WO2021079624A1 - ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置 - Google Patents

ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置 Download PDF

Info

Publication number
WO2021079624A1
WO2021079624A1 PCT/JP2020/033073 JP2020033073W WO2021079624A1 WO 2021079624 A1 WO2021079624 A1 WO 2021079624A1 JP 2020033073 W JP2020033073 W JP 2020033073W WO 2021079624 A1 WO2021079624 A1 WO 2021079624A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
etching
etched
metal
gas
Prior art date
Application number
PCT/JP2020/033073
Other languages
English (en)
French (fr)
Inventor
邦裕 山内
光 北山
章史 八尾
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP20879439.6A priority Critical patent/EP4047636A4/en
Priority to US17/771,193 priority patent/US20220415667A1/en
Priority to CN202080073880.9A priority patent/CN114616651A/zh
Priority to JP2021554123A priority patent/JPWO2021079624A1/ja
Priority to KR1020227016088A priority patent/KR20220086610A/ko
Publication of WO2021079624A1 publication Critical patent/WO2021079624A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present disclosure relates to a dry etching method, a semiconductor device manufacturing method, and an etching apparatus.
  • Patent Document 1 discloses that a metal film and a metal oxide film containing at least one of Al, Zr, Hf, Y, La, Ce, and Pr formed on a substrate are etched with respect to a method for producing a MOS transistor or the like.
  • an etching gas containing ⁇ -diketone is used to reduce damage to the substrate.
  • the wafer temperature is set to about 450 ° C.
  • oxygen is added to hexafluoroacetylacetone gas, and HfO is used.
  • a method of etching two films is disclosed.
  • Patent Document 2 describes a method for manufacturing a semiconductor device, in which a high relative permittivity film sample such as a hafnium oxide formed on a Si film is excited into a plasma state with a CH-based etching gas containing C and H to obtain a high ratio. A method of etching a permittivity film is disclosed.
  • Patent Document 3 a ⁇ - diketone, using a gas containing NO or N 2 O, the surface of the substrate, a metal gate material, electrode material, or a metal film deposited on the deposition apparatus for depositing a magnetic material A method of cleaning is disclosed.
  • Patent Document 1 discloses that the etching gas preferably contains at least one of water and alcohol in addition to oxygen, and that etching does not proceed at a low temperature of 400 ° C. or lower. Has been done. That is, from FIG. 9 of Patent Document 1, it can be seen that in the case of a mixed gas of hexafluoroacetylacetone and oxygen, etching does not proceed when the wafer temperature is 400 ° C. or lower. When the etching process is performed at a wafer temperature exceeding 400 ° C., the damage to the semiconductor device is large. Therefore, a method capable of etching hafnium oxide at a low temperature of 400 ° C. or lower, more preferably 300 ° C. or lower is desired. It was.
  • Patent Document 2 discloses that an etching rate of 1.0 nm / min was obtained by using C 2 H 2 as a plasma etching gas, but the plasma etching method is applied to a portion of a semiconductor device that is not an etching target. In addition to the damage caused by plasma, the RF power source for generating plasma makes the device expensive, so a method that does not use plasma has been desired. Further, Patent Document 3 only describes a method for cleaning a metal film, and does not disclose an example in which HfO 2 is etched.
  • the present disclosure provides a dry etching method using a gas composition capable of plasmalessly etching a specific type of metal oxide film or metal film including a hafnium oxide film at a low temperature.
  • the purpose is.
  • an object of the present disclosure is to provide a method for manufacturing a semiconductor device using the above dry etching method.
  • the present inventors specifically compare hafnium even when the temperature is 400 ° C. or lower, or even 300 ° C. or lower, as compared with the case where other additive gases are used. It has been found that etching of a specific metal oxide film such as an oxide or a metal film proceeds, and the present disclosure has been made.
  • ⁇ -diketone and nitrogen dioxide are reacted with a metal to be etched or an oxide of the metal having an MO binding energy of 5 eV or more formed on the surface of the object to be processed. Therefore, it is characterized by etching without a plasma state.
  • the MO binding energy is the difference in potential energy between the state existing as a metal and the state existing as oxygen, and it can be said that the larger the binding energy, the stronger the bond between the metal and oxygen. ..
  • the metal having an MO binding energy of 5 eV or more the bond between the metal and oxygen is strong, the metal oxide is stable, and etching is difficult. Since the metal itself is easily oxidized by nitrogen dioxide, the metal oxide is substantially etched, which is considered to be difficult.
  • the dry etching method of the present disclosure allows etching even at 300 ° C. or lower.
  • examples of the metal having an MO bond energy of 5 eV or more include hafnium, zirconium, titanium, aluminum and the like, and oxides of these metals include hafnium oxide and zirconium oxidation. Things, titanium oxides, aluminum oxides and the like can be mentioned. These metals can be used alone and may be alloys containing two or more kinds. Therefore, the oxides of these metals may also be the oxides of one kind of metal or the oxides of the alloys of these metals.
  • a first dry etching method in which the etching gas A containing the ⁇ -diketone and the nitrogen dioxide is brought into contact with the film to be etched may be adopted, and the etching gas containing the nitrogen dioxide may be adopted.
  • a second dry etching method including a first etching step of bringing B into contact with the film to be etched and a second etching step of bringing the etching gas C containing ⁇ -diketone into contact with the film to be etched is adopted. It may be.
  • a ⁇ -diketone and nitrogen dioxide are reacted with a film to be etched containing a metal having an MO binding energy of 5 eV or more or an oxide of the metal on a substrate to bring about a plasma state. It is characterized by including a step of etching without accompanying. Also in the method for manufacturing the semiconductor device of the present disclosure, the above-mentioned first dry etching method may be adopted, or the second dry etching method may be adopted.
  • the etching apparatus of the present disclosure is provided in a heatable processing container, and an object to be processed having a metal having an MO binding energy of 5 eV or more or an oxide of the metal to be etched formed on the surface thereof is placed. It is characterized by including a mounting unit, a ⁇ -diketone supply unit that supplies ⁇ -diketone to the object to be treated, and a nitrogen dioxide gas supply unit that supplies nitrogen dioxide to the object to be processed.
  • the etching resistance is difficult to include the metal having the above-mentioned MO binding energy of 5 eV or more or the oxide of the above-mentioned metal. It is possible to provide a dry etching method capable of etching a film to be etched without a plasma state. According to the dry etching method of the present disclosure, the same effect as described above can be obtained regardless of whether the above-mentioned first dry etching method is adopted or the above-mentioned second dry etching method is adopted. It is possible to provide a dry etching method having.
  • the metal having the above-mentioned MO bond energy of 5 eV or more on the substrate or the oxide of the above-mentioned metal can be obtained. It is possible to provide a method for manufacturing a semiconductor device capable of etching a film to be etched, which is difficult to be etched, without involving a plasma state. According to the method for manufacturing a semiconductor device of the present disclosure, the same method as described above is performed regardless of whether the above-mentioned first dry etching method is adopted or the above-mentioned second dry etching method is adopted. It is possible to provide a method for manufacturing an effective semiconductor device.
  • the etching apparatus of the present disclosure by using this etching apparatus, even if the temperature is 400 ° C. or lower, further 300 ° C. or lower, the metal having the above-mentioned MO binding energy of 5 eV or more or the oxidation of the above-mentioned metal. It is possible to etch a difficult-to-etch film containing an object without a plasma state.
  • the same effect as described above can be obtained regardless of whether the above-mentioned first dry etching method is adopted or the above-mentioned second dry etching method is adopted. Obtainable.
  • FIG. 1 is a schematic view schematically showing an etching apparatus according to an embodiment of the present disclosure.
  • the metal having an MO bond energy of 5 eV or more or the oxide of the metal is derived from hafnium oxide, zirconium oxide, titanium oxide, aluminum oxide, hafnium metal, zirconium metal, titanium metal, and aluminum metal. It is desirable that it is at least one selected from the group.
  • the metal to be etched containing the metal having the MO bond energy of 5 eV or more or the oxide of the metal is a hafnium oxide film, a zirconium oxide film, a titanium oxide film, an aluminum oxide film, or a hafnium metal film. It is desirable that the film is at least one selected from the group consisting of a zirconium metal film, a titanium metal film, and an aluminum metal film.
  • the film to be etched may be the film of the single metal or metal oxide described above, or may be a film of an alloy containing two or more of the metals or an oxide film of the alloy.
  • the etching resistance is difficult to include the metal having the above-mentioned MO binding energy of 5 eV or more or the oxide of the above-mentioned metal. It is possible to provide a dry etching method capable of etching a film to be etched without a plasma state.
  • the decomposition temperature of hexafluoroacetylacetone (hereinafter, also referred to as HFAc), which is a kind of ⁇ -diketone, is 375 ° C.
  • HFAc hexafluoroacetylacetone
  • etching temperature can be lowered is that NO 2 constituting the etching gas is adsorbed on the surface of the film to be etched, the bonding force between the metal constituting the metal oxide and oxygen described above weakens, and HFAc. It is presumed that the reactivity with and will be improved and etching will be possible even at low temperatures.
  • examples of the object to be processed include a silicon substrate, a compound semiconductor substrate, a quartz substrate, and a glass substrate.
  • a wiring film or the like may be formed.
  • the object to be treated is placed on a mounting portion, and by heating the mounting portion, the metal to be processed and the metal having an MO binding energy of 5 eV or more formed on the surface of the object to be processed or the above metal.
  • the film to be etched containing the oxide of the above is heated.
  • the temperature of the object to be processed is substantially equal to the temperature of the film to be etched.
  • an etching gas containing ⁇ -diketone and nitrogen dioxide is brought into contact with the heated film to be etched, the ⁇ -diketone, nitrogen dioxide and a metal having an MO binding energy of 5 eV or more or an oxide of the metal react with each other. Then, a complex is formed on the film to be etched. Since this complex has a high vapor pressure, the film to be etched can be etched by vaporizing the complex.
  • hafnium oxide constituting the oxide of a metal having an MO bond energy of 5 eV or more examples include hafnium oxide (HfO x (x is 1 or more and 3 or less), particularly HfO 2 ), silicon hafnium oxide, and aluminum hafnium oxide. Be done.
  • hafnium oxide hafnium examples include Hf 1-x Si x O y and Hf 1-x Si x O y N z
  • examples of aluminum oxide hafnium include Hf 1-x Al x O m and Hf 1-x Al x. O m N n can be mentioned.
  • x, y, z, m, and n indicate 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 1.33, 0 ⁇ m ⁇ 1.5, 0 ⁇ n ⁇ 1.
  • zirconium oxide examples include zirconium oxide (ZrO u (u is 1 or more and 3 or less), particularly ZrO 2 ).
  • aluminum oxide examples include aluminum oxide (AlO v (v is 1 or more and 2 or less), particularly Al 2 O 3 ).
  • titanium oxide examples include titanium oxide (TiO w (w is 1 or more and 3 or less), particularly TiO 2 ).
  • the method for forming a metal to be etched containing a metal having an MO binding energy of 5 eV or more or an oxide of the metal on the surface of the object to be treated is not particularly limited, and for example, a chemical vapor deposition (CVD) method or sputtering is used. The law can be mentioned. Further, the thickness of the film to be etched containing a metal having an MO binding energy of 5 eV or more or an oxide of the metal is not particularly limited, but can be, for example, 0.1 nm or more and 1 ⁇ m or less.
