WO2022198844A1 - 一种无钴高镍掺镁层状正极材料的制备方法 - Google Patents
一种无钴高镍掺镁层状正极材料的制备方法 Download PDFInfo
- Publication number
- WO2022198844A1 WO2022198844A1 PCT/CN2021/105923 CN2021105923W WO2022198844A1 WO 2022198844 A1 WO2022198844 A1 WO 2022198844A1 CN 2021105923 W CN2021105923 W CN 2021105923W WO 2022198844 A1 WO2022198844 A1 WO 2022198844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- electrode material
- nickel
- magnesium
- calcination
- Prior art date
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 83
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001354 calcination Methods 0.000 claims abstract description 114
- 239000011248 coating agent Substances 0.000 claims abstract description 63
- 239000000843 powder Substances 0.000 claims abstract description 52
- 239000002243 precursor Substances 0.000 claims abstract description 39
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 37
- 238000002360 preparation method Methods 0.000 claims abstract description 32
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000012670 alkaline solution Substances 0.000 claims abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 66
- 238000006243 chemical reaction Methods 0.000 claims description 65
- 239000011777 magnesium Substances 0.000 claims description 65
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 44
- 239000011572 manganese Substances 0.000 claims description 42
- 239000000243 solution Substances 0.000 claims description 41
- 239000012266 salt solution Substances 0.000 claims description 36
- 229910052749 magnesium Inorganic materials 0.000 claims description 33
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 26
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 26
- LTHNASGMNUUKRZ-UHFFFAOYSA-N [Mg].[Mn].[Ni] Chemical compound [Mg].[Mn].[Ni] LTHNASGMNUUKRZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 24
- 125000004429 atom Chemical group 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 22
- 238000003756 stirring Methods 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 21
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 21
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 claims description 18
- 229910017052 cobalt Inorganic materials 0.000 claims description 15
- 239000010941 cobalt Substances 0.000 claims description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 12
- 241000080590 Niso Species 0.000 claims description 11
- 239000007795 chemical reaction product Substances 0.000 claims description 11
- 238000010298 pulverizing process Methods 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 239000003513 alkali Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 20
- 238000000975 co-precipitation Methods 0.000 abstract description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052744 lithium Inorganic materials 0.000 abstract description 3
- 229910015493 Ni1-xMnx Inorganic materials 0.000 abstract 1
- 229910015276 Ni1−xMnx Inorganic materials 0.000 abstract 1
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- 239000010406 cathode material Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000011247 coating layer Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013713 LiNixMnyO2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the technical field of positive electrode materials for lithium ion batteries, in particular to a preparation method of a cobalt-free high nickel-doped magnesium layered positive electrode material.
- Layered high-nickel ternary lithium-ion battery cathode material Li(Ni 1-xy Mn x Co y )O 2 (x+y ⁇ 0.5) has high energy density and is one of the most promising cathode materials at present.
- cobalt element is not only an active material, but also can effectively inhibit the mixing of cations (Li/Ni) and stabilize the material structure. Therefore, cobalt-containing ternary materials generally have good deep discharge characteristics and good rate performance.
- due to the high price of cobalt and the lack of reserves it is not conducive to large-scale use. It has gradually become an industry consensus to reduce the use of cobalt in cathode materials.
- Cobalt-free ternary cathode materials usually take LiNiO 2 as the main body, and form high-nickel ternary materials by doping elements such as Mn, Al, Mg, and Ti.
- the cobalt-free layered positive electrode material has low cost, low surface impedance, good electrical conductivity, fast diffusion speed of lithium ions in the cobalt-free layered positive electrode material, and high electrochemical activity.
- the cobalt-free materials are not satisfactory in terms of rate cycling performance and element composition control, and the lithium-ion batteries made with them are difficult to meet the long-term cycle tests that meet commercial standards.
- the present invention is to overcome the unsatisfactory rate cycle performance and element composition regulation of the prior art cobalt-free lithium ion battery positive electrode material, and the lithium ion battery prepared by using the same is difficult to meet the long cycle test that meets commercial standards.
- the problem is to provide a method for preparing a cobalt-free and high-nickel-doped magnesium layered cathode material.
- the co-precipitation method is used to prepare a cobalt-free, high-nickel-doped magnesium precursor (Ni 1-x Mn x )Mg y (OH) 2 , which is combined with Cobalt-free and high-nickel-doped magnesium material made of LiOH ⁇ H 2 O mixed sintering is used as positive electrode material; Li 2+z C 1-z B z O 3 coating agent is coated on its surface; low-cost Mg 2 in the positive electrode material The doping of + can neutralize the effect of high-valent Mn 4+ , reduce the proportion of Ni 2+ , and make the material have lower Li + /Ni 2+ mixing and better electrochemical performance; at the same time, Li 2+z C
- the 1-z B z O 3 coating agent can help to improve the capacity performance, rate performance and cycle performance of the battery, and obtain a cathode material with high capacity, long life, low cost, safety and environmental protection.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation Mix deionized water and concentrated ammonia water, stir evenly at 40-80 °C to obtain a reaction bottom liquid; under nitrogen protection, add nickel-manganese-magnesium mixed salt solution, NaOH solution and concentrated ammonia water to the reaction bottom liquid to make The pH of the reaction system is 11-12, and the reaction is stirred at 40-80 °C for 18-24 h under nitrogen protection; the reaction product is aged for 4-6 h, vacuum filtered and dried to obtain (Ni 1-x Mn x )Mg y (OH) 2 Precursor, wherein 0.1 ⁇ x ⁇ 0.5, 0.003 ⁇ y ⁇ 0.005;
- Secondary calcination Disperse the positive electrode material powder into an alkaline solution, stir to fully wet it, filter it and dry it in a vacuum environment, and then perform secondary calcination to obtain secondary calcined powder;
- Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms, and then sintered to obtain Li 2+z C 1-z B z O 3 coating agent, where 0 ⁇ z ⁇ 1;
- Coating of positive electrode material the secondary calcined powder and the coating agent are mixed uniformly and then calcined for three times to obtain a coated positive electrode material without cobalt and high nickel doped with magnesium.
- the present invention doped the cobalt-free and high-nickel positive electrode material with Mg, and first prepared a cobalt-free, high-nickel-doped magnesium precursor (Ni 1-x Mn x )Mg y (OH) 2 , mixed with LiOH ⁇ H 2 O and sintered to make a cobalt-free and high nickel-doped magnesium material Li(Ni 1-x Mn x )Mg y O 2 as a positive electrode material, which has a complete morphology , the size is uniform, the doping of low-valent Mg 2+ can neutralize the effect of high-valent Mn 4+ , reduce the proportion of Ni 2+ , and make the material have lower Li + /Ni 2+ mix arrangement and better electrochemical performance .
