WO2022195972A1 - 熱可塑性組成物及びその成形品 - Google Patents

熱可塑性組成物及びその成形品 Download PDF

Info

Publication number
WO2022195972A1
WO2022195972A1 PCT/JP2021/044079 JP2021044079W WO2022195972A1 WO 2022195972 A1 WO2022195972 A1 WO 2022195972A1 JP 2021044079 W JP2021044079 W JP 2021044079W WO 2022195972 A1 WO2022195972 A1 WO 2022195972A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mass
resin composition
styrene
rubber
Prior art date
Application number
PCT/JP2021/044079
Other languages
English (en)
French (fr)
Inventor
慎二 藤井
成季 田中
Original Assignee
テクノUmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノUmg株式会社 filed Critical テクノUmg株式会社
Priority to CN202180079301.6A priority Critical patent/CN116685640A/zh
Priority to EP21931715.3A priority patent/EP4310144A1/en
Priority to CA3195318A priority patent/CA3195318A1/en
Priority to US17/790,853 priority patent/US11739209B2/en
Publication of WO2022195972A1 publication Critical patent/WO2022195972A1/ja
Priority to US17/957,459 priority patent/US11603465B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition that is excellent in surface gloss, color development, surface impact resistance, and rigidity, and that can provide molded articles that suppress the generation of hammering sounds.
  • the present invention also relates to molded articles obtained by molding this thermoplastic resin composition.
  • Rubber-reinforced resins such as ABS resins are widely used as molding materials for vehicle parts such as automotive interior parts due to their excellent mechanical properties, heat resistance, and moldability.
  • thermoplastic resin composition that can solve this problem and provide a molded article that suppresses the generation of hammering sound, preferably maintains the gloss of the molded article well, and further preferably suppresses the generation of squeaky noise
  • a thermoplastic resin composition comprising at least a rubber-reinforced styrenic thermoplastic resin (A1) containing a specific thermoplastic elastomer functioning as a sound-reducing material as a rubbery portion, and having a frequency of 20 to 12,400 Hz.
  • a thermoplastic resin composition comprising at least a rubber-reinforced styrenic thermoplastic resin (A1) containing a specific thermoplastic elastomer functioning as a sound-reducing material as a rubbery portion, and having a frequency of 20 to 12,400 Hz.
  • the present applicant has proposed a thermoplastic resin composition having a region loss factor ( ⁇ ) of a specific value or higher (Patent Document 5).
  • JP 2013-112812 A JP-A-2001-158841 JP-A-3-45646 Japanese Patent Application Laid-Open No. 8-3249 Japanese Patent Application Laid-Open No. 2020-139028
  • thermoplastic resin composition of Patent Document 5 is not sufficiently satisfactory in the appearance of molded articles such as surface gloss and color development, and may also be inferior in surface impact resistance depending on the composition of the resin component. there were.
  • Patent Document 5 describes a specific thermoplastic elastomer that functions as a hitting sound reducing material, "a block (I) having a structural unit derived from an aromatic vinyl compound and a structural unit derived from isoprene or isoprene and butadiene. and a block copolymer having a main dispersion peak of tan ⁇ at 0° C. or higher, or a hydrogenated product thereof is used.”
  • a block (I) having a structural unit derived from an aromatic vinyl compound and a structural unit derived from isoprene or isoprene and butadiene.
  • a block copolymer having a main dispersion peak of tan ⁇ at 0° C. or higher, or a hydrogenated product thereof is used.
  • the proportion of block (I) and block (II) is not studied, and the hydrogenated block copolymer is not specifically described.
  • styrene-isoprene-styrene (SIS) block copolymer "Hybler 5127” (trade name, manufactured by Kuraray Co., Ltd.; %, glass transition temperature (Tg) 8 ° C., peak temperature of main dispersion of tan ⁇ 25 ° C., 3,4 bond and 1,2 bond content 95%)” is used, specifically hydrogenated block copolymerization No examples with coalescing are given. Also, the styrene content is 20%, and the block (I)/block (II) ratio is 20/80, which means that the ratio of block (I) is considerably small.
  • the object of the present invention is to improve the appearance of molded products such as color development and gloss, surface impact resistance, surface gloss, color development, surface impact resistance,
  • An object of the present invention is to provide a thermoplastic resin composition capable of providing a molded product having excellent rigidity and suppressed generation of hammering sound.
  • the inventors have found that the above problems can be solved by using a specific hydrogenated copolymer as a hammering sound reducing material.
  • the gist of the present invention is as follows.
  • thermoplastic resin composition containing 97 to 80 parts by mass of a resin component (A) containing a rubber-reinforced styrenic thermoplastic resin (A1) and 3 to 20 parts by mass of a sound reducing material (B), ,
  • the hitting sound reducing material (B) comprises a block portion (I) mainly composed of structural units derived from an aromatic vinyl compound and a random portion (I) mainly composed of structural units derived from an aromatic vinyl compound and butadiene.
  • a hydrogenated copolymer obtained by hydrogenating the copolymer consisting of II), wherein the aromatic contained in the block part (I) and the random part (II) when the whole copolymer is 100% by mass A thermoplastic resin composition characterized by being a hydrogenated copolymer having a content of structural units derived from a group vinyl compound of 55 to 80% by mass and having a main dispersion peak of tan ⁇ at 0° C. or higher. .
  • thermoplastic resin composition according to [1], wherein the resin component (A) contains a rubber-reinforced styrene-based thermoplastic resin (A1) and a styrene-based resin (A2).
  • thermoplastic resin composition Contains 0.1 to 99% by mass of a rubber-reinforced styrene-based thermoplastic resin (A1) and 1 to 99.9% by mass of a styrene-based resin (A2) in 100% by mass of the resin component (A) [2]
  • the thermoplastic resin composition according to .
  • thermoplastic resin composition according to [1], wherein the resin component (A) contains a rubber-reinforced styrene-based thermoplastic resin (A1), a styrene-based resin (A2), and an aromatic polycarbonate resin (A3). .
  • the resin component (A) contains a rubber-reinforced styrene-based thermoplastic resin (A1), a styrene-based resin (A2), and an aromatic polycarbonate resin (A3).
  • thermoplastic resin composition In 100% by mass of the resin component (A), 0.1 to 89% by mass of a rubber-reinforced styrene-based thermoplastic resin (A1), 1 to 89.9% by mass of a styrene-based resin (A2), and an aromatic polycarbonate resin (A3)
  • the thermoplastic resin composition according to [4] characterized by containing 10 to 98.9% by mass.
  • thermoplastic resin according to any one of [1] to [6], which has a maximum value of sound pressure in the frequency range of 20 to 20,000 Hz of 70 dB or less when measured under the following condition (2): Composition. ⁇ Measurement conditions (2)>
  • the thermoplastic resin composition was molded using an injection molding machine, and at the upper end of a strip-shaped main body measuring 120 mm long, 60 mm wide, and 3 mm thick, an upper base of 20 mm, a lower base of 40 mm, a height of 8 mm, and a thickness of 8 mm were added.
  • An integrally molded product with a trapezoidal protrusion of 1.5 mm is cut with a universal cutter to a shape of 60 mm long, 60 mm wide, and 3 mm thick, and the cut product is 5 mm from the top and left side
  • a hole with a diameter of 1 mm is made at a position of 5 mm from the bottom, and at a position of 5 mm from the upper side and 5 mm from the right side, respectively, to prepare a test piece.
  • the octopus thread passed through the two holes of the test piece and suspended, the center of one surface of the test piece was hit with a stainless steel hammer with a force of 40 ⁇ 5N. It is measured based on the frequency spectrum of the sound pressure obtained by collecting the sound with a sound pressure microphone placed 10 cm apart in the vertical direction.
  • thermoplastic resin composition according to [7], wherein the frequency giving the maximum sound pressure is in the range of 20 to 9,000 Hz or 14,000 to 19,000 Hz.
  • thermoplastic resin composition according to 1. ⁇ Measurement conditions (3)> By molding the thermoplastic resin composition using an injection molding machine, a test piece with a length of 60 mm, a width of 100 mm, and a thickness of 4 mm and a test piece with a length of 50 mm, a width of 25 mm, and a thickness of 4 mm were prepared.
  • the plate surface of the former test piece and the plate surface of the latter test piece were tested three times at an amplitude of 20 mm under four conditions of load 5 N, 40 N, speed 1 mm / sec, and 10 mm / sec in an atmosphere of 23 ° C. and humidity of 50% RH. Measured by rubbing the
  • thermoplastic resin composition obtained by mixing 100 parts by mass of the thermoplastic resin composition with 0.8 parts by mass of carbon black is molded using an injection molding machine with a length of 100 mm, a width of 100 mm and a thickness of For a plate-shaped test piece with a thickness of 3 mm, the brightness L* measured under the following condition (4) is 18 or less, and the gloss measured under the following condition (5) is 90% or more [1] to [9 ]
  • thermoplastic resin composition according to any one of [1] to [10], which has a rubber content of 5 to 60% by mass.
  • thermoplastic resin composition A molded article made of the thermoplastic resin composition according to any one of [1] to [11].
  • the present invention it is possible to provide a molded product that is excellent in surface gloss, color development, surface impact resistance, and rigidity, and in which the generation of hammering noise is suppressed.
  • FIG. 1 is a perspective view showing a test piece used for measuring sound pressure in Examples.
  • (co)polymerization means homopolymerization and/or copolymerization.
  • (Meth)acryl means acryl and/or methacryl.
  • (Meth)acrylate means acrylate and/or methacrylate.
  • the melting point measured according to JIS K 7121-1987 was measured using a DSC (differential scanning calorimeter) at a constant heating rate of 20°C per minute. It is the value obtained by measuring the endothermic change and reading the peak temperature of the obtained endothermic pattern.
  • thermoplastic resin composition contains 97 to 80 parts by mass of a resin component (A) containing a rubber-reinforced styrene thermoplastic resin (A1) and 3 to 20 parts by mass of a sound reducing material (B).
  • the hydrogenated copolymer used as the hammering sound reducing material (B) is hydrogenated, and therefore has good thermal stability and is less likely to undergo a cross-linking reaction under the melting and heating conditions during molding. For this reason, the obtained molded article has excellent surface gloss.
  • the thermoplastic elastomer used as the hammering sound reducing material in Patent Document 5 is not hydrogenated, so the thermoplastic elastomer undergoes a cross-linking reaction during molding, and molding occurs between the cross-linked part and the non-cross-linked part. Domains with different shrinkage ratios are generated, and uneven molding shrinkage occurs in the plane of the molded product, resulting in a molded product with poor gloss.
  • the hydrogenated copolymer used in the present invention has a content of structural units derived from an aromatic vinyl compound of 55 to 80% by mass, a large amount of styrene components, and a resin component (A ) has excellent compatibility with rubber-reinforced styrenic thermoplastic resin (A1), etc., and the hydrogenated copolymer can form a finely dispersed morphology in the matrix resin. High surface impact resistance.
  • the thermoplastic elastomer used in Patent Document 5 has a low styrene content of 20%, and therefore has poor dispersibility in the matrix resin, poor color developability, and poor surface impact resistance.
  • the peak temperature of the main dispersion of tan ⁇ of the hydrogenated copolymer is required to be 0° C. or higher in order to obtain the effect of reducing the hammering sound at room temperature.
  • the hydrogenated copolymer used as the hammering sound reducing material (B) in the present invention has a block portion (I) mainly composed of structural units derived from an aromatic vinyl compound, and a block portion (I) derived from an aromatic vinyl compound and butadiene.
  • This hydrogenated copolymer may be used after being surface-treated with a coupling agent such as a silane coupling agent.
  • aromatic vinyl-based compounds constituting block (I) examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, and the like. These compounds can be used individually by 1 type or in combination of 2 or more types. Of these, styrene and ⁇ -methylstyrene are preferred.
  • Block (I) preferably contains 50% by mass or more, more preferably 80 to 100% by mass, mainly of structural units derived from aromatic vinyl compounds.
  • the other compound includes isoprene, butadiene, and other cyanides such as acrylonitrile that constitute random part (II) below.
  • a vinyl compound etc. are mentioned.
  • the random part (II) is mainly composed of structural units derived from aromatic vinyl compounds and butadiene.
  • the random portion (II) preferably contains 50% by mass or more, more preferably 80 to 100% by mass, mainly of structural units derived from an aromatic vinyl compound and butadiene.
  • the random part (II) may be an aromatic vinyl compound constituting the above block (I), or other Examples thereof include vinyl cyanide compounds such as acrylonitrile.
  • the peak of the main dispersion of tan ⁇ of the hydrogenated copolymer must be 0°C or higher, preferably 5°C or higher, and more preferably 10°C or higher.
  • the main dispersion peak of tan ⁇ was measured using a viscoelasticity measuring device [DDV III EP manufactured by Toyo Baldwin Co., Ltd.] at a frequency of 11 Hz, a measurement temperature of -110°C to +100°C, and a heating rate of 2°C/min. can be asked for.
  • the weight average molecular weight of the entire hydrogenated copolymer is preferably 30,000 to 400,000, more preferably 40,000 to 370,000, still more preferably 50,000 to 300,000, It may have a bimodal molecular weight distribution.
  • the weight number average molecular weight is a value measured by gel permeation chromatography (GPC).
  • the content of structural units derived from aromatic vinyl compounds contained in the block part (I) and the random part (II) is 100% by mass of the entire copolymer. It is characterized by being 55 to 80% by mass.
  • the content of the structural unit derived from the aromatic vinyl compound contained in the block part (I) and the random part (II) is preferably 58 to 80% by mass when the total copolymer is 100% by mass. It is preferably 60 to 80% by mass. Within this range, the surface appearance (color developability, gloss) and surface impact resistance are even better.
  • the hydrogenated copolymer used as the hammering sound reducing material (B) in the present invention is a hydrogenated copolymer consisting of the above-described block part (I) and random part (II).
  • the hydrogenation rate of the hydrogenated copolymer is preferably 50% or more, more preferably 80 to 100%.
  • thermoplastic resin composition of the present invention contains at least a rubber-reinforced styrene-based thermoplastic resin (A1) as a resin component (A), and further includes a styrene-based resin ( A2) or preferably contains a styrene resin (A2) and an aromatic polycarbonate resin (A3).
  • the resin component (A) does not contain the above-described hydrogenated copolymer of the hitting sound reducing material (B).
  • the rubber-reinforced styrene thermoplastic resin (A1) comprises an aromatic vinyl compound or an aromatic vinyl compound and another vinyl monomer copolymerizable with the aromatic vinyl compound ( It is obtained by polymerizing a1).
  • Examples of the rubbery polymer (g) include conjugated diene rubbers such as polybutadiene, polyisoprene, butadiene/styrene copolymers, butadiene/acrylonitrile copolymers, ethylene/propylene copolymers, ethylene/propylene/non-conjugated diene copolymers.
  • conjugated diene rubbers such as polybutadiene, polyisoprene, butadiene/styrene copolymers, butadiene/acrylonitrile copolymers, ethylene/propylene copolymers, ethylene/propylene/non-conjugated diene copolymers.
  • Olefin rubbers such as polymers, ethylene/butene-1 copolymers, ethylene/butene-1/non-conjugated diene copolymers; acrylic rubbers; silicone rubbers; polyurethane rubbers; silicone/acrylic IPN rubbers; a conjugated diene-based block copolymer; a hydrogenated conjugated diene-based block copolymer; and the like.
  • olefin rubber is not particularly limited, examples include ethylene/ ⁇ -olefin rubber containing ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • the content of ethylene is preferably 5 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 88% by mass.
  • Examples of ⁇ -olefins having 3 or more carbon atoms include propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methylbutene, 1- hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-undecene and the like.
  • These ⁇ -olefins may be contained singly or in combination of two or more.
  • propylene and 1-butene are preferred.
  • the content of the ⁇ -olefin is preferably 95 to 5% by mass, more preferably 50 to 10% by mass, when the total amount of monomers constituting the ethylene/ ⁇ -olefin rubber is 100% by mass. It is preferably 40 to 12% by mass.
  • the ethylene/ ⁇ -olefin rubber may be a binary copolymer composed of ethylene and an ⁇ -olefin, or a polymer composed of these and other compounds (terpolymer , quaternary copolymers, etc.). Other compounds include non-conjugated diene compounds.
  • non-conjugated diene compounds used in olefinic rubbers include alkenylnorbornenes, cyclic dienes, and aliphatic dienes. Preferred are dicyclopentadiene and 5-ethylidene-2-norbornene. These non-conjugated diene compounds can be used alone or in combination of two or more.
  • the content of non-conjugated diene compound units in the ethylene/ ⁇ -olefin rubber is usually less than 30% by mass, preferably less than 15% by mass.
  • the above acrylic rubber is not particularly limited, but may be a (co)polymer of a (meth)acrylic acid alkyl ester compound having an alkyl group having 1 to 8 carbon atoms, or this (meth)acrylic acid alkyl ester compound, and this A copolymer with a copolymerizable vinyl monomer is preferred.
  • alkyl acrylate compounds having 1 to 8 carbon atoms in the alkyl group include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, i-butyl acrylate, amyl acrylate, hexyl acrylate, and n-octyl. acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate and the like.
  • methacrylic acid alkyl ester compounds include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, amyl methacrylate, hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and the like. mentioned.
  • n-butyl acrylate and 2-ethylhexyl acrylate are preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • vinyl-based monomers copolymerizable with (meth)acrylic acid alkyl ester compounds include polyfunctional vinyl compounds, aromatic vinyl compounds, and vinyl cyanide compounds.
  • a polyfunctional vinyl compound is a monomer having two or more vinyl groups in one monomer molecule, and functions to crosslink (meth)acrylic rubber and serves as a reaction starting point during graft polymerization. It is.
  • polyfunctional vinyl monomers include polyfunctional aromatic vinyl compounds such as divinylbenzene and divinyltoluene; Acrylic acid ester; diallyl malate, diallyl fumarate, triallyl cyanurate, triallyl cyanurate, diallyl phthalate, allyl methacrylate, and the like. These polyfunctional vinyl compounds can be used singly or in combination of two or more.
  • aromatic vinyl compound and vinyl cyanide compound all those described later can be used.
  • other copolymerizable monomers include acrylamide, methacrylamide, vinylidene chloride, alkyl vinyl ether having an alkyl group having 1 to 6 carbon atoms, and alkyl (meth)acrylate having an alkyl group having 9 or more carbon atoms.
  • Esters, (meth)acrylic acid and the like can be mentioned. These are used individually by 1 type or in combination of 2 or more types.
  • the preferable monomer composition of the acrylic rubber is 80 to 99.99% by mass, more preferably 90 to 99.95% by mass of (meth)acrylic acid alkyl ester compound units having 1 to 8 carbon atoms in the alkyl group. , 0.01 to 5% by mass of polyfunctional vinyl compound units, more preferably 0.05 to 2.5% by mass, and 0 to 20% by mass of other vinyl monomer units copolymerizable therewith, more preferably is 0 to 10% by mass.
  • the total monomer composition is 100% by mass.
  • the volume average particle size of the acrylic rubber is preferably 50-1000 nm, more preferably 40-700 nm, and particularly preferably 50-500 nm.
  • the conjugated diene-based block copolymer is a copolymer comprising at least one block A or block C below and at least one block B or block A/B below, or It is a polymer with block B or A/B.
  • anionic polymerization methods for example, the methods disclosed in JP-B-47-28915, JP-B-47-3252, JP-B-48-2423, JP-B-48-20038, etc. can be manufactured.
  • the specific structure of the conjugated diene-based block copolymer is A; aromatic vinyl compound polymer block, B; conjugated diene polymer block, A/B; random copolymerization pair block of aromatic vinyl compound/conjugated diene, C; a tapered block made of a copolymer of a conjugated diene and an aromatic vinyl compound, in which the aromatic vinyl compound gradually increases; If you define each as , the following structure can be mentioned.
  • B1 is a conjugated diene polymer block or a copolymer block of a conjugated diene and an aromatic vinyl compound, the vinyl bond content of the conjugated diene portion is preferably 20% or more
  • B2 is a conjugated diene polymer block or It is a copolymer block of a conjugated diene and an aromatic vinyl compound, and the vinyl bond content of the conjugated diene portion is preferably less than 20%.
  • A-A/B (5) A-A/B-C (6)
  • B2-B1-B2 (9)
  • B1 and B2 are the same as above.)
  • CB 10 CBC (11) CA/BC (12)
  • the conjugated diene-based block copolymer may be a copolymer having these basic skeletons repeatedly, or may be a conjugated diene-based block copolymer obtained by coupling them.
  • JP-A-2-133406 for the structures of the above formulas (5) and (6), JP-A-2-305814, JP-A-3- 72512.
  • Conjugated dienes used herein include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3- hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene and the like.
  • 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene is more preferred for obtaining a conjugated diene-based block copolymer that is industrially applicable and has excellent physical properties.
  • aromatic vinyl compounds used here include styrene, t-butylstyrene, ⁇ -methylstyrene, p-methylstyrene, hydroxystyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, pt-butylstyrene, ethylstyrene, vinylnaphthalene, divinylbenzene, 1,1-diphenylstyrene, N,N-diethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene, Examples thereof include vinylpyridine, and styrene and ⁇ -methylstyrene are preferred, and styrene is particularly preferred.
  • the ratio of the aromatic vinyl compound/conjugated diene in the conjugated diene block copolymer is 0 to 70/100 to 30, preferably 0 to 60/100 to 40, more preferably 0 to 50/100 by mass. 50, and when an aromatic vinyl compound is essential, it is preferably 10 to 70/90 to 30. If the content of the aromatic vinyl compound exceeds 70% by mass, it becomes resinous and the effect as a rubber component is inferior, which is not preferable.
