oxide includes Hf 1-k Si k O y and Hf 1-k Si k O y N z
  • aluminum hafnium oxide includes Hf 1-k Al k O m and Hf 1-k Al k . O m N n .
  • k, y, z, m, and n represent 0 ⁇ k ⁇ 1, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 1.33, 0 ⁇ m ⁇ 1.5, 0 ⁇ n ⁇ 1.
  • Hafnium zirconium oxide includes HfZrO x (where x is 1 or more and 3 or less), particularly HfZrO 2 .
  • Zirconium oxides include zirconium oxide (ZrO u (u is 1 or more and 3 or less), particularly ZrO 2 ). Titanium oxides include titanium oxide (TiO w (w is 1 or more and 3 or less), particularly TiO 2 ).
  • Gallium oxides include gallium oxide (GaO p (p is 1 or more and 2 or less), particularly Ga 2 O 3 ).
  • Examples of aluminum oxide include aluminum oxide (AlO v (v is 1 or more and 2 or less), particularly Al 2 O 3 ).
  • Examples of indium oxide include indium oxide (InO q (q is 1 or more and 2 or less), particularly In 2 O 3 ), indium gallium zinc oxide (InGaZn t O 3+t (t is 0.5 or more and 4 or less), particularly InGaZnO 4 ).
  • Zinc oxides include zinc oxide (ZnO).
  • Examples of the above metals or oxides of the above metals further include Sn (tin) and tin oxide (SnO 2 ).
  • a mixture of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) (ITO) is also an example of the above material.
  • ⁇ -diketone is not particularly limited, but examples include hexafluoroacetylacetone (HFAc, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), trifluoroacetylacetone (1,1 ,1-trifluoro-2,4-pentanedione), acetylacetone (2,4-pentanedione) and the like.
  • HFAc hexafluoroacetylacetone
  • TFAc 1,1,1,5,5,5-hexafluoro-2,4-pentanedione
  • trifluoroacetylacetone 1,1 ,1-trifluoro-2,4-pentanedione
  • acetylacetone 2,4-pentanedione
  • the amount of ⁇ -diketone contained in the gas is preferably 10% by volume or more and 90% by volume or less. Too little ⁇ -diketone in the gas tends to lower the reaction rate, and too much ⁇ -diketone makes the gas too expensive. It is more preferably 20% by volume or more and 80% by volume or less, still more preferably 30% by volume or more and 70% by volume or less.
  • the surface treatment method of the present disclosure includes a first additive gas and a second additive gas as additive gases for the ⁇ -diketone.
  • the first additive gas is NO (nitrogen monoxide)
  • the second additive gas is at least one selected from the group consisting of O 2 (oxygen) and NO 2 (nitrogen dioxide).
  • the gas used in the surface treatment method of the present disclosure includes a gas containing ⁇ -diketone, NO and O2 , a gas containing ⁇ - diketone, NO and NO2, or a gas containing ⁇ - diketone, NO, O2 and NO2. gas containing.
  • the amount of the first additive gas contained in the gas is preferably 0.1% by volume or more and 50% by volume or less. If the amount of the first additive gas in the gas is too small or too large, the reaction will be difficult to proceed. More preferably, it is 3% by volume or more and 45% by volume or less.
  • the amount of the second additive gas contained in the gas is preferably 5% by volume or more and 40% by volume or less. If the amount of the second additive gas in the gas is too small or too large, the reaction will be difficult to proceed. More preferably, it is 10% by volume or more and 35% by volume or less.
  • Said gas which may consist only of ⁇ -diketone and first and second additive gases, is selected from the group consisting of N 2 O, CO, CO 2 , H 2 O, H 2 O 2 and alcohols. may further include at least one additive gas, and may further include at least one inert gas selected from the group consisting of N 2 , Ar, He, Ne and Kr. Moreover, as alcohol, methanol, ethanol, propanol, isopropyl alcohol, etc. can be used.
  • the total content of the first additive gas, the second additive gas, and the other additive gas contained in the gas is 10% by volume or more. It can be 90% by volume or less.
  • the content of the inert gas contained in the gas is preferably 1% by volume or more and 80% by volume or less, more preferably 10% by volume or more and 70% by volume or less. , more preferably 30% by volume or more and 50% by volume or less.
  • Objects to be processed include semiconductor device substrates, processing containers of substrate processing apparatuses, and the like.
  • the material present on the surface of the object to be processed is a film to be etched or the like.
  • the material present on the surface of the object to be processed is deposits deposited on the inner surface of the processing container due to etching of the film to be etched.
  • the gas in a plasma state may be brought into contact with the surface of the object to be processed, or the gas may be brought into contact with the surface of the object to be processed without being in a plasma state. It is preferable to bring the gas into contact with the surface of the object to be processed without This is because if the object to be processed is a semiconductor device substrate, contacting the substrate with the plasma gas may cause electrical damage to the substrate due to the plasma gas.
  • the surface temperature of the object to be treated when the gas is brought into contact with the surface of the object to be treated is not particularly limited, and is, for example, 250° C. or higher and 400° C. or lower.
  • the temperature of the object to be processed is substantially equal to the temperature of the material present on the surface of the object to be processed.
  • the surface treatment method of the present disclosure described above can be used as a dry etching method for forming a predetermined pattern on a hafnium oxide film, hafnium metal, or the like formed on the surface of an object to be processed.
  • the dry etching method of the present disclosure is a dry etching method in which an etching gas is brought into contact with a film to be etched containing a metal or an oxide of the metal formed on the surface of an object to be processed to etch without a plasma state.
  • said etching gas comprises ⁇ -diketone, a first additive gas and a second additive gas, wherein said first additive gas is NO and said second additive gas is selected from the group consisting of O 2 and NO 2 It is characterized by being at least one kind.
  • the metal or oxide of the metal contained in the film to be etched is desirably the same as the surface treatment method described above.
  • the film to be etched containing a metal or an oxide of the above metal includes a hafnium oxide film, a zirconium oxide film, a titanium oxide film, a gallium oxide film, an aluminum oxide film, an indium oxide film, a zinc oxide film, At least one selected from the group consisting of a hafnium metal film, a zirconium metal film, a titanium metal film, a gallium metal film, an aluminum metal film, an indium metal film and a zinc metal film is desirable.
  • the film to be etched may be a single metal or metal oxide film, or may be an alloy or alloy oxide film containing two or more of the above metals.
  • the dry etching method of the present disclosure even at a temperature of 400° C. or less, or even 350° C. or less, the difficult-to-etch film to be etched containing the metal or oxide of the metal is etched in a plasma state. Therefore, it is possible to provide a dry etching method that can etch without etching.
  • the decomposition temperature of hexafluoroacetylacetone (hereinafter also referred to as HFAc), which is a type of ⁇ -diketone, is 375° C.
  • HFAc hexafluoroacetylacetone
  • the etching temperature can be lowered to 375° C. or lower by using an etching gas containing ⁇ -diketone, NO, and further O 2 and/or NO 2 .
  • the dry etching method of the present disclosure has the effect of improving the etching rate compared to conventional dry etching methods.
  • examples of the object to be processed include silicon substrates, compound semiconductor substrates, quartz substrates, and glass substrates.
  • a silicon film, a silicon oxide film, a silicon nitride film, a metal wiring film other than the above metals, etc. may be formed on the surface of the object to be processed, in addition to the film containing the above metals or oxides of the above metals. .
  • the object to be processed is mounted, for example, on a mounting portion of an etching apparatus to be described later, and by heating the mounting portion, the object to be processed, the metal formed on the surface of the object to be processed, or oxidation of the metal A film to be etched containing objects is heated.
  • the method of forming the film to be etched on the surface of the object to be processed is not particularly limited, but examples thereof include a chemical vapor deposition (CVD) method and a sputtering method.
  • the thickness of the film to be etched containing the metal or oxide of the metal is also not particularly limited, but can be, for example, 0.1 nm or more and 1 ⁇ m or less.
  • the etching gas used in the dry etching method of the present disclosure is the same as the gas used in the surface treatment method described above.
  • the dry etching method of the present disclosure can be realized, for example, by using the following etching apparatus.
  • Such an etching apparatus is also one of the present disclosure.
  • the etching apparatus of the present disclosure is provided in a heatable processing container, and includes a mounting section for mounting an object to be processed having a film to be etched containing a metal or an oxide of the above metal formed thereon, and ⁇ -diketone. into the processing vessel, a first additive gas supply section that supplies the first additive gas into the processing vessel, and a second additive gas that supplies the second additive gas into the processing vessel and a gas supply unit, wherein the first additive gas is NO and the second additive gas is at least one selected from the group consisting of O 2 and NO 2 .
  • the etching apparatus of the present disclosure may further include an inert gas supply unit that supplies inert gas into the processing container.
  • FIG. 1 is a schematic diagram schematically showing an etching apparatus according to an embodiment of the present disclosure.