- the present invention uses the Li 2+z C 1-z B z O 3 material obtained by sintering lithium borate and lithium carbonate as a coating agent to cover the Li(Ni 1-x Mn x )Mg y O 2 positive electrode material.
- the coating layer formed can effectively slow down the side reaction between the positive electrode material and the electrolyte, improve its cycle performance and prolong the battery life; and compared with the existing borate coating agent, Li 2+z C 1-z B z O 3 can significantly improve the lithium ion conductivity of the coated cobalt-free and high-nickel cathode material, improve the influence of the introduction of B element on the reduction of the ionic conductivity of the material, and improve the capacity performance of the battery.
- the ionic resistivity is reduced and the rate performance of the battery is improved, thereby obtaining a positive electrode material with high capacity, long life, low cost, safety and environmental protection.
- the present invention In order to enable the Li 2+x C 1-x B x O 3 coating agent in the present invention to effectively coat the surface of the cobalt-free and high-nickel positive electrode material to form a coating layer that is closely combined with the positive electrode material and is not easy to fall off, the present invention
- the three-time calcination process is adopted: firstly, the precursor is provided with a lithium source through one calcination; then, through the second calcination, the Li(Ni 1-x Mn x )Mg y O 2 positive electrode material is modified with an alkaline solution, and the surface of the positive electrode material is modified.
- the positive electrode material is coated by three calcinations, and the surface of the positive electrode material is formed by the coating agent and the secondary calcination.
- the reaction of the oxide makes the Li 2+x C 1-x B x O 3 coating agent firmly coat the surface of the positive electrode material to form a coating layer, and the coating layer is not easy to fall off from the surface of the positive electrode material.
- the capacity performance of the battery is improved, while the ionic resistivity is reduced, and the rate performance of the battery is improved.
- the mass concentration of concentrated ammonia water in step (1) is 25-28%, and the volume ratio of deionized water and concentrated ammonia water in the reaction bottom liquid is (4.5-5.5):1.
- the nickel-manganese-magnesium mixed salt solution described in the step (1) is an aqueous solution formed by mixing NiSO 4 .6H 2 O, MnSO 4 .5H 2 O and MgCl 2 according to the molar ratio of Ni, Mn, and Mg atoms;
- the total concentration of each substance in the nickel-manganese-magnesium mixed salt solution is 1.5-2.5 mol/L.
- the concentration of the NaOH solution is 1.5-2.5 mol/L, and the feeding rate is 0.45-0.55 mL/min; the feeding rate of the nickel-manganese-magnesium mixed salt solution is 0.2-0.3 mL/min.
- the drying temperature after aging in step (1) is 90-110°C.
- the primary calcination method in step (2) is as follows: the temperature is raised from room temperature to 600-800° C. at a rate of 4-6° C./min and calcined at a constant temperature for 5-13 hours.
- the alkali solution described in step (3) is selected from one or more of lithium hydroxide solution, lithium carbonate solution, and lithium nitrate solution, and the concentration of the alkali solution is 0.1-5 mol/L.
- the stirring time in step (3) is 0.5-5h
- the vacuum drying temperature is 100-300°C
- the drying time is 10-24h
- the environment for the secondary calcination is air and/or CO 2 atmosphere
- the secondary calcination temperature is 200-24 h. 500 °C, calcination time 2 ⁇ 5h.
- the sintering temperature in step (4) is 800-900° C., and the sintering time is 18-26 h.
- the quality of the Li 2+x C 1-x B x O 3 coating agent is 500-5000ppm of the quality of the secondary calcined sample powder; the tertiary calcination temperature is 600-800 °C, and the calcination time is 18- 26h.
- the present invention has the following beneficial effects:
- Li 2+z C 1-z B z O 3 coating agent obtained by sintering lithium borate and lithium carbonate is used to coat the positive electrode material without cobalt and high nickel and magnesium doped, and the formed coating layer can effectively Slow down the side reaction between the cathode material and the electrolyte, and improve its cycle performance; and Li 2+z C 1-z B z O 3 coating agent can improve the lithium ion conductivity of the coated cathode material, thereby improving The capacity performance and rate performance of the battery.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.9:0.1:0.005 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.0mol/L; under nitrogen protection, the nickel-manganese-magnesium mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.5, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen protection; the reaction product was aged for 5 h, vacuum filtered, and dried at 100 °C to obtain (Ni 0.9 Mn 0.1 )Mg 0.005 (OH) 2 precursor;
- Secondary calcination Disperse the positive electrode material powder into a 2mol/L lithium carbonate solution, stir for 3h to make it fully wet, filter it and dry it at 200°C for 12h in a vacuum environment, and then perform secondary calcination and secondary calcination The temperature is 300°C, and the calcination time is 3h to obtain secondary calcined powder;
- Lithium borate and lithium carbonate are mixed uniformly according to the molar ratio of B atom and C atom as 1:1, and sintered at 850°C for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
- Coating of positive electrode material Mix the secondary calcined powder with Li 2.5 C 0.5 B 0.5 O 3 coating agent uniformly, and then carry out tertiary calcination.
- the quality of Li 2.5 C 0.5 B 0.5 O 3 coating agent is the sample of secondary calcination
- the powder quality is 1000ppm
- the third calcination temperature is 700°C
- the calcination time is 24h, to obtain the coated cathode material without cobalt and high nickel doped with magnesium.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 4.5:1 and concentrated ammonia water with a mass concentration of 25% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 900 r/min at 40 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.7:0.3:0.004 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 1.5mol/L; under nitrogen protection, nickel-manganese-magnesium mixed salt solution, 1.5mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.1, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.2 mL/min, and the reaction was stirred at 40 °C for 24 h under nitrogen protection; the reaction product was aged for 4 h, vacuum filtered, and dried at 110 °C to obtain (Ni 0.7 Mn 0.3 )Mg 0.004 (OH) 2 precursor;
- Secondary calcination Disperse the positive electrode material powder into a 0.1 mol/L lithium hydroxide solution, stir for 5 hours to make it fully wet, filter and dry at 100 °C for 24 hours in a vacuum environment, and then perform secondary calcination.
- the secondary calcination temperature is 200°C, and the calcination time is 5h to obtain the secondary calcined powder;
- Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms as 1:4, and sintered at 800°C for 26 hours to obtain Li 2.2 C 0.8 B 0.2 O 3 coating agent;
- Coating of positive electrode material Mix the secondary calcined powder with Li 2.2 C 0.8 B 0.2 O 3 coating agent uniformly, and then carry out three calcinations.