  • ⁇ -diketone is not particularly limited, but is, for example, hexafluoroacetylacetone (HFAc, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), trifluoroacetylacetone (1,1). , 1-trifluoro-2,4-pentandione) and the like.
  • HFAc hexafluoroacetylacetone
  • TFAc 1,1,1,5,5,5-hexafluoro-2,4-pentanedione
  • trifluoroacetylacetone 1,1,1,5,5,5-hexafluoro-2,4-pentanedione
  • 1-trifluoro-2,4-pentandione 1-trifluoro-2,4-pentandione
  • the etching gas A may consist only of ⁇ -diketone and nitrogen dioxide, but is selected from the group consisting of O 2 , NO, N 2 O, CO, CO 2 , H 2 O, H 2 O 2, and alcohol. it may further comprise at least one additive gases, N 2, Ar, He, may further comprise at least one inert gas selected from the group consisting of Ne and Kr. Further, as the alcohol, methanol, ethanol, propanol, isopropyl alcohol and the like can be used.
  • the total content of the nitrogen dioxide contained in the etching gas A and the other additive gases can be the same as the above-mentioned nitrogen dioxide content. ..
  • the content of the inert gas contained in the etching gas A is preferably 1% by volume or more and 90% by volume or less, and 10% by volume or more and 80% by volume or less. More preferably, it is more preferably 30% by volume or more and 50% by volume or less.
  • examples of the object to be processed include a silicon substrate, a compound semiconductor substrate, a quartz substrate, and a glass substrate, as in the case of the first dry etching method.
  • a silicon substrate On the surface of the object to be treated, in addition to the above-mentioned metal having an MO bond energy of 5 eV or more or the above-mentioned metal oxide film, a silicon film, a silicon oxide film, a silicon nitride film, and a metal wiring other than the above-mentioned metal.
  • a film or the like may be formed.
  • the object to be treated contains a metal having an MO binding energy of 5 eV or more or an oxide of the metal formed on the surface of the object to be treated and the object to be processed by being placed on the mounting portion and heating the mounting portion.
  • the film to be etched is heated.
  • the temperature of the object to be processed is substantially equal to the temperature of the film to be etched.
  • nitrogen dioxide is adsorbed on the surface of the film to be etched.
  • the etching gas C containing ⁇ -diketone is brought into contact with the film to be etched, nitrogen dioxide is adsorbed on the surface of the metal having an MO bond energy of 5 eV or more or the metal.
  • the oxide reacts with the ⁇ -diketone to form a complex on the film to be etched, as in the case of the first dry etching method.
  • this complex has a high vapor pressure, it is possible to etch a metal having an MO bond energy of 5 eV or more or a film to be etched containing an oxide of the metal by vaporizing the complex.
  • the above steps may be repeated a plurality of times in order to repeatedly etch the film to be etched. Since it is possible to etch a constant thickness in the etching step of one cycle, it is possible to accurately etch a layer having a desired thickness by specifying the number of cycles.
  • hafnium oxide constituting the oxide of the metal having the MO binding energy of 5 eV or more the same hafnium oxide as in the case of the first dry etching method described above can be used.
  • the method for forming a metal to be etched containing a metal having an MO binding energy of 5 eV or more or an oxide of the metal on the surface of the object to be treated is not particularly limited, and for example, a chemical vapor deposition (CVD) method or sputtering is used. The law can be mentioned.
  • the thickness of the film to be etched containing a metal having an MO binding energy of 5 eV or more or an oxide of the metal is not particularly limited, but can be, for example, 0.1 nm or more and 1 ⁇ m or less.
  • ⁇ -diketone the same as in the case of the first dry etching method described above can be used.
  • the etching gas C may be composed of only ⁇ -diketone
  • the etching gas B may be composed of only nitrogen dioxide, but O 2 , NO, N 2 O, CO, CO 2 , H 2 O, It may further contain at least one additive gas selected from the group consisting of H 2 O 2 and alcohol, and further contain at least one inert gas selected from the group consisting of N 2, Ar, He, Ne and Kr. It may be included.
  • the alcohol methanol, ethanol, propanol, isopropyl alcohol and the like can be used as the alcohol.
  • the etching gas B contains an additive gas other than nitrogen dioxide
  • the total volume ratio of the nitrogen dioxide contained in the etching gas A and the other additive gases is the ⁇ -diketone and the dioxide contained in the etching gas A described above. It can be the same as the volume ratio of nitrogen.
  • the etching gas C contains an additive gas other than ⁇ -diketone
  • the total volume ratio of the ⁇ -diketone contained in the etching gas C and the other additive gases is ⁇ contained in the etching gas A described above.
  • -It can be the same as the volume ratio of diketone and nitrogen dioxide.
  • the content of the inert gas contained in the etching gas B and the etching gas C is preferably 1% by volume or more and 90% by volume or less, and 10% by volume. It is more preferably 80% by volume or less, and further preferably 30% by volume or more and 50% by volume or less.
  • the dry etching method of the present disclosure can be realized, for example, by using a general etching apparatus used in a semiconductor manufacturing process. Such an etching apparatus is also one of the present disclosure.
  • FIG. 1 is a schematic view schematically showing an etching apparatus according to an embodiment of the present disclosure.
  • the etching apparatus 100 shown in FIG. 1 is connected to a processing container 110 for arranging a metal to be processed having an MO bond energy of 5 eV or more or an oxide of the metal formed on the surface thereof, and a processing container 110.
  • the ⁇ -diketone supply unit 140 that supplies the gaseous ⁇ -diketone, the nitrogen dioxide gas supply unit 150 that supplies the gaseous nitrogen dioxide, the inert gas supply unit 160 that supplies the inert gas, and the processing container 110 are heated.
  • the heating means 170 and the heating means 170 are provided.
  • the etching apparatus 100 does not have to include the inert gas supply unit 160.
  • the etching apparatus 100 includes a control unit (not shown).
  • This control unit consists of, for example, a computer, and includes a program, a memory, and a CPU.
  • the program incorporates a group of steps to carry out a series of operations in the first etching method or the second etching method, and according to the program, the temperature of the object to be processed 10 is adjusted, and the valve of each supply unit is opened and closed. , Adjust the flow rate of each gas, adjust the pressure inside the processing container 110, and so on.
  • This program is stored in a computer storage medium such as a compact disk, a hard disk, a magneto-optical disk, a memory card, or the like, and is installed in a control unit.
  • the processing container 110 includes a mounting portion 111 for mounting the object 10 to be processed.
  • the processing container 110 is not particularly limited as long as it is resistant to the ⁇ -diketone used and can be depressurized to a predetermined pressure, but is usually a general processing container provided in a semiconductor etching apparatus or the like. Is applied. Further, the supply pipe for supplying the etching gas and other pipes are not particularly limited as long as they are resistant to ⁇ -diketone, and general pipes can be used.
  • the ⁇ -diketone supply unit 140 adjusts the supply amount by the valves V1 and V2 and the flow rate adjusting means MFC1, and supplies the ⁇ -diketone from the pipes 141 and 142 to the pipe 121.
  • the nitrogen dioxide gas supply unit 150 adjusts the supply amount by the valves V3 and V4 and the flow rate adjusting means MFC2, and supplies nitrogen dioxide from the pipes 151 and 152 to the pipe 121.
  • the inert gas supply unit 160 adjusts the supply amount by the valves V5 and V6 and the flow rate adjusting means MFC3, and supplies the inert gas from the pipes 161 and 162 to the pipe 121.
  • a heating means 170 for heating the processing container 110 is arranged outside the processing container 110. Further, a heater (not shown) may be provided inside the mounting portion 111 as a second heating means. When arranging a plurality of mounting portions in the processing container 110, the temperature of the object to be processed on each mounting portion should be individually set to a predetermined temperature by providing a heater for each mounting portion. Can be done.
  • a gas discharging means for discharging the gas after the reaction is provided on one of the processing containers 110.
  • the vacuum pump 173 of the gas discharging means discharges the gas after the reaction from the processing container 110 through the pipe 171.
  • the gas after the reaction is recovered by a liquid nitrogen trap 174 arranged between the pipe 171 and the pipe 172.
  • Valves V7 and V8 can be arranged in the pipes 171 and 172 to adjust the pressure.
  • PI1 and PI2 are pressure gauges, and the control unit can control each flow rate adjusting means and each valve based on the indicated value.
  • the etching method will be specifically described by taking this etching apparatus 100 as an example.
  • the etching gas A containing ⁇ -diketone and nitrogen dioxide is brought into contact with the film to be etched.
  • the object to be processed 10 on which the metal to be etched containing the metal having the MO binding energy of 5 eV or more or the oxide of the metal is formed is placed in the processing container 110.
  • the inside of the processing container 110, the pipe 121, the pipes 141 and 142, the pipes 151 and 152, the pipes 161 and 162, the liquid nitrogen trap 174, and the pipes 171 and 172 is evacuated to a predetermined pressure by the vacuum pump 173.
  • the object 10 to be processed is heated by the heating means 170.
  • the ⁇ -diketone supply unit 140 and the nitrogen dioxide gas supply unit 150 supply the ⁇ -diketone and the nitrogen dioxide gas to the pipe 121 at a predetermined flow rate.
  • the inert gas may be supplied from the inert gas supply unit 160 to the pipe 121 at a predetermined flow rate.
  • the ⁇ -diketone and nitrogen dioxide are mixed in a predetermined composition and supplied to the processing container 110. While introducing the mixed etching gas into the processing container 110, the inside of the processing container 110 is controlled to a predetermined pressure.
  • a metal having an MO binding energy of 5 eV or more or a film to be etched containing an oxide of the metal for a predetermined time By reacting the etching gas with a metal having an MO binding energy of 5 eV or more or a film to be etched containing an oxide of the metal for a predetermined time, a complex is formed and etching is performed.
  • etching can be performed without plasma without a plasma state, and it is not necessary to excite the etching gas with plasma or the like at the time of etching.
  • the flow rate of the etching gas can be appropriately set based on the volume and pressure of the processing container and the like.
  • etching with a plasma state means that, for example, a gas of about 0.1 to 10 Torr is put inside the reaction device, and high-frequency power is applied to the outer coil or the counter electrode to give a low-temperature gas plasma into the reaction device. Is generated, and etching is performed with active chemical species such as ions and radicals formed in the gas.
  • the gas is brought into contact with the gas without being accompanied by a plasma state, and the dry etching is performed without generating the gas plasma described above.
  • the heating by the heating means 170 is stopped to lower the temperature, and the vacuum pump 173 is stopped and replaced with an inert gas to open the vacuum.
  • the first dry etching method using the etching apparatus can etch a metal having an MO binding energy of 5 eV or more or a film to be etched containing an oxide of the metal.
  • the temperature of the film to be etched when the etching gas A is brought into contact with the film to be etched may be a temperature at which the complex can be vaporized, and in particular, the film to be etched to be removed.
  • the temperature is preferably 250 ° C. or higher and 375 ° C. or lower, more preferably 275 ° C. or higher and 375 ° C. or lower, more preferably 275 ° C. or higher and 350 ° C. or lower, and 275 ° C. or higher and 325 ° C. or lower. Is more preferable.
  • the pressure in the processing container in which the object to be processed on which the film to be etched is formed is not particularly limited, but is usually 0.1 kPa or more 101.
  • the pressure range is 3 kPa or less.
  • the pressure in the processing container in the etching step is preferably 20 Torr or more and 300 Torr or less (2.67 kPa or more and 39.9 kPa or less), and 20 Torr or more and 200 Torr or less (2.67 kPa or more 26. It is more preferably 7 kPa or less), and further preferably 20 Torr or more and 100 Torr or less (2.67 kPa or more and 13.3 kPa or less).