  • the etching apparatus 100 shown in FIG. 1 includes a processing container 110 in which an object to be processed 112 having a film to be etched containing a metal or an oxide of the metal formed on the surface thereof is placed, and a ⁇ - gaseous ⁇ - A ⁇ -diketone supply unit 130 that supplies diketone into the processing container 110, an NO gas supply unit (first additive gas supply unit) 140 that supplies gaseous NO into the processing container 110, and gaseous O 2 into the processing container.
  • first additive gas supply unit first additive gas supply unit
  • An inert gas supply unit 170 that supplies active gas and a heating means 180 that heats the processing container 110 are provided. Note that the etching apparatus 100 may not include the inert gas supply section 170 .
  • the etching apparatus 100 has a controller (not shown).
  • This control unit is composed of, for example, a computer, and includes a program, a memory, and a CPU.
  • the program incorporates a group of steps to perform a series of operations in the etching method of the present invention. Adjustment, adjustment of the pressure in the processing container 110, and the like are performed.
  • This program is stored in a computer storage medium such as a compact disk, hard disk, magneto-optical disk, memory card, etc. and installed in the controller.
  • the processing vessel 110 includes a mounting portion 111 for mounting an object 112 to be processed.
  • the processing container 110 is not particularly limited as long as it is resistant to a gas such as ⁇ -diketone used, can be heated, and can be decompressed to a predetermined pressure.
  • a general processing vessel or the like is applied.
  • the supply pipe for supplying the etching gas and other pipes are not particularly limited as long as they are resistant to gases such as ⁇ -diketone, and general pipes can be used.
  • the ⁇ -diketone supply unit 130 adjusts the supply amount with the valves V1 and V2 and the flow rate adjusting means MFC1, and supplies ⁇ -diketone from the pipes 131 and 133 to the pipe 121.
  • the NO gas supply unit 140 adjusts the supply amount with the valves V3 and V4 and the flow rate adjusting means MFC2, and supplies NO from the pipes 141 and 143 to the pipe 121.
  • the O 2 gas supply unit 150 adjusts the supply amount with the valves V 5 and V 6 and the flow rate adjusting means MFC 3 and supplies O 2 from the pipes 151 and 153 to the pipe 121 .
  • the NO 2 gas supply unit 160 adjusts the supply amount with the valves V7 and V8 and the flow rate adjusting means MFC4, and supplies NO 2 from the pipes 161 and 163 to the pipe 121 .
  • the inert gas supply unit 170 supplies the inert gas from the pipes 171 and 173 to the pipe 121 by adjusting the supply amount with the valves V9 and V10 and the flow rate adjusting means MFC5.
  • a heating means 180 for heating the processing container 110 is provided outside the processing container 110 .
  • a heater (not shown) may be provided inside the mounting section 111 as a second heating means.
  • the temperature of the object to be processed on each mounting section can be individually set to a predetermined temperature by providing a heater for each mounting section. can be done.
  • One side of the processing container 110 is provided with gas discharge means for discharging the gas after the reaction.
  • the gas after the reaction is discharged from the processing vessel 110 through the pipe 122 by a vacuum pump 123 as gas discharge means.
  • the gas after the reaction is recovered by a liquid nitrogen trap 181 arranged between the pipes 122 and 124 .
  • Valves V11 and V12 can be arranged in pipes 122 and 124 to adjust the pressure.
  • PI1 and PI2 are pressure gauges, and the controller can control each flow rate adjusting means and each valve based on the indicated values.
  • a film to be etched that can be processed by the etching apparatus of the present disclosure includes, for example, the same film to be etched as described above for the dry etching method.
  • an object to be processed 112 on which an etching target film containing a metal or an oxide of the above metal is formed is placed in the processing container 110 .
  • the vacuum pump 123 drives the processing container 110, the pipes 121, the pipes 131 and 133, the pipes 141 and 143, the pipes 151 and 153, the pipes 161 and 163, the pipes 171 and 173, the liquid nitrogen trap 181, and the pipes 122 and 124.
  • the object 112 to be processed is heated by the heating means 180 .
  • ⁇ -diketone, NO gas and O 2 gas are supplied from the ⁇ -diketone supply unit 130, the NO gas supply unit 140 and the O 2 gas supply unit 150 at predetermined flow rates to the pipe 121.
  • the inert gas may be supplied to the pipe 121 at a predetermined flow rate from the inert gas supply unit 170 .
  • ⁇ -diketone, NO and O 2 , ⁇ -diketone, NO and NO 2 , or ⁇ -diketone, NO, O 2 and NO 2 are mixed in a predetermined composition and supplied to the processing vessel 110 .
  • the pressure inside the processing chamber 110 is controlled to a predetermined pressure.
  • Etching is performed by reacting the etching gas with the film to be etched containing the metal or the oxide of the metal for a predetermined time to form a complex.
  • etching can be performed in a plasmaless state without plasma, and excitation of the etching gas by plasma or the like is unnecessary during etching.
  • the flow rate of the etching gas can be appropriately set based on the volume and pressure of the processing container.
  • Etching accompanied by a plasma state means that, for example, a gas or the like of about 0.01 to 1.33 kPa is introduced into the interior of the reactor, high-frequency power is applied to the outer coil or the counter electrode, and low-temperature etching is performed in the reactor. Etching is performed by generating gas plasma and using active chemical species such as ions and radicals generated in the plasma. In the dry etching method of the present disclosure, the gas is brought into contact without a plasma state, and dry etching is performed without generating the gas plasma described above.
  • the heating by the heating means 180 is stopped to lower the temperature, the vacuum pump 123 is stopped, and the atmosphere is replaced with an inert gas to release the vacuum.
  • a film to be etched containing the metal or the oxide of the metal can be etched by the dry etching method using the etching apparatus.
  • the temperature of the film to be etched during the etching step may be a temperature at which the complex can be vaporized, and in particular, the temperature of the film to be etched to be removed is 250° C. or higher and 400° C. or lower. , more preferably 275° C. or higher and 375° C. or lower, and even more preferably 275° C. or higher and 350° C. or lower.
  • the pressure in the processing chamber in the etching process is not particularly limited, but is usually in the range of 0.1 kPa or more and 101.3 kPa or less.
  • the pressure in the processing container in the etching step is preferably 2.67 kPa or more and 39.9 kPa or less, more preferably 2.67 kPa or more and 26.7 kPa or less.
  • the processing time of the etching step is not particularly limited, but considering the efficiency of the semiconductor device manufacturing process, it is preferably within 60 minutes.
  • the processing time of the etching step means that the etching gas is introduced into the processing chamber in which the object to be processed is installed, and then the etching gas in the processing chamber is exhausted by a vacuum pump or the like to finish the etching processing. indicates the time to
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device including a step of etching without plasma by causing an etching gas to react with a film to be etched containing a metal or an oxide of the above metal on a substrate.
  • the etching gas comprises ⁇ -diketone, a first additive gas and a second additive gas, wherein the first additive gas is NO and the second additive gas is selected from the group consisting of O 2 and NO 2 It is characterized by being at least one kind of
  • the step of causing the film to be etched to react with the etching gas to etch without plasma can be performed by the above-described dry etching method of the present disclosure.
  • the above-described surface treatment method of the present disclosure can be used as a cleaning method for removing deposits deposited on the surface of the processing container in the processing container of the substrate processing apparatus.
  • materials with excellent stability such as hafnium oxide films and hafnium metal can also be removed.
  • a cleaning method of the present disclosure is a cleaning method for removing deposits deposited on the surface of a processing container of a substrate processing apparatus by bringing a gas into contact with the deposits deposited on the surface of the processing container, wherein the gas is ⁇ -diketone, a first additive gas and a second additive gas, wherein the first additive gas is NO and the second additive gas is at least one selected from the group consisting of O 2 and NO 2 It is characterized by The conditions and procedures for bringing the gas into contact with the deposits deposited on the surface of the processing chamber in the processing chamber of the substrate processing apparatus, and the deposits are the same as in the above-described surface treatment method. The contact conditions and procedures are the same as the materials existing on the surface of the object to be processed.
  • gas in a plasma state may be brought into contact with the deposits, or gas may be brought into contact with the deposits without a plasma state.
  • the temperature of the adhering matter when it is brought into contact with the gas is not particularly limited, and is, for example, 250° C. or higher and 400° C. or lower.
  • the gas contains ⁇ -diketone, a first additive gas, and a second additive gas, wherein the first additive gas is NO, and the second additive gas is at least one selected from the group consisting of O 2 and NO 2
  • a dry etching method characterized by: [5] The dry etching method according to [4] above, wherein the temperature of the film to be etched is 250° C. or more and 400° C. or less when the etching gas is brought into contact with the film to be etched.
  • the metal or oxide of the metal is selected from the group consisting of Group 4 metals, Group 12 metals, Group 13 metals, Group 14 metals and oxides of these metals.