- the quality of Li 2.2 C 0.8 B 0.2 O 3 coating agent is the sample of secondary calcination
- the powder mass is 500ppm
- the third calcination temperature is 600°C
- the calcination time is 26h, to obtain the coated cathode material without cobalt and high nickel doped with magnesium.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5.5:1 and concentrated ammonia water with a mass concentration of 28% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 500 r/min at 80 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.5:0.5:0.003 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.5mol/L; under nitrogen protection, nickel-manganese-magnesium mixed salt solution, 2.5mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.9, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.3 mL/min, and the reaction was stirred at 80 °C for 18 h under nitrogen protection; the reaction product was aged for 6 h, vacuum filtered, and dried at 90 °C to obtain (Ni 0.5 Mn 0.5 )Mg 0.003 (OH) 2 precursor;
- Secondary calcination Disperse the positive electrode material powder into a 5mol/L lithium carbonate solution, stir for 0.5h to make it fully wet, filter it and dry it at 300°C for 10h in a vacuum environment, and then perform secondary calcination.
- the calcination temperature is 500°C, and the calcination time is 2h to obtain secondary calcined powder;
- Lithium borate and lithium carbonate are mixed uniformly according to the molar ratio of B atom and C atom as 2:3, and sintered at 900°C for 18 hours to obtain Li 2.4 C 0.6 B 0.4 O 3 coating agent;
- Cathode material coating Mix the secondary calcined powder with Li 2.4 C 0.6 B 0.4 O 3 coating agent uniformly, and then carry out three calcinations.
- the quality of Li 2.4 C 0.6 B 0.4 O 3 coating agent is the sample of secondary calcination
- the mass of the powder is 5000 ppm
- the third calcination temperature is 800 °C
- the calcination time is 18 h, to obtain the coated cathode material without cobalt and high nickel doped with magnesium.
- a method for preparing a cobalt-free and high-nickel layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O and MnSO 4 ⁇ 5H 2 O are dissolved in water according to the molar ratio of Ni and Mn atoms of 0.9:0.1 to form a nickel-manganese mixed salt solution, and the total concentration of each substance in the mixed salt solution is 2.0mol/L; Under nitrogen protection, the nickel-manganese mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water were added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system was 11.6, and the feeding rate of the NaOH solution was 0.5 mL/min; the mixed salt solution The feeding rate was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen
- Secondary calcination Disperse the positive electrode material powder into a 2mol/L lithium carbonate solution, stir for 3h to make it fully wet, filter it and dry it at 200°C for 12h in a vacuum environment, and then perform secondary calcination and secondary calcination The temperature is 300°C, and the calcination time is 3h to obtain secondary calcined powder;
- Lithium borate and lithium carbonate are mixed uniformly according to the molar ratio of B atom and C atom as 1:1, and sintered at 850°C for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
- Coating of positive electrode material Mix the secondary calcined powder with Li 2.5 C 0.5 B 0.5 O 3 coating agent uniformly, and then carry out tertiary calcination.
- the quality of Li 2.5 C 0.5 B 0.5 O 3 coating agent is the sample of secondary calcination
- the powder quality is 1000ppm
- the third calcination temperature is 700°C
- the calcination time is 24h to obtain the coated cathode material without cobalt and high nickel.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.9:0.1:0.006 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.0mol/L; under nitrogen protection, the nickel-manganese-magnesium mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.5, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen protection; the reaction product was aged for 5 h, vacuum filtered, and dried at 100 °C to obtain (Ni 0.9 Mn 0.1 )Mg 0.006 (OH) 2 precursor;
- Secondary calcination Disperse the positive electrode material powder into a 2mol/L lithium carbonate solution, stir for 3h to make it fully wet, filter it and dry it at 200°C for 12h in a vacuum environment, and then perform secondary calcination and secondary calcination The temperature is 300°C, and the calcination time is 3h to obtain secondary calcined powder;
- Lithium borate and lithium carbonate are mixed uniformly according to the molar ratio of B atom and C atom as 1:1, and sintered at 850°C for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
- Coating of positive electrode material Mix the secondary calcined powder with Li 2.5 C 0.5 B 0.5 O 3 coating agent uniformly, and then carry out tertiary calcination.
- the quality of Li 2.5 C 0.5 B 0.5 O 3 coating agent is the sample of secondary calcination
- the powder quality is 1000ppm
- the third calcination temperature is 700°C
- the calcination time is 24h, to obtain the coated cathode material without cobalt and high nickel doped with magnesium.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.9:0.1:0.005 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.0mol/L; under nitrogen protection, the nickel-manganese-magnesium mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.5, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen protection; the reaction product was aged for 5 h, vacuum filtered, and dried at 100 °C to obtain (Ni 0.9 Mn 0.1 )Mg 0.005 (OH) 2 precursor;
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.9:0.1:0.005 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.0mol/L; under nitrogen protection, the nickel-manganese-magnesium mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.5, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen protection; the reaction product was aged for 5 h, vacuum filtered, and dried at 100 °C to obtain (Ni 0.9 Mn 0.1 )Mg 0.005 (OH) 2 precursor;
- Secondary calcination Disperse the positive electrode material powder into a 2mol/L lithium carbonate solution, stir for 3h to make it fully wet, filter it and dry it at 200°C for 12h in a vacuum environment, and then perform secondary calcination and secondary calcination The temperature is 300°C, and the calcination time is 3h to obtain secondary calcined powder;
- Cathode material coating the secondary calcined powder and lithium borate are mixed uniformly and then calcined three times.
- the mass of lithium borate is 1000ppm of the secondary calcined sample powder.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.9:0.1:0.005 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.0mol/L; under nitrogen protection, the nickel-manganese-magnesium mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.5, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen protection; the reaction product was aged for 5 h, vacuum filtered, and dried at 100 °C to obtain (Ni 0.9 Mn 0.1 )Mg 0.005 (OH) 2 precursor;
- Secondary calcination Disperse the positive electrode material powder into a 2mol/L lithium carbonate solution, stir for 3h to make it fully wet, filter it and dry it at 200°C for 12h in a vacuum environment, and then perform secondary calcination and secondary calcination The temperature is 300°C, and the calcination time is 3h to obtain secondary calcined powder;
- the secondary calcined powder is uniformly mixed with lithium borate and lithium carbonate and then calcined three times. 1000ppm of the mass of the powder of the first calcined sample, the third calcination temperature is 700°C, and the calcination time is 24h to obtain the coated cathode material without cobalt and high nickel doped with magnesium.