  • the processing time of the etching step is not particularly limited, but is preferably 60 minutes or less in consideration of the efficiency of the semiconductor device manufacturing process.
  • the processing time of the etching process means that the etching gas is introduced into the processing container in which the object to be processed is installed, and then the etching gas in the processing container is exhausted by a vacuum pump or the like in order to complete the etching process. Refers to the time until.
  • the object to be processed 10 on which the metal to be etched containing the metal having the MO binding energy of 5 eV or more or the oxide of the metal is formed is placed in the processing container 110.
  • the inside of the processing container 110, the pipe 121, the pipes 141 and 142, the pipes 151 and 152, the pipes 161 and 162, the liquid nitrogen trap 174, and the pipes 171 and 172 is evacuated to a predetermined pressure by the vacuum pump 173.
  • the object 10 to be processed is heated by the heating means 170.
  • nitrogen dioxide gas is first supplied from the nitrogen dioxide gas supply unit 150 to the pipe 121 at a predetermined flow rate.
  • the inert gas may be supplied from the inert gas supply unit 160 to the pipe 121 at a predetermined flow rate.
  • the inside of the processing container 110 is controlled to a predetermined pressure. Nitrogen dioxide is adsorbed on the film to be etched by introducing nitrogen dioxide gas into the processing container 110 for a predetermined time.
  • the ⁇ -diketone gas is supplied from the ⁇ -diketone supply unit 140 to the pipe 121 at a predetermined flow rate.
  • the inert gas may be supplied from the inert gas supply unit 160 to the pipe 121 at a predetermined flow rate. While introducing the ⁇ -diketone gas or the ⁇ -diketone gas and the inert gas into the processing container 110, the pressure inside the processing container 110 is controlled to a predetermined pressure. By introducing the ⁇ -diketone gas into the processing container 110 for a predetermined time, the nitrogen dioxide previously adsorbed reacts with the ⁇ -diketone to form a complex, and the complex further reacts with the film to be etched. , The film to be etched can be etched.
  • one cycle is a first etching step of introducing nitrogen dioxide gas into the processing container 110 and a second etching step of introducing ⁇ -diketone into the processing container 110. Can be repeated for multiple cycles.
  • the thickness of the film to be etched that can be etched in one cycle can be controlled by setting the etching condition of one cycle to a predetermined condition, so that the etching can be performed in one cycle. By setting the thickness of the film to be etched thin, it is possible to precisely control the thickness to be etched.
  • etching can be performed without plasma without a plasma state, and it is not necessary to excite the etching gas with plasma or the like at the time of etching.
  • the flow rate of nitrogen dioxide and ⁇ -diketone can be appropriately set based on the volume and pressure of the processing vessel and the like.
  • the gas can be brought into contact without the plasma state, and the dry etching is performed without generating the gas plasma described above. be able to.
  • the heating by the heating means 170 is stopped to lower the temperature, and the vacuum pump 173 is stopped and replaced with an inert gas to open the vacuum.
  • the heating by the heating means 170 is stopped to lower the temperature, and the vacuum pump 173 is stopped and replaced with an inert gas to open the vacuum.
  • the temperature of the film to be etched when performing the etching step may be a temperature at which the complex can be vaporized, and in particular, the temperature of the film to be etched to be removed is 250 ° C. or higher. It is more preferably 375 ° C. or lower, more preferably 275 ° C. or higher and 375 ° C. or lower, more preferably 275 ° C. or higher and 350 ° C. or lower, and even more preferably 275 ° C. or higher and 325 ° C. or lower. It is desirable that the temperature of the film to be etched in the first etching step and the second etching step is the same.
  • the pressure inside the processing container in the etching step is not particularly limited, but is usually in the pressure range of 0.1 kPa or more and 101.3 kPa or less.
  • the pressure in the processing container in the first etching step and the second etching step is preferably 20 Torr or more and 300 Torr or less (2.67 kPa or more and 39.9 kPa or less), and 20 Torr or more. It is more preferably 200 Torr or less (2.67 kPa or more and 26.7 kPa or less), and further preferably 20 Torr or more and 100 Torr or less (2.67 kPa or more and 13.3 kPa or less). It is desirable that the pressure in the processing container in the second etching step is higher than the pressure in the processing container in the first etching step.
  • the processing time in the first etching step and the second etching step is not particularly limited, but the processing time in one cycle of the first etching step is preferably 60 minutes or less, and one of the second etching steps.
  • the processing time in the cycle is preferably 60 minutes or less.
  • the processing time of the etching process means that the etching gas is introduced into the processing container in which the object to be processed is installed, and then the etching gas in the processing container is exhausted by a vacuum pump or the like in order to complete the etching process. Refers to the time until.
  • the dry etching method of the present disclosure described above can be used as an etching method for forming a predetermined pattern on a hafnium oxide film, a hafnium metal, or the like of a conventional semiconductor device.
  • a semiconductor device can be manufactured at low cost by etching a hafnium oxide film, a hafnium metal, or the like on a substrate using the dry etching method of the present disclosure.
  • Example 1 Using the etching apparatus 100 shown in FIG. 1, etching of the object to be processed 10 having a film to be etched made of a hafnium oxide (HfO 2 ) film (shape 1 cm ⁇ 1 cm, film thickness 5 nm) formed on the surface of a silicon wafer. went.
  • HfO 2 hafnium oxide
  • the insides of the processing container 110, the pipe 121, the pipes 141 and 142, the pipes 151 and 152, the pipes 161 and 162, the liquid nitrogen trap 174, and the pipes 171 and 172 were evacuated to less than 10 Pa.
  • the body 10 to be processed mounted on the mounting portion 111 was heated by the heating means 170 and the heater arranged inside the mounting portion 111.
  • the gas hexafluoroacetylacetone (HFAc) from the ⁇ -diketone supply unit 140 and the NO 2 gas from the nitrogen dioxide gas supply unit 150 are supplied at a predetermined flow rate.
  • the pressure inside the processing container 110 was controlled to 90 Torr while introducing the etching gas into the processing container 110, and the etching step was performed.
  • the introduction of the etching gas was stopped.
  • the inside of the processing container 110 was evacuated to less than 10 Pa , replaced with the N 2 gas supplied from the inert gas supply unit 160, the object to be processed 10 was taken out, the film thickness was measured, and the etching amount was evaluated.
  • Example 1 to 22 including the following Examples 2 to 20, the first dry etching method in which the etching gas A containing ⁇ -diketone and nitrogen dioxide is brought into contact with the film to be etched is adopted, and is a comparative example. Also in Comparative Examples 1 to 17 excluding 4, 7, 10, 12 and 17, an etching gas containing ⁇ -diketone and the gases shown in Tables 1 and 2 is brought into contact with the film to be etched. In Comparative Examples 4, 7, 10, 12 and 17, an etching gas containing only ⁇ -diketone is brought into contact with the film to be etched.
  • Example 1 shows the types of added gas in the above-mentioned etching, the flow rate of HFAc, the flow rate of the added gas, the pressure in the processing container, the temperature at the time of etching, the etching time, and whether or not etching is possible. Whether or not etching was possible was evaluated as ⁇ when the etching rate was 0.1 nm / min or more, and x when the etching rate was less than 0.1 nm / min.
  • the etching rate is a value obtained by dividing the change in film thickness before and after etching by the time required for etching. Differences between Examples 2 to 4 and Example 1 of Comparative Examples 1 to 4 will be described.
  • Example 2 the flow rate of NO 2 , which is an additive gas, was changed.
  • Example 3 the flow rate and etching time of NO 2 as an additive gas and the temperature of the object to be processed 10 were changed.
  • Example 4 the temperature of the object to be processed 10 was changed.
  • Comparative Examples 1 to 3 nitric oxide (NO), oxygen (O 2 ), and nitrous oxide (N 2 O) were used as the additive gases, respectively, and in Comparative Example 4, the treatment was performed without using the additive gas. .. Regarding other points, the same operation as in Example 1 was carried out, and the possibility of etching the hafnium oxide (HfO 2) film was evaluated.
  • Examples 5 to 22, Comparative Examples 5 to 17 Using the etching apparatus 100 shown in FIG. 1, an aluminum oxide (Al 2 O 3 ) film having a shape of 1 cm ⁇ 1 cm and a film thickness of 60 nm, a zirconium oxide (ZrO 2 ) film, and oxidation formed on the surface of a silicon wafer. An object to be etched having a hafnium (HfO 2 ) film and a titanium oxide (TiO 2 ) film to be etched was etched.
  • Al 2 O 3 aluminum oxide
  • ZrO 2 zirconium oxide
  • the type and flow rate of the etching gas, the pressure inside the processing container, and the temperature of the object to be etched at the time of etching as shown in Table 2 (275 ° C, 300 ° C, 350 ° C).
  • the same operation as in Example 1 was carried out, and the etching rate of the film to be etched was measured.
  • the results are shown in Table 2.
  • Table 2 shows that the etching rate is A for 0.1 nm / min or more and less than 1.0 nm / min, B for 1.0 nm / min or more and less than 10.0 nm / min, and 10.0 nm / min or more and less than 50.0 nm / min. Is displayed as C, and less than 0.1 nm is displayed as X.
  • the aluminum oxide film, the zirconium oxide film, and the hafnium oxide film were formed at a rate of 0.1 nm / min or more at a body temperature of 350 ° C. or lower. It was possible to etch the hafnium metal film and the titanium oxide film, and in particular, it was possible to etch even when the temperature of the object to be treated was 300 ° C. Further, since the temperature of the object to be treated was lower than the decomposition temperature of HFAc (375 ° C.), the carbon film was not formed on the surface of the object to be treated in Examples 1 to 4.
  • the aluminum oxide film, the zirconium oxide film, and the hafnium oxide were used even when the temperature of the object to be treated was 350 ° C.
  • the film, the hafnium metal film, and the titanium oxide film could not be etched.
  • Example 23 to 26 In these examples, the first etching step of bringing the etching gas B containing nitrogen dioxide into contact with the film to be etched and the second etching step of bringing the etching gas C containing ⁇ -diketone into contact with the film to be etched are repeated.
  • a film to be etched composed of a hafon oxide (HfO 2 ) film (shape 1 cm ⁇ 1 cm, film thickness 60 nm) formed on the surface of a silicon wafer was etched.
  • HfO 2 hafon oxide
  • the insides of the processing container 110, the pipe 121, the pipes 141 and 142, the pipes 151 and 152, the pipes 161 and 162, the liquid nitrogen trap 174, and the pipes 171 and 172 were evacuated to less than 10 Pa.
  • the body 10 to be treated having the hafnium oxide (HfO 2 ) film mounted on the mounting portion 111 was heated by the heating means 170 and the heater arranged inside the mounting portion 111.
  • NO 2 gas is supplied from the nitrogen dioxide gas supply unit 150 to the pipe 121, and the pressure inside the processing container 110 is controlled to 30 Torr while the processing container 110 is used. NO 2 gas was flowed inside the container.
  • the temperature of the object to be treated was 350 ° C.
  • NO 2 gas was allowed to flow for the time shown in Table 3 to bring it into contact with the film to be etched.
  • the introduction of the etching gas was stopped, and the inside of the processing container 110 was evacuated to less than 10 Pa.
  • HFAc gaseous hexafluoroacetylacetone
  • Processed object 100 Etching device 110 Processing container 111 Mounting part 121 Piping 140 ⁇ -diketone supply part 141, 142 Piping 150 Nitrogen dioxide gas supply part 151, 152 Piping 160 Inactive gas supply part 161, 162 Piping 170 Heating means 171 , 172 Piping 173 Vacuum pump 174 Liquid nitrogen trap MFC1, MFC2, MFC3 Flow control means PI1, PI2 Pressure gauge V1, V2, V3, V4, V5, V6, V7, V8 Valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本開示の実施形態に係るドライエッチング方法は、処理体の表面に形成された、M-O結合エネルギーが5eV以上の金属又は前記金属の酸化物を含む被エッチング膜に、β-ジケトン及び二酸化窒素を反応させて、プラズマ状態を伴わずにエッチングすることを特徴とするドライエッチング方法。