  • the dry etching method according to any one of the above [4] to [8], which is at least one.
  • the above [4] wherein the metal or oxide of the metal is at least one selected from the group consisting of Hf, Zr, Ti, Ga, Al, In, Zn, and oxides of these metals.
  • the metal oxide is at least one selected from the group consisting of hafnium oxide, zirconium oxide, titanium oxide, gallium oxide, aluminum oxide, indium oxide, and zinc oxide.
  • the dry etching method according to any one of [4] to [10] above.
  • the film to be etched includes a hafnium oxide film, a zirconium oxide film, a titanium oxide film, a gallium oxide film, an aluminum oxide film, an indium oxide film, a zinc oxide film, a hafnium metal film, and a zirconium metal film.
  • the pressure in a processing container in which the object to be processed on which the film to be etched is formed is placed is in the range of 0.1 kPa to 101.3 kPa. , the dry etching method according to any one of the above [4] to [14].
  • the metal oxide is at least one selected from the group consisting of hafnium oxide, zirconium oxide, titanium oxide, gallium oxide, aluminum oxide, indium oxide, and zinc oxide.
  • the cleaning method according to any one of [16] to [19] above.
  • a method of manufacturing a semiconductor device comprising the step of reacting an etching gas with a film to be etched containing a metal or an oxide of the metal on a substrate to etch without plasma, wherein the etching gas is ⁇ -diketone, a first additive gas and a second additive gas, wherein the first additive gas is NO and the second additive gas is at least one selected from the group consisting of O 2 and NO 2
  • the film to be etched includes a hafnium oxide film, a zirconium oxide film, a titanium oxide film, a gallium oxide film, an aluminum oxide film, an indium oxide film, a zinc oxide film, a hafnium metal film, and a zirconium metal film.
  • a mounting unit provided in a heatable processing container for mounting an object to be processed on which a film to be etched containing a metal or an oxide of the above metal is formed; a ⁇ -diketone supply unit for supplying a ⁇ -diketone to the interior, a first additive gas supply unit for supplying a first additive gas into the processing vessel, and a second additive gas supply unit for supplying a second additive gas into the processing vessel , wherein the first additive gas is NO, and the second additive gas is at least one selected from the group consisting of O2 and NO2.
  • the etching apparatus according to [23] above, further comprising an inert gas supply unit for supplying an inert gas into the processing container.
  • the film to be etched includes a hafnium oxide film, a zirconium oxide film, a titanium oxide film, a gallium oxide film, an aluminum oxide film, an indium oxide film, a zinc oxide film, a hafnium metal film, and a zirconium metal film.
  • Example 1 Using the etching apparatus 100 shown in FIG. 1, a hafnium oxide (HfO 2 ) film (shape 1 cm ⁇ 1 cm, thickness 220 nm) formed on the surface of a silicon wafer (shape 1 cm ⁇ 1 cm, thickness 1000 ⁇ m) was etched. Etching was performed on the object to be processed 112 having a film.
  • HfO 2 hafnium oxide
  • the insides of the processing container 110, the pipes 121 and 122, the pipes 133, 143, 153, 163, 173, and the liquid nitrogen trap 181 were evacuated to less than 10 Pa.
  • the object to be processed 112 mounted on the mounting section 111 was heated by the heating means 180 and the heater arranged inside the mounting section 111 .
  • gaseous hexafluoroacetylacetone (HFAc) is supplied from the ⁇ -diketone supply unit 130, NO gas is supplied from the NO gas supply unit 140, and O 2 gas supply unit 150. and O 2 gas at a predetermined flow rate to the pipe 133, the pipe 143, and the pipe 153, respectively.
  • the introduction of the etching gas was stopped.
  • the inside of the processing chamber 110 was evacuated to less than 10 Pa and replaced with N 2 gas supplied from the inert gas supply unit 170, and then the object to be processed 112 was taken out, the film thickness was measured, and the etching rate was evaluated. Table 1 shows the results.
  • Examples 1 to 16 including Examples 2 to 16 below a dry etching method was employed in which etching gas A or etching gas B below was brought into contact with the film to be etched.
  • etching gas A or etching gas B below was brought into contact with the film to be etched.
  • Comparative Examples 1, 2, 6, 7, 12, 13, 17, 18, 23, 24, 28 and 29, the following etching gas C was brought into contact with the film to be etched, and Comparative Examples 4, 8 to 10, 15, 19 to 21, 26 and 31, the following etching gas D was brought into contact with the film to be etched; in Comparative Examples 3, 14, 25 and 30, the following etching gas E was brought into contact with the film to be etched;
  • the following etching gas F was brought into contact with the film to be etched.
  • Etching gas A HFAc, NO and O2 Etching gas
  • B HFAc , NO and NO2 Etching gas
  • C HFAc and NO Etching gas
  • D HFAc and NO2 Etching gas
  • E HFAc and O2 Etching gas
  • F HFAc , O2 and NO2
  • NO 2 gas was supplied from the NO 2 gas supply unit 160 to the pipe 163 and introduced into the processing chamber 110 together with HFAc and NO.
  • HFAc was supplied at 10 sccm as the ⁇ -diketone in all examples and comparative examples.
  • Example 2 Comparative Examples 1 to 5
  • Table 1 shows the type of additive gas, the flow rate of each additive gas, the pressure in the processing container, the temperature during etching, and the etching rate in the etching described above. Differences between Example 1 and Example 2 and Comparative Examples 1 to 5 will be described.
  • Example 2 the flow rate of the additive gas NO was changed, and NO 2 was supplied at 5 sccm instead of O 2 .
  • Comparative Examples 1 and 2 only NO was used as the additive gas, in Comparative Example 3, only O2 was used as the additive gas, in Comparative Example 4 , only NO2 was used as the additive gas, and in Comparative Example 5, both O2 and NO2 were used. used as an additive gas.
  • the same operation as in Example 1 was performed, and the etching rate of the film to be etched was evaluated. Table 1 shows the results.
  • Examples 3-12, Comparative Examples 6-22 A 220 nm-thickness zirconium oxide (ZrO 2 ) film, a 60 nm-thickness titanium oxide (TiO 2 ) film, or a 90 nm-thickness oxide film formed on the surface of a silicon wafer using the etching apparatus 100 shown in FIG.
  • An object to be processed having an etching target film made of a gallium (Ga 2 O 3 ) film was etched.
  • the material of the film to be etched, the film thickness of the film to be etched, the type and flow rate of the additive gas in etching, the pressure in the processing chamber, and the temperature of the object 112 to be processed during etching were changed as shown in Table 1. , the same operation as in Example 1 was performed, and the etching rate of the film to be etched was evaluated. Table 1 shows the results.
  • etching gas C which is a mixed gas of HFAc and NO
  • the etching gas E which is a mixed gas of HFAc and O 2
  • etching gas A which is a mixed gas of HFAc , NO and O2
  • etching gas B which is a mixed gas of HFAc , NO and NO2 can etch an HfO2 film.
  • etching gas D which is a mixed gas of HFAc and NO 2
  • etching gas B has an etching rate of 0.3 nm/min. is 2.8 nm/min, and it was found that the addition of NO to the mixed gas of HFAc and NO 2 dramatically improves the etching rate of the HfO 2 film. This was an unexpected result considering that the mixed gas of HFAc and NO cannot etch the HfO 2 film.
  • the etching gas D cannot etch the ZrO 2 film, whereas the etching gas B does not etch the ZrO 2 film. It was found that ZrO2 films could be etched. Further, when comparing Comparative Examples 8 and 11, the etching rate of the ZrO 2 film at 350° C. with the etching gas D was 1.9 nm/min, while the etching rate with the etching gas F was 1.6 nm/min. It was found that the addition of O2 to the mixed gas of HFAc and NO2 reduces the etching rate of the ZrO2 film.
  • the etching rate of the TiO 2 film was 0.4 nm/min with the etching gas D, which is a mixed gas of HFAc and NO 2
  • the etching rate with the etching gas F was 0.4 nm/min. is 0.1 nm/min, and it was found that the addition of O 2 to the mixed gas of HFAc and NO 2 reduces the etching rate of the TiO 2 film.
  • the Ga 2 O 3 film could not be etched with the etching gas D, whereas the etching gas D could not etch the Ga 2 O 3 film. It was found that B can etch a Ga 2 O 3 film. Further, comparing Comparative Examples 19 and 22, the etching rate of the Ga 2 O 3 film at 350° C. with the etching gas D was 7.1 nm/min, while the etching rate with the etching gas F was 2.0 nm/min. 6 nm/min, and it was found that the addition of O 2 to the mixed gas of HFAc and NO 2 reduces the etching rate of the Ga 2 O 3 film.
  • Examples 13-16 Comparative Examples 23-32
  • a film to be etched made of indium oxide with a thickness of 90 nm or an indium-gallium-zinc oxide (InGaZnO 4 ) film with a thickness of 100 nm formed on the surface of a silicon wafer using the etching apparatus 100 shown in FIG. was etched.
  • the same operation as in Example 1 was performed except that the material of the film to be etched, the type and flow rate of the etching gas, the pressure in the processing chamber, and the temperature of the object to be processed during etching were changed as shown in Table 2. , the etching rate of the film to be etched was measured. Table 2 shows the results.
  • etching gas D which is a mixed gas of HFAc and NO 2
  • etching gas F has an etching rate of 0.5 nm/min.
  • the etching rate was 0.3 nm/min, and it was found that the addition of O 2 to the mixed gas of HFAc and NO 2 reduces the etching rate of the In 2 O 3 film.
  • Etching device 110 Processing container 111
  • Mounting unit 112 Objects to be processed 121, 122, 124 Piping 123 Vacuum pump 130 ⁇ -diketone supply units 131, 133 Piping 140 NO gas supply unit (first additive gas supply unit) 141, 143 Piping 150 O 2 gas supply unit (second additive gas supply unit) 151, 153 Piping 160 NO 2 gas supply unit (second additive gas supply unit) 161, 163 Piping 170 Inert gas supply parts 171, 173 Piping 180