- a preparation method of a cobalt-free high-nickel magnesium-doped layered positive electrode material comprising the following steps:
- Precursor preparation deionized water with a volume ratio of 5:1 and concentrated ammonia water with a mass concentration of 26% are mixed into the co-precipitation reaction kettle, and the reaction bottom liquid is obtained by stirring at a speed of 600 r/min at 60 °C; NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O and MgCl 2 are dissolved in water according to the molar ratio of Ni, Mn and Mg atoms of 0.9:0.1:0.005 to form a nickel-manganese-magnesium mixed salt solution.
- the total concentration is 2.0mol/L; under nitrogen protection, the nickel-manganese-magnesium mixed salt solution, 2.0mol/L NaOH solution and concentrated ammonia water are added to the reaction kettle and mixed with the reaction bottom liquid, so that the pH of the reaction system is 11.5, and the feed of the NaOH solution
- the feed rate of the mixed salt solution was 0.25 mL/min, and the reaction was stirred at 60 °C for 20 h under nitrogen protection; the reaction product was aged for 5 h, vacuum filtered, and dried at 100 °C to obtain (Ni 0.9 Mn 0.1 )Mg 0.005 (OH) 2 precursor;
- Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atom and C atom as 1:1, and sintered at 850° C. for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
- Positive electrode the mass ratio of positive electrode material, acetylene black and PVDF is 90:5:5;
- Negative electrode lithium sheet
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- DMC dimethyl carbonate
- the capacity and cycle test current density is 0.5C.
- Comparative Example 3 without coating the cobalt-free high-nickel-Mg-doped layered cathode material, the initial discharge capacity and the capacity retention rate after 100 cycles were similar to those in Example 1. ratios were significantly reduced.
- Comparative Example 4 only lithium borate was used as the coating agent. Although the initial discharge capacity was high, the capacity retention rate after 100 cycles was poor, which did not meet the requirements of the battery.
- Comparative Example 5 a mixture of lithium phosphate and lithium carbonate was used. As a coating agent, without sintering before coating, the initial discharge capacity of the battery is good, but the cycle performance is significantly reduced. The increase in capacity may be caused by the introduction of lithium borate in the coating agent.
- Lithium borate is mixed with sintering treatment, the ionic conductivity of the material is not good, resulting in a decrease in cycle performance; in Comparative Example 6, no secondary calcination is performed, and the surface of the ternary material is not modified with an alkaline solution. The surface bonding force of the ternary material is poor, and the coating layer is easy to fall off, resulting in the initial discharge capacity and capacity retention rate of the battery are lower than those of the sample using the secondary calcination process.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种无钴高镍掺镁层状正极材料的制备方法,步骤为:(1)制备无钴高镍掺镁前驱体;(2)将前驱体与LiOH·H 2O混合,一次煅烧后得到Li(Ni1-xMnx)MgyO2正极材料粉末,0.1≤x≤0.5,0.003≤y≤0.005;(3)将正极材料粉末用碱性溶液改性并进行二次煅烧;(4)制备Li2+zC1-zBzO3包覆剂,其中0<z<1;(5)将二次煅烧粉末与包覆剂混合后进行三次煅烧。本发明通过共沉淀法制备了无钴高镍掺镁的前驱体,与锂源混合烧结后制成无钴高镍掺镁材料作为正极材料;并在其表面包覆Li2+zC1-zBzO3包覆剂,提升了电池的容量性能和循环性能。
Description
本发明涉及锂离子电池正极材料技术领域,尤其是涉及一种无钴高镍掺镁层状正极材料的制备方法。
层状高镍三元锂离子电池正极材料Li(Ni
1-x-yMn
xCo
y)O
2(x+y<0.5)具有较高的能量密度,是目前最有前途的正极材料之一。其中,钴元素不仅是活性材料,而且可以有效抑制阳离子(Li/Ni)混排并稳定材料结构,因此含钴的三元材料一般都具有良好的深度放电特性和较好的倍率性能。但由于钴元素价格昂贵,且储量匮乏,不利于大规模使用,减少钴在正极材料中的使用逐渐成为业界共识。
无钴三元正极材料通常以LiNiO
2为主体,通过掺入Mn、Al、Mg、Ti等元素形成高镍三元材料。例如,一种在中国专利文献上公开的“无钴层状正极材料及其制备方法、正极片和锂离子电池”,其公开号CN111435744A,该无钴层状正极材料包括:LiNi
xMn
yO
2晶体,其中,x+y=1,0.55≤x≤0.95,0.05≤y≤0.45;和锂离子导体,所述锂离子导体附着在所述LiNi
xMn
yO
2晶体的至少部分表面上。该无钴层状正极材料成本低、表面阻抗低、导电性好,锂离子在该无钴层状正极材料中的扩散速度快,电化学活性高。但无钴材料在倍率循环性能及元素成分调控等方面不尽如人意,使用其制得的锂离子电池难以满足符合商用标准的长循环测试。
发明内容