  • the vinyl bond content of the conjugated diene portion in the conjugated diene block is usually in the range of 5-80%.
  • the number average molecular weight of the conjugated diene block copolymer is usually 10,000 to 1,000,000, preferably 20,000 to 500,000, more preferably 20,000 to 200,000.
  • the number average molecular weight of part A in the above structural formula is preferably in the range of 3,000 to 150,000, and the number average molecular weight of part B is preferably in the range of 5,000 to 200,000.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC).
  • the amount of vinyl bonds in the conjugated diene compound can be adjusted by using amines such as N,N,N',N'-tetramethylethylenediamine, trimethylamine, triethylamine, diazocyclo(2,2,2) octaamine, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diamine. It can be carried out using ethers such as butyl ether, thioethers, phosphines, phosphoamides, alkylbenzenesulfonates, alkoxides of potassium and sodium, and the like.
  • amines such as N,N,N',N'-tetramethylethylenediamine, trimethylamine, triethylamine, diazocyclo(2,2,2) octaamine, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diamine. It can be carried out using ethers such as butyl ether, thioethers,
  • Coupling agents used in the present invention include diethyl adipate, divinylbenzene, methyldichlorosilane, silicon tetrachloride, butyltrichlorosilicon, tetrachlorotin, butyltrichlorotin, dimethylchlorosilicon, tetrachlorogermanium, 1,2. -dibromoethane, 1,4-chloromethylbenzene, bis(trichlorosilyl)ethane, epoxidized linseed oil, tolylene diisocyanate, 1,2,4-benzene triisocyanate and the like.
  • the hydrogenated conjugated diene-based block copolymer is a partially hydrogenated product in which at least 30% or more, preferably 50% or more of the carbon-carbon double bonds in the conjugated diene portion of the conjugated diene-based block copolymer are hydrogenated. Alternatively, it is a completely hydrogenated product, more preferably a hydrogenated product in which 90% or more is hydrogenated.
  • the hydrogenation reaction of the conjugated diene-based block copolymer can be carried out by a known method.
  • the target hydrogenated conjugated diene block copolymer can be obtained by adjusting the hydrogenation rate by a known method.
  • Specific methods include JP-B-42-8704, JP-B-43-6636, JP-B-63-4841, JP-B-63-5401, JP-A-2-133406, JP-A-1 There is a method disclosed in Japanese Unexamined Patent Publication No. 297413 and the like.
  • the rubbery polymer (g) used in the present invention preferably has a gel content of 70% by mass or less from the viewpoint of the foamability of the thermoplastic resin composition for foam molding, and more preferably the gel content. is 50% by mass or less, more preferably 10% by mass or less.
  • a gel content rate can be calculated
  • the gel content is determined by appropriately adjusting the type and amount of the crosslinkable monomer used, the type and amount of the molecular weight modifier used, the polymerization time, the polymerization temperature, the polymerization conversion rate, etc. during the production of the rubbery polymer (g). It can be adjusted by setting
  • Preferred as the rubbery polymer (g) used in the present invention are polybutadiene, butadiene/styrene copolymer, ethylene/propylene copolymer, ethylene/propylene/non-conjugated diene copolymer, acrylic rubber, and silicone.
  • conjugated diene-based block copolymer conjugated diene-based block copolymer, hydrogenated conjugated diene-based block copolymer, more preferably ethylene/propylene copolymer, ethylene/propylene/non-conjugated diene copolymer, acrylic rubber, conjugated diene block copolymers and hydrogenated conjugated diene block copolymers, particularly preferred are acrylic rubbers, ethylene/propylene copolymers, ethylene/propylene/non-conjugated diene copolymers, and conjugated diene block copolymers.
  • Polymers and hydrogenated conjugated diene block copolymers most preferably acrylic rubbers having a gel content of 10% by mass or less and a volume average particle size of 50 to 500 nm, particularly 50 to 300 nm.
  • the rubbery polymer (g) can be obtained by known methods such as emulsion polymerization, solution polymerization, bulk polymerization and suspension polymerization. Among these, acrylic rubbers produced by emulsion polymerization are preferred. Ethylene/propylene copolymers, ethylene/propylene/non-conjugated diene copolymers, conjugated diene block copolymers and hydrogenated conjugated diene block copolymers are solution polymerized. Polybutadiene and butadiene/styrene copolymers are solution polymerized. preferably manufactured by
  • the rubber-reinforced styrenic thermoplastic resin (A1) comprises an aromatic vinyl compound or an aromatic vinyl compound and another vinyl monomer that can be copolymerized with the aromatic vinyl compound in the presence of the rubbery polymer (g). It is obtained by polymerizing the body (a1). That is, the vinyl monomer (a1) may be an aromatic vinyl compound alone or a mixture of an aromatic vinyl compound and another vinyl monomer that can be copolymerized with the aromatic vinyl compound. Further, the rubber-reinforced styrene-based thermoplastic resin (A1) is an aromatic vinyl compound or an aromatic vinyl compound and a copolymer with an aromatic vinyl compound in the presence of 3 to 80 parts by mass of the rubbery polymer (g).
  • aromatic vinyl compound used here all those described in the rubbery polymer (g) can be used.
  • Styrene and ⁇ -methylstyrene are particularly preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • vinyl monomers that can be copolymerized with aromatic vinyl compounds include vinyl cyanide compounds, (meth)acrylic acid ester compounds, maleimide compounds, and other unsaturated compounds containing various functional groups.
  • various functional group-containing unsaturated compounds include unsaturated acid compounds, epoxy group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, acid anhydride group-containing unsaturated compounds, oxazoline group-containing unsaturated compounds, substituted or unsubstituted and amino group-containing unsaturated compounds.
  • These other vinyl monomers can be used singly or in combination of two or more.
  • vinyl cyanide compounds include acrylonitrile and methacrylonitrile. These can be used individually by 1 type or in combination of 2 or more types. Chemical resistance is imparted by using a vinyl cyanide compound.
  • the vinyl cyanide compound is used in an amount of generally 0 to 60% by mass, preferably 5 to 50% by mass, based on the total amount of the vinyl monomer (a1).
  • (Meth)acrylic acid ester compounds include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like. These can be used individually by 1 type or in combination of 2 or more types. Surface hardness is improved by using a (meth)acrylic acid ester compound.
  • the amount of the (meth)acrylic acid ester compound used is usually 0 to 80% by mass as a proportion of the total amount of the vinyl monomer (a1).
  • Maleimide compounds include maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, N-cyclohexylmaleimide and the like. These can be used individually by 1 type or in combination of 2 or more types. In order to introduce maleimide units, maleic anhydride may be copolymerized and then imidized. Heat resistance is imparted by using a maleimide compound. The amount of the maleimide compound to be used is generally 1 to 60% by mass based on the total amount of the vinyl monomer (a1).
  • unsaturated acid compounds include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid. These can be used individually by 1 type or in combination of 2 or more types.
  • epoxy group-containing unsaturated compounds examples include glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether. These can be used individually by 1 type or in combination of 2 or more types.
  • hydroxyl group-containing unsaturated compounds examples include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-3- methyl-1-propene, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, N-(4-hydroxyphenyl)maleimide and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • oxazoline group-containing unsaturated compounds examples include vinyloxazoline. These can be used individually by 1 type or in combination of 2 or more types.
  • acid anhydride group-containing unsaturated compounds examples include maleic anhydride, itaconic anhydride, and citraconic anhydride. These can be used individually by 1 type or in combination of 2 or more types.
  • substituted or unsubstituted amino group-containing unsaturated compounds include aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, phenylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, and acrylamine. , N-methylacrylamine, acrylamide, N-methylacrylamide, p-aminostyrene and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the rubber-reinforced styrenic thermoplastic resin (A1) when blended with the styrenic resin (A2) and the aromatic polycarbonate resin (A3), compatibility between the two may improve.
  • the amount of other various functional group-containing unsaturated compounds used is the total amount of the functional group-containing unsaturated compounds in the total amount of the rubber-reinforced styrenic thermoplastic resin (A1) and the styrenic resin (A2). It is usually 0.1 to 20% by mass, preferably 0.1 to 10% by mass.
  • the amount of the monomer other than the aromatic vinyl compound in the vinyl monomer (a1) is usually 80% by mass or less, preferably 60% by mass, when the total amount of the vinyl monomers (a1) is 100% by mass. % or less, more preferably 50 mass % or less.
  • More preferred combinations of monomers constituting the vinyl monomer (a1) are styrene alone, styrene/acrylonitrile, styrene/methyl methacrylate, styrene/acrylonitrile/methyl methacrylate, styrene/acrylonitrile/glycidyl methacrylate, and styrene/acrylonitrile.
  • styrene alone styrene/acrylonitrile
  • styrene/methyl methacrylate styrene/acrylonitrile/methyl methacrylate
  • styrene/acrylonitrile/glycidyl methacrylate and styrene/acrylonitrile.
  • the rubber-reinforced styrenic thermoplastic resin (A1) can be produced by known polymerization methods such as emulsion polymerization, bulk polymerization, solution polymerization, suspension polymerization, and polymerization methods in which these are combined.
  • the rubber-like polymer (g) obtained by emulsion polymerization can also be produced by emulsion polymerization in the production of the rubber-reinforced styrenic thermoplastic resin (A1).
  • the rubber-reinforced styrenic thermoplastic resin (A1) is generally and preferably produced by bulk polymerization, solution polymerization or suspension polymerization.
  • the rubber-reinforced styrenic thermoplastic resin (A1) can be obtained by emulsion polymerization. can be manufactured. Even the rubbery polymer (g) produced by emulsion polymerization can be coagulated and isolated, and then the rubber-reinforced styrenic thermoplastic resin (A1) can be produced by bulk polymerization, solution polymerization, or suspension polymerization. can.
  • polymerization initiators When manufacturing by emulsion polymerization, polymerization initiators, chain transfer agents, emulsifiers, etc. are used. All of these known ones can be used.
  • polymerization initiators examples include cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, tetramethylbutyl hydroperoxide, tert-butyl hydroperoxide, potassium persulfate, azobisisobutyronitrile and the like. mentioned.
  • redox agents such as various reducing agents, sugar-containing iron pyrophosphate formulations, and sulfoxylate formulations.
  • chain transfer agents examples include octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, n-hexylmercaptan, and terpinolene.
  • Emulsifiers include alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, aliphatic sulfonates such as sodium lauryl sulfate, higher fatty acid salts such as potassium laurate, potassium stearate, potassium oleate and potassium palmitate, and rosin acid. Rosinates such as potassium can be used.
  • the method of using the rubber polymer (g) and the vinyl monomer (a1) is to polymerize by adding the vinyl monomer (a1) all at once in the presence of the total amount of the rubber polymer (g). may be added separately or continuously for polymerization. Part of the rubbery polymer (g) may be added during the polymerization.
  • the resulting latex is usually coagulated with a coagulant. Thereafter, by washing with water and drying, a powder of rubber-reinforced styrene-based thermoplastic resin (A1) is obtained. At this time, two or more latexes of the rubber-reinforced styrenic thermoplastic resin (A1) obtained by emulsion polymerization may be appropriately blended and then coagulated. After appropriately blending the latex of the styrenic resin (A2), it may be coagulated. As the coagulant, inorganic salts such as calcium chloride, magnesium sulfate and magnesium chloride, and acids such as sulfuric acid, acetic acid, citric acid and malic acid can be used. A powder of the rubber-reinforced styrenic thermoplastic resin (A1) can also be obtained by spray-drying the latex.
  • a powder of rubber-reinforced styrenic thermoplastic resin (A1) can also be obtained by spray-drying the latex
  • the solvent that can be used when producing the rubber-reinforced styrenic thermoplastic resin (A1) by solution polymerization is an inert polymerization solvent that is used in normal radical polymerization.
  • examples thereof include aromatic hydrocarbons such as ethylbenzene and toluene, ketones such as methyl ethyl ketone and acetone, acetonitrile, dimethylformamide and N-methylpyrrolidone.
  • the polymerization temperature is usually in the range of 80-140°C, preferably 85-120°C.
  • a polymerization initiator may be used, or the polymerization may be carried out by thermal polymerization without using a polymerization initiator.
  • organic peroxides such as ketone peroxide, dialkyl peroxide, diacyl peroxide, peroxyester, hydroperoxide, azobisisobutyronitrile, and benzoyl peroxide are preferably used.
  • a chain transfer agent for example, mercaptans, terpinrenes, ⁇ -methylstyrene dimer, etc. can be used.
  • the rubber-reinforced styrenic thermoplastic resin (A1) is produced by bulk polymerization or suspension polymerization
  • the polymerization initiator, chain transfer agent, etc. described in the solution polymerization can be used.
  • the amount of monomers remaining in the rubber-reinforced styrenic thermoplastic resin (A1) obtained by each of the above polymerization methods is usually 10,000 ppm or less, preferably 5,000 ppm or less.
  • the vinyl monomer (a1) is added to the rubbery polymer (A copolymer obtained by graft copolymerization in g) and an ungrafted component ((co)polymer of vinyl monomer (a1)) not grafted to rubbery polymer (g) are included.
  • the graft ratio of the rubber-reinforced styrenic thermoplastic resin (A1) is usually adjusted to 5 to 100% by mass, preferably 10 to 90% by mass, more preferably 15 to 85% by mass, particularly preferably 20 to 80% by mass. is preferred. Grafting rate is determined by the type and amount of polymerization initiator used, the type and amount of chain transfer agent used, the polymerization method, the contact time between the vinyl monomer (a1) and the rubbery polymer (g) during polymerization, and the rubbery weight. It can be varied depending on various factors such as coalescence (g) species, polymerization temperature and the like.
  • T is 1 g of rubber-reinforced styrene thermoplastic resin (A1) added to 20 ml of acetone, shaken with a shaker for 2 hours, and centrifuged at 60 in a centrifuge (rotation speed: 23,000 rpm). It is the mass (g) of the insoluble matter obtained by centrifuging for minutes to separate the insoluble matter and the soluble matter.
  • S is the mass (g) of the rubbery polymer (g) contained in 1 g of the rubber-reinforced styrenic thermoplastic resin (A1).
  • methyl ethyl ketone is used instead of acetone for measurement.
  • the intrinsic viscosity [ ⁇ ] of the acetone-soluble portion of the rubber-reinforced styrene thermoplastic resin (A1) is usually 0.15 to 1.2 dl/g, preferably 0. .2 to 1.0 dl/g, more preferably 0.2 to 0.8 dl/g.
  • the average particle size of the grafted rubbery polymer particles dispersed in the rubber-reinforced styrenic thermoplastic resin (A1) is usually 50 to 3,000 nm, preferably 40 to 2,500 nm, particularly preferably 50 to 2,000 nm. is. If the rubber particle size is less than 50 nm, the impact resistance tends to be poor, and if it exceeds 3,000 nm, the surface appearance of the molded product tends to be poor.
  • the refractive index of the copolymer of the rubbery polymer (g) and the vinyl monomer (a1) to be used is substantially matched and/or the particle size of the dispersed rubbery polymer (g) is substantially visible.
  • a rubber-reinforced styrenic thermoplastic resin (A1) having transparency can be obtained by reducing the wavelength to the wavelength of light or less (usually 1,500 nm or less). These transparent resins can also be used as the rubber-reinforced styrenic thermoplastic resin (A1) of the present invention.
  • the rubber-reinforced styrenic thermoplastic resin (A1) may be used singly, or two or more different copolymer compositions and physical properties may be mixed and used.
  • the styrene-based resin (A2) is an aromatic vinyl compound, or a (co)polymer obtained by polymerizing an aromatic vinyl compound and another vinyl monomer (a2) copolymerizable with the aromatic vinyl compound.
  • the vinyl monomer (a2) may be an aromatic vinyl compound alone or a mixture of an aromatic vinyl compound and another vinyl monomer copolymerizable with the aromatic vinyl compound.
  • the aromatic vinyl compound used here and other vinyl monomer copolymerizable with the aromatic vinyl compound are described as the vinyl monomer (a1) in the rubber-reinforced styrenic thermoplastic resin (A1). everything can be used.
  • the vinyl monomer (a2) may be the same as or different from the vinyl monomer (a1).
  • the content of the monomer other than the aromatic vinyl compound in the vinyl monomer (a2) is usually 80% by mass or less, preferably 60% by mass, when the total of the vinyl monomers (a2) is 100% by mass. % or less, more preferably 50 mass % or less.
  • Preferred styrene-based resins (A2) include styrene homopolymers, styrene/acrylonitrile copolymers, styrene/methyl methacrylate copolymers, styrene/acrylonitrile/methyl methacrylate copolymers, and styrene/maleimide compound copolymers. and copolymers of these with the aforementioned functional group-containing unsaturated compounds.
  • the styrenic resin (A2) can be produced by emulsion polymerization, bulk polymerization, solution polymerization, suspension polymerization, or a combination thereof, which are known polymerization methods described in the production method of the rubber-reinforced styrenic thermoplastic resin (A1). can be manufactured in
  • the styrene-based resin (A2) may be used alone, or two or more of which differ in copolymer composition and physical properties may be used in combination.
  • the aromatic polycarbonate resin (A3) is a known polycondensation method such as an interfacial polycondensation method between a dihydroxyaryl compound and phosgene, or a transesterification reaction (melt polycondensation) between a dihydroxyaryl compound and a carbonate compound such as diphenyl carbonate. Anything legally obtainable can be used.
  • dihydroxyaryl compound examples include bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4- hydroxyphenyl)octane, bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3-t-butylphenyl) Propane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 4,4'-dihydroxyphenyl ether, 4,4'-dihydroxyphenyl sulfide, 4,4 '-dihydroxyphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, hydroquinone, resorcinol and the like.
  • hydroxyaryloxy-terminated polyorganosiloxanes see, eg, US Pat. No. 3,419,634. These can be used individually by 1 type or in combination of 2 or more types. Among these, 2,2-bis(4-hydroxyphenylpropane (bisphenol A) is preferred.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A3) is preferably 12,000-40,000, more preferably 15,000-35,000, and particularly preferably 18,000-30,000. The higher the molecular weight, the higher the mechanical strength of the obtained molded article, but the appearance of the molded article tends to deteriorate due to the decrease in fluidity. Two or more aromatic polycarbonate resins having different molecular weights may be used as the aromatic polycarbonate resin (A3).
  • the viscosity-average molecular weight of the aromatic polycarbonate resin (A3) is usually measured using methylene chloride as a solvent at 20°C at a concentration of [0.7 g/100 ml (methylene chloride)].
  • C indicates concentration.
  • the content ratio of the rubber-reinforced styrene-based thermoplastic resin (A1) and the styrene-based resin (A2) is 1 to 80% by mass of the rubber-reinforced styrene-based thermoplastic resin (A1) and 20-99% by mass of the styrene-based resin (A2). more preferably 5 to 60% by mass of the rubber-reinforced styrenic thermoplastic resin (A1) and 40 to 95% by mass of the styrenic resin (A2).
  • the content ratio of the rubber-reinforced styrene-based thermoplastic resin (A1), the styrene-based resin (A2) and the aromatic polycarbonate resin (A3) is 1 to 60% by mass of the rubber-reinforced styrene-based thermoplastic resin (A1), the styrene-based resin ( A2) 5 to 64% by mass, more preferably 35 to 94% by mass of aromatic polycarbonate resin (A3), rubber-reinforced styrenic thermoplastic resin (A1) 5 to 50% by mass, styrenic resin (A2) 10 55% by mass, and more preferably 40 to 85% by mass of the aromatic polycarbonate resin (A3).
  • the resin component (A) according to the present invention is a resin other than the rubber-reinforced styrene-based thermoplastic resin (A1), the styrene-based resin (A2), and the aromatic polycarbonate resin (A3) within a range that does not impair the object of the present invention. may contain.
  • thermoplastic resins include polyolefin-based resins, vinyl chloride-based resins, acrylic-based resins, polyester-based resins, polyamide-based resins, polyacetal-based resins, polyphenylene ether-based resins, and polyarylene sulfide-based resins. These thermoplastic resins can be used singly or in combination of two or more.
  • thermoplastic resin composition of the present invention contains these other resins, the contents thereof are rubber-reinforced styrene-based thermoplastic resin (A1), styrene-based resin (A2), aromatic polycarbonate resin (A3) and It is preferably 50% by mass or less, particularly preferably 30% by mass or less, based on 100% by mass of the resin component (A) containing other resins.
  • thermoplastic resin composition of the present invention may contain components other than the resin component (A) and the hammering sound reducing material (B) within a range that does not impair the object of the present invention.
  • the thermoplastic resin composition of the present invention may contain a slidability imparting agent.
  • the slidability-imparting agent imparts slidability to the thermoplastic resin composition, not only facilitating the assembly of the molded article obtained from the thermoplastic resin composition of the present invention, but also It is possible to impart an effect of suppressing the generation of abnormal noise such as squeak from an article made of such a molded product.
  • Typical examples of slidability imparting agents include low-molecular-weight polyethylene oxide, ultra-high-molecular-weight polyethylene, polytetrafluoroethylene, and low-molecular-weight (e.g., number-average molecular weight of 10, 000 or less) polyolefin wax, silicone oil and the like.
  • polyethylene wax or the like having a melting point of 0 to 120°C is preferable.