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本開示の目的は、金属酸化物又は金属をプラズマレスで、かつ低温で除去することが可能なガス組成物による表面処理方法を提供することである。 本開示は、被処理体の表面にガスを接触させる表面処理方法であって、上記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO2及びNO2からなる群から選択される少なくとも1種であることを特徴とする表面処理方法である。

Description

表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
本開示は、表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置に関する。
半導体デバイスの微細化に伴い、ゲート絶縁膜の薄膜化が進んでおり、リーク電流の増加が問題となっている。そこで、リーク電流低減のためHfOなどの高誘電率材料の適用が検討されており、その過程で難エッチング材であるHfOをエッチングする工程が必要となっている。
特許文献1には、処理容器内の付着物(HfO等)を取り除くクリーニング方法に関して、β-ジケトン、O、N、及びHOを含む第1のクリーニングガスで処理し、クリーニングできない残留物に対してFラジカル及びArイオンを含むプラズマを用いてクリーニングする手法が開示されている。
特許文献2には、MOSトランジスタなどの製法に関して、基板上に形成されたAl、Zr、Hf、Y、La、Ce、及びPrの少なくともいずれかを含んでいる金属膜及び金属酸化膜をエッチングする方法において、基板の損傷を低減させるためにβ-ジケトンを含むエッチングガスを用いることが記載されており、実施例には、ウェハの温度を約450℃としてヘキサフルオロアセチルアセトンガスに酸素を加えてHfO膜をエッチングする方法が開示されている。
特開2005-101361号公報 特開2004-91829号公報
このように半導体デバイスの回路パターンの微細化に対応して、高誘電率材料をゲート絶縁膜として用いる技術が開発されているが、ハフニウム酸化物などの高誘電率材料の多くは難エッチング材である。
特許文献1に記載の発明では、HfOのエッチングにおいて高いエッチレートを得るためには、380~420℃という高温でエッチングを行う必要がある。
特許文献2に記載の発明では、エッチングガスに酸素の他に水及びアルコールの少なくともいずれかを含んでいることが好ましく、また、ウェハの温度が400℃以下の低温ではエッチングが進行しないことが開示されている。すなわち、特許文献2の図9からは、ヘキサフルオロアセチルアセトンと酸素の混合ガスの場合は、ウェハの温度が400℃以下ではエッチングが進行しないことが分かる。
ウェハの温度が400℃を超える温度にてエッチング工程を行う場合、半導体デバイスへのダメージが大きいため、400℃以下、より好ましくは350℃以下の低温でハフニウム酸化物等をエッチングできる方法が望まれていた。
本開示は、上記した課題に鑑み、金属酸化物又は金属をプラズマレスで、かつ低温で除去することが可能なガス組成物による表面処理方法を提供することを目的とする。さらに、本開示は、上記表面処理方法を用いたドライエッチング方法、クリーニング方法などを提供することを目的とする。
本発明者らは、鋭意検討の結果、β-ジケトンと、NOと、O及び/又はNOとを含む混合ガスを用いることにより、HfO等の安定性に優れた材料を低温でかつ、高い速度で除去できることを見出し、本開示を完成させるに至った。
具体的には、本開示の表面処理方法は、被処理体の表面にガスを接触させる表面処理方法であって、上記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
本開示のドライエッチング方法は、被処理体の表面に形成された金属又は上記金属の酸化物を含む被エッチング膜にエッチングガスを接触させて、プラズマ状態を伴わずにエッチングするドライエッチング方法であって、上記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
本開示のクリーニング方法は、基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してガスを接触させることにより、該付着物を取り除くクリーニング方法であって、上記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
本開示の半導体デバイスの製造方法は、基板上の金属又は上記金属の酸化物を含む被エッチング膜にエッチングガスを反応させて、プラズマ状態を伴わずにエッチングする工程を備える半導体デバイスの製造方法であって、上記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
本開示のエッチング装置は、加熱可能な処理容器内に設けられ、金属又は上記金属の酸化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、β-ジケトンを上記処理容器内に供給するβ-ジケトン供給部と、第一添加ガスを上記処理容器内に供給する第一添加ガス供給部と、第二添加ガスを上記処理容器内に供給する第二添加ガス供給部と、を備え、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
本開示によれば、金属酸化物又は金属をプラズマレスで、かつ低温で除去することが可能なガス組成物による表面処理方法を提供することができる。
図1は、本開示の一実施形態に係るエッチング装置を模式的に示す概略図である。
以下、本開示の実施形態について具体的に説明する。
しかしながら、本開示は、以下の実施形態に限定されるものではなく、本開示の要旨を変更しない範囲において適宜変更して適用することができる。
[表面処理方法]
本開示の表面処理方法は、被処理体の表面にガスを接触させる表面処理方法であって、上記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
本開示の表面処理方法は、被処理体の表面に存在する材料を被処理体の表面から除去する方法として好適である。
上記材料としては、例えば金属又は上記金属の酸化物が挙げられる。金属又は上記金属の酸化物は、第4族の金属、第12族の金属、第13族の金属、第14族の金属及びこれらの金属の酸化物からなる群から選択される少なくとも1種であることが望ましい。
上記金属又は上記金属の酸化物は、Hf(ハフニウム)、Zr(ジルコニウム)、Ti(チタン)、Ga(ガリウム)、Al(アルミニウム)、In(インジウム)、Zn(亜鉛)及びこれらの金属の酸化物(ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、ガリウム酸化物、アルミニウム酸化物、インジウム酸化物、亜鉛酸化物)からなる群から選択される少なくとも1種であることがより望ましい。上記材料は、上記した単独の金属又は金属酸化物であってもよく、上記金属を2種以上含む合金又は合金の酸化物であってもよい。
上記ハフニウム酸化物としては、酸化ハフニウム(HfO(xは1以上3以下)、特にHfO)、酸化ケイ素ハフニウム、酸化アルミニウムハフニウム、酸化ジルコニウムハフニウム等が挙げられる。酸化ケイ素ハフニウムとしては、Hf1-kSi、Hf1-kSiが挙げられ、酸化アルミニウムハフニウムとしては、Hf1-kAl、Hf1-kAlが挙げられる。ただし、k、y、z、m、nは0<k<1、0<y≦2、0<z≦1.33、0<m≦1.5、0<n≦1を示す。
酸化ジルコニウムハフニウムとしては、HfZrO(xは1以上3以下)、特にHfZrOが挙げられる。
ジルコニウム酸化物としては、酸化ジルコニウム(ZrO(uは1以上3以下)、特にZrO)が挙げられる。
チタン酸化物としては、酸化チタン(TiO(wは1以上3以下)、特にTiO)が挙げられる。
ガリウム酸化物としては、酸化ガリウム(GaO(pは1以上2以下)、特にGa)が挙げられる。
アルミニウム酸化物としては、酸化アルミニウム(AlO(vは1以上2以下)、特にAl)が挙げられる。
インジウム酸化物としては、酸化インジウム(InO(qは1以上2以下)、特にIn)、酸化インジウムガリウム亜鉛(InGaZn3+t(tは0.5以上4以下)、特にInGaZnO)が挙げられる。
亜鉛酸化物としては、酸化亜鉛(ZnO)が挙げられる。
上記金属又は上記金属の酸化物の一例として、更にSn(スズ)及び酸化スズ(SnO)が挙げられる。上記材料の一例として、酸化インジウム(In)と酸化スズ(SnO)の混合物(ITO)も挙げられる。
β-ジケトンの種類は、特に限定されないが、例えば、ヘキサフルオロアセチルアセトン(HFAc、1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオン)、トリフルオロアセチルアセトン(1,1,1-トリフルオロ-2,4-ペンタンジオン)、アセチルアセトン(2,4-ペンタンジオン)等が挙げられる。β-ジケトンとして、1種の化合物を用いてもよいし、2種以上の化合物を用いてもよい。
上記ガス中に含まれるβ-ジケトンの量は、10体積%以上90体積%以下であることが好ましい。ガス中にβ-ジケトンが少なすぎると、反応速度が低下する傾向にあり、多すぎるとガスが高価になりすぎてしまう。より好ましくは20体積%以上80体積%以下、さらに好ましくは30体積%以上70体積%以下である。
本開示の表面処理方法において、β-ジケトンに対する添加ガスとして第一添加ガスと第二添加ガスとを含む。上記第一添加ガスがNO(一酸化窒素)であり、上記第二添加ガスがO(酸素)及びNO(二酸化窒素)からなる群から選ばれる少なくとも1種である。本開示の表面処理方法において用いるガスとしては、β-ジケトンとNOとOを含むガス、β-ジケトンとNOとNOを含むガス、又は、β-ジケトンとNOとOとNOを含むガスが挙げられる。
上記ガス中に含まれる第一添加ガスの量は、0.1体積%以上50体積%以下であることが好ましい。ガス中の第一添加ガスが少なすぎても多すぎても反応が進みにくくなってしまう。より好ましくは3体積%以上45体積%以下である。
上記ガス中に含まれる第二添加ガスの量は、5体積%以上40体積%以下であることが好ましい。ガス中の第二添加ガスが少なすぎても多すぎても反応が進みにくくなってしまう。より好ましくは10体積%以上35体積%以下である。
上記ガスは、β-ジケトンと第一添加ガスと第二添加ガスのみからなっていてもよいが、NO、CO、CO、HO、H及びアルコールからなる群より選択される少なくとも1種の添加ガスをさらに含んでもよいし、N、Ar、He、Ne及びKrからなる群より選択される少なくとも1種の不活性ガスをさらに含んでもよい。また、アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコールなどを使用することができる。
ガスが第一添加ガスと第二添加ガス以外の添加ガスを含む場合、ガス中に含まれる第一添加ガスと第二添加ガスとそれ以外の添加ガスの合計の含有率は、10体積%以上90体積%以下とすることができる。
ガスが不活性ガスを含む場合、ガス中に含まれる不活性ガスの含有率は、1体積%以上80体積%以下であることが好ましく、10体積%以上70体積%以下であることがより好ましく、30体積%以上50体積%以下であることがさらに好ましい。