Description

ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
本開示は、ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置に関する。
半導体デバイスの回路パターンの微細化に対応して、電界効果トランジスタの微小化も進んでいるため、ゲート絶縁膜を、SiO(誘電率k=3.9)でなく、高誘電率(high-k)材料の一種であるHfO(誘電率k=25)等で形成することが検討されている。
高誘電率材料でゲート絶縁膜を形成するためには、製膜後にエッチングをし、所定の形状にする必要がある。
特許文献1には、MOSトランジスタなどの製法に関して、基板上に形成されたAl、Zr、Hf、Y、La、Ce、及びPrの少なくともいずれかを含んでいる金属膜及び金属酸化膜をエッチングする方法において、基板の損傷を低減させるためにβ-ジケトンを含むエッチングガスを用いることが記載されており、実施例には、ウェハの温度を約450℃としてヘキサフルオロアセチルアセトンガスに酸素を加えてHfO膜をエッチングする方法が開示されている。
特許文献2には、半導体素子の製法に関して、Si膜上に形成されたハフニウム酸化物などの高比誘電率膜試料をCおよびHを含有するCH系エッチングガスをプラズマ状態に励起して高比誘電率膜をエッチングする方法が開示されている。
特許文献3には、β-ジケトンと、NOまたはNOを含むガスを用いて、基板表面に、メタルゲート材料、電極材料、又は磁性材料を成膜する成膜装置に付着した金属膜をクリーニングする方法が開示されている。
特開2004-91829号公報 特開2006-310676号公報 特開2013-194307号公報
このように半導体デバイスの回路パターンの微細化に対応して、高誘電率材料をゲート絶縁膜として用いる技術が開発されているが、ハフニウム酸化物などの高誘電率材料の多くは難エッチング材料である。
特許文献1に記載の発明では、エッチングガスに酸素の他に水及びアルコールの少なくともいずれかを含んでいることが好ましく、また、ウェハの温度が400℃以下の低温ではエッチングが進行しないことが開示されている。すなわち、特許文献1の図9からは、ヘキサフルオロアセチルアセトンと酸素の混合ガスの場合は、ウェハの温度が400℃以下ではエッチングが進行しないことが分かる。ウェハの温度が400℃を超える温度にてエッチング工程を行う場合、半導体デバイスへのダメージが大きいため、400℃以下、より好ましくは300℃以下の低温でハフニウム酸化物をエッチングできる方法が望まれていた。
特許文献2には、Cをプラズマエッチングガスとして用いて1.0nm/分のエッチング速度が得られたことが開示されているが、プラズマエッチング方法は、半導体デバイスのエッチング対象でない部分にプラズマがダメージを与える上に、プラズマを発生させるためのRF電源により装置が高額となるため、プラズマを用いない方法が望まれていた。また、特許文献3には、金属膜のクリーニング方法が記載されているだけであり、HfOをエッチングした実施例は開示されていない。
本開示は、上記した課題に鑑み、ハフニウム酸化物膜を含む特定種類の金属酸化物膜又は金属膜をプラズマレスで、かつ低温でエッチングすることが可能なガス組成物によるドライエッチング方法を提供することを目的とする。さらに、本開示は、上記ドライエッチング方法を用いた半導体デバイスの製造方法などを提供することを目的とする。
本発明者らは、β-ジケトンの添加ガスとして二酸化窒素を用いると、他の添加ガスを使用した場合に比べて特異的に、温度が400℃以下、さらには300℃以下であってもハフニウム酸化物等の特定の金属酸化物膜や金属膜のエッチングが進行することを見出し、本開示に至った。
本開示のドライエッチング方法は、被処理体の表面に形成された、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜に、β-ジケトン及び二酸化窒素を反応させて、プラズマ状態を伴わずにエッチングすることを特徴とする。
M-O結合エネルギーとは、金属として存在する状態と酸素として存在する状態との間でのポテンシャルエネルギーの差であり、上記結合エネルギーが大きいほど、金属と酸素との結合が強固であると言える。
上記M-O結合エネルギーが5eV以上の金属では、金属と酸素との結合が強固で金属酸化物は安定であり、エッチングが難しい材料である。金属自体も、二酸化窒素により酸化され易いため、実質的に金属酸化物をエッチングすることとなり、エッチングが難しいと考えられるが、本開示のドライエッチング方法では、300℃以下でもエッチングが可能である。
本開示のドライエッチング方法において、上記M-O結合エネルギーが5eV以上の金属としては、例えば、ハフニウム、ジルコニウム、チタン、アルミニウム等が挙げられ、これらの金属の酸化物としてはハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、アルミニウム酸化物等が挙げられる。これらの金属は単独で用いることができるとともに2種以上を含む合金であってもよい。従って、これらの金属の酸化物も、1種の金属の酸化物であってもよく、これらの金属の合金の酸化物であってもよい。
本開示のドライエッチング方法としては、前記β-ジケトン及び前記二酸化窒素を含むエッチングガスAを前記被エッチング膜と接触させる第1のドライエッチング方法を採用してもよく、前記二酸化窒素を含むエッチングガスBを前記被エッチング膜と接触させる第1のエッチング工程と、前記β-ジケトンを含むエッチングガスCを前記被エッチング膜と接触させる第2のエッチング工程とを備える第2のドライエッチング方法を採用してもよい。
本開示の半導体デバイスの製造方法は、基板上のM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜に、β-ジケトン及び二酸化窒素を反応させて、プラズマ状態を伴わずにエッチングする工程を備えることを特徴とする。
本開示の半導体デバイスの製造方法においても、上記した第1のドライエッチング方法を採用してもよく、第2のドライエッチング方法を採用してもよい。
本開示のエッチング装置は、加熱可能な処理容器内に設けられ、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、β-ジケトンを上記被処理体に供給するβ-ジケトン供給部と、二酸化窒素を上記被処理体に供給する二酸化窒素ガス供給部と、を備えることを特徴とする。
本開示のドライエッチング方法によれば、温度が400℃以下、さらには300℃以下であっても、上記したM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む難エッチング性の被エッチング膜を、プラズマ状態を伴わずにエッチングすることが可能なドライエッチング方法を提供することができる。
本開示のドライエッチング方法によれば、上記の第1のドライエッチング方法を採用した場合であっても、上記の第2のドライエッチング方法を採用した場合であっても、上記した同様の効果を有するドライエッチング方法を提供することができる。
本開示の半導体デバイスの製造方法によれば、温度が400℃以下、さらには300℃以下であっても、基板上の上記したM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む難エッチング性の被エッチング膜を、プラズマ状態を伴わずにエッチングすることが可能な半導体デバイスの製造方法を提供することができる。
本開示の半導体デバイスの製造方法によれば、上記の第1のドライエッチング方法を採用した場合であっても、上記の第2のドライエッチング方法を採用した場合であっても、上記した同様の効果を有する半導体デバイスの製造方法を提供することができる。
本開示のエッチング装置によれば、このエッチング装置を用いることにより、温度が400℃以下、さらには300℃以下であっても、上記したM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む難エッチング性の被エッチング膜を、プラズマ状態を伴わずにエッチングすることが可能となる。
本開示のエッチング装置を用いることにより、上記の第1のドライエッチング方法を採用した場合であっても、上記の第2のドライエッチング方法を採用した場合であっても、上記した同様の効果を得ることができる。
図1は、本開示の一実施形態に係るエッチング装置を模式的に示す概略図である。
以下、本開示の実施形態について具体的に説明する。
しかしながら、本開示は、以下の実施形態に限定されるものではなく、本開示の要旨を変更しない範囲において適宜変更して適用することができる。
[ドライエッチング方法]
本開示のドライエッチング方法は、被処理体の表面に形成された、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜に、β-ジケトン及び二酸化窒素を反応させて、プラズマ状態を伴わずにエッチングすることを特徴とするドライエッチング方法である。
上記のM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物は、ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、アルミニウム酸化物、ハフニウム金属、ジルコニウム金属、チタン金属、及び、アルミニウム金属からなる群から選択される少なくとも1種であることが望ましい。
さらに、上記のM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、アルミニウム酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、及び、アルミニウム金属膜からなる群から選択される少なくとも1種の膜であることが望ましい。
上記の被エッチング膜は、上記した単独の金属又は金属酸化物の膜であってもよく、上記金属を2種以上含む合金又は合金の酸化物の膜であってもよい。
本開示のドライエッチング方法によれば、温度が400℃以下、さらには300℃以下であっても、上記したM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む難エッチング性の被エッチング膜を、プラズマ状態を伴わずにエッチングすることが可能なドライエッチング方法を提供することができる。