  • a polyolefin wax having such a melting point and other additives having a melting point of 0 to 120° C. are added to the thermoplastic resin composition of the present invention, the rubbery quality of the rubber-reinforced styrenic thermoplastic resin (A1) Even if the part does not have a melting point (Tm), it is possible to obtain the effect of suppressing the generation of noise such as squeak.
  • These slidability imparting agents can be used singly or in combination of two or more.
  • the blending amount is 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber-reinforced styrenic thermoplastic resin (A1). is preferred.
  • thermoplastic resin composition of the present invention can be added to the thermoplastic resin composition of the present invention in order to suppress the generation of squeak noise and obtain a molded product with a highly glossy surface.
  • the heat anti-aging agent is not particularly limited as long as it is a heat anti-aging agent blended in rubber or the like, but phenol-based antioxidants and phosphorus-based antioxidants are preferred.
  • phenolic antioxidants examples include phenolic antioxidants having a phenol group having a t-butyl group at the ortho position, as represented by the following general formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and t-Bu represents a t-butyl group.
  • substituents R 1 and R 2 are each independently preferably a hydrogen atom, a t-butyl group or a methyl group, more preferably a hydrogen atom or a methyl group, It is particularly preferred if R 1 is a hydrogen atom.
  • the phenolic antioxidant used in the present invention is preferably a compound having one or more groups represented by the general formula (I), and the following formulas (C1), (C2) and ( A compound represented by any one of C3) is more preferable.
  • Examples of phosphorus-based antioxidants include compounds represented by the following general formula (II).
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Particularly preferably, R 3 and R 4 are tC 4 H 9 groups. )
  • the blending amount is preferably 0.01 to 5 parts by mass, when the thermoplastic resin composition of the present invention is 100 parts by mass. It is preferably 0.02 to 3 parts by mass, more preferably 0.03 to 2 parts by mass, and particularly preferably 0.03 to 1 part by mass. Most preferred ranges include 0.02 to 0.6 parts by weight, 0.02 to 0.2 parts by weight, 0.03 to 0.6 parts by weight, or 0.03 to 0.2 parts by weight. .
  • the content of the heat antiaging agent is within the above range, the glossiness of the molded article is excellent and a good appearance can be obtained.
  • additives that can be blended in the thermoplastic resin composition of the present invention include antioxidants, ultraviolet absorbers, weathering agents, fillers, antistatic agents, flame retardant agents, antifogging agents, lubricants, and antibacterial agents. agents, antifungal agents, tackifiers, plasticizers, colorants, graphite, carbon black, carbon nanotubes, pigments (including pigments imparted with functionality such as infrared absorption and reflectivity), and the like. These may be used individually by 1 type, or may use 2 or more types together.
  • the blending amount of these other additives is usually 0.1 to 30 parts by mass per 100 parts by mass of the resin component (A).
  • thermoplastic resin composition of the present invention is prepared by mixing each component in a predetermined compounding ratio with a tumbler mixer, Henschel mixer, etc., and then using a single screw extruder, twin screw extruder, Banbury mixer, kneader, roll, feeder ruder, etc. It can be manufactured by melt-kneading under appropriate conditions using a kneader.
  • a preferred kneader is a twin-screw extruder.
  • these components may be kneaded collectively, or they may be kneaded in multiple stages or dividedly.
  • the mixture may be pelletized with an extruder.
  • the melt-kneading temperature is usually 180-240°C, preferably 190-230°C.
  • thermoplastic resin composition of the present invention Preferred physical properties and the like of the thermoplastic resin composition of the present invention are described below. Specifically, the physical properties and the like of the thermoplastic resin composition of the present invention described below are measured by the methods described in Examples below.
  • the thermoplastic resin composition of the present invention has a minimum loss factor ( ⁇ ) in the frequency range of 20 to 12,400 Hz when measured under the following condition (1). 015 or more, and more preferably 0.018 or more.
  • ⁇ Measurement conditions (1)> Using an injection molding machine, a flat plate with a thickness of 2 mm molded from the thermoplastic resin composition was cut into a length of 250 mm, a width of 10 mm, and a thickness of 2 mm. Measured at a temperature of 23°C by the vibration method.
  • the thermoplastic resin composition of the present invention should have a maximum sound pressure of 70 dB or less in the frequency range of 20 to 20,000 Hz when measured under the following condition (2). is preferred. Further, it is preferable that the frequency giving the maximum value of the sound pressure exists in the range of 20 to 9,000 Hz or 14,000 to 19,000 Hz. It is considered that the more the maximum value of the sound pressure shifts to the lower frequency side within the above range, the more the intensity of the hammering sound is suppressed.
  • thermoplastic resin composition was molded using an injection molding machine, and at the upper end of a strip-shaped main body measuring 120 mm long, 60 mm wide, and 3 mm thick, an upper base of 20 mm, a lower base of 40 mm, a height of 8 mm, and a thickness of 8 mm were added.
  • An integrally molded product with a trapezoidal protrusion of 1.5 mm is cut with a universal cutter to a shape of 60 mm long, 60 mm wide, and 3 mm thick, and the cut product is 5 mm from the top and left side
  • a hole with a diameter of 1 mm is made at a position of 5 mm from the bottom, and at a position of 5 mm from the upper side and 5 mm from the right side, respectively, to prepare a test piece.
  • the octopus thread passed through the two holes of the test piece and suspended, the center of one surface of the test piece was hit with a stainless steel hammer with a force of 40 ⁇ 5N. It is measured based on the frequency spectrum of the sound pressure obtained by collecting the sound with a sound pressure microphone placed 10 cm apart in the vertical direction.
  • thermoplastic resin composition of the present invention has a noise risk value of 3 or less under the following measurement conditions (3) as measured using a stick-slip measuring device SSP-02 manufactured by ZIEGLER. preferable.
  • Measurement conditions (3)> By molding the thermoplastic resin composition using an injection molding machine, a test piece with a length of 60 mm, a width of 100 mm, and a thickness of 4 mm and a test piece with a length of 50 mm, a width of 25 mm, and a thickness of 4 mm were prepared.
  • the plate surface of the former test piece and the plate surface of the latter test piece were tested three times at an amplitude of 20 mm under four conditions of load 5 N, 40 N, speed 1 mm / sec, and 10 mm / sec in an atmosphere of 23 ° C. and humidity of 50% RH. Measured by rubbing the
  • the noise risk value is the risk of stick-slip noise when the contact member is made of the same material according to the specifications of the German Automobile Manufacturers Association (VDA) standard, and is indicated by an index of 10 levels. If the abnormal noise level is 3 or less, it is regarded as passing.
  • thermoplastic resin composition of the present invention has a rubber The content is preferably 5-60% by mass.
  • the thermoplastic resin composition of the present invention has a melting point measured according to JIS K7121-1987, preferably in the range of 0 to 120°C, more preferably in the range of 10 to 90°C. A range of 80° C. is even more preferred.
  • the melting point (Tm) is obtained according to JIS K7121-1987, but the number of peaks in the endothermic pattern in the range of 0 to 120°C is not limited to one, and may be two or more. The Tm (melting point) found in the range of 0 to 120° C.
  • the rubber-reinforced styrenic thermoplastic resin (A1) especially the rubbery part, or the rubber-reinforced styrenic thermoplastic resin (A1 ), for example, a slidability imparting agent such as a polyolefin wax having a low molecular weight such as a number average molecular weight of 10,000 or less.
  • the thermoplastic resin composition of the present invention preferably maintains high mechanical strength, and the thermoplastic resin composition of the present invention preferably has a bending modulus of 1,600 MPa or more, and a deflection temperature under load ( 1.8 MPa) is preferably 70° C. or higher, Rockwell hardness is preferably 90 or higher, tensile strength is preferably 35 MPa or higher, and bending strength is preferably 45 MPa or higher.
  • thermoplastic resin composition of the present invention does not contain the aromatic polycarbonate resin (A3) as the resin component (A), its MFR is 10 g/10 min. It is preferable that it is above.
  • the MFR of the thermoplastic resin composition of the present invention is 14 g/10 min. It is preferable that it is above.
  • thermoplastic resin composition of the present invention preferably retains high surface impact resistance.
  • the fracture mode of the test piece when evaluated under the following condition (6) is ductile fracture.
  • ⁇ Measurement conditions (6)> A test piece having a length of 55 mm, a width of 80 mm, and a thickness of 2.5 mm obtained by molding the thermoplastic resin composition using an injection molding machine was subjected to a high-speed puncture impact tester manufactured by Shimadzu Corporation "Hydroshot HITS- P10", a punch diameter of 12.7 mm, a sample holder hole diameter of 43.0 mm, a punch test speed of 6.7 m/sec, and a temperature of 23°C.
  • the thermoplastic resin composition of the present invention is a long black thermoplastic resin composition obtained by mixing 0.8 parts by mass of carbon black with 100 parts by mass of the thermoplastic resin composition and molding it using an injection molding machine.
  • the lightness L* measured under the following condition (4) is 18 or less, particularly 16 or less from the viewpoint of color development, and the following condition (5) preferably 90% or more, especially 95% or more, as measured by .
  • CM-3500d manufactured by Konica Minolta Optips, Inc.
  • the molded article of the present invention can be produced from a thermoplastic resin composition by known methods such as injection molding, gas injection molding, press molding, sheet extrusion molding, vacuum molding, profile extrusion molding, foam molding, material extrusion deposition method, and powder sintering layered molding. It can be manufactured by molding by the molding method of.
  • thermoplastic resin composition of the present invention has excellent properties as described above.
  • the molded article of the present invention obtained by molding the thermoplastic resin composition of the present invention can be used for vehicle interior parts and exterior parts.
  • vehicle interior parts and exterior parts For example, seat belt buckles, upper boxes, cup holders, door trims, door knobs, door pockets, door linings, pillar garnishes, consoles, console boxes, room mirrors, sun visors, center panels, ventilators, air conditioners, air conditioner panels, heater control panels , plate blades, valve shutters, louvers, etc., ducts, meter panel, meter case, meter visor, instrument panel upper garnish, instrument panel lower garnish, A/T indicator, "on/off switches (slide part, slide plate), switch bezel, Masks such as grill front defroster, grill side defroster, lid cluster, cover instroer (mask switch, mask radio, etc.), pockets (pocket deck, pocket card, etc.), steering wheel horn pads, cup holders, switch parts, switches Boxes,
  • Vehicle interior parts such as ratchets, room mirrors, room lamps, armrests, speaker grills, navigation panels, overhead consoles, clock indicators, SOS switches, front grills, wheel caps, bumpers, fenders, spoilers, garnishes, door mirrors, radiator grilles, rear Vehicle exterior parts such as combination lamps, headlamps, turn lamps, grips for outside door handles, office equipment, exterior parts such as cases and housings for home appliances, interior parts, parts around switches, parts for moving parts, Lock parts for desks, desk drawers, paper trays for copiers, straight tube LED lamps, bulb-type LED lamps, bulb-type fluorescent lamps, ceiling light panels, covers, lighting fixtures such as connectors, mobile phones, tablet terminals, rice cookers Appliances, refrigerators, microwave ovens, gas stoves, vacuum cleaners, dishwashers, air purifiers, air conditioners, heaters, TVs, recorders and other household appliances, printers, fax machines, copiers, computers, projectors and other OA equipment, audio equipment, Acoustic equipment such as organs and electronic pianos,
  • the molded article of the present invention may consist of one part or two or more parts, but at least two parts that may come into contact with each other are provided. , can be suitably used as a part of an article that has a risk of generating a hammering sound when both parts come into contact with each other.
  • it comprises at least two parts that may come into contact with each other, and at least one part of said two parts and at least a part of the part of the other part that may come into contact with the can provide an article formed from the thermoplastic resin composition of
  • it comprises at least a first part and a second part that may come into contact with each other, the first part being in contact with the second part.
  • thermoplastic resin composition of the present invention An article can be provided, at least a portion of which is formed from the thermoplastic resin composition of the present invention.
  • the entirety of the first component or part or the entirety of the portion in contact with the second component is made of the thermoplastic resin composition of the present invention.
  • the second part that the first part contacts may be a part molded from the thermoplastic resin composition of the present invention, a part molded from a resin other than the thermoplastic resin composition of the present invention, or It may also be a part made of other materials such as metal.
  • Resins other than the thermoplastic resin composition of the present invention include polypropylene resins, rubber-reinforced aromatic vinyl resins such as ABS resins, acrylic resins such as polymethyl methacrylate, polycarbonate resins, polycarbonate/ABS alloys, nylon resins, and nylons. /ABS alloy, PET resin, PET/ABS alloy, PBT/ABS alloy, thermoplastic elastomer, thermosetting elastomer and the like.
  • the article comprising at least a first part and a second part that may come into contact with each other, if the first and second parts may come into contact with each other as described above, It is not particularly limited.
  • the first and second parts are adjacent to each other with a gap therebetween but intermittently come into contact with each other due to external forces such as vibration and opening/closing operation.
  • it includes an article in which both parts are loosely fitted or loosely fitted to each other.
  • the method of fitting both parts is not particularly limited as long as both parts are loosely fitted, and may be, for example, snap fit, screwing, or engagement.
  • Such articles include articles having an opening/closing part (for example, a lid or a door) configured in a push-open manner using a push latch or a magnet latch. More specifically, opening and closing parts such as sunglass trays are examples of vehicle interior parts.
  • thermoplastic resin compositions In the following examples and comparative examples, resin components produced by the following method and the following commercially available products were used as raw materials for the production of thermoplastic resin compositions.
  • the polymerization conversion rate was 99%. Thereafter, calcium chloride was added to the obtained latex to coagulate it, followed by washing, filtration and drying to obtain a powdery heat-resistant AS resin (A2-2).
  • the intrinsic viscosity [ ⁇ ] of the acetone-soluble portion of the resulting heat-resistant AS resin (A2-2) was 0.40 dl/g.
  • thermoplastic resin composition [Examples 1 to 8, Comparative Examples 1 to 9]
  • the raw materials shown in Table 1 or Table 2 were mixed in the proportions shown in the table. After that, using a twin-screw extruder (model name “TEX44, Japan Steel Works”), the mixture was melt-kneaded at 250° C. and pelletized. Using the obtained resin composition, the following measurements and evaluations were carried out. The results are shown in Tables 1 and 2 below.
  • thermoplastic resin composition was used, and a trapezoidal projection with an upper base of 20 mm, a lower base of 40 mm, a height of 8 mm, and a thickness of 1.5 mm was provided on the upper end of a strip-shaped body of 120 mm in length, 60 mm in width, and 3 mm in thickness.
  • An integrally molded product of the shape was injection molded at a cylinder temperature of 240°C, an injection pressure of 150 MPa, and a mold temperature of 60°C using a ROBOSHOT ⁇ -150iA injection molding machine manufactured by FANUC.
  • the obtained molded product was cut using a universal cutter so that it had a shape of 60 mm long, 60 mm wide, and 3 mm thick, and the position 5 mm from the top side and 5 mm from the left side of the cut molded product, and 5 mm from the top side and Using a drilling machine, a hole with a diameter of 1 mm was made at a position 5 mm from the right side, and a test piece as shown in FIG. 1 was produced. Then, one octopus string was passed through two holes of the test piece, and the test piece was suspended using an H-shaped stand, a clamp, and a muff. At this time, the clamp was placed at a height of 28 cm from the test table.
  • a sound pressure microphone (trade name: 378B02) manufactured by PCB Piezotronics Co., Ltd. was placed at a position 10 cm away from the center of the suspended test piece surface in the vertical direction to the test piece surface. Installed using mold stands, clamps and muffs. In addition, the sound pressure microphone was placed at a height of 18 cm from the test table.
  • the center of the test piece on the opposite side where the microphone was installed was struck at 40 ⁇ 5 N using an impact hammer (trade name: 086E80) manufactured by PCB Piezotronics Co., Ltd., which can measure the impact force.
  • Sound was collected by the sound pressure microphone and converted into a sound pressure frequency spectrum by a Fourier transform analyzer (trade name: Multi-JOB FFT Analyzer OR34J-4) manufactured by Oros.
  • the maximum value of sound pressure (dB) and its frequency (Hz) in the obtained frequency spectrum were used as measured values.
  • the measurement was performed in a room with a room temperature of 23°C.
  • the sound pressure measurement of the hammering sound was performed in the same manner as described above, and the change in sound pressure over time was measured using a Fourier transform analyzer (trade name: Multi-JOB FFT Analyzer OR34J-4) manufactured by Oros.
  • the time required for the sound pressure to settle down to 1/4 of the maximum sound pressure from the generation of the sound was used as the decay time of the tapping sound.
  • the attenuation of the hitting sound is preferably shorter than 0.038 seconds, more preferably shorter than 0.035 seconds.
  • ⁇ Loss factor> A test piece prepared by cutting a flat plate with a thickness of 2 mm molded using an injection molding machine into a length of 250 mm, a width of 10 mm, and a thickness of 2 mm was used, and was heated at 23 ° C. by a central excitation method according to the provisions of JIS K7391. The minimum value of the loss factor ( ⁇ ) in the frequency range of 20 to 12,400 Hz was taken as the loss factor.
  • melt mass flow rate was measured under conditions of a temperature of 240° C. and a load of 98 N according to ISO1133.
  • thermoplastic resin composition is injection molded with a Toshiba Machine IS-170FA injection molding machine at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C., and an injection molded plate of 150 mm in length, 100 mm in width, and 4 mm in thickness. got From this plate, a test piece with a length of 60 mm, a width of 100 mm, a thickness of 4 mm, a length of 50 mm, a width of 25 mm, and a thickness of 4 mm is cut out with a disc saw. It was removed with a cutter knife, and two large and small plates were used as test pieces.
  • Two test pieces were aged in an oven adjusted to 80°C ⁇ 5°C for 300 hours and cooled at 25°C for 24 hours. Measure the abnormal noise risk value when rubbing three times with an amplitude of 20 mm under four conditions of 5 N, 40 N, speed 1 mm / sec, 10 mm / sec in an atmosphere with a temperature of 23 ° C and a humidity of 50% RH. did. Then, the numerical value of the condition with the highest abnormal noise risk value was extracted and used as the measured value. As the abnormal noise risk value increases, the risk of generating squeaking noise increases. If the abnormal noise risk value is 3 or less, it is good.
  • ⁇ Surface impact resistance> A test piece having a length of 55 mm, a width of 80 mm, and a thickness of 2.5 mm obtained by molding the thermoplastic resin composition using an injection molding machine was subjected to a high-speed puncture impact tester manufactured by Shimadzu Corporation "Hydroshot HITS- P10", a punch diameter of 12.7 mm, a sample cradle hole diameter of 43.0 mm, a punching test speed of 6.7 m / sec, and a temperature of 23 ° C.
  • the fracture mode of the test piece is ductile fracture. If there is, the surface impact resistance is good.
  • the black pellets were injection molded under the conditions of a cylinder temperature of 240° C., a mold temperature of 60° C., and an injection rate of 20 g/sec to obtain a plate-shaped compact having a length of 100 mm, a width of 100 mm, and a thickness of 3 mm.
  • Lightness L* means a lightness value (L*) among color values in the L*a*b* color system adopted in JIS Z8729.
  • the “SCE method” means a method of measuring color by using a spectrophotometer conforming to JIS Z 8722 and removing specularly reflected light with a light trap.
  • thermoplastic resin compositions of Examples 1 to 8 in which the hydrogenated copolymer according to the present invention was blended as the hammering sound reducing material (B), were excellent in the damping effect of hammering sound and had a color. It can be seen that the properties and gloss are equivalent to those of Comparative Examples 1 and 5, which do not contain the sound reducing material (B), and exhibit a good appearance. From Table 2, it can be seen that the thermoplastic resin compositions of Examples 5 to 8 have the same level of surface impact resistance as Comparative Example 5, which does not contain the impact sound reducing material (B), or the degree of decrease thereof is small.
  • Comparative Examples 2, 6, and 7, in which the sound-reducing material (B-2), which is not a hydrogenated copolymer, is blended has a large L* value, poor color development, and low gloss.
  • Comparative Example 7 in which the blending amount of the hitting sound reducing material (B-2) was increased, was greatly lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ゴム強化スチレン系熱可塑性樹脂(A1)を含む樹脂成分(A)97~80質量部と、打音低減材(B)3~20質量部とを含む熱可塑性樹脂組成物であって、該打音低減材(B)は、芳香族ビニル系化合物に由来する構造単位を主体とするブロック部(I)と、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体とするランダム部(II)からなる共重合体を水素添加してなる水添共重合体であって、該共重合体全体を100質量%としたとき、ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物に由来する構造単位の含有率が55~80質量%であり、0℃以上にtanδの主分散のピークを有する水添共重合体であることを特徴とする熱可塑性樹脂組成物。