被処理体としては、半導体デバイス基板、基板処理装置の処理容器等が挙げられる。例えば被処理体が半導体デバイス基板である場合、被処理体の表面に存在する材料とは被エッチング膜等である。また、例えば被処理体が基板処理装置の処理容器である場合、被処理体の表面に存在する材料とは、被エッチング膜のエッチングにより処理容器の内側表面に堆積した付着物等である。
本開示の表面処理方法では、プラズマ状態であるガスを被処理体の表面に接触させてもよいし、プラズマ状態を伴わずにガスを被処理体の表面に接触させてもよいが、プラズマ状態を伴わずに被処理体の表面にガスを接触させることが好ましい。被処理体が半導体デバイス基板である場合、プラズマガスを接触させると、プラズマガスに起因する電気的ダメージを基板に与えてしまうおそれがあるからである。
被処理体の表面にガスを接触させる際の被処理体の表面温度は特に限定されず、例えば250℃以上、400℃以下である。被処理体の温度は、実質的に被処理体の表面に存在する材料の温度に等しい。加熱した状態の該材料にβ-ジケトンと第一添加ガスと第二添加ガスとを含むガスを接触させると、ガスと上記金属又は上記金属の酸化物とが反応して、該材料の表面に錯体を生成する。この錯体は蒸気圧が高いため、錯体が気化することにより該材料を除去することができる。
[ドライエッチング方法]
上述した本開示の表面処理方法は、被処理体の表面に形成されたハフニウム酸化物膜やハフニウム金属等に所定のパターンを形成するためのドライエッチング方法として使用可能である。本開示のドライエッチング方法は、被処理体の表面に形成された金属又は上記金属の酸化物を含む被エッチング膜にエッチングガスを接触させて、プラズマ状態を伴わずにエッチングするドライエッチング方法であって、上記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
被エッチング膜に含まれる上記金属又は上記金属の酸化物は、表面処理方法について上述したものであることが望ましい。
さらに金属又は上記金属の酸化物を含む被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種であることが望ましい。
上記の被エッチング膜は、上記した単独の金属又は金属酸化物の膜であってもよく、上記金属を2種以上含む合金又は合金の酸化物の膜であってもよい。
本開示のドライエッチング方法によれば、温度が400℃以下、さらには350℃以下であっても、上記した金属又は上記金属の酸化物を含む難エッチング性の被エッチング膜を、プラズマ状態を伴わずにエッチングすることが可能なドライエッチング方法を提供することができる。
β-ジケトンの一種であるヘキサフルオロアセチルアセトン(以下、HFAcともいう)の分解温度は375℃であるため、特許文献2に記載されているようなエッチング温度が400℃を超える温度である場合、HFAcの分解が生じ、エッチング対象である被エッチング膜上に炭素成分が堆積し、その後のプロセスにおいて、不都合が発生することが充分に想定される。
一方、本開示のドライエッチング方法では、β-ジケトンとNOと、さらにO及び/又はNOとを含むエッチングガスを用いることにより、エッチング温度を375℃以下まで低下させることができるため、β-ジケトンの分解による炭素膜の形成を抑制することができる。さらに本開示のドライエッチング方法では、従来のドライエッチング方法と比較してエッチング速度を向上させる効果を奏する。
本開示のドライエッチング方法において、被処理体としては、シリコン基板、化合物半導体基板、石英基板、ガラス基板等を挙げることができる。被処理体の表面には、上記金属又は上記金属の酸化物を含む膜以外に、シリコン膜、シリコン酸化物膜、シリコン窒化物膜、上記金属以外の金属配線膜などが形成されていてもよい。被処理体は、例えば後述のエッチング装置の載置部に載置され、載置部を加熱することで、被処理体、及び、被処理体の表面に形成された上記金属又は上記金属の酸化物を含む被エッチング膜が加熱される。
被処理体表面への被エッチング膜の形成方法は特に限定されないが、例えば、化学的気相成長(CVD)法や、スパッタリング法を挙げることができる。また、上記金属又は上記金属の酸化物を含む被エッチング膜の厚さも特に限定されないが、例えば、0.1nm以上1μm以下の厚さとすることができる。
本開示のドライエッチング方法で用いるエッチングガスは、上述の表面処理方法で用いるガスと同じものである。
[エッチング装置]
本開示のドライエッチング方法は、例えば、下記のエッチング装置を使用することにより実現することができる。このようなエッチング装置も、本開示の1つである。
本開示のエッチング装置は、加熱可能な処理容器内に設けられ、金属又は上記金属の酸化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、β-ジケトンを上記処理容器内に供給するβ-ジケトン供給部と、第一添加ガスを上記処理容器内に供給する第一添加ガス供給部と、第二添加ガスを上記処理容器内に供給する第二添加ガス供給部と、を備え、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。本開示のエッチング装置は、不活性ガスを上記処理容器内に供給する不活性ガス供給部を、さらに備えていてもよい。
図1は、本開示の一実施形態に係るエッチング装置を模式的に示す概略図である。
図1に示すエッチング装置100は、金属又は上記金属の酸化物を含む被エッチング膜が表面に形成された被処理体112を配置する処理容器110と、処理容器110に接続して気体のβ-ジケトンを処理容器110内に供給するβ-ジケトン供給部130と、気体のNOを処理容器110内に供給するNOガス供給部(第一添加ガス供給部)140と、気体のOを処理容器110内に供給するOガス供給部(第二添加ガス供給部)150と、気体のNOを処理容器110内に供給するNOガス供給部(第二添加ガス供給部)160と、不活性ガスを供給する不活性ガス供給部170と、処理容器110を加熱する加熱手段180と、を備える。なお、エッチング装置100は、不活性ガス供給部170を備えていなくてもよい。
さらにエッチング装置100は、図示しない制御部を備えている。この制御部は、例えばコンピュータからなり、プログラム、メモリ、CPUを備えている。プログラムは、本発明のエッチング方法における一連の動作を実施するようにステップ群が組み込まれており、プログラムに従って、被処理体112の温度の調整、各供給部のバルブの開閉、各ガスの流量の調整、処理容器110内の圧力の調整などを行う。このプログラムは、コンピュータ記憶媒体、例えばコンパクトディスク、ハードディスク、光磁気ディスク、メモリーカード等に収納され制御部にインストールされる。
処理容器110は、被処理体112を載置するための載置部111を具備する。処理容器110は、使用するβ-ジケトン等のガスに対する耐性があり、加熱可能で、所定の圧力に減圧できるものであれば特に限定されるものではないが、通常、半導体のエッチング装置に備えられた一般的な処理容器などが適用される。また、エッチングガスを供給する供給管やその他の配管などもβ-ジケトン等のガスに対する耐性にあるものであれば特に限定されるものではなく一般的なものを使用することができる。
β-ジケトン供給部130は、バルブV1及びV2と流量調整手段MFC1で供給量を調整して、β-ジケトンを配管131及び133から配管121に供給する。
NOガス供給部140は、バルブV3及びV4と流量調整手段MFC2で供給量を調整して、NOを配管141及び143から配管121に供給する。
ガス供給部150は、バルブV5及びV6と流量調整手段MFC3で供給量を調整して、Oを配管151及び153から配管121に供給する。
NOガス供給部160は、バルブV7及びV8と流量調整手段MFC4で供給量を調整して、NOを配管161及び163から配管121に供給する。
不活性ガス供給部170は、バルブV9及びV10と流量調整手段MFC5で供給量を調整して、不活性ガスを配管171及び173から配管121に供給する。
処理容器110の外部には、処理容器110を加熱する加熱手段180が配設される。また、載置部111の内部には、第2の加熱手段として、ヒーター(図示せず)を備えてもよい。なお、複数の載置部を処理容器110に配置する場合は、載置部毎にヒーターを備えることにより、それぞれの載置部上の被処理体の温度を個別に所定の温度に設定することができる。
処理容器110の一方には、反応後のガスを排出するためのガス排出手段が配設される。ガス排出手段の真空ポンプ123により、配管122を介して処理容器110から反応後のガスが排出される。反応後のガスは、配管122と配管124との間に配設された液体窒素トラップ181により回収される。配管122及び124には、バルブV11及びV12を配設して、圧力を調整することができる。また、図1中、PI1及びPI2は、圧力計であり、その指示値を基に、制御部が各流量調整手段及び各バルブを制御することができる。
本開示のエッチング装置で処理可能な被エッチング膜は、例えばドライエッチング方法について上述した被エッチング膜と同じもの等が挙げられる。
このエッチング装置100を例として、具体的にエッチング方法を説明する。
[上記エッチング装置を用いたドライエッチング方法]
本開示のドライエッチング方法では、β-ジケトンとNOとOを含むエッチングガス、β-ジケトンとNOとNOを含むエッチングガス、又は、β-ジケトンとNOとOとNOを含むエッチングガスを被エッチング膜と接触させる。
ドライエッチング方法では、まず、金属又は上記金属の酸化物を含む被エッチング膜が形成された被処理体112を処理容器110内に配置する。次に、真空ポンプ123により、処理容器110、配管121、配管131及び133、配管141及び143、配管151及び153、配管161及び163、配管171及び173、液体窒素トラップ181、配管122及び124の内部を所定の圧力まで真空排気後、加熱手段180により、被処理体112を加熱する。
被処理体112が所定の温度に到達したら、β-ジケトン供給部130とNOガス供給部140とOガス供給部150とからβ-ジケトンとNOガスとOガスを所定の流量で配管121に供給するか、β-ジケトン供給部130とNOガス供給部140とNOガス供給部160とからβ-ジケトンとNOガスとNOガスを所定の流量で配管121に供給するか、又はβ-ジケトン供給部130とNOガス供給部140とOガス供給部150とNOガス供給部160とからβ-ジケトンとNOガスとOガスとNOガスを所定の流量で配管121に供給する。なお、不活性ガス供給部170から不活性ガスを所定の流量で配管121に供給してもよい。
β-ジケトンとNOとO、β-ジケトンとNOとNO、又は、β-ジケトンとNOとOとNOは所定の組成で混合され、処理容器110に供給される。混合されたエッチングガスを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、エッチングガスと金属又は上記金属の酸化物を含む被エッチング膜とを反応させることにより、錯体を形成させ、エッチングを行う。このエッチング方法では、プラズマ状態を伴わないプラズマレスでエッチング可能であり、エッチングの際、プラズマ等でのエッチングガスの励起は不要である。エッチングガスの流量は、処理容器の容積と圧力などに基づいて適宜設定することができる。