β-ジケトンの一種であるヘキサフルオロアセチルアセトン(以下、HFAcともいう)の分解温度は375℃であるため、特許文献1に記載されているようなエッチング温度が400℃を超える温度である場合、HFAcの分解が生じ、エッチング対象である被エッチング膜上に炭素成分が堆積し、その後のプロセスにおいて、不都合が発生することが充分に想定される。
一方、本開示のドライエッチング方法では、HFAcとNOをエッチングガスとして用いることにより、エッチング温度を375℃以下まで低下させることができるため、HFAcの分解による炭素膜の形成を抑制することができる。
エッチング温度を低下させることができる理由としては、被エッチング膜の表面にエッチングガスを構成するNOが吸着し、上記した金属酸化物を構成する金属と酸素との間の結合力が弱まり、HFAcとの反応性が向上し、低温でもエッチングが可能になるのではないかと推定される。
[第1のドライエッチング方法]
まず、本開示のドライエッチング方法として、上記β-ジケトン及び上記二酸化窒素を含むエッチングガスAを上記被エッチング膜と接触させる第1のドライエッチング方法について説明する。
本開示の第1のドライエッチング方法において、被処理体としては、シリコン基板、化合物半導体基板、石英基板、ガラス基板を挙げることができる。被処理体の表面には、上記したM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む膜以外に、シリコン膜、シリコン酸化物膜、シリコン窒化物膜、上記金属以外の金属配線膜などが形成されていてもよい。被処理体は、載置部に載置され、載置部を加熱することで、被処理体、及び、被処理体の表面に形成されたM-O結合エネルギーが5eV以上の金属若しくは上記金属の酸化物を含む被エッチング膜が加熱される。
被処理体の温度は、実質的に上記被エッチング膜の温度に等しい。加熱した状態の上記被エッチング膜にβ-ジケトンと二酸化窒素を含むエッチングガスを接触させると、β-ジケトンと二酸化窒素とM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物とが反応して、上記被エッチング膜上に錯体を生成する。この錯体は蒸気圧が高いため、錯体が気化することにより被エッチング膜をエッチングすることができる。
M-O結合エネルギーが5eV以上の金属の酸化物を構成するハフニウム酸化物としては、酸化ハフニウム(HfO(xは1以上3以下)、特にHfO)、酸化ケイ素ハフニウム、酸化アルミニウムハフニウムを挙げられる。酸化ケイ素ハフニウムとしては、Hf1-xSi、Hf1-xSiを挙げられ、酸化アルミニウムハフニウムとしては、Hf1-xAl、Hf1-xAlを挙げられる。ただし、x、y、z、m、nは0<x<1、0<y≦2、0<z≦1.33、0<m≦1.5、0<n≦1を示す。
ジルコニウム酸化物としては、酸化ジルコニウム(ZrO(uは1以上3以下)、特にZrO)を挙げられる。アルミニウム酸化物としては、酸化アルミニウム(AlO(vは1以上2以下)、特にAl)を挙げられる。チタン酸化物としては、酸化チタン(TiO(wは1以上3以下)、特にTiO)を挙げられる。
被処理体表面へのM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜の形成方法は特に限定されないが、例えば、化学的気相成長(CVD)法や、スパッタリング法を挙げることができる。また、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜の厚さも特に限定されないが、例えば、0.1nm以上1μm以下の厚さとすることができる。
β-ジケトンの種類は、特に限定されないが、例えば、ヘキサフルオロアセチルアセトン(HFAc、1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオン)、トリフルオロアセチルアセトン(1,1,1-トリフルオロ-2,4-ペンタンジオン)等が挙げられる。β-ジケトンとして、1種の化合物を用いてもよいし、2種以上の化合物を用いてもよい。
エッチングガスA中に含まれるβ-ジケトンと二酸化窒素の体積比は、β-ジケトン:二酸化窒素=10:0.001以上100以下であることが好ましく、β-ジケトン:二酸化窒素=10:0.01以上10以下であることがより好ましく、β-ジケトン:二酸化窒素=10:0.1以上10以下であることがさらに好ましい。エッチングガス中にβ-ジケトンが少なすぎると、エッチング速度が低下する傾向にあり、多すぎるとエッチングガスが高価になりすぎてしまう。また、エッチングガス中の二酸化窒素が少なすぎても多すぎてもエッチングが進みにくくなってしまう。
上記エッチングガスAは、β-ジケトンと二酸化窒素のみからなっていてもよいが、O、NO、NO、CO、CO、HO、H、アルコールからなる群より選ばれる少なくとも1種の添加ガスをさらに含んでもよいし、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含んでもよい。また、アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコールなどを使用することができる。
エッチングガスAが二酸化窒素以外の添加ガスを含む場合、エッチングガスA中に含まれる二酸化窒素とそれ以外の添加ガスの合計の含有率は、前述の二酸化窒素の含有率と同じとすることができる。
エッチングガスAが不活性ガスを含む場合、エッチングガスA中に含まれる不活性ガスの含有率は、1体積%以上90体積%以下であることが好ましく、10体積%以上80体積%以下であることがより好ましく、30体積%以上50体積%以下であることがさらに好ましい。
[第2のドライエッチング方法]
次に、本開示のドライエッチング方法として、二酸化窒素を含むエッチングガスBを被エッチング膜と接触させる第1のエッチング工程と、β-ジケトンを含むエッチングガスCを被エッチング膜と接触させる第2のエッチング工程とを備える第2のドライエッチング方法について説明する。
本開示の第2のドライエッチング方法において、被処理体としては、第1のドライエッチング方法の場合と同様、シリコン基板、化合物半導体基板、石英基板、ガラス基板を挙げることができる。被処理体の表面には、上記したM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物の膜以外に、シリコン膜、シリコン酸化物膜、シリコン窒化物膜、上記金属以外の金属配線膜などが形成されていてもよい。被処理体は載置部に載置され載置部を加熱することで被処理体及び被処理体の表面に形成されたM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜が加熱される。
被処理体の温度は、実質的に上記被エッチング膜の温度に等しい。加熱した状態の上記被エッチング膜に、第1のエッチング工程として、二酸化窒素を含むエッチングガスBを接触させると、被エッチング膜の表面に二酸化窒素が吸着する。この後、第2のエッチング工程として、β-ジケトンを含むエッチングガスCを上記被エッチング膜と接触させると、表面に二酸化窒素が吸着した、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物と、β-ジケトンとが反応し、第1のドライエッチング方法の場合と同様に、被エッチング膜上に錯体が生成する。この錯体は蒸気圧が高いため、錯体が気化することによりM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜をエッチングすることができる。
本開示の第2のドライエッチング方法では、被エッチング膜を繰り返しエッチングするために、上記工程を複数回繰り返してもよい。1サイクルのエッチング工程において、一定厚さエッチングすることが可能であるので、サイクル数を特定することにより、精密に所望の厚さの層をエッチングすることができる。
M-O結合エネルギーが5eV以上の金属の酸化物を構成するハフニウム酸化物としては、上記の第1のドライエッチング方法の場合と同様のものを使用することができる。
被処理体表面へのM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜の形成方法は特に限定されないが、例えば、化学的気相成長(CVD)法や、スパッタリング法を挙げることができる。また、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜の厚さは、特に限定されないが、例えば、0.1nm以上1μm以下の厚さとすることができる。
β-ジケトンとしては、上記の第1のドライエッチング方法の場合と同様のものを用いることができる。
上記エッチングガスCは、β-ジケトンのみからなっていてもよく、エッチングガスBは二酸化窒素のみからなっていてもよいが、O、NO、NO、CO、CO、HO、H、アルコールからなる群より選ばれる少なくとも1種の添加ガスをさらに含んでもよいし、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含んでもよい。また、アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコールなどを使用することができる。
エッチングガスBが二酸化窒素以外の添加ガスを含む場合、エッチングガスA中に含まれる二酸化窒素とそれ以外の添加ガスの合計の体積比は、前述のエッチングガスA中に含まれるβ-ジケトンと二酸化窒素の体積比と同じとすることができる。
また、エッチングガスCがβ-ジケトン以外の添加ガスを含む場合、エッチングガスC中に含まれるβ-ジケトンとそれ以外の添加ガスの合計の体積比は、前述のエッチングガスA中に含まれるβ-ジケトンと二酸化窒素の体積比と同じとすることができる。
エッチングガスB及びエッチングガスCが不活性ガスを含む場合、エッチングガスB及びエッチングガスCに含まれる不活性ガスの含有率は、1体積%以上90体積%以下であることが好ましく、10体積%以上80体積%以下であることがより好ましく、30体積%以上50体積%以下であることがさらに好ましい。
[エッチング装置]
本開示のドライエッチング方法は、例えば、半導体製造工程に使用される一般的なエッチング装置を使用することにより実現することができる。このようなエッチング装置も、本開示の1つである。
図1は、本開示の一実施形態に係るエッチング装置を模式的に示す概略図である。