Description

熱可塑性組成物及びその成形品
 本発明は、表面光沢、発色性、耐面衝撃性、剛性に優れると共に、打音の発生が抑制された成形品を提供し得る熱可塑性樹脂組成物に関する。本発明はまた、この熱可塑性樹脂組成物を成形してなる成形品に関する。
 ABS樹脂などのゴム強化樹脂は、その優れた機械的性質、耐熱性、成形性により自動車内装部品等の車両部品の成形材料として広範囲に使用されている。
 樹脂で車両部品を成形する場合、一定以上の機械的強度を充足するだけでなく、車両室内での居住性の関係から、部品から発生する騒音を低下させ、車両の静粛性を向上させることが求められる。
 従来、ゴム成分としてエチレン・α-オレフィン系ゴム質重合体を用いたゴム強化樹脂で自動車内装部品を成形することで、機械的強度を一定水準に維持しつつ、部品同士が接触することにより発生する軋み音を防止することは既に行われている(特許文献1)。しかし、従来技術では、「ラトル(rattle)」と呼ばれる打音のような騒音を抑制することはできていない。
 難燃性ゴム強化樹脂にエラストマー性ブロック重合体を配合して、25℃での2次共振周波数における損失係数を0.02以上とすることにより、振動を抑え制振性に優れた難燃性樹脂組成物を得ることが提案されている(特許文献2~4)。しかし、ここでも打音のような騒音を抑制することについては検討されていない。
 この問題を解決し、打音の発生が抑制され、好ましくは成形品の光沢が良好に維持され、さらに好ましくは軋み音の発生も抑制された成形品を提供し得る熱可塑性樹脂組成物として、打音低減材として機能する特定の熱可塑性エラストマーをゴム質部分として含有するゴム強化スチレン系熱可塑性樹脂(A1)から少なくとも構成される熱可塑性樹脂組成物であって、20~12,400Hzの周波数域の損失係数(η)が特定の値以上を示す熱可塑性樹脂組成物が本出願人より提案されている(特許文献5)。
特開2013-112812号公報 特開2001-158841号公報 特開平3-45646号公報 特開平8-3249号公報 特開2020-139028号公報
 しかし、特許文献5の熱可塑性樹脂組成物は、表面光沢、発色性といった成形品外観において十分に満足し得るものではなく、また、樹脂成分の配合組成によっては耐面衝撃性についても劣る場合があった。
 特許文献5には、打音低減材として機能する特定の熱可塑性エラストマーとして、「芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレン又はイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体又はその水素添加物が使用される。」との記載がなされている。しかし、ブロック(I)とブロック(II)の割合についての検討はなされておらず、また、水添ブロック共重合体の具体的な記載もない。
 特許文献5の実施例では、打音低減材として機能する特定の熱可塑性エラストマーとして、「スチレン-イソプレン-スチレン(SIS)ブロック共重合体「ハイブラー5127」(商品名、クラレ社製、スチレン含量20%、ガラス転移温度(Tg)8℃、tanδの主分散のピーク温度25℃、3,4結合及び1,2結合含有量95%)」が用いられており、具体的に水添ブロック共重合体を用いた実施例は挙げられていない。また、スチレン含量は20%で、ブロック(I)/ブロック(II)=20/80とブロック(I)の割合がかなり少ないものである。
 本発明の目的は、特許文献5における打音低減効果を維持した上で、発色性や光沢等の成形品外観と、耐面衝撃性を改善し、表面光沢、発色性、耐面衝撃性、剛性に優れると共に、打音の発生が抑制された成形品を提供し得る熱可塑性樹脂組成物を提供することにある。
 本発明者は、打音低減材として特定の水添共重合体を用いることによって、上記課題を解決することができることを見出した。
 本発明は以下を要旨とする。
[1] ゴム強化スチレン系熱可塑性樹脂(A1)を含む樹脂成分(A)97~80質量部と、打音低減材(B)3~20質量部とを含む熱可塑性樹脂組成物であって、
 該打音低減材(B)は、芳香族ビニル系化合物に由来する構造単位を主体とするブロック部(I)と、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体とするランダム部(II)からなる共重合体を水素添加してなる水添共重合体であって、該共重合体全体を100質量%としたとき、ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物に由来する構造単位の含有率が55~80質量%であり、0℃以上にtanδの主分散のピークを有する水添共重合体であることを特徴とする熱可塑性樹脂組成物。
[2] 前記樹脂成分(A)が、ゴム強化スチレン系熱可塑性樹脂(A1)と、スチレン系樹脂(A2)とを含む[1]に記載の熱可塑性樹脂組成物。
[3] 前記樹脂成分(A)100質量%中にゴム強化スチレン系熱可塑性樹脂(A1)0.1~99質量%とスチレン系樹脂(A2)1~99.9質量%を含む[2]に記載の熱可塑性樹脂組成物。
[4] 前記樹脂成分(A)が、ゴム強化スチレン系熱可塑性樹脂(A1)とスチレン系樹脂(A2)と芳香族ポリカーボネート樹脂(A3)とを含む[1]に記載の熱可塑性樹脂組成物。
[5] 前記樹脂成分(A)100質量%中にゴム強化スチレン系熱可塑性樹脂(A1)0.1~89質量%とスチレン系樹脂(A2)1~89.9質量%と芳香族ポリカーボネート樹脂(A3)10~98.9質量%を含むことを特徴とする[4]に記載の熱可塑性樹脂組成物。
[6] 下記の条件(1)で測定した場合に、20~12,400Hzの周波数域の損失係数(η)の最小値が0.015以上である[1]~[5]のいずれかに記載の熱可塑性樹脂組成物。
<測定条件(1)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形した厚さ2mmの平板を、長さ250mm、幅10mm、厚さ2mmに切削することで作成した試験片を用い、JIS K7391の規定に従う中央加振法により23℃の温度で測定。
[7] 下記の条件(2)で測定した場合に、20~20,000Hzの周波数域の音圧の最大値が70dB以下である[1]~[6]のいずれかに記載の熱可塑性樹脂組成物。
<測定条件(2)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形して得られた、縦120mm、横60mm、厚さ3mmの短冊状本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品を、縦60mm、横60mm、厚さ3mmの形状となるようユニバーサルカッターを用いて切削し、切削した成形品の上辺から5mm且つ左辺から5mmの位置、及び上辺から5mm且つ右辺から5mmの位置にそれぞれ直径1mmの孔を開けて試験片とする。この試験片の前記孔2か所にタコ糸を通して吊り下げた状態で、該試験片の一方の面の中央をステンレス製のハンマーで40±5Nの力で叩いた時の響きを、該面に対して垂直方向に10cm離して設置した音圧マイクロフォンで集音して求めた音圧の周波数スペクトルに基づいて測定する。
[8] 前記音圧の最大値を与える周波数が20~9,000Hz又は14,000~19,000Hzの範囲に存在する[7]に記載の熱可塑性樹脂組成物。
[9] ジグラー(ZIEGLER)社製スティックスリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の測定条件(3)において3以下である[1]~[8]のいずれかに記載の熱可塑性樹脂組成物。
<測定条件(3)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形することにより、縦60mm、横100mm、厚さ4mmの試験片と、縦50mm、横25mm、厚さ4mmの試験片とを用意し、温度23℃、湿度50%RHの雰囲気下で荷重5N、40N、速度1mm/秒、10mm/秒の4条件にて振幅20mmで3回、前者の試験片の板面と後者の試験片の板面とを擦り合わせて測定。
[10] 該熱可塑性樹脂組成物100質量部にカーボンブラック0.8質量部を混合して得られた黒色熱可塑性樹脂組成物を射出成形機を用いて成形した長さ100mm、幅100mm、厚さ3mmの板状の試験片について、下記の条件(4)で測定した明度L*が18以下であり、下記の条件(5)で測定した光沢が90%以上である[1]~[9]のいずれかに記載の熱可塑性樹脂組成物。
<測定条件(4)>
 分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて、SCE方式にて明度L*を測定。
<測定条件(5)>
 スガ試験機株式会社製「デジタル変角光沢計UGV-5D」を用い、JIS K7105に準拠して、入射角60°、反射角60°における試験片の表面の反射率(%)を測定。
[11] ゴム含量が5~60質量%である[1]~[10]のいずれかに記載の熱可塑性樹脂組成物。
[12] [1]~[11]のいずれかに記載の熱可塑性樹脂組成物からなる成形品。
 本発明によれば、表面光沢、発色性、耐面衝撃性、剛性に優れると共に、打音の発生が抑制された成形品を提供することができる。
実施例において音圧の測定に使用した試験片を示す斜視図である。
 以下に本発明の実施の形態を詳細に説明する。
 本発明において、「(共)重合」とは、単独重合及び/又は共重合を意味する。「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味する。「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
 JIS K 7121-1987に準じて測定した融点(本明細書において、「Tm」と表記することもある)は、DSC(示差走査熱量計)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度を読みとった値である。
〔熱可塑性樹脂組成物〕
 本発明の熱可塑性樹脂組成物は、ゴム強化スチレン系熱可塑性樹脂(A1)を含む樹脂成分(A)97~80質量部と、打音低減材(B)3~20質量部とを含む熱可塑性樹脂組成物であって、該打音低減材(B)は、芳香族ビニル系化合物に由来する構造単位を主体とするブロック部(I)と、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体とするランダム部(II)からなる共重合体を水素添加してなる水添共重合体であって、該共重合体全体を100質量%としたとき、ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物に由来する構造単位の含有率が55~80質量%であり、0℃以上にtanδの主分散のピークを有する水添共重合体(以下、単に「水添共重合体」と称す場合がある。)であることを特徴とする。
[メカニズム]
 本発明において、打音低減材(B)として用いる水添共重合体は、水素添加されているために熱安定性が良好であり、成形時の溶融加熱条件下に架橋反応を起こし難い。このため得られる成形品は表面光沢に優れたものとなる。これに対して、特許文献5で打音低減材として用いている熱可塑性エラストマーは、水添されていないために成形時に熱可塑性エラストマーが架橋反応を起こし、架橋部/非架橋部の間で成形収縮率が異なるドメインが生じ、成形品の面内で不均一な成形収縮が生じる結果、得られる成形品は光沢に劣るものとなる。
 本発明で用いる水添共重合体は、芳香族ビニル系化合物由来の構造単位の含有率が55~80質量%と、スチレン成分が多く、打音低減材(B)を配合する樹脂成分(A)のゴム強化スチレン系熱可塑性樹脂(A1)等との相溶性に優れ、水添共重合体がマトリックス樹脂中に微分散したモルフォロジーを形成することができる結果、得られる成形品は高発色かつ高耐面衝撃性となる。
 これに対して、特許文献5で用いている熱可塑性エラストマーはスチレン含量20%とスチレン成分が少ないため、マトリックス樹脂への分散性が劣り、発色性、耐面衝撃性も劣るものとなる。
 水添共重合体のtanδの主分散のピーク温度は、室温環境下で打音低減効果を得るために、0℃以上であることが必要とされる。
[打音低減材(B)]
 本発明で打音低減材(B)として用いる水添共重合体は、芳香族ビニル系化合物に由来する構造単位を主体とするブロック部(I)と、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体とするランダム部(II)からなる共重合体を水素添加してなる水添共重合体であって、該共重合体全体を100質量%としたとき、ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物に由来する構造単位の含有率が55~80質量%であり、0℃以上にtanδの主分散のピークを有する水添共重合体である。
 この水添共重合体は、シランカップリング剤等のカップリング剤で表面処理して用いてもよい。
 ブロック(I)を構成する芳香族ビニル系化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。これらの化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。これらのうち、スチレン及びα-メチルスチレンが好ましい。
 ブロック(I)は芳香族ビニル系化合物に由来する構造単位を主体として50質量%以上含むことが好ましく、より好ましくは80~100質量%である。
 ブロック(I)が芳香族ビニル系化合物以外の他の化合物に由来する構造単位を含む場合、他の化合物としては、以下のランダム部(II)を構成するイソプレンやブタジエン、その他アクリロニトリル等のシアン化ビニル化合物等が挙げられる。
 ランダム部(II)は、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体とするものである。
 ランダム部(II)は、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体として50質量%以上含むことが好ましく、より好ましくは80~100質量%である。
 ランダム部(II)は、芳香族ビニル系化合物及びブタジエン以外の他の化合物に由来する構造単位を含む場合、他の化合物としては、上述のブロック(I)を構成する芳香族ビニル系化合物、その他アクリロニトリル等のシアン化ビニル化合物等が挙げられる。
 水添共重合体のtanδの主分散のピークは、0℃以上であることを必要とし、好ましくは5℃以上であり、より好ましくは10℃以上である。
 tanδの主分散のピークは、粘弾性測定装置〔東洋ボールドウイン(株)製、DDV III EP〕を用い、周波数11Hz、測定温度-110℃~+100℃、昇温速度2℃/minで測定して求めることができる。
 水添共重合体の全体の重量平均分子量は好ましくは30,000~400,000であり、より好ましくは40,000~370,000であり、さらに好ましくは50,000~300,000であり、二峰性の分子量分布を有するものであってもよい。
 重量数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。
 本発明で用いる水添共重合体は、ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物由来の構造単位の含有率が、共重合体全体を100質量%としたとき55~80質量%であることを特徴とする。
 ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物由来の構造単位の含有率は、共重合体全体を100質量%としたとき好ましくは58~80質量%であり、より好ましくは60~80質量%である。この範囲においては表面外観(発色性、光沢)及び耐面衝撃性が更に良好である。
 本発明で打音低減材(B)として用いる水添共重合体は、上記のようなブロック部(I)とランダム部(II)からなる共重合体の水素添加物である。該水添共重合体の水添率は好ましくは50%以上であり、より好ましくは80~100%である。
[樹脂成分(A)]
 本発明の熱可塑性樹脂組成物は、樹脂成分(A)として少なくともゴム強化スチレン系熱可塑性樹脂(A1)を含むものであり、ゴム強化スチレン系熱可塑性樹脂(A1)と共に、さらにスチレン系樹脂(A2)或いはスチレン系樹脂(A2)と芳香族ポリカーボネート樹脂(A3)とを含むことが好ましい。樹脂成分(A)には、上述の打音低減材(B)の水添共重合体は含まれない。
<ゴム強化スチレン系熱可塑性樹脂(A1)>
 ゴム強化スチレン系熱可塑性樹脂(A1)は、ゴム質重合体(g)の存在下に、芳香族ビニル化合物或いは芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体(a1)を重合してなるものである。
 ゴム質重合体(g)としては、ポリブタジエン、ポリイソプレン、ブタジエン・スチレン共重合体、ブタジエン・アクリロニトリル共重合体等の共役ジエン系ゴム、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、エチレン・ブテン-1共重合体、エチレン・ブテン-1・非共役ジエン共重合体等のオレフィン系ゴム;アクリル系ゴム;シリコーンゴム;ポリウレタン系ゴム;シリコーン・アクリル系IPNゴム;天然ゴム;共役ジエン系ブロック共重合体;水素添加共役ジエン系ブロック共重合体;等が挙げられる。
 上記オレフィン系ゴムは特に限定されないが、例えば、エチレンと、炭素数が3以上のα-オレフィンとを含むエチレン・α-オレフィン系ゴムが挙げられる。エチレンの含有量は、上記エチレン・α-オレフィン系ゴムを構成する単量体の全量を100質量%とした場合、好ましくは5~95質量%、より好ましくは50~90質量%、さらに好ましくは60~88質量%である。
 炭素数が3以上のα-オレフィンとしては、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチルブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン等が挙げられる。これらのα-オレフィンは、1種が単独で含まれていてもよいし、2種以上の組み合わせで含まれていてもよい。上記α-オレフィンのうち、プロピレン、1-ブテンが好ましい。
 上記α-オレフィンの含有量は、エチレン・α-オレフィン系ゴムを構成する単量体の全量を100質量%とした場合、好ましくは95~5質量%、より好ましくは50~10質量%、特に好ましくは40~12質量%である。
 エチレン・α-オレフィン系ゴムは、エチレン及びα-オレフィンから構成される二元共重合体であってもよいし、これらと、さらに他の化合物とから構成される重合体(三元共重合体、四元共重合体等)であってもよい。他の化合物としては、非共役ジエン化合物が挙げられる。
 オレフィン系ゴムに使用される非共役ジエン化合物としては、アルケニルノルボルネン類、環状ジエン類、脂肪族ジエン類などが挙げられる。好ましくは、ジシクロペンタジエン及び5-エチリデン-2-ノルボルネンである。これらの非共役ジエン化合物は単独で又は2種以上を組み合わせて使用することができる。エチレン・α-オレフィン系ゴム中の非共役ジエン化合物単位の含有量は、通常30質量%未満、好ましくは15質量%未満である。
 上記アクリル系ゴムは特に限定されないが、アルキル基の炭素数が1~8個の(メタ)アクリル酸アルキルエステル化合物の(共)重合体、あるいはこの(メタ)アクリル酸アルキルエステル化合物と、これと共重合可能なビニル系単量体との共重合体が好ましい。
 アルキル基の炭素数が1~8個のアクリル酸アルキルエステル化合物の具体例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、シクロヘキシルアクリレート等が挙げられる。メタクリル酸アルキルエステル化合物の具体例としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、n-オクチルメタクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルメタクリレート等が挙げられる。これらの化合物のうち、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。これらは、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 (メタ)アクリル酸アルキルエステル化合物と共重合可能なビニル系単量体としては、例えば、多官能性ビニル化合物、芳香族ビニル化合物、シアン化ビニル化合物等が挙げられる。