なお、プラズマ状態を伴うエッチングとは、反応装置の内部に、例えば、0.01~1.33kPa程度のガス等を入れ、外側のコイルあるいは対向電極に高周波電力を与えて反応装置中に低温のガスプラズマを発生させ、その中にできるイオンやラジカルなど活性化学種によりエッチングを行うことをいう。
本開示のドライエッチング方法では、ガスを、プラズマ状態を伴わずに接触させ、上記したガスプラズマを発生させることなく、ドライエッチングを行う。
エッチング工程が終了した後、加熱手段180による加熱を停止し降温するとともに、真空ポンプ123を停止し、不活性ガスで置換して真空を開放する。以上のように、上記エッチング装置を用いたドライエッチング方法により、上記金属又は上記金属の酸化物を含む被エッチング膜のエッチングを行うことができる。
(本開示のドライエッチング方法におけるエッチング条件)
本開示のドライエッチング方法において、エッチング工程を行う際の被エッチング膜の温度は、錯体が気化可能な温度であればよく、特に、除去対象の被エッチング膜の温度が、250℃以上400℃以下であることが好ましく、275℃以上375℃以下であることがより好ましく、275℃以上350℃以下であることがさらに好ましい。
また、エッチング工程における処理容器内の圧力は、特に限定されないが、通常、0.1kPa以上101.3kPa以下の圧力範囲である。
充分なエッチング速度を得る観点から、エッチング工程における処理容器内の圧力は、2.67kPa以上39.9kPa以下であることが好ましく、2.67kPa以上26.7kPa以下であることがより好ましい。
エッチング工程の処理時間は、特に限定されないが、半導体デバイス製造プロセスの効率を考慮すると、60分以内であることが好ましい。ここで、エッチング工程の処理時間とは、被処理体が設置されている処理容器内にエッチングガスを導入し、その後、エッチング処理を終えるために処理容器内のエッチングガスを真空ポンプ等により排気するまでの時間を指す。
[半導体デバイスの製造方法]
上述した本開示のドライエッチング方法は、従来の半導体デバイスのハフニウム酸化物膜やハフニウム金属等に所定のパターンを形成するためのエッチング方法として使用可能である。本開示のドライエッチング方法を用いて基板上のハフニウム酸化物膜やハフニウム金属等をエッチングすることにより、半導体デバイスを安価に製造することができる。
本開示の半導体デバイスの製造方法は、基板上の金属又は上記金属の酸化物を含む被エッチング膜にエッチングガスを反応させて、プラズマ状態を伴わずにエッチングする工程を備える半導体デバイスの製造方法であって、上記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
上記被エッチング膜にエッチングガスを反応させて、プラズマ状態を伴わずにエッチングする工程は、上述した本開示のドライエッチング方法により行うことができる。
[クリーニング方法]
上述した本開示の表面処理方法は、基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物を取り除くためのクリーニング方法として使用可能である。本開示のクリーニング方法を用いて処理容器内の付着物を取り除くことにより、ハフニウム酸化物膜やハフニウム金属等の安定性に優れた材料も取り除くことができる。
本開示のクリーニング方法は、基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してガスを接触させることにより、該付着物を取り除くクリーニング方法であって、前記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、前記第一添加ガスがNOであり、前記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする。
上記基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してガスを接触させる条件や手順、付着物は、上述した表面処理方法において、被処理体の表面にガスを接触させる条件や手順、被処理体の表面に存在する材料と同様である。
本開示のクリーニング方法では、プラズマ状態であるガスを該付着物に接触させてもよいし、プラズマ状態を伴わずにガスを該付着物に接触させてもよい。ガスを接触させる際の付着物の温度は特に限定されず、例えば250℃以上、400℃以下である。
なお、本明細書には以下の発明が開示されている。
〔1〕被処理体の表面にガスを接触させる表面処理方法であって、上記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする表面処理方法。
〔2〕上記ガスを、プラズマ状態を伴わずに被処理体の表面に接触させる、上記〔1〕に記載の表面処理方法。
〔3〕上記被処理体の表面に存在する金属又は金属の酸化物に上記ガスを接触させる、上記〔1〕又は〔2〕に記載の表面処理方法。
〔4〕被処理体の表面に形成された、金属又は上記金属の酸化物を含む被エッチング膜にエッチングガスを接触させて、プラズマ状態を伴わずにエッチングするドライエッチング方法であって、上記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とするドライエッチング方法。
〔5〕上記エッチングガスを上記被エッチング膜と接触させる際の上記被エッチング膜の温度が、250℃以上400℃以下である、上記〔4〕に記載のドライエッチング方法。
〔6〕上記エッチングガスに含まれるβ-ジケトンの量が10体積%以上90体積%以下である、上記〔4〕又は〔5〕に記載のドライエッチング方法。
〔7〕上記エッチングガスに含まれる第一添加ガスの量が0.1体積%以上50体積%以下である、上記〔4〕~〔6〕のいずれかに記載のドライエッチング方法。
〔8〕上記エッチングガスに含まれる第二添加ガスの量が5体積%以上40体積%以下である、上記〔4〕~〔7〕のいずれかに記載のドライエッチング方法。
〔9〕上記金属又は上記金属の酸化物が、第4族の金属、第12族の金属、第13族の金属、第14族の金属及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、上記〔4〕~〔8〕のいずれかに記載のドライエッチング方法。
〔10〕上記金属又は上記金属の酸化物が、Hf、Zr、Ti、Ga、Al、In、Zn、及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、上記〔4〕~〔9〕のいずれかに記載のドライエッチング方法。
〔11〕上記金属の酸化物が、ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、ガリウム酸化物、アルミニウム酸化物、インジウム酸化物、及び亜鉛酸化物からなる群より選ばれる少なくとも1種である、上記〔4〕~〔10〕のいずれかに記載のドライエッチング方法。
〔12〕上記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種である上記〔4〕~〔11〕のいずれかに記載のドライエッチング方法。
〔13〕上記β-ジケトンが、ヘキサフルオロアセチルアセトン、トリフルオロアセチルアセトン及びアセチルアセトンからなる群より選択される少なくとも1種である、上記〔4〕~〔12〕のいずれかに記載のドライエッチング方法。
〔14〕上記エッチングガスはN、Ar、He、Ne及びKrからなる群より選択される少なくとも1種の不活性ガスをさらに含む、上記〔4〕~〔13〕のいずれかに記載のドライエッチング方法。
〔15〕上記被エッチング膜に上記エッチングガスを接触させる際、上記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、上記〔4〕~〔14〕のいずれかに記載のドライエッチング方法。
〔16〕基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してガスを接触させることにより、該付着物を取り除くクリーニング方法であって、上記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とするクリーニング方法。
〔17〕上記付着物が、金属又は金属の酸化物である、上記〔16〕に記載のクリーニング方法。
〔18〕上記金属又は上記金属の酸化物が、第4族の金属、第12族の金属、第13族の金属、第14族の金属及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、上記〔16〕又は〔17〕に記載のクリーニング方法。
〔19〕上記金属又は上記金属の酸化物が、Hf、Zr、Ti、Ga、Al、In、Zn、及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、上記〔16〕~〔18〕のいずれかに記載のクリーニング方法。
〔20〕上記金属の酸化物が、ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、ガリウム酸化物、アルミニウム酸化物、インジウム酸化物、及び亜鉛酸化物からなる群より選ばれる少なくとも1種である、上記〔16〕~〔19〕のいずれかに記載のクリーニング方法。
〔21〕基板上の金属又は上記金属の酸化物を含む被エッチング膜にエッチングガスを反応させて、プラズマ状態を伴わずにエッチングする工程を備える半導体デバイスの製造方法であって、上記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする半導体デバイスの製造方法。
〔22〕上記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種である上記〔21〕に記載の半導体デバイスの製造方法。
〔23〕加熱可能な処理容器内に設けられ、金属又は上記金属の酸化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、β-ジケトンを上記処理容器内に供給するβ-ジケトン供給部と、第一添加ガスを上記処理容器内に供給する第一添加ガス供給部と、第二添加ガスを上記処理容器内に供給する第二添加ガス供給部と、を備え、上記第一添加ガスがNOであり、上記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とするエッチング装置。
〔24〕不活性ガスを上記処理容器内に供給する不活性ガス供給部を、さらに備える上記〔23〕に記載のエッチング装置。
〔25〕上記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種である上記〔23〕又は〔24〕に記載のエッチング装置。
以下、本開示をより具体的に開示した実施例を示す。なお、本開示は、これらの実施例のみに限定されるものではない。
(実施例1)
図1に示すエッチング装置100を用いて、シリコンウエハ(形状1cm×1cm、厚さ1000μm)の表面に形成された酸化ハフニウム(HfO)膜(形状1cm×1cm、膜厚220nm)からなる被エッチング膜を有する被処理体112のエッチングを行った。