本发明是为了克服现有技术中的无钴锂离子电池正极材料在倍率循环性能及元素成分调控等方面不尽如人意,使用其制得的锂离子电池难以满足符合商用标准的长循环测试的问题,提供一种无钴高镍掺镁层状正极材料的制备方法,通过共沉淀法制备了无钴高镍掺镁的前驱体(Ni
1-xMn
x)Mg
y(OH)
2,与LiOH·H
2O混合烧结制成的无钴高镍掺镁材料作为正极材料;并在其表面包覆Li
2+zC
1-zB
zO
3包覆剂;正极材料中低价Mg
2+的掺杂能中和高价Mn
4+的作用,降低Ni
2+的比例,使材料具有较低的Li
+/Ni
2+混排和较好的电化学性能;同时,Li
2+zC
1-zB
zO
3包覆剂有助于提升电池的容量性能、倍率性能和循环性能,得到高容量、长寿命、低成本、安全环保的正极材料。
为了实现上述目的,本发明采用以下技术方案:
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将去离子水和浓氨水混合,40~80℃搅拌均匀得到反应底液;氮气保护下 将镍锰镁混合盐溶液、NaOH溶液与浓氨水加入反应底液中,使反应体系pH为11~12,氮气保护下40~80℃搅拌反应18~24h;反应产物陈化4~6h后真空抽滤并干燥后得到(Ni
1-xMn
x)Mg
y(OH)
2前驱体,其中0.1≤x≤0.5,0.003≤y≤0.005;
(2)一次煅烧:将前驱体与LiOH·H
2O按Ni原子和Li原子的摩尔比混合,经一次煅烧并粉碎后得到Li(Ni
1-xMn
x)Mg
yO
2正极材料粉末,其中,0.1≤x≤0.5,0.003≤y≤0.005;
(3)二次煅烧:将正极材料粉末分散到碱性溶液中,搅拌使其充分润湿,抽滤后在真空环境下干燥,再进行二次煅烧,得到二次煅烧粉末;
(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比混合均匀后烧结,得到Li
2+zC
1-zB
zO
3包覆剂,其中0<z<1;
(5)正极材料包覆:将二次煅烧粉末与包覆剂混合均匀后进行三次煅烧,得到包覆后的无钴高镍掺镁层状正极材料。
由于钴元素价格昂贵且储量匮乏,因此采用无钴材料作为锂离子电池的正极材料时,可有效降低成本,但镍含量的提高使得正极材料在高温环境下容易与电解液发生副反应生成SEI膜,且加速正极材料的恶化,导致其容量的严重衰减,影响电池性能。因此为了提升无钴高镍正极材料的结构稳定性,本发明在无钴高镍正极材料中掺杂了Mg,先通过共沉淀法制备了无钴高镍掺镁的前驱体(Ni
1-xMn
x)Mg
y(OH)
2,与LiOH·H
2O混合烧结后制成无钴高镍掺镁材料Li(Ni
1-xMn
x)Mg
yO
2作为正极材料,该材料形貌完整,尺寸均一,低价Mg
2+的掺杂能中和高价Mn
4+的作用,降低Ni
2+的比例,使材料具有较低的Li
+/Ni
2+混排和较好的电化学性能。
并且,本发明使用硼酸锂与碳酸锂烧结后得到的Li
2+zC
1-zB
zO
3材料作为包覆剂,对Li(Ni
1-xMn
x)Mg
yO
2正极材料进行包覆,形成的包覆层能够有效的减缓正极材料与电解液之间的副反应发生,提升其循环性能,延长电池寿命;并且与现有的硼酸盐包覆剂相比,Li
2+zC
1-zB
zO
3可以显著提升包覆后的无钴高镍正极材料的锂离子电导率,改善了引入B元素后对材料离子电导率降低的影响,提升了电池的容量性能,同时降低离子电阻率,改善了电池的倍率性能,从而得到高容量、长寿命、低成本、安全环保的正极材料。
为了使本发明中的Li
2+xC
1-xB
xO
3包覆剂可以有效包覆在无钴高镍正极材料表面,形成与正极材料紧密结合、不易脱落的包覆层,本发明采用三次煅烧工艺:先通过一次煅烧对前驱体提供锂源;然后通过二次煅烧,利用碱性溶液对Li(Ni
1-xMn
x)Mg
yO
2正极材料进行改性,在正极材料表面生成可以与Li
2+xC
1-xB
xO
3包覆剂反应的致密氧化物;最后通过三次煅烧对正极材料进行包覆,利用包覆剂与二次煅烧时在正极材料表面形成的氧化物的反应,使 Li
2+xC
1-xB
xO
3包覆剂牢固包覆在正极材料表面形成包覆层,且包覆层不易从正极材料表面脱落。在包覆剂和包覆工艺的共同作用下,提升了电池的容量性能,同时降低离子电阻率,改善了电池的倍率性能。
作为优选,步骤(1)中浓氨水的质量浓度为25~28%,反应底液中去离子水和浓氨水的体积比为(4.5~5.5):1。
作为优选,步骤(1)中所述的镍锰镁混合盐溶液为NiSO
4·6H
2O、和MnSO
4·5H
2O及MgCl
2按Ni、Mn、Mg原子的摩尔比混合形成的水溶液;所述镍锰镁混合盐溶液中各物质的总浓度为1.5~2.5mol/L。
作为优选,步骤(1)中NaOH溶液的浓度为1.5~2.5mol/L,进料速度0.45~0.55mL/min;镍锰镁混合盐溶液的进料速度为0.2~0.3mL/min。
作为优选,步骤(1)中陈化后的干燥温度为90~110℃。
作为优选,步骤(2)中一次煅烧方法为:以4~6℃/min的速度从室温升温至600~800℃下恒温煅烧5~13h。
作为优选,步骤(3)中所述的碱液选自氢氧化锂溶液,碳酸锂溶液,硝酸锂溶液中的一种或几种,所述碱液的浓度为0.1~5mol/L。
作为优选,步骤(3)中的搅拌时间0.5~5h,真空干燥温度100~300℃,干燥时间10~24h;二次煅烧的环境为空气和/或CO
2气氛,二次煅烧温度为200~500℃,煅烧时间2~5h。
作为优选,步骤(4)中的烧结温度为800~900℃,烧结时间18~26h。
作为优选,步骤(5)中Li
2+xC
1-xB
xO
3包覆剂的质量为二次煅烧样品粉末质量的500~5000ppm;三次煅烧温度为600~800℃,煅烧时间18~26h。
因此,本发明具有如下有益效果:
(1)制备无钴高镍掺镁材料Li(Ni
1-xMn
x)Mg
yO
2作为正极材料,该材料形貌完整,尺寸均一,低价Mg
2+的掺杂能中和高价Mn
4+的作用,降低Ni
2+的比例,使材料具有较低的Li
+/Ni
2+混排和较好的电化学性能;
(2)使用硼酸锂与碳酸锂烧结后得到的Li
2+zC
1-zB
zO
3包覆剂对正极无钴高镍掺镁正极材料进行包覆,形成的包覆层能够有效的减缓正极材料与电解液之间的副反应发生,提升其循环性能;并且Li
2+zC
1-zB
zO
3包覆剂可以提升包覆后的正极材料的锂离子电导率,从而提高电池的容量性能和倍率性能。
下面结合具体实施方式对本发明做进一步的描述。
在本发明中,若非特指,所有原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1:
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.9:0.1:0.005溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰镁混合盐溶液、2.0mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.5,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)Mg
0.005(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经一次煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)Mg
0.005O
2正极材料粉末,一次煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h;
(3)二次煅烧:将正极材料粉末分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧粉末;
(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到Li
2.5C
0.5B
0.5O
3包覆剂;
(5)正极材料包覆:将二次煅烧粉末与Li
2.5C
0.5B
0.5O
3包覆剂混合均匀后进行三次煅烧,Li
2.5C
0.5B
0.5O
3包覆剂的质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的无钴高镍掺镁层状正极材料。
实施例2:
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为4.5:1的去离子水和质量浓度25%的浓氨水混合加入共沉淀反应釜中,40℃以900r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.7:0.3:0.004溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为1.5mol/L;氮气保护下将镍锰镁混合盐溶液、1.5mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.1,NaOH溶液的进料速度0.45mL/min;混合盐溶液的进料速度为0.2mL/min,氮气保护下40℃搅拌反应24h;反应产 物陈化4h后真空抽滤,110℃干燥后得到(Ni
0.7Mn
0.3)Mg