図1に示すエッチング装置100は、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物が表面に形成された被処理体10を配置する処理容器110と、処理容器110に接続して気体のβ-ジケトンを供給するβ-ジケトン供給部140と、気体の二酸化窒素を供給する二酸化窒素ガス供給部150と、不活性ガスを供給する不活性ガス供給部160と、処理容器110を加熱する加熱手段170と、を備える。なお、エッチング装置100は、不活性ガス供給部160を備えていなくてもよい。
さらにエッチング装置100は、図示しない制御部を備えている。この制御部は、例えばコンピュータからなり、プログラム、メモリ、CPUを備えている。プログラムは、第1のエッチング方法又は第2のエッチング方法における一連の動作を実施するようにステップ群が組み込まれており、プログラムに従って、被処理体10の温度の調整、各供給部のバルブの開閉、各ガスの流量の調整、処理容器110内の圧力の調整などを行う。このプログラムは、コンピュータ記憶媒体、例えばコンパクトディスク、ハードディスク、光磁気ディスク、メモリーカード等に収納され制御部にインストールされる。
処理容器110は、被処理体10を載置するための載置部111を具備する。処理容器110は、使用するβ-ジケトンに対する耐性があり、所定の圧力に減圧できるものであれば特に限定されるものではないが、通常、半導体のエッチング装置に備えられた一般的な処理容器などが適用される。また、エッチングガスを供給する供給管やその他の配管などもβ-ジケトンに対する耐性にあるものであれば特に限定されるものではなく一般的なものを使用することができる。
β-ジケトン供給部140は、バルブV1及びV2と流量調整手段MFC1で供給量を調整して、β-ジケトンを配管141及び142から配管121に供給する。
二酸化窒素ガス供給部150は、バルブV3及びV4と流量調整手段MFC2で供給量を調整して、二酸化窒素を配管151及び152から配管121に供給する。
不活性ガス供給部160は、バルブV5及びV6と流量調整手段MFC3で供給量を調整して、不活性ガスを配管161及び162から配管121に供給する。
処理容器110の外部には、処理容器110を加熱する加熱手段170が配設される。また、載置部111の内部には、第2の加熱手段として、ヒーター(図示せず)を備えてもよい。なお、複数の載置部を処理容器110に配置する場合は、載置部毎にヒーターを備えることにより、それぞれの載置部上の被処理体の温度を個別に所定の温度に設定することができる。
処理容器110の一方には、反応後のガスを排出するためのガス排出手段が配設される。ガス排出手段の真空ポンプ173により、配管171を介して処理容器110から反応後のガスが排出される。反応後のガスは、配管171と配管172との間に配設された液体窒素トラップ174により回収される。配管171及び172には、バルブV7及びV8を配設して、圧力を調整することができる。また、図1中、PI1及びPI2は、圧力計であり、その指示値を基に、制御部が各流量調整手段及び各バルブを制御することができる。
このエッチング装置100を例として、具体的にエッチング方法を説明する。
[上記エッチング装置を用いた第1のドライエッチング方法]
本開示の第1のドライエッチング方法では、β-ジケトン及び二酸化窒素を含むエッチングガスAを被エッチング膜と接触させる。
第1のドライエッチング方法では、まず、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜が形成された被処理体10を処理容器110内に配置する。次に、真空ポンプ173により、処理容器110、配管121、配管141及び142、配管151及び152、配管161及び162、液体窒素トラップ174、配管171及び172の内部を所定の圧力まで真空排気後、加熱手段170により、被処理体10を加熱する。
被処理体10が所定の温度に到達したら、β-ジケトン供給部140と二酸化窒素ガス供給部150とからβ-ジケトンと二酸化窒素ガスを所定の流量で配管121に供給する。なお、不活性ガス供給部160から不活性ガスを所定の流量で配管121に供給してもよい。
β-ジケトンと二酸化窒素は所定の組成で混合され、処理容器110に供給される。混合されたエッチングガスを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、エッチングガスとM-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜とを反応させることにより、錯体を形成させ、エッチングを行う。このエッチング方法では、プラズマ状態を伴わないプラズマレスでエッチング可能であり、エッチングの際、プラズマ等でのエッチングガスの励起は不要である。エッチングガスの流量は、処理容器の容積と圧力などに基づいて適宜設定することができる。
なお、プラズマ状態を伴うエッチングとは、反応装置の内部に、例えば、0.1~10Torr程度のガス等を入れ、外側のコイルあるいは対向電極に高周波電力を与えて反応装置中に低温のガスプラズマを発生させ、その中にできるイオンやラジカルなど活性化学種によりエッチングを行うことをいう。
本開示のドライエッチング方法では、ガスを、プラズマ状態を伴わずに接触させ、上記したガスプラズマを発生させることなく、ドライエッチングを行う。
エッチング工程が終了した後、加熱手段170による加熱を停止し降温するとともに、真空ポンプ173を停止し、不活性ガスで置換して真空を開放する。以上のように、上記エッチング装置を用いた第1のドライエッチング方法により、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜のエッチングを行うことができる。
(第1のドライエッチング方法におけるエッチング条件)
本開示の第1のドライエッチング方法において、エッチングガスAを前記被エッチング膜と接触させる際の被エッチング膜の温度は、錯体が気化可能な温度であればよく、特に、除去対象の被エッチング膜の温度が、250℃以上375℃以下であることが好ましく、275℃以上375℃以下であることがより好ましく、275℃以上350℃以下であることがより好ましく、275℃以上325℃以下であることがより好ましい。
また、被エッチング膜に、前記エッチングガスAを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力は、特に限定されないが、通常、0.1kPa以上101.3kPa以下の圧力範囲である。
充分なエッチング速度を得る観点から、エッチング工程における処理容器内の圧力は、20Torr以上300Torr以下(2.67kPa以上39.9kPa以下)であることが好ましく、20Torr以上200Torr以下(2.67kPa以上26.7kPa以下)であることがより好ましく、20Torr以上100Torr以下(2.67kPa以上13.3kPa以下)であることがさらに好ましい。
エッチング工程の処理時間は、特に限定されないが、半導体デバイス製造プロセスの効率を考慮すると、60分以内であることが好ましい。ここで、エッチング工程の処理時間とは、被処理体が設置されている処理容器内にエッチングガスを導入し、その後、エッチング処理を終えるために処理容器内のエッチングガスを真空ポンプ等により排気するまでの時間を指す。
[エッチング装置100を用いた第2のドライエッチング方法]
本開示の第2のドライエッチング方法では、二酸化窒素を含むエッチングガスBを被エッチング膜と接触させる第1のエッチング工程と、β-ジケトンを含むエッチングガスCを被エッチング膜と接触させる第2のエッチング工程とを備える。
第2のドライエッチング方法では、まず、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜が形成された被処理体10を処理容器110内に配置する。次に、真空ポンプ173により、処理容器110、配管121、配管141及び142、配管151及び152、配管161及び162、液体窒素トラップ174、配管171及び172の内部を所定の圧力まで真空排気後、加熱手段170により、被処理体10を加熱する。
被処理体10が所定の温度に到達したら、最初に、二酸化窒素ガス供給部150から二酸化窒素ガスを所定の流量で配管121に供給する。なお、不活性ガス供給部160から不活性ガスを所定の流量で配管121に供給してもよい。二酸化窒素ガス又は二酸化窒素ガスと不活性ガスとを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、二酸化窒素ガスを処理容器110内に導入することにより、二酸化窒素を被エッチング膜に吸着させる。
二酸化窒素ガスを含むガスを真空排気した後、β-ジケトン供給部140からβ-ジケトンガスを所定の流量で配管121に供給する。なお、不活性ガス供給部160から不活性ガスを所定の流量で配管121に供給してもよい。β-ジケトンガス又はβ-ジケトンガスと不活性ガスとを処理容器110内に導入しながら、処理容器110内を所定の圧力に制御する。所定の時間、β-ジケトンガスを処理容器110内に導入することにより、先に吸着した二酸化窒素とβ-ジケトンとが反応して錯体を形成し、さらに、上記錯体が上記被エッチング膜と反応し、上記被エッチング膜をエッチングすることができる。
本開示の第2のドライエッチング方法では、二酸化窒素ガスを処理容器110内に導入する第1のエッチング工程とβ-ジケトンを処理容器110内に導入する第2のエッチング工程を1サイクルとする工程を複数サイクル繰り返して行うことができる。
本開示の第2のドライエッチング方法では、1サイクルのエッチング条件を所定の条件に設定することにより、1サイクルでエッチングできる被エッチング膜の厚さをコントロールすることができるので、1サイクルでエッチングできる被エッチング膜の厚さを薄く設定することにより、精密にエッチングする厚さをコントロールすることができる。
なお、第2のドライエッチング方法でも、プラズマ状態を伴わないプラズマレスでエッチング可能であり、エッチングの際、プラズマ等でのエッチングガスの励起は不要である。二酸化窒素とβ-ジケトンとの流量は、処理容器の容積と圧力などに基づいて適宜設定することができる。
このように、上記エッチング装置を用いた本開示の第2のドライエッチング方法では、ガスを、プラズマ状態を伴わずに接触させることができ、上記したガスプラズマを発生させることなく、ドライエッチングを行うことができる。