処理容器110、配管121及び122、配管133、配管143、配管153、配管163、配管173、液体窒素トラップ181の内部を10Pa未満まで真空引きした。その後、加熱手段180及び載置部111の内部に配設したヒーターにより、載置部111に載置している被処理体112を加熱した。被処理体112の温度が350℃に達したことを確認後、β-ジケトン供給部130から気体のヘキサフルオロアセチルアセトン(HFAc)と、NOガス供給部140からNOガスと、Oガス供給部150からOガスとを所定の流量で配管133と、配管143と、配管153とにそれぞれ供給することで、エッチングガスを処理容器110内に導入しながら、処理容器110内の圧力を14.0kPaに制御し、エッチング工程を行った。被処理体112の温度は350℃とし、エッチングガスの流量は、HFAc=10sccm、NO=5sccm、O=2.5sccmとした。エッチングガスの導入を開始して10分が経過した後、エッチングガスの導入を停止した。その後、処理容器110の内部を10Pa未満まで真空引きし、不活性ガス供給部170から供給するNガスで置換した後に被処理体112を取り出し、膜厚を測定し、エッチング速度を評価した。結果を表1に示す。
なお、下記の実施例2~16を含む実施例1~16では、下記のエッチングガスA、又はエッチングガスBを被エッチング膜と接触させるドライエッチング方法を採用した。比較例1、2、6、7、12、13、17、18、23、24、28及び29では、下記のエッチングガスCを被エッチング膜と接触させ、比較例4、8~10、15、19~21、26及び31では下記のエッチングガスDを被エッチング膜と接触させ、比較例3、14、25及び30では下記のエッチングガスEを被エッチング膜と接触させ、比較例5、11、16、22、27及び32では下記のエッチングガスFを被エッチング膜と接触させた。
エッチングガスA:HFAc、NO及びO
エッチングガスB:HFAc、NO及びNO
エッチングガスC:HFAc及びNO
エッチングガスD:HFAc及びNO
エッチングガスE:HFAc及びO
エッチングガスF:HFAc、O及びNO
NOをエッチングガスに用いる場合、NOガス供給部160からNOガスを配管163に供給し、HFAcとNOと共に処理容器110内に導入した。
全ての実施例及び比較例で、β-ジケトンとしてHFAcを10sccmで供給した。
(実施例2、比較例1~5)
下記の表1には、上記したエッチングにおける添加ガスの種類、各添加ガスの流量、処理容器内の圧力、エッチング時の温度、及びエッチング速度を示した。
実施例1と実施例2及び比較例1~5との相違点を説明する。実施例2では、添加ガスであるNOの流量を変更し、Oの代わりにNOを5sccmで供給した。比較例1及び2ではNOのみを添加ガスとして用い、比較例3ではOのみを添加ガスとして用い、比較例4ではNOのみを添加ガスとして用い、比較例5ではO及びNOを添加ガスとして用いた。その他の点については、実施例1と同様の操作を行い、被エッチング膜のエッチング速度を評価した。結果を表1に示す。
(実施例3~12、比較例6~22)
図1に示すエッチング装置100を用いて、シリコンウエハの表面に形成された、膜厚220nmの酸化ジルコニウム(ZrO)膜、膜厚60nmの酸化チタニウム(TiO)膜、又は膜厚90nmの酸化ガリウム(Ga)膜からなる被エッチング膜を有する被処理体のエッチングを行った。
被エッチング膜の材料、被エッチング膜の膜厚、エッチングにおける添加ガスの種類と流量、処理容器内の圧力、及び、エッチング時の被処理体112の温度を表1に示すように変更した他は、実施例1と同様の操作を行い、被エッチング膜のエッチング速度を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1及び2と比較例1~3とを比較すると、HFAcとNOの混合ガスであるエッチングガスC又はHFAcとOの混合ガスであるエッチングガスEではHfO膜がエッチングできないのに対し、HFAcとNOとOの混合ガスであるエッチングガスA、HFAcとNOとNOの混合ガスであるエッチングガスBではHfO膜がエッチングできることがわかった。また、実施例2と比較例4を比較すると、HFAcとNOの混合ガスであるエッチングガスDではHfO膜のエッチング速度が0.3nm/minであるのに対し、エッチングガスBではエッチング速度が2.8nm/minであり、HFAcとNOの混合ガスにNOを添加することで、HfO膜のエッチング速度が飛躍的に向上することがわかった。これはHFAcとNOの混合ガスではHfO膜がエッチングできないことを考えると予想外の結果であった。また、比較例4と比較例5を比較すると、エッチングガスDではHfO膜のエッチング速度が0.3nm/minであるのに対し、エッチングガスFでもエッチング速度が0.3nm/minであり、HFAcとNOの混合ガスにOを添加しても、HfO膜のエッチングに対しては向上効果がないことがわかった。
実施例3~6と比較例6及び7とを比較すると、エッチングガスCではZrO膜がエッチングできないのに対し、エッチングガスA、エッチングガスBではZrO膜がエッチングできることがわかった。また、実施例4、5と比較例8、9とを比較すると、被処理体の温度を350℃又は300℃にしてエッチングガスを接触させた場合、HFAcとNOの混合ガスにNOを添加することで、ZrO膜のエッチング速度が飛躍的に向上することがわかった。
また、実施例6と比較例10とを比較すると、被処理体の温度を250℃にしてエッチングガスを接触させた場合、エッチングガスDではZrO膜がエッチングできないのに対し、エッチングガスBではZrO膜がエッチングできることがわかった。
また、比較例8と比較例11を比較すると、エッチングガスDでは350℃でのZrO膜のエッチング速度が1.9nm/minであるのに対し、エッチングガスFではエッチング速度が1.6nm/minであり、HFAcとNOの混合ガスにOを添加すると、ZrO膜のエッチング速度が小さくなることがわかった。
実施例7及び8と比較例12~14とを比較すると、エッチングガスC又はエッチングガスEではTiO膜がエッチングできないのに対し、エッチングガスA、エッチングガスBではTiO膜がエッチングできることがわかった。また、実施例8と比較例15を比較すると、エッチングガスDではTiO膜のエッチング速度が0.4nm/minであるのに対し、エッチングガスBではエッチング速度が0.7nm/minであり、HFAcとNOの混合ガスにNOを添加することで、TiO膜のエッチング速度が飛躍的に向上することがわかった。これはHFAcとNOの混合ガスではTiO膜がエッチングできないことを考えると予想外の結果であった。
また、比較例15と比較例16を比較すると、HFAcとNOの混合ガスであるエッチングガスDではTiO膜のエッチング速度が0.4nm/minであるのに対し、エッチングガスFではエッチング速度が0.1nm/minであり、HFAcとNOの混合ガスにOを添加すると、TiO膜のエッチング速度が小さくなることがわかった。
実施例9~12と比較例17及び18とを比較すると、エッチングガスCではGa膜がエッチングできないのに対し、エッチングガスA、エッチングガスBではGa膜がエッチングできることがわかった。また、実施例10、11と比較例19、20とを比較すると、被処理体の温度を350℃又は300℃にしてエッチングガスを接触させた場合、HFAcとNOの混合ガスにNOを添加することで、Ga膜のエッチング速度が飛躍的に向上することがわかった。
また、実施例12と比較例21とを比較すると、被処理体の温度を250℃にしてエッチングガスを接触させた場合、エッチングガスDではGa膜がエッチングできないのに対し、エッチングガスBではGa膜がエッチングできることがわかった。
また、比較例19と比較例22を比較すると、エッチングガスDでは350℃でのGa膜のエッチング速度が7.1nm/minであるのに対し、エッチングガスFではエッチング速度が2.6nm/minであり、HFAcとNOの混合ガスにOを添加すると、Ga膜のエッチング速度が小さくなることがわかった。
(実施例13~16、比較例23~32)
図1に示すエッチング装置100を用いて、シリコンウエハの表面に形成された、膜厚90nmの酸化インジウム、又は、膜厚100nmのインジウム-ガリウム-亜鉛酸化物(InGaZnO)膜からなる被エッチング膜を有する被処理体のエッチングを行った。
被エッチング膜の材料、エッチングガスの種類と流量、処理容器内の圧力、及び、エッチング時の被処理体の温度を表2に示すように変更した他は、実施例1と同様の操作を行い、被エッチング膜のエッチング速度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例13及び14と、比較例23~25とを比較すると、エッチングガスC又はエッチングガスEではIn膜がエッチングできないのに対し、エッチングガスA、エッチングガスBではIn膜がエッチングできることがわかった。また、実施例14と比較例26を比較すると、エッチングガスDではIn膜のエッチング速度が0.5nm/minであるのに対し、エッチングガスBではエッチング速度が1.5nm/minであり、HFAcとNOの混合ガスにNOを添加することで、In膜のエッチング速度が飛躍的に向上することがわかった。これはHFAcとNOの混合ガスではIn膜がエッチングできないことを考えると予想外の結果であった。
また、比較例26と比較例27を比較すると、HFAcとNOの混合ガスであるエッチングガスDではIn膜のエッチング速度が0.5nm/minであるのに対し、エッチングガスFではエッチング速度が0.3nm/minであり、HFAcとNOの混合ガスにOを添加すると、In膜のエッチング速度が小さくなることがわかった。
実施例15及び16と、比較例28~30とを比較すると、エッチングガスC又はエッチングガスEではInGaZnO膜がエッチングできないのに対し、エッチングガスA、エッチングガスBではInGaZnO膜がエッチングできることがわかった。また、実施例16と比較例31を比較すると、エッチングガスDではInGaZnO膜のエッチング速度が2.4nm/minであるのに対し、エッチングガスBではエッチング速度が5.8nm/minであり、HFAcとNOの混合ガスにNOを添加することで、InGaZnO膜のエッチング速度が飛躍的に向上することがわかった。これはHFAcとNOの混合ガスではInGaZnO膜がエッチングできないことを考えると予想外の結果であった。
また、比較例31と比較例32を比較すると、HFAcとNOの混合ガスであるエッチングガスDではInGaZnO膜のエッチング速度が2.4nm/minであるのに対し、エッチングガスFではエッチング速度が2.0nm/minであり、HFAcとNOの混合ガスにOを添加すると、InGaZnO膜のエッチング速度が小さくなることがわかった。
本願は、2021年4月28日に出願された日本国特許出願2021-075900号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
100 エッチング装置
110 処理容器
111 載置部
112 被処理体
121、122、124 配管
123 真空ポンプ
130 β-ジケトン供給部
131、133 配管
140 NOガス供給部(第一添加ガス供給部)
141、143 配管
150 Oガス供給部(第二添加ガス供給部)
151、153 配管
160 NOガス供給部(第二添加ガス供給部)
161、163 配管
170 不活性ガス供給部
171、173 配管
180 加熱手段
181 液体窒素トラップ
MFC1、MFC2、MFC3、MFC4、MFC5 流量調整手段
PI1、PI2 圧力計
V1、V2、V3、V4、V5、V6、V7、V8、V9、V10、V11、V12 バルブ