0.004(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.7:1混合,经一次煅烧并粉碎后得到Li(Ni
0.7Mn
0.3)Mg
0.004O
2正极材料粉末,一次煅烧方法为:以4℃/min的速度从室温升温至600℃,恒温煅烧13h;
(3)二次煅烧:将正极材料粉末分散到0.1mol/L氢氧化锂溶液中,搅拌5h使其充分润湿,抽滤后在真空环境下100℃干燥24h,再进行二次煅烧,二次煅烧温度200℃,煅烧时间5h,得到二次煅烧粉末;
(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:4混合均匀,800℃下烧结26h得到Li
2.2C
0.8B
0.2O
3包覆剂;
(5)正极材料包覆:将二次煅烧粉末与Li
2.2C
0.8B
0.2O
3包覆剂混合均匀后进行三次煅烧,Li
2.2C
0.8B
0.2O
3包覆剂的质量为二次煅烧样品粉末质量的500ppm,三次煅烧温度为600℃,煅烧时间26h,得到包覆后的无钴高镍掺镁层状正极材料。
实施例3:
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5.5:1的去离子水和质量浓度28%的浓氨水混合加入共沉淀反应釜中,80℃以500r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.5:0.5:0.003溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.5mol/L;氮气保护下将镍锰镁混合盐溶液、2.5mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.9,NaOH溶液的进料速度0.55mL/min;混合盐溶液的进料速度为0.3mL/min,氮气保护下80℃搅拌反应18h;反应产物陈化6h后真空抽滤,90℃干燥后得到(Ni
0.5Mn
0.5)Mg
0.003(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.5:1混合,经一次煅烧并粉碎后得到Li(Ni
0.5Mn
0.5)Mg
0.003O
2正极材料粉末,一次煅烧方法为:以6℃/min的速度从室温升温至800℃,恒温煅烧5h;
(3)二次煅烧:将正极材料粉末分散到5mol/L碳酸锂溶液中,搅拌0.5h使其充分润湿,抽滤后在真空环境下300℃干燥10h,再进行二次煅烧,二次煅烧温度500℃,煅烧时间2h,得到二次煅烧粉末;
(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比为2:3混合均匀,900℃下烧结18h得到Li
2.4C
0.6B
0.4O
3包覆剂;
(5)正极材料包覆:将二次煅烧粉末与Li
2.4C
0.6B
0.4O
3包覆剂混合均匀后进行三次煅烧, Li
2.4C
0.6B
0.4O
3包覆剂的质量为二次煅烧样品粉末质量的5000ppm,三次煅烧温度为800℃,煅烧时间18h,得到包覆后的无钴高镍掺镁层状正极材料。
对比例1(不掺镁):
一种无钴高镍层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O按照Ni、Mn原子的摩尔比为0.9:0.1溶于水中形成镍锰混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰混合盐溶液、2.0mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.6,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经一次煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)O
2正极材料粉末,一次煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h;
(3)二次煅烧:将正极材料粉末分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧粉末;
(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到Li
2.5C
0.5B
0.5O
3包覆剂;
(5)正极材料包覆:将二次煅烧粉末与Li
2.5C
0.5B
0.5O
3包覆剂混合均匀后进行三次煅烧,Li
2.5C
0.5B
0.5O
3包覆剂的质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的无钴高镍层状正极材料。
对比例2(掺镁过多):
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.9:0.1:0.006溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰镁混合盐溶液、2.0mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.5,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产 物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)Mg
0.006(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经一次煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)Mg
0.006O
2正极材料粉末,一次煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h;
(3)二次煅烧:将正极材料粉末分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧粉末;
(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到Li
2.5C
0.5B
0.5O
3包覆剂;
(5)正极材料包覆:将二次煅烧粉末与Li
2.5C
0.5B
0.5O
3包覆剂混合均匀后进行三次煅烧,Li
2.5C
0.5B
0.5O
3包覆剂的质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的无钴高镍掺镁层状正极材料。
对比例3(不包覆包覆剂):
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.9:0.1:0.005溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰镁混合盐溶液、2.0mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.5,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)Mg
0.005(OH)
2前驱体;
(2)煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)Mg
0.005O
2正极材料粉末,煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h。
对比例4(仅用硼酸锂包覆):
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.9:0.1:0.005溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰镁混合盐溶液、2.0mol/L NaOH 溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.5,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)Mg
0.005(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经一次煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)Mg
0.005O
2正极材料粉末,一次煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h;
(3)二次煅烧:将正极材料粉末分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧粉末;
(4)正极材料包覆:将二次煅烧粉末与硼酸锂混合均匀后进行三次煅烧,硼酸锂的质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的无钴高镍掺镁层状正极材料。
对比例5(硼酸锂和碳酸锂混合后不进行烧结):