 多官能性ビニル化合物とは、単量体1分子中に2個以上のビニル基を有する単量体をいい、(メタ)アクリル系ゴムを架橋する機能及びグラフト重合時の反応起点の役割を果たすものである。多官能性ビニル単量体の具体例としては、ジビニルベンゼン、ジビニルトルエン等の多官能性芳香族ビニル化合物;(ポリ)エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の多価アルコールの(メタ)アクリル酸エステル;ジアリルマレート、ジアリルフマレート、トリアリルシアヌレート、トリアリルシアヌレート、ジアリルフタレート、メタクリル酸アリル等が挙げられる。これらの多官能性ビニル化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 芳香族ビニル化合物及びシアン化ビニル化合物としては、後述するものが全て使用できる。さらに、他の共重合可能な単量体として、アクリルアミド、メタクリルアミド、塩化ビニリデン、アルキル基の炭素数が1~6のアルキルビニルエーテル、アルキル基の炭素数が9個以上の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用される。
 上記アクリル系ゴムの好ましい単量体組成は、アルキル基の炭素数が1~8個の(メタ)アクリル酸アルキルエステル化合物単位80~99.99質量%、より好ましくは90~99.95質量%、多官能性ビニル化合物単位0.01~5質量%、より好ましくは0.05~2.5質量%、及びこれと共重合可能な他のビニル単量体単位0~20質量%、より好ましくは0~10質量%である。単量体組成は、合計100質量%とする。
 アクリル系ゴムの体積平均粒子径は、50~1000nmであることが好ましく、さらに好ましくは40~700nm、特に好ましくは50~500nmである。
 共役ジエン系ブロック共重合体としては、具体的には少なくとも1個の下記ブロックA又は下記ブロックCと、少なくとも1個の下記ブロックB又は下記ブロックA/Bとを含んでなる共重合体、又はブロックBもしくはA/Bによる重合体である。これらは、公知のアニオン重合法、例えば、特公昭47-28915号公報、特公昭47-3252号公報、特公昭48-2423号公報、特公昭48-20038号公報などに開示されている方法で製造することができる。
 共役ジエン系ブロック共重合体の具体的構造は、
A;芳香族ビニル化合物重合体ブロック、
B;共役ジエン重合体ブロック、
A/B;芳香族ビニル化合物/共役ジエンのランダム共重合対ブロック、
C;共役ジエンと芳香族ビニル化合物の共重合体からなり、かつ芳香族ビニル化合物が漸増するテーパーブロック、
とそれぞれ定義すると、次のような構造のものが挙げられる。
A-B        (1)
A-B-A      (2)
A-B-C      (3)
A-B1-B2    (4)
(ここで、B1は共役ジエン重合体ブロック又は共役ジエンと芳香族ビニル化合物との共重合体ブロックであり、共役ジエン部分のビニル結合量は好ましくは20%以上、B2は共役ジエン重合体ブロック又は共役ジエンと芳香族ビニル化合物の共重合体ブロックであり、共役ジエン部分のビニル結合含有量は好ましくは20%未満である。)
A-A/B      (5)
A-A/B-C    (6)
A-A/B-B    (7)
A-A/B-A    (8)
B2-B1-B2   (9)
(ここで、B1、B2は上記と同じ。)
C-B        (10)
C-B-C      (11)
C-A/B-C    (12)
C-A-B      (13)
 共役ジエン系ブロック共重合体は、これらの基本骨格を繰り返し有する共重合体であってもよく、さらにそれをカップリングして得られる共役ジエン系ブロック共重合体であってもよい。上記式(4)の構造のものについては、特開平2-133406号公報、上記式(5)及び上記式(6)の構造のものについては、特開平2-305814号公報、特開平3-72512号公報に示されている。
 ここで使用される共役ジエンとしては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレンなどが挙げられる。工業的に利用でき、また物性の優れた共役ジエン系ブロック共重合体を得るには、1,3-ブタジエン、イソプレン、1,3-ペンタジエンが好ましく、より好ましくは1,3-ブタジエンである。
 ここで使用される芳香族ビニル化合物としては、スチレン、t-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、ヒドロキシスチレン、ビニルキシレン、モノクロルスチレン、ジクロルスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、p-t-ブチルスチレン、エチルスチレン、ビニルナフタレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルピリジンなどが挙げられ、スチレン、α-メチルスチレンが好ましく、特に好ましくはスチレンである。
 共役ジエンブロック系共重合体中の芳香族ビニル化合物/共役ジエンの割合は、質量比で0~70/100~30、好ましくは0~60/100~40、さらに好ましくは0~50/100~50であり、芳香族ビニル化合物を必須とする場合、好ましくは10~70/90~30である。芳香族ビニル化合物の含有量が70質量%を超えると樹脂状となり、ゴム成分としての効果が劣り好ましくない。
 共役ジエンブロック中の共役ジエン部分のビニル結合量は、通常5~80%の範囲である。
 共役ジエン系ブロック共重合体の数平均分子量は、通常10,000~1,000,000、好ましくは20,000~500,000、さらに好ましくは20,000~200,000である。
 上記構造式のA部の数平均分子量は3,000~150,000、B部の数平均分子量は5,000~200,000の範囲であることが好ましい。
 数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定された値である。
 共役ジエン化合物のビニル結合量の調節は、N,N,N’,N’-テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ジアゾシクロ(2,2,2)オクタアミン等のアミン類、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のエーテル類、チオエーテル類、ホスフィン類、ホスホアミド類、アルキルベンゼンスルホン酸塩、カリウムやナトリウムのアルコキシド等を使用して行うことができる。
 本発明で使用されるカップリング剤としては、アジピン酸ジエチル、ジビニルベンゼン、メチルジクロロシラン、四塩化珪素、ブチルトリクロロ珪素、テトラクロロ錫、ブチルトリクロロ錫、ジメチルクロロ珪素、テトラクロロゲルマニウム、1,2-ジブロモエタン、1,4-クロロメチルベンゼン、ビス(トリクロロシリル)エタン、エポキシ化アマニ油、トリレンジイソシアネート、1,2,4-ベンゼントリイソシアネート等が挙げられる。
 水素添加共役ジエン系ブロック共重合体は、上記共役ジエン系ブロック共重合体の共役ジエン部分の炭素-炭素二重結合の少なくとも30%以上、好ましくは50%以上が水素添加された部分水素添加物又は完全水素添加物であり、さらに好ましくは90%以上が水素添加された水素添加物である。
 共役ジエン系ブロック共重合体の水素添加反応は、公知の方法で行うことができる。公知の方法で水素添加率を調節することにより、目的の水素添加共役ジエン系ブロック共重合体を得ることができる。具体的な方法としては、特公昭42-8704号公報、特公昭43-6636号公報、特公昭63-4841号公報、特公昭63-5401号公報、特開平2-133406号公報、特開平1-297413号公報等に開示されている方法がある。
 本発明で使用されるゴム質重合体(g)は、ゲル含有率が70質量%以下であることが、発泡成形用熱可塑性樹脂組成物の発泡性の観点から好ましく、ゲル含有率はより好ましくは50質量%以下、さらに好ましくは10質量%以下である。
 ゲル含有率は、以下に示す方法により求めることができる。
 ゴム質重合体(g)1gをトルエン100mlに投入し、室温で48時間静置する。その後、100メッシュの金網(質量をW1グラムとする)で濾過したトルエン不溶分と金網を、温度80℃で6時間真空乾燥して秤量(質量W2グラムとする)する。W1及びW2を、下記式(14)に代入して、ゲル含有率を得る。エチレン・プロピレン系ゴム質重合体においては、エチレン結晶を有するものがあり、このようなゴム質重合体を用いる場合は、80℃の温度で溶解しゲル含有率を求める。
 ゲル含有率=〔〔W2(g)-W1(g)〕/1(g)〕×100   (14)
 ゲル含有率は、ゴム質重合体(g)の製造時に、架橋性単量体の種類及びその使用量、分子量調節剤の種類及びその使用量、重合時間、重合温度、重合転化率等を適宜設定することにより調整できる。
 本発明で使用されるゴム質重合体(g)として好ましいものは、ポリブタジエン、ブタジエン・スチレン共重合体、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、アクリル系ゴム、シリコーンゴム、共役ジエン系ブロック共重合体、水素添加共役ジエン系ブロック共重合体であり、さらに好ましくは、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、アクリル系ゴム、共役ジエン系ブロック共重合体、水素添加共役ジエン系ブロック共重合体であり、特に好ましいものは、アクリル系ゴム、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、共役ジエン系ブロック共重合体及び水素添加共役ジエン系ブロック共重合体であり、最も好ましいものは、ゲル含有率が10質量%以下で、体積平均粒子径が50~500nm、特に50~300nmのアクリル系ゴムである。
 ゴム質重合体(g)は、公知の方法である乳化重合、溶液重合、塊状重合、懸濁重合等の方法で得ることができる。これらの中で、アクリル系ゴムは乳化重合により製造されたものが好ましい。エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、共役ジエン系ブロック共重合体及び水素添加共役ジエン系ブロック共重合体は溶液重合、ポリブタジエン及びブタジエン・スチレン共重合体は溶液重合で製造されたものが好ましい。
 ゴム強化スチレン系熱可塑性樹脂(A1)は、上記ゴム質重合体(g)の存在下に、芳香族ビニル化合物或いは芳香族ビニル化合物及び芳香族ビニル化合物と共重合体可能な他のビニル単量体(a1)を重合して得られる。すなわち、ビニル単量体(a1)は、芳香族ビニル化合物単独でもよいし、芳香族ビニル化合物と、該芳香族ビニル化合物と共重合体可能な他のビニル単量体との混合物でもよい。
 また、ゴム強化スチレン系熱可塑性樹脂(A1)は、上記ゴム質重合体(g)3~80質量部の存在下に、芳香族ビニル化合物或いは芳香族ビニル化合物及び芳香族ビニル化合物と共重合体可能な他のビニル単量体(a1)20~97質量部を重合して得られるものであることが好ましい(ただし、ゴム質重合体(g)とビニル単量体(a1)との合計で100質量部とする。)。この割合は、より好ましくはゴム質重合体(g)7~65質量部、ビニル単量体(a1)35~93質量部である。
 ここで使用される芳香族ビニル化合物としては、上記ゴム質重合体(g)で記載したものが全て使用できる。特に好ましくはスチレン、α-メチルスチレンである。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 芳香族ビニル化合物と共重合可能な他のビニル単量体としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド化合物、その他の各種官能基含有不飽和化合物などが挙げられる。その他の各種官能基含有不飽和化合物としては、不飽和酸化合物、エポキシ基含有不飽和化合物、水酸基含有不飽和化合物、酸無水物基含有不飽和化合物、オキサゾリン基含有不飽和化合物、置換又は非置換のアミノ基含有不飽和化合物などが挙げられる。これらの他のビニル単量体は1種を単独で又は2種以上を組み合わせて使用することができる。
 シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。シアン化ビニル化合物を使用することにより耐薬品性が付与される。シアン化ビニル化合物の使用量は、ビニル単量体(a1)全体量中の割合として、通常0~60質量%、好ましくは5~50質量%である。
 (メタ)アクリル酸エステル化合物としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。(メタ)アクリル酸エステル化合物を使用することにより表面硬度が向上する。(メタ)アクリル酸エステル化合物の使用量は、ビニル単量体(a1)全体量中の割合として、通常0~80質量%である。
 マレイミド化合物としては、マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。マレイミド単位を導入するために、無水マレイン酸を共重合させた後にイミド化してもよい。マレイミド化合物を使用することにより耐熱性が付与される。マレイミド化合物の使用量は、ビニル単量体(a1)全体量中の割合として、通常1~60質量%である。
 不飽和酸化合物としては、アクリル酸、メタクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 エポキシ基含有不飽和化合物としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 水酸基含有不飽和化合物としては、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-3-メチル-1-プロペン、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、N-(4-ヒドロキシフェニル)マレイミド等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 オキサゾリン基含有不飽和化合物としては、ビニルオキサゾリン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
 酸無水物基含有不飽和化合物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 置換又は非置換のアミノ基含有不飽和化合物としては、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸フェニルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アクリルアミン、N-メチルアクリルアミン、アクリルアミド、N-メチルアクリルアミド、p-アミノスチレン等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 その他の各種官能基含有不飽和化合物を使用した場合、ゴム強化スチレン系熱可塑性樹脂(A1)をスチレン系樹脂(A2)及び芳香族ポリカーボネート樹脂(A3)とブレンドした際、これらの両者の相溶性が向上する場合がある。その他の各種官能基含有不飽和化合物の使用量は、ゴム強化スチレン系熱可塑性樹脂(A1)とスチレン系樹脂(A2)の合計中に対して、当該官能基含有不飽和化合物の合計量として、通常0.1~20質量%、好ましくは0.1~10質量%である。
 ビニル単量体(a1)中の芳香族ビニル化合物以外の単量体の使用量は、ビニル単量体(a1)の合計を100質量%とした場合、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは50質量%以下である。
 ビニル単量体(a1)を構成する単量体のより好ましい組み合わせは、スチレン単独、スチレン/アクリロニトリル、スチレン/メタクリル酸メチル、スチレン/アクリロニトリル/メタクリル酸メチル、スチレン/アクリロニトリル/グリシジルメタクリレート、スチレン/アクリロニトリル/2-ヒドロキシエチルメタクリレート、スチレン/アクリロニトリル/(メタ)アクリル酸、スチレン/N-フェニルマレイミド、スチレン/メタクリル酸メチル/シクロヘキシルマレミド等である。さらに好ましくは、スチレン単独、スチレン/アクリロニトリル=65/45~90/10(質量比)、スチレン/メタクリル酸メチル=80/20~20/80(質量比)、スチレン/アクリロニトリル/メタクリル酸メチルの組み合わせで、スチレン量が20~80質量%、アクリロニトリル及びメタクリル酸メチルの合計が20~80質量%の範囲で任意のものである。
 ゴム強化スチレン系熱可塑性樹脂(A1)は、公知の重合法、例えば乳化重合、塊状重合、溶液重合、懸濁重合及びこれらを組み合わせた重合法で製造することができる。上記重合法は、ゴム質重合体(g)が乳化重合で得られたものはゴム強化スチレン系熱可塑性樹脂(A1)の製造においては同じく乳化重合で製造することができる。ゴム質重合体(g)が溶液重合で得られたものである場合は、ゴム強化スチレン系熱可塑性樹脂(A1)は塊状重合、溶液重合及び懸濁重合で製造することが一般的で好ましい。溶液重合で製造されたゴム質重合体(g)であっても、該ゴム質重合体(g)を公知の方法で乳化させれば、乳化重合でゴム強化スチレン系熱可塑性樹脂(A1)を製造することができる。乳化重合で製造したゴム質重合体(g)であっても、凝固して単離した後、塊状重合、溶液重合及び懸濁重合でゴム強化スチレン系熱可塑性樹脂(A1)を製造することができる。
 乳化重合で製造する場合、重合開始剤、連鎖移動剤、乳化剤などが使用される。これらは公知のものが全て使用できる。
 重合開始剤としては、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、テトラメチルブチルハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、過硫酸カリウム、アゾビスイソブチロニトリル等が挙げられる。重合開始助剤として、各種還元剤、含糖ピロリン酸鉄処方、スルホキシレート処方等のレドックス系を使用することが好ましい。
 連鎖移動剤としては、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキシルメルカプタン、ターピノーレン類などが挙げられる。
 乳化剤としては、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ラウリル硫酸ナトリウム等の脂肪族スルホン酸塩、ラウリル酸カリウム、ステアリン酸カリウム、オレイン酸カリウム、パルミチン酸カリウム等の高級脂肪酸塩、ロジン酸カリウム等のロジン酸塩などを使用することができる。
 乳化重合において、ゴム質重合体(g)及びビニル単量体(a1)の使用方法は、ゴム質重合体(g)全量の存在下にビニル単量体(a1)を一括添加して重合してもよく、分割もしくは連続添加して重合してもよい。ゴム質重合体(g)の一部を重合途中で添加してもよい。
 乳化重合後、得られたラテックスは、通常、凝固剤により凝固させられる。その後、水洗、乾燥することにより、ゴム強化スチレン系熱可塑性樹脂(A1)の粉末を得る。この際、乳化重合で得た2種以上のゴム強化スチレン系熱可塑性樹脂(A1)のラテックスを適宜ブレンドした後、凝固してもよい。スチレン系樹脂(A2)のラテックスを適宜ブレンドした後、凝固してもよい。凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム等の無機塩、硫酸、酢酸、クエン酸、リンゴ酸などの酸を使用することができる。ラテックスを噴霧乾燥することによりゴム強化スチレン系熱可塑性樹脂(A1)の粉末を得ることもできる。
 溶液重合によりゴム強化スチレン系熱可塑性樹脂(A1)を製造する場合に使用することのできる溶剤は、通常のラジカル重合で使用される不活性重合溶媒である。例えば、エチルベンゼン、トルエン等の芳香族炭化水素、メチルエチルケトン、アセトン等のケトン類、アセトニトリル、ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。