 

Claims (25)

  1. 被処理体の表面にガスを接触させる表面処理方法であって、
    前記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、
    前記第一添加ガスがNOであり、前記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする表面処理方法。
  2. 前記ガスを、プラズマ状態を伴わずに被処理体の表面に接触させる、請求項1に記載の表面処理方法。
  3. 前記被処理体の表面に存在する金属又は金属の酸化物に前記ガスを接触させる、請求項1又は2に記載の表面処理方法。
  4. 被処理体の表面に形成された、金属又は前記金属の酸化物を含む被エッチング膜にエッチングガスを接触させて、プラズマ状態を伴わずにエッチングするドライエッチング方法であって、
    前記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、
    前記第一添加ガスがNOであり、前記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とするドライエッチング方法。
  5. 前記エッチングガスを前記被エッチング膜と接触させる際の前記被エッチング膜の温度が、250℃以上400℃以下である、請求項4に記載のドライエッチング方法。
  6. 前記エッチングガスに含まれるβ-ジケトンの量が10体積%以上90体積%以下である、請求項4又は5に記載のドライエッチング方法。
  7. 前記エッチングガスに含まれる第一添加ガスの量が0.1体積%以上50体積%以下である、請求項4又は5に記載のドライエッチング方法。
  8. 前記エッチングガスに含まれる第二添加ガスの量が5体積%以上40体積%以下である、請求項4又は5に記載のドライエッチング方法。
  9. 前記金属又は前記金属の酸化物が、第4族の金属、第12族の金属、第13族、第14族の金属及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、請求項4又は5に記載のドライエッチング方法。
  10. 前記金属又は前記金属の酸化物が、Hf、Zr、Ti、Ga、Al、In、Zn、及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、請求項4又は5記載のドライエッチング方法。
  11. 前記金属の酸化物が、ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、ガリウム酸化物、アルミニウム酸化物、インジウム酸化物、及び亜鉛酸化物からなる群より選ばれる少なくとも1種である、請求項4又は5に記載のドライエッチング方法。
  12. 前記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種である請求項4又は5に記載のドライエッチング方法。
  13. 前記β-ジケトンが、ヘキサフルオロアセチルアセトン、トリフルオロアセチルアセトン及びアセチルアセトンからなる群より選択される少なくとも1種である、請求項4又は5に記載のドライエッチング方法。
  14. 前記エッチングガスはN、Ar、He、Ne及びKrからなる群より選択される少なくとも1種の不活性ガスをさらに含む、請求項4又は5に記載のドライエッチング方法。
  15. 前記被エッチング膜に前記エッチングガスを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、請求項4又は5に記載のドライエッチング方法。
  16. 基板処理装置の処理容器内の、該処理容器の表面に堆積した付着物に対してガスを接触させることにより、該付着物を取り除くクリーニング方法であって、
    前記ガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、
    前記第一添加ガスがNOであり、前記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とするクリーニング方法。
  17. 前記付着物が、金属又は金属の酸化物である、請求項16に記載のクリーニング方法。
  18. 前記金属又は前記金属の酸化物が、第4族の金属、第12族の金属、第13族の金属、第14族の金属及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、請求項16又は17に記載のクリーニング方法。
  19. 前記金属又は前記金属の酸化物が、Hf、Zr、Ti、Ga、Al、In、Zn、及びこれらの金属の酸化物からなる群から選択される少なくとも1種である、請求項16又は17に記載のクリーニング方法。
  20. 前記金属の酸化物が、ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、ガリウム酸化物、アルミニウム酸化物、インジウム酸化物、及び亜鉛酸化物からなる群より選ばれる少なくとも1種である、請求項16又は17に記載のクリーニング方法。
  21. 基板上の金属又は前記金属の酸化物を含む被エッチング膜にエッチングガスを反応させて、プラズマ状態を伴わずにエッチングする工程を備える半導体デバイスの製造方法であって、
    前記エッチングガスがβ-ジケトンと第一添加ガスと第二添加ガスとを含み、
    前記第一添加ガスがNOであり、前記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とする半導体デバイスの製造方法。
  22. 前記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種である請求項21に記載の半導体デバイスの製造方法。
  23. 加熱可能な処理容器内に設けられ、金属又は前記金属の酸化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、
    β-ジケトンを前記処理容器内に供給するβ-ジケトン供給部と、
    第一添加ガスを前記処理容器内に供給する第一添加ガス供給部と、
    第二添加ガスを前記処理容器内に供給する第二添加ガス供給部と、を備え、
    前記第一添加ガスがNOであり、前記第二添加ガスがO及びNOからなる群から選択される少なくとも1種であることを特徴とするエッチング装置。
  24. 不活性ガスを前記処理容器内に供給する不活性ガス供給部を、さらに備える請求項23に記載のエッチング装置。
  25. 前記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、ガリウム酸化物膜、アルミニウム酸化物膜、インジウム酸化物膜、亜鉛酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、ガリウム金属膜、アルミニウム金属膜、インジウム金属膜及び亜鉛金属膜からなる群から選択される少なくとも1種である請求項23又は24に記載のエッチング装置。

     
PCT/JP2022/018847 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置 WO2022230859A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237034945A KR20240004298A (ko) 2021-04-28 2022-04-26 표면 처리 방법, 드라이 에칭 방법, 클리닝 방법, 반도체 디바이스의 제조 방법 및 에칭 장치
JP2023517545A JPWO2022230859A1 (ja) 2021-04-28 2022-04-26
CN202280028361.XA CN117136426A (zh) 2021-04-28 2022-04-26 表面处理方法、干式蚀刻方法、清洁方法、半导体装置的制造方法及蚀刻装置
US18/286,310 US20240194490A1 (en) 2021-04-28 2022-04-26 Surface treatment method, dry etching method, cleaning method, production method for semiconductor device, and etching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-075900 2021-04-28
JP2021075900 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230859A1 true WO2022230859A1 (ja) 2022-11-03

Family

ID=83848428

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/018847 WO2022230859A1 (ja) 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
PCT/JP2022/018850 WO2022230862A1 (ja) 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018850 WO2022230862A1 (ja) 2021-04-28 2022-04-26 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置

Country Status (7)

Country Link
US (2) US20240186147A1 (ja)
EP (1) EP4307346A4 (ja)
JP (2) JPWO2022230862A1 (ja)
KR (2) KR20240004298A (ja)
CN (2) CN117157735A (ja)
TW (2) TW202303721A (ja)
WO (2) WO2022230859A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194307A (ja) * 2012-03-22 2013-09-30 Central Glass Co Ltd 成膜装置内の金属膜のドライクリーニング方法
WO2018128079A1 (ja) * 2017-01-04 2018-07-12 セントラル硝子株式会社 ドライエッチング方法及びβ-ジケトン充填済み容器
WO2020179449A1 (ja) * 2019-03-01 2020-09-10 セントラル硝子株式会社 ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933916A (ja) 1995-07-19 1997-02-07 Casio Comput Co Ltd 反射型カラー液晶表示素子
JP2004091829A (ja) 2002-08-30 2004-03-25 Tokyo Electron Ltd エッチング方法及びエッチング装置
JP4260590B2 (ja) 2003-09-25 2009-04-30 東京エレクトロン株式会社 基板処理装置のクリーニング方法
US9773683B2 (en) * 2014-06-09 2017-09-26 American Air Liquide, Inc. Atomic layer or cyclic plasma etching chemistries and processes
JP2018060854A (ja) 2016-10-03 2018-04-12 Jsr株式会社 半導体素子用基板、エッチング方法、及びエッチング液
WO2019003662A1 (ja) * 2017-06-27 2019-01-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP7411926B2 (ja) 2019-11-08 2024-01-12 パナソニックIpマネジメント株式会社 水洗便器及び便器装置
JP7174016B2 (ja) * 2020-07-16 2022-11-17 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194307A (ja) * 2012-03-22 2013-09-30 Central Glass Co Ltd 成膜装置内の金属膜のドライクリーニング方法
WO2018128079A1 (ja) * 2017-01-04 2018-07-12 セントラル硝子株式会社 ドライエッチング方法及びβ-ジケトン充填済み容器
WO2020179449A1 (ja) * 2019-03-01 2020-09-10 セントラル硝子株式会社 ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置

Also Published As

Publication number Publication date
TW202303721A (zh) 2023-01-16
JPWO2022230862A1 (ja) 2022-11-03
WO2022230862A1 (ja) 2022-11-03
CN117136426A (zh) 2023-11-28
KR20240000472A (ko) 2024-01-02
CN117157735A (zh) 2023-12-01
JPWO2022230859A1 (ja) 2022-11-03
US20240194490A1 (en) 2024-06-13
US20240186147A1 (en) 2024-06-06
EP4307346A1 (en) 2024-01-17
EP4307346A4 (en) 2024-10-09
KR20240004298A (ko) 2024-01-11
TW202303722A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
TWI435376B (zh) 用於缺陷鈍化之高k閘極堆疊的氟電漿處理
US7781340B2 (en) Method and system for etching high-k dielectric materials
CN108573866B (zh) 氧化膜去除方法和装置以及接触部形成方法和系统
US8501626B2 (en) Methods for high temperature etching a high-K material gate structure
US8951913B2 (en) Method for removing native oxide and associated residue from a substrate
JP6735408B2 (ja) 酸ハロゲン化物を用いた原子層エッチング
US20200071816A1 (en) Methods for selective deposition using molybdenum hexacarbonyl
JP2008060171A (ja) 半導体処理装置のクリーニング方法
US20220081769A1 (en) Methods of atomic layer deposition
TW202249117A (zh) 金屬氧化物的原子層蝕刻
KR101941766B1 (ko) 기판 처리 방법 및 기억 매체
WO2022230859A1 (ja) 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
US20220307134A1 (en) Low-k films
US10026597B2 (en) Hydrogen plasma based cleaning process for etch hardware
JP7572633B2 (ja) ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
TWI857130B (zh) 乾式蝕刻方法、半導體裝置之製造方法及蝕刻裝置
WO2024019025A1 (ja) ドライエッチング方法、クリーニング方法及び半導体デバイスの製造方法
TWI545628B (zh) 具有起始層之n型金屬薄膜沉積
US20240258164A1 (en) Methods of forming interconnect structures
CN113745104A (zh) 蚀刻方法及等离子体处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286310

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023517545

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202307708S

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22795772

Country of ref document: EP

Kind code of ref document: A1