エッチング工程が終了した後、加熱手段170による加熱を停止し降温するとともに、真空ポンプ173を停止し、不活性ガスで置換して真空を開放する。以上により、M-O結合エネルギーが5eV以上の金属又は上記金属の酸化物を含む被エッチング膜のエッチングを行うことができる。
(第2のドライエッチング方法におけるエッチング条件)
本開示の第2のドライエッチング方法において、エッチング工程を行う際の被エッチング膜の温度は、錯体が気化可能な温度であればよく、特に、除去対象の被エッチング膜の温度が、250℃以上375℃以下であることがより好ましく、275℃以上375℃以下であることがより好ましく、275℃以上350℃以下であることがより好ましく、275℃以上325℃以下であることがより好ましい。第1のエッチング工程と第2のエッチング工程における被エッチング膜の温度は、同じであることが望ましい。
また、エッチング工程における処理容器内の圧力は、特に限定されないが、通常、0.1kPa以上101.3kPa以下の圧力範囲である。
充分なエッチング速度を得る観点から、第1のエッチング工程及び第2のエッチング工程における処理容器内の圧力は、20Torr以上300Torr以下(2.67kPa以上39.9kPa以下)であることが好ましく、20Torr以上200Torr以下(2.67kPa以上26.7kPa以下)であることがより好ましく、20Torr以上100Torr以下(2.67kPa以上13.3kPa以下)であることがさらに好ましい。第2のエッチング工程における処理容器内の圧力は、第1のエッチング工程における処理容器内の圧力より高いことが望ましい。
第1のエッチング工程及び第2のエッチング工程における処理時間は、特に限定されないが、第1のエッチング工程の1サイクルにおける処理時間は、60分以内であることが好ましく、第2のエッチング工程の1サイクルにおける処理時間は、60分以内であることが好ましい。ここで、エッチング工程の処理時間とは、被処理体が設置されている処理容器内にエッチングガスを導入し、その後、エッチング処理を終えるために処理容器内のエッチングガスを真空ポンプ等により排気するまでの時間を指す。
[半導体デバイスの製造方法]
上述した本開示のドライエッチング方法は、従来の半導体デバイスのハフニウム酸化物膜やハフニウム金属等に所定のパターンを形成するためのエッチング方法として使用可能である。本開示のドライエッチング方法を用いて基板上のハフニウム酸化物膜やハフニウム金属等をエッチングすることにより、半導体デバイスを安価に製造することができる。
以下、本開示をより具体的に開示した実施例を示す。なお、本開示は、これらの実施例のみに限定されるものではない。
(実施例1)
図1に示すエッチング装置100を用いて、シリコンウエハの表面に形成された酸化ハフニウム(HfO)膜(形状1cm×1cm、膜厚5nm)からなる被エッチング膜を有する被処理体10のエッチングを行った。
処理容器110、配管121、配管141及び142、配管151及び152、配管161及び162、液体窒素トラップ174、配管171及び172の内部を10Pa未満まで真空引きした。その後、加熱手段170及び載置部111の内部に配設したヒーターにより、載置部111に載置している被処理体10を加熱した。被処理体10の温度が300℃に達したことを確認後、β-ジケトン供給部140から気体のヘキサフルオロアセチルアセトン(HFAc)と、二酸化窒素ガス供給部150からNOガスとを所定の流量で配管121に供給することで、エッチングガスを処理容器110内に導入しながら、処理容器110内部の圧力を90Torrに制御し、エッチング工程を行った。被処理体の温度は300℃とし、エッチングガスの流量は、HFAc=10sccm、NO=1sccmとした。エッチングガスの導入を開始して30分が経過した後、エッチングガスの導入を停止した。その後、処理容器110の内部を10Pa未満まで真空引きし、不活性ガス供給部160から供給するNガスで置換した後に被処理体10を取り出し、膜厚を測定し、エッチング量を評価した。
なお、下記の実施例2~20を含む実施例1~22では、β-ジケトン及び二酸化窒素を含むエッチングガスAを被エッチング膜と接触させる第1のドライエッチング方法を採用しており、比較例4、7、10、12及び17を除く比較例1~17でも、β-ジケトン及び表1及び2に示すガスを含むエッチングガスを被エッチング膜と接触させている。なお、比較例4、7、10、12及び17では、β-ジケトンのみを含むエッチングガスを被エッチング膜と接触させている。
(実施例2~4、比較例1~4)
下記の表1には、上記したエッチングにおける添加ガスの種類、HFAcの流量、添加ガスの流量、処理容器内の圧力、エッチング時の温度、エッチング時間及びエッチング可否を示している。
エッチング可否は、エッチング速度が0.1nm/分以上であれば○、エッチング速度が0.1nm/分未満の場合を×とした。エッチング速度とは、エッチング前後の膜の厚さの変化を、エッチングに要した時間で除した値をいう。
実施例2~4と比較例1~4の実施例1との相違点を説明する。実施例2では、添加ガスであるNOの流量を変更した。実施例3では、添加ガスであるNOの流量とエッチング時間、被処理体10の温度を変更した。実施例4では、被処理体10の温度を変更した。比較例1~3では、それぞれ、添加ガスとして一酸化窒素(NO)、酸素(O)、一酸化二窒素(NO)を用い、比較例4では添加ガスを使用せずに処理した。その他の点については、実施例1と同様の操作を実施し、酸化ハフニウム(HfO)膜のエッチングの可否を評価した。
Figure JPOXMLDOC01-appb-T000001
(実施例5~22、比較例5~17)
図1に示すエッチング装置100を用いて、シリコンウエハの表面に形成された、それぞれ形状が1cm×1cm、膜厚60nmの酸化アルミニウム(Al)膜、酸化ジルコニウム(ZrO)膜、酸化ハフニウム(HfO)膜、及び、酸化チタニウム(TiO)膜からなる被エッチング膜を有する被処理体のエッチングを行った。
被エッチング膜の材料、エッチングガスの種類と流量、処理容器内の圧力、及び、エッチング時の被処理体の温度を表2(275℃、300℃、350℃)に示すように変更した他は、実施例1と同様の操作を行い、被エッチング膜のエッチング速度を測定した。結果を表2に示す。
表2には、エッチング速度が0.1nm/分以上1.0nm/分未満をA、1.0nm/分以上10.0nm/分未満をB、10.0nm/分以上50.0nm/分未満をC、0.1nm未満をXとして表示している。
Figure JPOXMLDOC01-appb-T000002
以上の結果から、エッチングガスとしてHFAcとNOを用いた場合には、350℃以下の被処理体温度で、0.1nm/min以上の速度で酸化アルミニウム膜、酸化ジルコニウム膜、酸化ハフニウム膜、ハフニウム金属膜、及び、酸化チタニウム膜のエッチングが可能であり、特に被処理体の温度が300℃でもエッチングが可能であった。また、被処理体の温度がHFAcの分解温度(375℃)以下でエッチングできたことから、実施例1~4においては、被処理体表面に炭素膜が形成されていなかった。
一方で、添加ガスとしてNO、O、NOを用いた場合や、添加ガスを使用しなかった場合には、被処理体温度が350℃でも、酸化アルミニウム膜、酸化ジルコニウム膜、酸化ハフニウム膜、ハフニウム金属膜、及び、酸化チタニウム膜のエッチングができなかった。
(実施例23~26)
これらの実施例では、二酸化窒素を含むエッチングガスBを被エッチング膜と接触させる第1のエッチング工程と、β-ジケトンを含むエッチングガスCを被エッチング膜と接触させる第2のエッチング工程とを繰り返し行う第2のドライエッチング方法を採用して、シリコンウエハの表面に形成された酸化ハフニウム(HfO)膜(形状1cm×1cm、膜厚60nm)からなる被エッチング膜のエッチングを行った。
まず、処理容器110、配管121、配管141及び142、配管151及び152、配管161及び162、液体窒素トラップ174、配管171及び172の内部を10Pa未満まで真空引きした。その後、加熱手段170及び載置部111の内部に配設したヒーターにより、載置部111に載置している酸化ハフニウム(HfO)膜を有する被処理体10を加熱した。
被処理体10の温度が350℃に達したことを確認後、二酸化窒素ガス供給部150からNOガスを配管121に供給し、処理容器110内部の圧力を30Torrに制御しながら、処理容器110の内部にNOガスを流した。被処理体の温度は350℃とし、エッチングガスの流量は、NO=5sccmとし、表3に示した時間、NOガスを流し、被エッチング膜と接触させた。その後、エッチングガスの導入を停止し、処理容器110の内部を10Pa未満まで真空引きした。
次に、β-ジケトン供給部140から気体のヘキサフルオロアセチルアセトン(HFAc)を配管121に供給し、処理容器110内部の圧力を60Torrに制御しながら、処理容器110の内部にHFAcガスを流した。被処理体の温度は350℃とし、エッチングガスの流量は、HFAc=10sccmとし、表3に示した時間、HFAcガスを流し、被エッチング膜と接触させた。その後、エッチングガスの導入を停止し、処理容器110の内部を10Pa未満まで真空引きした。
上記したNOガスを処理容器110内部に流す工程とHFAcガスを処理容器110内部に流す工程とを1サイクルとする工程を表3に示す回数(サイクル数)繰り返した後、処理容器110の内部を10Pa未満まで真空引きし、不活性ガス供給部160から供給されるNガスで処理容器110の内部を置換した後に被処理体10を取り出し、膜厚を測定し、トータルのエッチング厚さを測定するとともに、1サイクル当たりのエッチング厚さを算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
表3に示す結果から明らかなように、エッチングの条件を一定とすることで、1サイクル当たりにエッチングできる被エッチング膜の厚さがほぼ一定となるので、サイクル数を設定することで、被エッチング膜をほぼ正確に要求される厚さでエッチングできることが判明した。
10 被処理体
100 エッチング装置
110 処理容器
111 載置部
121 配管
140 β-ジケトン供給部
141、142 配管
150 二酸化窒素ガス供給部
151、152 配管
160 不活性ガス供給部
161、162 配管
170 加熱手段
171、172 配管
173 真空ポンプ
174 液体窒素トラップ
MFC1、MFC2、MFC3 流量調整手段
PI1、PI2 圧力計
V1、V2、V3、V4、V5、V6、V7、V8 バルブ