 重合温度は、通常80~140℃、好ましくは85~120℃の範囲である。重合に際し、重合開始剤を使用してもよいし、重合開始剤を使用せずに、熱重合で重合してもよい。
 重合開始剤としては、ケトンパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイド、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド等の有機過酸化物などが好適に使用される。連鎖移動剤を使用する場合、例えば、メルカプタン類、ターピンーレン類、α-メチルスチレンダイマー等を使用することができる。
 塊状重合、懸濁重合でゴム強化スチレン系熱可塑性樹脂(A1)を製造する場合、溶液重合において説明した重合開始剤、連鎖移動剤などを使用することができる。
 上記各重合法によって得られるゴム強化スチレン系熱可塑性樹脂(A1)中に残存する単量体量は、通常10,000ppm以下、好ましくは5,000ppm以下である。
 ゴム質重合体(g)の存在下にビニル単量体(a1)を重合して得られるゴム強化スチレン系熱可塑性樹脂(A1)には、ビニル単量体(a1)がゴム質重合体(g)にグラフト共重合した共重合体と、ゴム質重合体(g)にグラフトしていない未グラフト成分(ビニル単量体(a1)の(共)重合体)が含まれる。
 ゴム強化スチレン系熱可塑性樹脂(A1)のグラフト率は、通常5~100質量%、好ましくは10~90質量%、さらに好ましくは15~85質量%、特に好ましくは20~80質量%に調整することが好ましい。グラフト率は、重合開始剤の種類、使用量、連鎖移動剤の種類、使用量、重合方法、重合時のビニル単量体(a1)とゴム質重合体(g)の接触時間、ゴム質重合体(g)種、重合温度等の各種要因で変えることができる。
 グラフト率は以下の式(15)により求めることができる。
 グラフト率(質量%)={(T-S)/S}×100     (15)
 式(15)中、Tはゴム強化スチレン系熱可塑性樹脂(A1)1gをアセトン20mlに投入し、振とう機により2時間振とうした後、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(g)である。Sはゴム強化スチレン系熱可塑性樹脂(A1)1gに含まれるゴム質重合体(g)の質量(g)である。
 ビニル単量体(a1)として芳香族ビニル化合物のみを用いた場合は、アセトンの代わりにメチルエチルケトンを用いて測定する。
 ゴム強化スチレン系熱可塑性樹脂(A1)のアセトン可溶分の極限粘度〔η〕(溶媒としてメチルエチルケトンを使用し、30℃で測定)は、通常0.15~1.2dl/g、好ましくは0.2~1.0dl/g、さらに好ましくは0.2~0.8dl/gである。
 ゴム強化スチレン系熱可塑性樹脂(A1)中に分散するグラフト化ゴム質重合体粒子の平均粒子径は、通常50~3,000nm、好ましくは40~2,5000nm、特に好ましくは50~2,000nmである。ゴム粒子径が50nm未満では耐衝撃性が劣る傾向にあり、3,000nmを超えると成形品表面外観が劣る傾向にある。
 使用するゴム質重合体(g)とビニル単量体(a1)の共重合体の屈折率を実質的に合わせること及び/又は分散するゴム質重合体(g)の粒子径を実質的に可視光の波長以下(通常1,500nm以下)にすることで透明性を有するゴム強化スチレン系熱可塑性樹脂(A1)を得ることができる。これらの透明性樹脂も本発明のゴム強化スチレン系熱可塑性樹脂(A1)として用いることができる。
 ゴム強化スチレン系熱可塑性樹脂(A1)は、1種を単独で用いてもよく、共重合組成や物性等の異なるものの2種以上を混合して用いてもよい。
[スチレン系樹脂(A2)]
 スチレン系樹脂(A2)としては、芳香族ビニル化合物、或いは芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体(a2)とを重合してなる(共)重合体である。ビニル単量体(a2)は、芳香族ビニル化合物単独でもよいし、芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体との混合物でもよい。ここで使用される芳香族ビニル化合物、及び芳香族ビニル化合物と共重合可能な他のビニル単量体としては、ゴム強化スチレン系熱可塑性樹脂(A1)におけるビニル単量体(a1)として記載したものが全て使用できる。ビニル単量体(a2)は、上記ビニル単量体(a1)と同一であってもよいし、異なっていてもよい。
 ビニル単量体(a2)中の芳香族ビニル化合物以外の単量体の含有率は、ビニル単量体(a2)の合計を100質量%とした場合、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは50質量%以下である。
 好ましいスチレン系樹脂(A2)としては、スチレンの単独重合体、スチレン・アクリロニトリル共重合体、スチレン・メタクリル酸メチル共重合体、スチレン・アクリロニトリル・メタクリル酸メチル共重合体、スチレン・マレイミド化合物共重合体及びこれらと前述の官能基含有不飽和化合物との共重合体が挙げられる。
 スチレン系樹脂(A2)は、上記したゴム強化スチレン系熱可塑性樹脂(A1)の製造法で記載した公知の重合法である乳化重合、塊状重合、溶液重合、懸濁重合及びこれらを組み合わせた方法で製造することができる。
 スチレン系樹脂(A2)は、1種を単独で用いてもよく、共重合組成や物性等の異なるものの2種以上を混合して用いてもよい。
[芳香族ポリカーボネート樹脂(A3)]
 芳香族ポリカーボネート樹脂(A3)は、ジヒドロキシアリール化合物とホスゲンとの界面重縮合法、ジヒドロキシアリール化合物とジフェニルカーボネート等のカーボネート化合物とのエステル交換反応(溶融重縮合)によって得られるもの等、公知の重合法によって得られるものが全て使用できる。
 上記ジヒドロキシアリール化合物としては、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシフェニルエーテル、4、4’-ジヒドロキシフェニルスルフィド、4,4’-ジヒドロキシフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン、ヒドロキノン、レゾルシン等が挙げられる。さらに、ヒドロキシアリールオキシ末端化されたポリオルガノシロキサン(例えば、米国特許第3,419,634号明細書参照)等がある。これらは1種を単独で又は2種以上を組み合わせて使用することができる。これらの中では、2,2-ビス(4-ヒドロキシフェニルプロパン(ビスフェノールA)が好ましい。
 芳香族ポリカーボネート樹脂(A3)の粘度平均分子量は、好ましくは12,000~40,000、さらに好ましくは15,000~35,000、特に好ましくは18,000~30,000である。分子量が高い方が得られる成形品の機械的強度が高くなるが、流動性の低下で成形品の外観が低下する傾向となる。芳香族ポリカーボネート樹脂(A3)として分子量の異なる2種以上の芳香族ポリカーボネート系樹脂を用いることもできる。
 芳香族ポリカーボネート樹脂(A3)の粘度平均分子量は、通常、塩化メチレンを溶媒として、20℃、濃度〔0.7g/100ml(塩化メチレン)〕で測定した比粘度(ηsp)を以下の式に挿入して算出できる。
 粘度平均分子量=(〔η〕×8130)1.205
 ここで、〔η〕=〔(ηsp×1.12+1)1/2-1〕/0.56Cである。Cは濃度を示す。
[ゴム強化スチレン系熱可塑性樹脂(A1)、及びスチレン系樹脂(A2)の含有量]
 本発明に係る樹脂成分(A)が、ゴム強化スチレン系熱可塑性樹脂(A1)及びスチレン系樹脂(A2)を含有する場合、樹脂成分(A)100質量%中のゴム強化スチレン系熱可塑性樹脂(A1)とスチレン系樹脂(A2)の含有量は、それぞれ0.1~99質量%、1~99.9質量%であることが好ましい。
 上記範囲であれば耐熱性、流動性が良好である。
 ゴム強化スチレン系熱可塑性樹脂(A1)とスチレン系樹脂(A2)の含有割合は、ゴム強化スチレン系熱可塑性樹脂(A1)1~80質量%、スチレン系樹脂(A2)20~99質量%であることがより好ましく、ゴム強化スチレン系熱可塑性樹脂(A1)5~60質量%、スチレン系樹脂(A2)40~95質量%であることがさらに好ましい。
[ゴム強化スチレン系熱可塑性樹脂(A1)、スチレン系樹脂(A2)及び芳香族ポリカーボネート樹脂(A3)の含有量]
 本発明に係る樹脂成分(A)が、ゴム強化スチレン系熱可塑性樹脂(A1)、スチレン系樹脂(A2)及び芳香族ポリカーボネート樹脂(A3)を含有する場合、樹脂成分(A)100質量%中のゴム強化スチレン系熱可塑性樹脂(A1)、スチレン系樹脂(A2)及び芳香族ポリカーボネート樹脂(A3)の含有量は、それぞれ0.1~89質量%、1~89.9質量%、10~98.9質量%であることが好ましい。
 上記範囲であれば耐熱性、流動性が更に良好である。
 ゴム強化スチレン系熱可塑性樹脂(A1)、スチレン系樹脂(A2)及び芳香族ポリカーボネート樹脂(A3)の含有割合は、ゴム強化スチレン系熱可塑性樹脂(A1)1~60質量%、スチレン系樹脂(A2)5~64質量%、芳香族ポリカーボネート樹脂(A3)35~94質量%であることがより好ましく、ゴム強化スチレン系熱可塑性樹脂(A1)5~50質量%、スチレン系樹脂(A2)10~55質量%、芳香族ポリカーボネート樹脂(A3)40~85質量%であることがさらに好ましい。
[その他の樹脂]
 本発明に係る樹脂成分(A)は、本発明の目的を損なわない範囲でゴム強化スチレン系熱可塑性樹脂(A1)、スチレン系樹脂(A2)及び芳香族ポリカーボネート樹脂(A3)以外のその他の樹脂を含有するものであってもよい。
 その他の樹脂としては、ポリオレフィン系樹脂、塩化ビニル系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリアリーレンスルフィド系樹脂等が挙げられる。これらの熱可塑性樹脂は1種を単独で又は2種以上を組み合わせて使用することができる。
 本発明の熱可塑性樹脂組成物がこれらのその他の樹脂を含有する場合、その含有量は、ゴム強化スチレン系熱可塑性樹脂(A1)、スチレン系樹脂(A2)、芳香族ポリカーボネート樹脂(A3)及びその他の樹脂を含む樹脂成分(A)100質量%中に50質量%以下、特に30質量%以下とすることが好ましい。
[その他の成分]
 本発明の熱可塑性樹脂組成物は、前記樹脂成分(A)及び打音低減材(B)以外のその他の成分を、本発明の目的を損なわない範囲で含有していてもよい。
<摺動性付与剤>
 本発明の熱可塑性樹脂組成物は、摺動性付与剤を含んでもよい。摺動性付与剤は、熱可塑性樹脂組成物に摺動性を付与して、本発明の熱可塑性樹脂組成物から得られた成形品からなる物品の組み立てを容易にするだけでなく、使用時にかかる成形品からなる物品から軋み音等の異音が発生するのを抑制する効果を付与することができる。
 摺動性付与剤の代表例としては、特開2011-137066号公報に記載されるような低分子量酸化ポリエチレン、超高分子量ポリエチレン、ポリテトラフルオロエチレンや、低分子量(例えば、数平均分子量10,000以下)ポリオレフィンワックス、シリコーンオイルなどが挙げられる。
 ポリオレフィンワックスとしては、融点が0~120℃に存在するポリエチレンワックス等が好ましい。このような融点を有するポリオレフィンワックスや、融点が0~120℃に存在するその他の添加剤を本発明の熱可塑性樹脂組成物に添加した場合、ゴム強化スチレン系熱可塑性樹脂(A1)のゴム質部分が融点(Tm)を備えていなくても、軋み音等の異音の発生抑制効果を得ることができる。これらの摺動性付与剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
 本発明の熱可塑性樹脂組成物に摺動性付与剤を配合する場合、その配合量は、ゴム強化スチレン系熱可塑性樹脂(A1)100質量部に対して、0.1~10質量部とすることが好ましい。
<熱老化防止剤>
 軋み音の発生が抑制され、表面の光沢の高い成形品を得るために、本発明の熱可塑性樹脂組成物には、熱老化防止剤を添加することができる。熱老化防止剤としては、ゴム等に配合されている熱老化防止剤であれば特に限定されないが、フェノール系酸化防止剤及びリン系酸化防止剤が好ましい。
 フェノール系酸化防止剤としては、例えば、下記一般式(I)で表されるようにオルト位にt-ブチル基を有するフェノール基を備えたフェノール系酸化防止剤が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。t-Buはt-ブチル基を表す。)
 一般式(I)において、置換基R及びRは、それぞれ独立に、水素原子、t-ブチル基又はメチル基であることが好ましく、水素原子又はメチル基であることがさらに好ましく、とりわけ、Rが水素原子である場合が特に好ましい。具体的には、本発明で使用するフェノール系酸化防止剤は、上記一般式(I)で示される基を1又は複数備える化合物であることが好ましく、下記式(C1)、(C2)及び(C3)の何れか1つで表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
 リン系酸化防止剤としては、例えば、下記一般式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは、それぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。特に好ましくは、R及びRは、t-C基である。)
 本発明の熱可塑性樹脂組成物に熱老化防止剤を配合する場合、その配合量は、本発明の熱可塑性樹脂組成物を100質量部とした場合、好ましくは0.01~5質量部、より好ましくは0.02~3質量部、さらに好ましくは0.03~2質量部、特に好ましくは0.03~1質量部である。最も好ましい範囲としては、0.02~0.6質量部、0.02~0.2質量部、0.03~0.6質量部、又は、0.03~0.2質量部が挙げられる。熱老化防止剤の配合量が上記範囲にあると、成形品の光沢が優れ、良好な外観が得られる。
<その他の添加剤>
 本発明の熱可塑性樹脂組成物に配合し得る他の添加剤としては、酸化防止剤、紫外線吸収剤、耐候剤、充填剤、帯電防止剤、難燃性付与剤、防曇剤、滑剤、抗菌剤、防かび剤、粘着付与剤、可塑剤、着色剤、黒鉛、カーボンブラック、カーボンナノチューブ、顔料(例えば、赤外線吸収、反射能力等の機能性を付与した顔料も含む。)等が挙げられる。これらは、1種を単独で用いても、2種以上を併用してもよい。
 これらのその他の添加剤の配合量は、樹脂成分(A)100質量部に対して、通常0.1~30質量部である。
[熱可塑性樹脂組成物の製造方法]
 本発明の熱可塑性樹脂組成物は、各成分を所定の配合比で、タンブラーミキサーやヘンシェルミキサーなどで混合した後、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ロール、フィーダールーダー等の混練機を用いて適当な条件下で溶融混練して製造することができる。好ましい混練機は、二軸押出機である。さらに、各々の成分を混練するに際しては、それらの成分を一括して混練しても、多段、分割配合して混練してもよい。バンバリーミキサー、ニーダー等で混練した後、押出機によりペレット化することもできる。溶融混練温度は、通常180~240℃、好ましくは190~230℃である。
[好適物性等]
 以下に、本発明の熱可塑性樹脂組成物の好適物性等を説明する。以下に記載する本発明の熱可塑性樹脂組成物の物性等は具体的には、後掲の実施例の項に記載の方法で測定される。
<損失係数(η)>
 本発明の熱可塑性樹脂組成物は、打音の抑制の観点から、下記の条件(1)で測定した場合に、20~12,400Hzの周波数域の損失係数(η)の最小値が0.015以上であることが好ましく、この値は、より好ましくは0.018以上である。
<測定条件(1)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形した厚さ2mmの平板を、長さ250mm、幅10mm、厚さ2mmに切削することで作成した試験片を用い、JIS K7391の規定に従う中央加振法により23℃の温度で測定。
<音圧の最大値>
 本発明の熱可塑性樹脂組成物は、打音の抑制の観点から、下記の条件(2)で測定した場合に、20~20,000Hzの周波数域の音圧の最大値が70dB以下であることが好ましい。
 また、この音圧の最大値を与える周波数は20~9,000Hz又は14,000~19,000Hzの範囲に存在することが好ましい。
 音圧の最大値が上記範囲内の低い周波数側にシフトするほど、打音の強度が抑制されると考えられる。
<測定条件(2)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形して得られた、縦120mm、横60mm、厚さ3mmの短冊状本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品を、縦60mm、横60mm、厚さ3mmの形状となるようユニバーサルカッターを用いて切削し、切削した成形品の上辺から5mm且つ左辺から5mmの位置、及び上辺から5mm且つ右辺から5mmの位置にそれぞれ直径1mmの孔を開けて試験片とする。この試験片の前記孔2か所にタコ糸を通して吊り下げた状態で、該試験片の一方の面の中央をステンレス製のハンマーで40±5Nの力で叩いた時の響きを、該面に対して垂直方向に10cm離して設置した音圧マイクロフォンで集音して求めた音圧の周波数スペクトルに基づいて測定する。
<異音リスク値>
 本発明の熱可塑性樹脂組成物は、ジグラー(ZIEGLER)社製スティックスリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の測定条件(3)において3以下であることが好ましい。
<測定条件(3)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形することにより、縦60mm、横100mm、厚さ4mmの試験片と、縦50mm、横25mm、厚さ4mmの試験片とを用意し、温度23℃、湿度50%RHの雰囲気下で荷重5N、40N、速度1mm/秒、10mm/秒の4条件にて振幅20mmで3回、前者の試験片の板面と後者の試験片の板面とを擦り合わせて測定。
 異音リスク値は、ドイツ自動車工業会(VDA)規格準拠の仕様にて、同一の材質で接触部材を作製した時のスティックスリップ異音発生リスクを10段階の指数で示したものであり、上記異音レベルが3以下なら合格とされている。
<ゴム含量・融点>
 本発明の熱可塑性樹脂組成物は、耐衝撃性等の機械的特性、及び、打音やきしみ音等の音響特性の観点から、熱可塑性樹脂組成物全体を100質量%とした場合に、ゴム含量が5~60質量%であることが好ましい。
 熱可塑性樹脂組成物が結晶性を有すると、又は、結晶性を有する成分を含有すると、きしみ音の発生を抑制する効果がさらに優れ、好ましい。具体的には、本発明の熱可塑性樹脂組成物は、JIS K7121-1987に準じて測定した融点が0~120℃の範囲にあることが好ましく、10~90℃の範囲がより好ましく、20~80℃の範囲がさらにより好ましい。
 上記のように、融点(Tm)は、JIS K7121-1987に準じて得られるが、0~120℃の範囲における吸熱パターンのピークの数は、一つに限定されず、二つ以上でもよい。0~120℃の範囲に見られるTm(融点)は、ゴム強化スチレン系熱可塑性樹脂(A1)、特にゴム質部分に由来するものであってよく、又は、ゴム強化スチレン系熱可塑性樹脂(A1)に関連して前述の他の成分、例えば、数平均分子量が10,000以下といった低分子量のポリオレフィンワックス等の摺動性付与剤に由来するものであってもよい。
<機械的物性・耐熱性>
 本発明の熱可塑性樹脂組成物は、高い機械的強度を保持していることが好ましく、本発明の熱可塑性樹脂組成物は、曲げモジュラスが1,600MPa以上であることが好ましく、荷重たわみ温度(1.8MPa)が70℃以上であることが好ましく、ロックウェル硬さが90以上であることが好ましく、引張強度が35MPa以上であることが好ましく、曲げ強度が45MPa以上であることが好ましい。
<流動性>