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.9:0.1:0.005溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰镁混合盐溶液、2.0mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.5,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)Mg
0.005(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经一次煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)Mg
0.005O
2正极材料粉末,一次煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h;
(3)二次煅烧:将正极材料粉末分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧粉末;
(4)正极材料包覆:将二次煅烧粉末与硼酸锂和碳酸锂混合均匀后进行三次煅烧,硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合,总质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的无钴高镍掺镁层状正极材料。
对比例6(不用碱溶液进行改性):
一种无钴高镍掺镁层状正极材料的制备方法,包括如下步骤:
(1)前驱体制备:将体积比为5:1的去离子水和质量浓度26%的浓氨水混合加入共沉淀反应釜中,60℃以600r/min的速度搅拌均匀得到反应底液;将NiSO
4·6H
2O、MnSO
4·5H
2O和MgCl
2按照Ni、Mn、Mg原子的摩尔比为0.9:0.1:0.005溶于水中形成镍锰镁混合盐溶液,混合盐溶液中各物质的总浓度为2.0mol/L;氮气保护下将镍锰镁混合盐溶液、2.0mol/L NaOH溶液与浓氨水加入反应釜中与反应底液混合,使反应体系pH为11.5,NaOH溶液的进料速度0.5mL/min;混合盐溶液的进料速度为0.25mL/min,氮气保护下60℃搅拌反应20h;反应产物陈化5h后真空抽滤,100℃干燥后得到(Ni
0.9Mn
0.1)Mg
0.005(OH)
2前驱体;
(2)一次煅烧:将前驱体与LiOH·H
2O按摩尔比0.9:1混合,经一次煅烧并粉碎后得到Li(Ni
0.9Mn
0.1)Mg
0.005O
2正极材料粉末,一次煅烧方法为:以5℃/min的速度从室温升温至700℃,恒温煅烧12h;
(3)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到Li
2.5C
0.5B
0.5O
3包覆剂;
(4)正极材料包覆:将一次煅烧粉末与Li
2.5C
0.5B
0.5O
3包覆剂混合均匀后进行二次煅烧,Li
2.5C
0.5B
0.5O
3包覆剂的质量为一次煅烧样品粉末质量的1000ppm,二次煅烧温度为700℃,煅烧时间24h,得到包覆后的无钴高镍掺镁层状正极材料。
将上述实施例和对比例中的制得的无钴高镍掺镁层状正极材料分别组装成扣式电池进行性能测试,结果如表1中所示。
扣式电池中:
正极:正极材料、乙炔黑、PVDF质量比为90:5:5;
负极:锂片;
电解液:1mol/L的LiPF
6溶解于碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)(EC:EMC:DMC=1:1:1wt%);
电压:2.7~4.25V;
容量、循环测试电流密度为0.5C。
表1:电池性能测试结果。
从表1中可以看出,实施例1~3中采用本发明中的方法制备出的无钴高镍掺镁层状正极材料具有良好的初始放电容量及循环性能。而对比例1中不对无钴高镍层状材料进行掺镁,电池的循环性能显著降低;对比例2中掺镁过多,超出本发明的范围,发现容量略有降低且容量保持率也没有随镁含量的增加而增加;容量保持率没有继续提高可能是由于随着二价的Mg
2+的含量增加,处于晶格位置的Co
3+被大量取代,反而削弱了Co
3+对材料的稳定性贡献,导致容量保持率不升反降;对比例3中不对无钴高镍掺镁层状正极材料进行包覆,初始放电容量及循环100圈后的容量保持率与实施例1中相比均有明显降低。对比例4中仅用硼酸锂作为包覆剂,虽然初始放电容量较高,但循环100圈后的容量保持率差,不满足电池的使用要求;对比例5中用磷酸锂和碳酸锂的混合物作为包覆剂,包覆前不对其进行烧结,电池的初始放电容量较好,但循环性能显著降低,容量的提升可能是包覆剂中硼酸锂的引入导致,但是由于没有预先对碳酸锂和硼酸锂进行混合烧结处理,材料的离子电导率不佳,导致循环性能出现降低;对比例6中不进行二次煅烧,不用碱性溶液对三元材料表面进行改性,由于包覆层无法与三元材料表面结合力差,包覆层易脱落,导致电池的初始放电容量及容量保持率均低于采用二次煅烧工艺的样品。
Claims (10)
- 一种无钴高镍掺镁层状正极材料的制备方法,其特征是,包括如下步骤:(1)前驱体制备:将去离子水和浓氨水混合,40~80℃搅拌均匀得到反应底液;氮气保护下将镍锰镁混合盐溶液、NaOH溶液与浓氨水加入反应底液中,使反应体系pH为11~12,氮气保护下40~80℃搅拌反应18~24h;反应产物陈化4~6h后真空抽滤并干燥后得到(Ni 1-xMn x)Mg y(OH) 2前驱体,其中0.1≤x≤0.5,0.003≤y≤0.005;(2)一次煅烧:将前驱体与LiOH·H 2O按Ni原子和Li原子的摩尔比混合,经一次煅烧并粉碎后得到Li(Ni 1-xMn x)Mg yO 2正极材料粉末,其中,0.1≤x≤0.5,0.003≤y≤0.005;(3)二次煅烧:将正极材料粉末分散到碱性溶液中,搅拌使其充分润湿,抽滤后在真空环境下干燥,再进行二次煅烧,得到二次煅烧粉末;(4)包覆剂制备:将硼酸锂与碳酸锂按B原子和C原子的摩尔比混合均匀后烧结,得到Li 2+zC 1-zB zO 3包覆剂,其中0<z<1;(5)正极材料包覆:将二次煅烧粉末与包覆剂混合均匀后进行三次煅烧,得到包覆后的无钴高镍掺镁层状正极材料。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(1)中浓氨水的质量浓度为25~28%,反应底液中去离子水和浓氨水的体积比为(4.5~5.5):1。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(1)中所述的镍锰镁混合盐溶液为NiSO 4·6H 2O、和MnSO 4·5H 2O及MgCl 2按Ni、Mn、Mg原子的摩尔比混合形成的水溶液;所述镍锰镁混合盐溶液中各物质的总浓度为1.5~2.5mol/L。
- 根据权利要求1或3所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(1)中NaOH溶液的浓度为1.5~2.5mol/L,进料速度0.45~0.55mL/min;镍锰镁混合盐溶液的进料速度为0.2~0.3mL/min。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(1)中陈化后的干燥温度为90~110℃。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(2)中一次煅烧方法为:以4~6℃/min的速度从室温升温至600~800℃下恒温煅烧5~13h。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(3)中所述的碱液选自氢氧化锂溶液,碳酸锂溶液,硝酸锂溶液中的一种或几种,所述碱液的浓度为0.1~5mol/L。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(3)中的搅拌时间0.5~5h,真空干燥温度100~300℃,干燥时间10~24h;二次煅烧的环境为空气 和/或CO 2气氛,二次煅烧温度为200~500℃,煅烧时间2~5h。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(4)中的烧结温度为800~900℃,烧结时间18~26h。
- 根据权利要求1所述的一种无钴高镍掺镁层状正极材料的制备方法,其特征是,步骤(5)中Li 2+xC 1-xB xO 3包覆剂的质量为二次煅烧样品粉末质量的500~5000ppm;三次煅烧温度为600~800℃,煅烧时间18~26h。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110306596.8A CN113363475B (zh) | 2021-03-23 | 2021-03-23 | 一种无钴高镍掺镁层状正极材料的制备方法 |
CN202110306596.8 | 2021-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022198844A1 true WO2022198844A1 (zh) | 2022-09-29 |
Family