Claims (26)

  1. 被処理体の表面に形成された、M-O結合エネルギーが5eV以上の金属又は前記金属の酸化物を含む被エッチング膜に、β-ジケトン及び二酸化窒素を反応させて、プラズマ状態を伴わずにエッチングすることを特徴とするドライエッチング方法。
  2. 前記M-O結合エネルギーが5eV以上の金属又は前記金属の酸化物は、ハフニウム酸化物、ジルコニウム酸化物、チタン酸化物、アルミニウム酸化物、ハフニウム金属、ジルコニウム金属、チタン金属、及び、アルミニウム金属からなる群から選択される少なくとも1種である請求項1に記載のドライエッチング方法。
  3. 前記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、アルミニウム酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、及び、アルミニウム金属膜からなる群から選択される少なくとも1種の膜である請求項1又は2に記載のドライエッチング方法。
  4. 前記β-ジケトンが、ヘキサフルオロアセチルアセトン又はトリフルオロアセチルアセトンである、請求項1~3のいずれか1項に記載のドライエッチング方法。
  5. 前記β-ジケトン及び前記二酸化窒素を含むエッチングガスAを前記被エッチング膜と接触させる請求項1~4のいずれか1項に記載のドライエッチング方法。
  6. 前記エッチングガスAを前記被エッチング膜と接触させる際の前記被エッチング膜の温度が、250℃以上375℃以下である、請求項5に記載のドライエッチング方法。
  7. 前記エッチングガスAにおける前記β-ジケトンと前記二酸化窒素の体積比は、β-ジケトン:二酸化窒素=10:0.001以上100以下である、請求項5~6のいずれか1項に記載のドライエッチング方法。
  8. 前記エッチングガスAにおける前記β-ジケトンと前記二酸化窒素の体積比は、β-ジケトン:二酸化窒素=10:0.01以上10以下である、請求項7に記載のドライエッチング方法。
  9. 前記被エッチング膜に、前記エッチングガスAを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、請求項5~8のいずれか1項に記載のドライエッチング方法。
  10. 前記被エッチング膜が、酸化ハフニウム(HfO(xは1以上3以下))、酸化ジルコニウム(ZrO(uは1以上3以下))、酸化アルミニウム(AlO(vは1以上2以下))、及び酸化チタン(TiO(wは1以上3以下))からなる群から選択される少なくとも1種からなる膜であり、
    前記β-ジケトンが、ヘキサフルオロアセチルアセトンであり、
    前記β-ジケトン及び前記二酸化窒素を前記被エッチング膜に接触させる際の前記被エッチング膜の温度が、250℃以上375℃以下であり、
    前記エッチングガスAにおけるβ-ジケトンと二酸化窒素の体積比は、β-ジケトン:二酸化窒素=10:0.001以上100以下であり、
    前記被エッチング膜に、前記エッチングガスAを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲であり、
    前記被エッチング膜のエッチング速度が0.1nm/分以上である、請求項5に記載のドライエッチング方法。
  11. 前記エッチングガスAは、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含む、請求項5~10のいずれか1項に記載のドライエッチング方法。
  12. 前記エッチングガスA中の不活性ガスの含有率は、1体積%以上90体積%以下である、請求項11に記載のドライエッチング方法。
  13. 前記エッチングガスA中の不活性ガスの含有率は、30体積%以上50体積%以下である、請求項11に記載のドライエッチング方法。
  14. 前記二酸化窒素を含むエッチングガスBを前記被エッチング膜と接触させる第1のエッチング工程と、
    前記β-ジケトンを含むエッチングガスCを前記被エッチング膜と接触させる第2のエッチング工程とを備える、請求項1~4のいずれか1項に記載のドライエッチング方法。
  15. 前記第1のエッチング工程と前記第2のエッチング工程とを複数サイクル繰り返し行う請求項14に記載のドライエッチング方法。
  16. 前記エッチングガスBを前記被エッチング膜と接触させる際の前記被エッチング膜の温度、及び、前記エッチングガスCを前記被エッチング膜と接触させる際の前記被エッチング膜の温度が、250℃以上375℃以下である、請求項14又は15に記載のドライエッチング方法。
  17. 前記被エッチング膜に前記エッチングガスBを接触させる際、及び、前記被エッチング膜に前記エッチングガスCを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、請求項14~16のいずれか1項に記載のドライエッチング方法。
  18. 被エッチング膜が、酸化ハフニウム(HfO(xは1以上3以下))、酸化ジルコニウム(ZrO(uは1以上3以下))、酸化アルミニウム(AlO(vは1以上2以下))、及び酸化チタン(TiO(wは1以上3以下))からなる群から選択される少なくとも1種からなる膜であり、
    前記β-ジケトンが、ヘキサフルオロアセチルアセトンであり、
    前記エッチングガスBを前記被エッチング膜と接触させる際の前記被エッチング膜の温度、及び、前記エッチングガスCを前記被エッチング膜と接触させる際の前記被エッチング膜の温度が、250℃以上375℃以下であり、
    前記被エッチング膜に前記エッチングガスBを接触させる際、及び、前記被エッチング膜に前記エッチングガスCを接触させる際、前記被エッチング膜が形成された被処理体が置かれる処理容器内の圧力が、0.1kPa以上101.3kPa以下の圧力範囲である、請求項14に記載のドライエッチング方法。
  19. 前記エッチングガスB及び前記エッチングガスCは、N、Ar、He、Ne及びKrからなる群より選ばれる少なくとも1種の不活性ガスをさらに含む、請求項14~18のいずれか1項に記載のドライエッチング方法。
  20. 前記エッチングガスB及び前記エッチングガスC中の不活性ガスの含有率は、1体積%以上90体積%以下である、請求項19に記載のドライエッチング方法。
  21. 前記エッチングガスB及び前記エッチングガスC中の不活性ガスの含有率は、30体積%以上50体積%以下である、請求項20に記載のドライエッチング方法。
  22. 基板上のM-O結合エネルギーが5eV以上の金属又は前記金属の酸化物を含む被エッチング膜に、β-ジケトン及び二酸化窒素を反応させて、プラズマ状態を伴わずにエッチングする工程を備えることを特徴とする半導体デバイスの製造方法。
  23. 前記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、アルミニウム酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、及び、アルミニウム金属膜からなる群から選択される少なくとも1種の膜である請求項22に記載の半導体デバイスの製造方法。
  24. 加熱可能な処理容器内に設けられ、M-O結合エネルギーが5eV以上の金属又は前記金属の酸化物を含む被エッチング膜が表面に形成された被処理体を載置する載置部と、
    β-ジケトンを前記被処理体に供給するβ-ジケトン供給部と、
    二酸化窒素を前記被処理体に供給する二酸化窒素ガス供給部と、
    を備えることを特徴とするエッチング装置。
  25. 不活性ガスを前記被処理体に供給する不活性ガス供給部を、さらに備えることを特徴とする請求項24に記載のエッチング装置。
  26. 前記被エッチング膜は、ハフニウム酸化物膜、ジルコニウム酸化物膜、チタン酸化物膜、アルミニウム酸化物膜、ハフニウム金属膜、ジルコニウム金属膜、チタン金属膜、及び、アルミニウム金属膜からなる群から選択される少なくとも1種の膜である請求項24又は25に記載のエッチング装置。

     
PCT/JP2020/033073 2019-10-23 2020-09-01 ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置 WO2021079624A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20879439.6A EP4047636A4 (en) 2019-10-23 2020-09-01 DRY ETCHING METHOD, METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT AND ETCHING DEVICE
US17/771,193 US20220415667A1 (en) 2019-10-23 2020-09-01 Dry Etching Method, Method for Producing Semiconductor Device, and Etching Device
CN202080073880.9A CN114616651A (zh) 2019-10-23 2020-09-01 干式蚀刻方法、半导体器件的制造方法和蚀刻装置
JP2021554123A JPWO2021079624A1 (ja) 2019-10-23 2020-09-01
KR1020227016088A KR20220086610A (ko) 2019-10-23 2020-09-01 드라이 에칭 방법, 반도체 디바이스의 제조 방법 및 에칭 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-192524 2019-10-23
JP2019192524 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079624A1 true WO2021079624A1 (ja) 2021-04-29

Family

ID=75620477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033073 WO2021079624A1 (ja) 2019-10-23 2020-09-01 ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置

Country Status (7)

Country Link
US (1) US20220415667A1 (ja)
EP (1) EP4047636A4 (ja)
JP (1) JPWO2021079624A1 (ja)
KR (1) KR20220086610A (ja)
CN (1) CN114616651A (ja)
TW (1) TW202117840A (ja)
WO (1) WO2021079624A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151383A (ja) * 1992-11-12 1994-05-31 Mitsubishi Electric Corp 高誘電率を有する多元系酸化物膜のエッチング方法、高融点金属含有膜のエッチング方法、薄膜キャパシタ素子の製造方法およびその方法を実施するためのプラズマ処理装置
JP2004091829A (ja) 2002-08-30 2004-03-25 Tokyo Electron Ltd エッチング方法及びエッチング装置
US20050107274A1 (en) * 2003-10-14 2005-05-19 Jerome Daviot Removal of post etch residues and copper contamination from low-k dielectrics using supercritical CO2 with diketone additives
JP2006310676A (ja) 2005-05-02 2006-11-09 Hitachi High-Technologies Corp 試料のエッチング方法
JP2013194307A (ja) 2012-03-22 2013-09-30 Central Glass Co Ltd 成膜装置内の金属膜のドライクリーニング方法
WO2017134930A1 (ja) * 2016-02-02 2017-08-10 セントラル硝子株式会社 エッチング方法及びエッチング装置
JP2018110229A (ja) * 2017-01-04 2018-07-12 セントラル硝子株式会社 ドライエッチング方法及びエッチング装置
JP2018186149A (ja) * 2017-04-25 2018-11-22 株式会社日立ハイテクノロジーズ 半導体製造装置及び半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807458B2 (ja) * 2017-06-27 2021-01-06 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
EP3933892A4 (en) * 2019-03-01 2022-11-09 Central Glass Company, Limited DRY ETCHING METHOD, METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE AND ETCHING DEVICE

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151383A (ja) * 1992-11-12 1994-05-31 Mitsubishi Electric Corp 高誘電率を有する多元系酸化物膜のエッチング方法、高融点金属含有膜のエッチング方法、薄膜キャパシタ素子の製造方法およびその方法を実施するためのプラズマ処理装置
JP2004091829A (ja) 2002-08-30 2004-03-25 Tokyo Electron Ltd エッチング方法及びエッチング装置
US20050107274A1 (en) * 2003-10-14 2005-05-19 Jerome Daviot Removal of post etch residues and copper contamination from low-k dielectrics using supercritical CO2 with diketone additives
JP2006310676A (ja) 2005-05-02 2006-11-09 Hitachi High-Technologies Corp 試料のエッチング方法
JP2013194307A (ja) 2012-03-22 2013-09-30 Central Glass Co Ltd 成膜装置内の金属膜のドライクリーニング方法
WO2017134930A1 (ja) * 2016-02-02 2017-08-10 セントラル硝子株式会社 エッチング方法及びエッチング装置
JP2018110229A (ja) * 2017-01-04 2018-07-12 セントラル硝子株式会社 ドライエッチング方法及びエッチング装置
JP2018186149A (ja) * 2017-04-25 2018-11-22 株式会社日立ハイテクノロジーズ 半導体製造装置及び半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4047636A4

Also Published As

Publication number Publication date
CN114616651A (zh) 2022-06-10
KR20220086610A (ko) 2022-06-23
EP4047636A4 (en) 2023-11-29
JPWO2021079624A1 (ja) 2021-04-29
EP4047636A1 (en) 2022-08-24
US20220415667A1 (en) 2022-12-29
TW202117840A (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
TWI292172B (en) Method for forming insulating film on substrate, mehtod for manufacturing semiconductor device, and substrate-processing apparatus
CN110581067B (zh) 蚀刻方法及蚀刻装置
TWI743468B (zh) 乾式蝕刻方法及已填充有β-二酮之容器
JP6997372B2 (ja) ドライエッチング方法及びエッチング装置
JP2009544849A (ja) 膜形成装置のクリーニング方法および膜形成装置
WO2015001991A1 (ja) 被処理体の処理方法
WO2020179449A1 (ja) ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
JP2008031510A (ja) 成膜装置のクリーニング方法および成膜装置
WO2021079624A1 (ja) ドライエッチング方法、半導体デバイスの製造方法及びエッチング装置
JP6253214B2 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
KR101393898B1 (ko) 니켈막의 성막 방법
WO2022050099A1 (ja) エッチング方法
US9916976B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2011100962A (ja) 成膜方法及びプラズマ処理装置
WO2022230859A1 (ja) 表面処理方法、ドライエッチング方法、クリーニング方法、半導体デバイスの製造方法及びエッチング装置
TWI515326B (zh) Film forming method and plasma film forming device
TWI838472B (zh) 乾式蝕刻方法、半導體裝置之製造方法及蝕刻裝置
WO2024019025A1 (ja) ドライエッチング方法、クリーニング方法及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227016088

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020879439

Country of ref document: EP

Effective date: 20220523