 本発明の熱可塑性樹脂組成物は、樹脂成分(A)として芳香族ポリカーボネート樹脂(A3)を含有しない場合、そのMFRは10g/10min.以上であることが好ましい。芳香族ポリカーボネート樹脂(A3)を含有する場合、本発明の熱可塑性樹脂組成物のMFRは14g/10min.以上であることが好ましい。
<耐面衝撃性>
 本発明の熱可塑性樹脂組成物は、高い面衝撃性を保持していることが好ましい。本発明の熱可塑性樹脂組成物は、下記の条件(6)で評価したときの試験片の破壊形態が、延性破壊であることが好ましい。
<測定条件(6)>
 射出成形機を用いて該熱可塑性樹脂組成物を成形することにより得た縦55mm、横80mm、厚さ2.5mmの試験片を、島津製作所社製高速パンクチャー衝撃試験機「ハイドロショットHITS-P10」を用い、ポンチ直径12.7mm、サンプル受け台穴径43.0mm、打ち抜き試験速度6.7m/sec、温度23℃にて打ち抜いて測定する。
<明度L*・光沢>
 本発明の熱可塑性樹脂組成物は、該熱可塑性樹脂組成物100質量部にカーボンブラック0.8質量部を混合して得られた黒色熱可塑性樹脂組成物を射出成形機を用いて成形した長さ100mm、幅100mm、厚さ3mmの板状の試験片について、下記の条件(4)で測定した明度L*が発色性の観点から18以下、特に16以下であり、下記の条件(5)で測定した光沢が90%以上、特に95%以上であることが好ましい。
<測定条件(4)>
 分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて、SCE方式にて明度L*を測定。
<測定条件(5)>
 スガ試験機株式会社製「デジタル変角光沢計UGV-5D」を用い、JIS K7105に準拠して、入射角60°、反射角60°における試験片の表面の反射率(%)を測定。
〔成形品〕
 本発明の成形品は、熱可塑性樹脂組成物を射出成形、ガスインジェクション成形、プレス成形、シート押出成形、真空成形、異形押出成形、発泡成形、材料押出堆積法、粉末焼結積層造形等の公知の成形法により成形することで製造することができる。
 本発明の熱可塑性樹脂組成物は、上記のような優れた性質を有する。本発明の熱可塑性樹脂組成物を成形してなる本発明の成形品は、車両内装品、外装品に使用することができる。例えば、シートベルトのバックル、アッパーボックス、カップホルダー、ドアトリム、ドアノブ、ドアポケット、ドアライニング、ピラーガーニッシュ、コンソール、コンソールボックス、ルームミラー、サンバイザー、センターパネル、ベンチレータ、エアコン、エアコンパネル、ヒーターコンパネル、板状羽根、バルブシャッター、ルーバー等、ダクト、メーターパネル、メーターケース、メーターバイザー、インパネアッパーガーニッシュ、インパネロアガーニッシュ、A/T インジケーター、“オンオフスイッチ類(スライド部、スライドプレート)、スイッチベゼル、グリルフロントデフロスター、グリルサイドデフロスター、リッドクラスター、カバーインストロアーなどのマスク類(マスクスイッチ、マスクラジオなど)、ポケット類(ポケットデッキ、ポケットカードなど)、ステアリングホイールホーンパッド、カップホルダー、スイッチ部品、スイッチボックス、アシストグリップ等のグリップ、ハンドル、グラブハンドルカーナビゲーション用外装部品、カメラカバー、カメラモニタリングシステム、ヘッドアップディスプレイ、リアエンターテイメントシステム、グローブボックス、グローブボックスラチェット、小物入れ、小物入れなどの蓋にあるラチェット、ルームミラー、ルームランプ、アームレスト、スピーカーグリル、ナビパネル、オーバーヘッドコンソール、クロックインジケーター、SOSスイッチ等の車両内装品、フロントグリル、ホイールキャップ、バンパー、フェンダー、スポイラー、ガーニッシュ、ドアミラー、ラジエターグリル、リアコンビネーションランプ、ヘッドランプ、ターンランプ、アウトサイドドアハンドルのグリップ等の車両外装品、事務機器、家庭用家電製品のケース、ハウジング等の外装部品、内装部品、スイッチまわりの部品、可動部の部品、デスク用ロック部品、デスク引き出し、複写機の用紙トレイ、直管型LEDランプ、電球型LEDランプ、電球型蛍光灯、シーリングライトのパネル、カバー、コネクタなどの照明器具、携帯電話、タブレット端末、炊飯器、冷蔵庫、電子レンジ、ガスコンロ、掃除機、食器洗浄機、空気清浄機、エアコン、ヒーター、TV、レコーダーなどの家電器具、プリンター、FAX、コピー機、パソコン、プロジェクター等のOA機器、オーディオ器具、オルガン、電子ピアノ等の音響機器、化粧容器のキャップ、電池セル筐体等として使用することができ、特に車両内装品として好ましく使用することができる。
 本発明の成形品は、1つの部品から構成されたものであっても、2つ以上の部品から構成されたものであってもよいが、互いに接触する可能性のある2つの部品を少なくとも備え、両部品が互いに接触した時に打音を発生する危険性がある物品の部品として好適に用いることができる。本発明によれば、例えば、互いに接触する可能性のある2つの部品を少なくとも備え、前記2つの部品の少なくとも一方の部品と接触する可能性のある他方の部品の部分の少なくとも一部を本発明の熱可塑性樹脂組成物で形成した物品を提供することができる。
 換言すれば、本発明によれば、互いに接触する可能性のある第一の部品と第二の部品とを少なくとも備え、前記第一の部品は、前記第二の部品と接触する可能性のある部分の少なくとも一部が、本発明の熱可塑性樹脂組成物で形成されている物品を提供することができる。この場合、前記第一の部品は、その全体又は前記第二の部品と接触する部分の一部若しくは全部が、本発明の熱可塑性樹脂組成物で形成されていることが好ましい。
 前記第一の部品が接触する第二の部品は、本発明の熱可塑性樹脂組成物で成形された部品であってもよく、本発明の熱可塑性樹脂組成物以外の樹脂で成形された部品や金属のような他の材料でできた部品であってもよい。
 本発明の熱可塑性樹脂組成物以外の樹脂としては、ポリプロピレン系樹脂、ABS樹脂等のゴム強化芳香族ビニル系樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート樹脂、ポリカーボネート/ABSアロイ、ナイロン樹脂、ナイロン/ABSアロイ、PET樹脂、PET/ABSアロイ、PBT/ABSアロイ、熱可塑性エラストマー、熱硬化性エラストマー等が挙げられる。
 互いに接触する可能性のある第一の部品と第二の部品とを少なくとも備えた上記物品としては、前記第一及び第二の部品が上記のように互いに接触する可能性のあるものであれば特に限定されない。例えば、前記第一及び第二の部品が隙間をおいて隣接しているが振動、開閉操作等の外力により間欠的に接触する物品が挙げられる。より具体的には、両部品が互いに遊嵌すなわち緩く嵌合している物品が挙げられる。両部品の嵌合の方式は、両部品が緩く嵌合している限り特に限定されず、例えば、スナップフィット、螺合、係合であってもよい。このような物品としては、例えば、プッシュラッチやマグネットラッチを用いてプッシュオープン式に構成された開閉部(例えば、蓋、扉)を備えた物品が挙げられる。より具体的には、車両内装部品ではサングラストレーなどの開閉部品が挙げられる。
 以下、実施例により、本発明をさらに具体的に説明する。本発明は以下の実施例のみに限定されるものではない。以下において、「部」及び「%」は特に断らない限り質量基準である。
〔原材料〕
 以下の実施例及び比較例において、熱可塑性樹脂組成物の製造には、原材料は、以下の方法により製造した樹脂成分及び以下の市販品を用いた。
[ゴム強化スチレン系熱可塑性樹脂(A1)]
<ABS樹脂(A-1)の製造>
 撹拌機付き重合容器に、水280部及びジエン系ゴム質重合体として、重量平均粒子径0.26μm、ゲル分率90%のポリブタジエンラテックス60部(固形分換算)、ナトリウムホルムアルデヒドスルホキシレート0.3部、硫酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部を仕込み、脱酸素後、窒素気流中で撹拌しながら60℃に加熱した。ここへ、アクリロニトリル10部、スチレン30部、t-ドデシルメルカプタン0.2部、クメンハイドロパーオキサイド0.3部からなる単量体混合物を60℃で5時間かけて連続的に滴下した。滴下終了後、重合温度を65℃にし、1時間撹拌を続けた後、重合を終了させ、グラフト共重合体のラテックスを得た。重合転化率は98%であった。その後、得られたラテックスに、2,2’-メチレン-ビス(4-エチレン-6-t-ブチルフェノール)0.2部を添加し、塩化カルシウムを添加して凝固し、洗浄、濾過及び乾燥工程を経てパウダー状のABS樹脂(A1-1)を得た。得られたABS樹脂(A1-1)のグラフト率は40%、アセトン可溶分の極限粘度[η]は0.38dl/gであった。
<AES樹脂(A1-2)の製造>
 リボン型撹拌機翼、助剤連続添加装置、温度計などを装備した容積20Lのステンレス製オートクレーブに、エチレン・α-オレフィン系ゴム質重合体として、エチレン・プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4,100℃)20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)22部、スチレン55部、アクリロニトリル23部、t-ドデシルメルカプタン0.5部、トルエン110部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間撹拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温をさらに昇温して、100℃に達した後は、この温度を保持しながら、撹拌回転数100rpmとして重合反応を行った。重合反応開始後4時間目から、内温を120℃に昇温し、この温度を保持しながらさらに2時間反応を行って重合反応を終了した。その後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部、ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)0.02部を添加した後、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し、さらに40mmφベント付き押出機(シリンダー温度220℃、真空度760mmHg)を用いて揮発分を実質的に脱気させ、ペレット化した。得られたAES樹脂(A1-2)のグラフト率は70%、アセトン可溶分の極限粘度[η]は0.47dl/gであった。
[スチレン系樹脂(A2)]
<AS樹脂(A2-1)>
 AS樹脂(A2-1)として、アクリロニトリル単位及びスチレン単位の割合が、それぞれ、27%及び73%であり、極限粘度[η](メチルエチルケトン中、30℃)が0.47dl/g、ガラス転移温度(Tg)が103℃であるアクリロニトリル・スチレン共重合体を用いた。
<耐熱性AS樹脂(A2-2)の製造>
 撹拌機付き重合容器に、水250部及びパルミチン酸ナトリウム1.0部を投入し、脱酸素後、窒素気流中で撹拌しながら70℃まで加熱した。さらにナトリウムホルムアルデヒドスルホキシレート0.4部、硫酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部を仕込み後、α-メチルスチレン70部、アクリロニトリル25部、スチレン5部、t-ドデシルメルカプタン0.5部、クメンハイドロパーオキサイド0.2部から成る単量体混合物を、重合温度70℃で連続的に7時間かけて滴下した。滴下終了後、重合温度を75℃にし、1時間撹拌を続けて重合を終了させ、共重合体のラテックスを得た。重合転化率は99%であった。その後、得られたラテックスを塩化カルシウムを添加して凝固し、洗浄、濾過及び乾燥工程を経てパウダー状の耐熱AS樹脂(A2-2)を得た。得られた耐熱AS樹脂(A2-2)のアセトン可溶分の極限粘度[η]は0.40dl/gであった。
[芳香族ポリカーボネート樹脂(A3)]
<PC樹脂(A3-1)>
 PC樹脂(A3-1)として、三菱エンジニアリングプラスチック社製芳香族ポリカーボネート樹脂「NOVAREX 7022J(商品名)」を用いた。
[打音低減材(B)]
 打音低減材(B)としてはそれぞれ以下の市販品を用いた。
<打音低減材(B-1)>
 旭化成社製スチレン・ブタジエン共重合体の水素添加物「S1605」(スチレン含量66%、ガラス転移温度(Tg)18℃、tanδの主分散のピーク温度17℃、水添率95%)
<打音低減材(B-2)>
 クラレ社製スチレン・イソプレン・スチレンブロック共重合体「VERSUS」(スチレン含量20%、ガラス転移温度(Tg)8℃、tanδの主分散のピーク温度19℃)
<打音低減材(B-3)>
 旭化成社製スチレン・・ブタジエン共重合体の水素添加物「S1606」(スチレン含量50%、ガラス転移温度(Tg)9℃、水添率95%)
〔実施例1~8、比較例1~9〕
[熱可塑性樹脂組成物の製造]
 表1又は表2に示す原料を同表に示す配合割合で混合した。その後、二軸押出機(型式名「TEX44、日本製鋼所」)を用いて、250℃で溶融混練してペレット化した。得られた樹脂組成物を用い、下記の測定及び評価を行った。結果を下記表1及び表2に示す。
[評価方法]
<曲げモジュラス(剛性)>
 ISO178に従って測定した。
<荷重たわみ温度>
 ISO75に従って、1.8MPa荷重条件で測定した。
<ロックウェル硬さ>
 ISO2039に従って測定した。
<引張強度>
 ISO527に従って測定した。
<曲げ強度>
 ISO178に従って測定した。
<打音の音圧>
 各熱可塑性樹脂組成物を用い、縦120mm、横60mm、厚さ3mmの短冊状本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品を、FANUC製ROBOSHOTα-150iA射出成形機によりシリンダ温度240℃、射出圧力150MPa、金型温度60℃にて射出成形した。そして、得られた成形品を縦60mm、横60mm、厚さ3mmの形状となるようユニバーサルカッターを用いて切削し、切削した成形品の上辺から5mm且つ左辺から5mmの位置、及び上辺から5mm且つ右辺から5mmの位置に、それぞれボール盤を用いて直径1mmの孔を開け、図1に示すような試験片を作製した。そして、前記試験片の孔2か所に1本のタコ糸を通し、H型スタンド、クランプ、ムッフを用いて前記試験片を吊り下げた。この時クランプは実験台から28cmの高さになるよう設置した。また、試験片面の中央が実験台から18cmの高さになるように設置した。この時、試験片を吊り下げるクランプから試験片上辺までの距離は7cmとなる。また、吊り下げた試験片の面中央の位置から、試験片面に対して垂直方向に10cm離した位置に、試験片面に向けてPCBピエゾトロニクス社製の音圧マイクロフォン(商品名;378B02)をH型スタンド、クランプ、ムッフを用いて設置した。また、前記音圧マイクロフォンは実験台から18cmの高さになるよう設置した。そして、前記マイクロフォンを設置した反対側の試験片面の中央を、打撃力を測定できるPCBピエゾトロにクス社製のインパクトハンマー(商品名;086E80)を用いて40±5Nで叩いたときの響きを、前記音圧マイクロフォンで集音して、オロス社製のフーリエ変換アナライザー(商品名;マルチJOB FFTアナライザ OR34J-4)にて音圧の周波数スペクトルに変換した。得られた周波数スペクトル中の音圧(dB)の最大値とその周波数(Hz)を測定値として用いた。なお、測定は室温23℃の部屋で行った。
<打音の減衰>
 前記打音の音圧測定と同様の操作を行い、オロス社製のフーリエ変換アナライザー(商品名:マルチJOB FFTアナライザ OR34J-4)にて音圧の時間変化を測定した。音の発生から、音圧が最大音圧の1/4の音圧に静まるまでに要する時間を打音の減衰時間として用いた。打音の減衰は、0.038秒よりも短いことが好ましく、0.035秒よりも短いことがより好ましい。
<損失係数>
 射出成形機を用いて成形した厚さ2mmの平板を、長さ250mm、幅10mm、厚さ2mmに切削することで作成した試験片を用い、JIS K7391の規定に従う中央加振法により23℃の温度で測定し、20~12,400Hzの周波数域の損失係数(η)の最小値を損失係数とした。
<MFR>
 ISO1133に準じて、温度240℃及び荷重98Nの条件で、メルトマスフローレートを測定した。
<軋み音評価(異音リスク値)>
 各熱可塑性樹脂組成物を東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形し、縦150mm、横100mm、厚さ4mmの射出成形プレートを得た。このプレートから、縦60mm、横100mm、厚さ4mm及び縦50mm、横25mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、大小2枚のプレートを試験片として用いた。
 2枚の試験片を80℃±5℃に調整したオーブンで300時間エージングし、25℃で24時間冷却後、大きな試験片と小さな試験片をジグラー(ZIEGLER)社製スティックスリップ試験機SSP-02に固定し、温度23℃、湿度50%RHの雰囲気下で荷重5N、40N、速度1mm/秒、10mm/秒の4条件にて振幅20mmで3回擦り合わせたときの異音リスク値を測定した。そして、異音リスク値が最も大きい条件の数値を抽出して測定値とした。異音リスク値が大きいほど軋み音の発生リスクは高くなる。異音リスク値が3以下であれば良好である。
<耐面衝撃性>
 射出成形機を用いて該熱可塑性樹脂組成物を成形することにより得た縦55mm、横80mm、厚さ2.5mmの試験片を、島津製作所社製高速パンクチャー衝撃試験機「ハイドロショットHITS-P10」を用い、ポンチ直径12.7mm、サンプル受け台穴径43.0mm、打ち抜き試験速度6.7m/sec、温度23℃にて打ち抜いて測定したときの試験片の破壊形態が、延性破壊であれば面衝撃性は良好である。
<明度L*・光沢>
 各熱可塑性樹脂組成物のペレット100部とカーボンブラック0.8部とをヘンシェルミキサーを用いて混合し、この混合物を240℃に加熱した押出機に供給し、混練して黒色ペレットを得た。黒色ペレットをシリンダー温度240℃、金型温度60℃、射出率20g/秒の条件で射出成形して、長さ100mm、幅100mm、厚み3mmの板状の成形体を得た。
(明度L*)
 この成形体について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて、SCE方式にて明度L*を測定した。測定されたL*を「L*(ma)」とする。L*が低いほど黒色となり、発色性が良好と判定した。
 「明度L*」とは、JIS Z 8729において採用されているL*a*b*表色系における色彩値のうちの明度の値(L*)を意味する。
 「SCE方式」とは、JIS Z 8722に準拠した分光測色計を用い、光トラップによって正反射光を除去して色を測る方法を意味する。
(表面光沢)
 スガ試験機株式会社製の「デジタル変角光沢計UGV-5D」を用い、JIS K 7105に準拠して、入射角60°、反射角60°における成形体の表面の反射率(%)を測定した。反射率が高いほど表面外観に優れることを意味する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1,2より、本発明に係る水添共重合体を打音低減材(B)として配合した実施例1~8の熱可塑性樹脂組成物は、打音の減衰効果に優れる上に、発色性、光沢も、打音低減材(B)を含まない比較例1,5と同等で良好な外観を呈することが分かる。
 表2より、実施例5~8の熱可塑性樹脂組成物は、耐面衝撃性においても打音低減材(B)を含まない比較例5と同等或いは、その低下度合いが少ないことが分かる。
 これに対して、水添共重合体ではない打音低減材(B-2)を配合した比較例2,6,7は、L*値が大きく発色性に劣り、光沢も低い。耐面衝撃性についても、打音低減材(B-2)の配合量を多くした比較例7は大きく低下している。
 水添共重合体であっても、tanδの主分散のピークが0℃未満の打音低減材(B-3)を用いた比較例3,4,8,9では、打音の減衰効果において、打音低減材(B)を含まない比較例1,5と同等であり、打音低減材(B)の効果は得られない。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年3月17日付で出願された日本特許出願2021-043780に基づいており、その全体が引用により援用される。