ID=77524988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/105923 WO2022198844A1 (zh) | 2021-03-23 | 2021-07-13 | 一种无钴高镍掺镁层状正极材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113363475B (zh) |
WO (1) | WO2022198844A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114628675B (zh) * | 2021-11-08 | 2023-08-15 | 万向一二三股份公司 | 一种三元锂电池正极材料及其制备方法 |
CN114975983B (zh) * | 2022-05-06 | 2024-06-18 | 四川新锂想能源科技有限责任公司 | 高镍低钴材料及其制备方法、电池正极 |
CN114843468B (zh) * | 2022-05-07 | 2023-09-01 | 广东工业大学 | 一种无钴高镍三元梯度锂离子电池正极材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003034537A (ja) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | 層状リチウムニッケルマンガン複合酸化物粉体の製造方法 |
JP2015013775A (ja) * | 2013-07-05 | 2015-01-22 | 株式会社豊田中央研究所 | イオン伝導性固体、その製造方法及び固体電池 |
JP2016201342A (ja) * | 2015-04-14 | 2016-12-01 | トヨタ自動車株式会社 | 複合活物質の製造方法 |
JP2016225058A (ja) * | 2015-05-28 | 2016-12-28 | 株式会社豊田中央研究所 | 電極の製造方法、複合粒子、電極及び電池 |
JP2016225089A (ja) * | 2015-05-28 | 2016-12-28 | 株式会社豊田中央研究所 | 電極、電極の製造方法及び電池 |
CN109860585A (zh) * | 2018-12-25 | 2019-06-07 | 河南科隆新能源股份有限公司 | 掺杂型的镍锰酸锂正极材料及其前驱体材料的制备方法 |
CN112490444A (zh) * | 2020-10-27 | 2021-03-12 | 北京泰丰先行新能源科技有限公司 | 一种锂离子二次电池正极材料及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100743982B1 (ko) * | 2006-04-11 | 2007-08-01 | 한국전기연구원 | 활물질. 그 제조방법 및 이를 구비한 리튬 이차 전지 |
KR102631719B1 (ko) * | 2017-09-26 | 2024-01-31 | 주식회사 엘지에너지솔루션 | 리튬 망간계 산화물을 포함하는 고전압용 양극 활물질 및 이의 제조방법 |
CN111244397A (zh) * | 2018-11-28 | 2020-06-05 | 天津国安盟固利新材料科技股份有限公司 | 一种高镍三元正极材料及其制备方法 |
CN112382734B (zh) * | 2020-08-25 | 2021-10-15 | 万向一二三股份公司 | 一种使用无钴高镍正极材料的锂离子电池正极片 |
CN111987313A (zh) * | 2020-08-26 | 2020-11-24 | 中南大学 | 一种磷酸钪钛锂包覆层状无钴高镍正极材料及其制备方法 |
-
2021
- 2021-03-23 CN CN202110306596.8A patent/CN113363475B/zh active Active
- 2021-07-13 WO PCT/CN2021/105923 patent/WO2022198844A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003034537A (ja) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | 層状リチウムニッケルマンガン複合酸化物粉体の製造方法 |
JP2015013775A (ja) * | 2013-07-05 | 2015-01-22 | 株式会社豊田中央研究所 | イオン伝導性固体、その製造方法及び固体電池 |
JP2016201342A (ja) * | 2015-04-14 | 2016-12-01 | トヨタ自動車株式会社 | 複合活物質の製造方法 |
JP2016225058A (ja) * | 2015-05-28 | 2016-12-28 | 株式会社豊田中央研究所 | 電極の製造方法、複合粒子、電極及び電池 |
JP2016225089A (ja) * | 2015-05-28 | 2016-12-28 | 株式会社豊田中央研究所 | 電極、電極の製造方法及び電池 |
CN109860585A (zh) * | 2018-12-25 | 2019-06-07 | 河南科隆新能源股份有限公司 | 掺杂型的镍锰酸锂正极材料及其前驱体材料的制备方法 |
CN112490444A (zh) * | 2020-10-27 | 2021-03-12 | 北京泰丰先行新能源科技有限公司 | 一种锂离子二次电池正极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113363475B (zh) | 2022-05-13 |
CN113363475A (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112382734B (zh) | 一种使用无钴高镍正极材料的锂离子电池正极片 | |
WO2022198844A1 (zh) | 一种无钴高镍掺镁层状正极材料的制备方法 | |
CN114005978B (zh) | 一种无钴正极材料及其制备方法和应用 | |
JP2022553638A (ja) | 勾配ドープされたコバルトフリー正極材料、その調製方法、リチウムイオン電池の正極およびリチウム電池 | |
CN109802123A (zh) | 一种高镍正极材料的制备方法 | |
CN113363476B (zh) | 一种锂离子电池三元正极材料及其制备方法 | |
CN111106331A (zh) | 一种层状-尖晶石相复合正极材料及其制备方法 | |
CN113594433B (zh) | 一种高镍三元电极复合材料及其制备方法和锂离子电池 | |
CN107482172A (zh) | 一种高倍率型层状富锂锰基正极材料及其制备方法 | |
CN110364716B (zh) | 镁基mof的球形氧化镁包覆锂离子电池三元正极材料及其制备方法 | |
CN109841822A (zh) | 一种锂离子电池用改性单晶三元正极材料的制备方法 | |
CN111048758B (zh) | 一种表面包覆多孔氧化物的正极材料、其制备方法和用途 | |
CN113644272A (zh) | 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法 | |
WO2024178920A1 (zh) | 三元正极材料及其制备方法和二次电池 | |
CN111916701B (zh) | 一种包覆型正极材料及其制备方法和用途 | |
CN103855372B (zh) | 一种高锰复合正极材料及其制备方法 | |
CN113363477B (zh) | 一种多层包覆三元正极材料的制备方法 | |
CN108417797B (zh) | 高镍三元正极复合材料及其制备方法 | |
WO2024169226A1 (zh) | 一种球形高电压镍锰酸锂正极材料及其制备方法、锂离子电池 | |
CN104733706B (zh) | 一种高振实密度复合正极材料的制备方法 | |
CN109037669A (zh) | 一种改性镍钴铝酸锂正极材料及其制备方法和应用 | |
WO2023216453A1 (zh) | 一种核壳梯度三元前驱体及其制备方法和应用 | |
CN114808127B (zh) | 一种无钴单晶材料及其制备方法和应用 | |
CN109301239A (zh) | 一种多孔棒状结构的富锂正极材料的制备方法 | |
CN113937249A (zh) | 高镍三元正极浆料及其制备方法、正极极片、锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21932458 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21932458 Country of ref document: EP Kind code of ref document: A1 |