 

Claims (12)

  1.  ゴム強化スチレン系熱可塑性樹脂(A1)を含む樹脂成分(A)97~80質量部と、打音低減材(B)3~20質量部とを含む熱可塑性樹脂組成物であって、
     該打音低減材(B)は、芳香族ビニル系化合物に由来する構造単位を主体とするブロック部(I)と、芳香族ビニル系化合物及びブタジエンに由来する構造単位を主体とするランダム部(II)からなる共重合体を水素添加してなる水添共重合体であって、該共重合体全体を100質量%としたとき、ブロック部(I)とランダム部(II)に含まれる芳香族ビニル系化合物に由来する構造単位の含有率が55~80質量%であり、0℃以上にtanδの主分散のピークを有する水添共重合体であることを特徴とする熱可塑性樹脂組成物。
  2.  前記樹脂成分(A)が、ゴム強化スチレン系熱可塑性樹脂(A1)と、スチレン系樹脂(A2)とを含む請求項1に記載の熱可塑性樹脂組成物。
  3.  前記樹脂成分(A)100質量%中にゴム強化スチレン系熱可塑性樹脂(A1)0.1~99質量%とスチレン系樹脂(A2)1~99.9質量%を含む請求項2に記載の熱可塑性樹脂組成物。
  4.  前記樹脂成分(A)が、ゴム強化スチレン系熱可塑性樹脂(A1)とスチレン系樹脂(A2)と芳香族ポリカーボネート樹脂(A3)とを含む請求項1に記載の熱可塑性樹脂組成物。
  5.  前記樹脂成分(A)100質量%中にゴム強化スチレン系熱可塑性樹脂(A1)0.1~89質量%とスチレン系樹脂(A2)1~89.9質量%と芳香族ポリカーボネート樹脂(A3)10~98.9質量%を含むことを特徴とする請求項4に記載の熱可塑性樹脂組成物。
  6.  下記の条件(1)で測定した場合に、20~12,400Hzの周波数域の損失係数(η)の最小値が0.015以上である請求項1~5のいずれか1項に記載の熱可塑性樹脂組成物。
    <測定条件(1)>
     射出成形機を用いて該熱可塑性樹脂組成物を成形した厚さ2mmの平板を、長さ250mm、幅10mm、厚さ2mmに切削することで作成した試験片を用い、JIS K7391の規定に従う中央加振法により23℃の温度で測定。
  7.  下記の条件(2)で測定した場合に、20~20,000Hzの周波数域の音圧の最大値が70dB以下である請求項1~6のいずれか1項に記載の熱可塑性樹脂組成物。
    <測定条件(2)>
     射出成形機を用いて該熱可塑性樹脂組成物を成形して得られた、縦120mm、横60mm、厚さ3mmの短冊状本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品を、縦60mm、横60mm、厚さ3mmの形状となるようユニバーサルカッターを用いて切削し、切削した成形品の上辺から5mm且つ左辺から5mmの位置、及び上辺から5mm且つ右辺から5mmの位置にそれぞれ直径1mmの孔を開けて試験片とする。この試験片の前記孔2か所にタコ糸を通して吊り下げた状態で、該試験片の一方の面の中央をステンレス製のハンマーで40±5Nの力で叩いた時の響きを、該面に対して垂直方向に10cm離して設置した音圧マイクロフォンで集音して求めた音圧の周波数スペクトルに基づいて測定する。
  8.  前記音圧の最大値を与える周波数が20~9,000Hz又は14,000~19,000Hzの範囲に存在する請求項7に記載の熱可塑性樹脂組成物。
  9.  ジグラー(ZIEGLER)社製スティックスリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の測定条件(3)において3以下である請求項1~8のいずれか1項に記載の熱可塑性樹脂組成物。
    <測定条件(3)>
     射出成形機を用いて該熱可塑性樹脂組成物を成形することにより、縦60mm、横100mm、厚さ4mmの試験片と、縦50mm、横25mm、厚さ4mmの試験片とを用意し、温度23℃、湿度50%RHの雰囲気下で荷重5N、40N、速度1mm/秒、10mm/秒の4条件にて振幅20mmで3回、前者の試験片の板面と後者の試験片の板面とを擦り合わせて測定。
  10.  該熱可塑性樹脂組成物100質量部にカーボンブラック0.8質量部を混合して得られた黒色熱可塑性樹脂組成物を射出成形機を用いて成形した長さ100mm、幅100mm、厚さ3mmの板状の試験片について、下記の条件(4)で測定した明度L*が18以下であり、下記の条件(5)で測定した光沢が90%以上である請求項1~9のいずれか1項に記載の熱可塑性樹脂組成物。
    <測定条件(4)>
     分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて、SCE方式にて明度L*を測定。
    <測定条件(5)>
     スガ試験機株式会社製「デジタル変角光沢計UGV-5D」を用い、JIS K7105に準拠して、入射角60°、反射角60°における試験片の表面の反射率(%)を測定。
  11.  ゴム含量が5~60質量%である請求項1~10のいずれか1項に記載の熱可塑性樹脂組成物。
  12.  請求項1~11のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。

     
PCT/JP2021/044079 2021-03-17 2021-12-01 熱可塑性組成物及びその成形品 WO2022195972A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180079301.6A CN116685640A (zh) 2021-03-17 2021-12-01 热塑性组合物及其成型品
EP21931715.3A EP4310144A1 (en) 2021-03-17 2021-12-01 Thermoplastic composition and molded product thereof
CA3195318A CA3195318A1 (en) 2021-03-17 2021-12-01 Thermoplastic composition and molded article thereof
US17/790,853 US11739209B2 (en) 2021-03-17 2021-12-01 Thermoplastic composition and molded article thereof
US17/957,459 US11603465B1 (en) 2021-03-17 2022-09-30 Thermoplastic composition and molded article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043780A JP7074227B1 (ja) 2021-03-17 2021-03-17 熱可塑性組成物及びその成形品
JP2021-043780 2021-03-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/790,853 A-371-Of-International US11739209B2 (en) 2021-03-17 2021-12-01 Thermoplastic composition and molded article thereof
US17/957,459 Continuation US11603465B1 (en) 2021-03-17 2022-09-30 Thermoplastic composition and molded article thereof

Publications (1)

Publication Number Publication Date
WO2022195972A1 true WO2022195972A1 (ja) 2022-09-22

Family

ID=81731751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044079 WO2022195972A1 (ja) 2021-03-17 2021-12-01 熱可塑性組成物及びその成形品

Country Status (6)

Country Link
US (1) US11739209B2 (ja)
EP (1) EP4310144A1 (ja)
JP (1) JP7074227B1 (ja)
CN (1) CN116685640A (ja)
CA (1) CA3195318A1 (ja)
WO (1) WO2022195972A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468606B1 (ja) 2022-12-01 2024-04-16 テクノUmg株式会社 熱可塑性樹脂組成物

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS428704B1 (ja) 1963-12-26 1967-04-20
JPS436636B1 (ja) 1963-04-25 1968-03-12
US3419634A (en) 1966-01-03 1968-12-31 Gen Electric Organopolysiloxane polycarbonate block copolymers
JPS4820038B1 (ja) 1969-07-31 1973-06-18
JPS634841B2 (ja) 1983-01-20 1988-02-01 Asahi Chemical Ind
JPS635401B2 (ja) 1983-10-07 1988-02-03 Asahi Chemical Ind
JPH01297413A (ja) 1988-05-25 1989-11-30 Japan Synthetic Rubber Co Ltd ゴム変性熱可塑性樹脂の製造方法
JPH02133406A (ja) 1988-11-14 1990-05-22 Japan Synthetic Rubber Co Ltd 水素化ブロック共重合体及びその組成物
JPH02305814A (ja) 1989-05-19 1990-12-19 Japan Synthetic Rubber Co Ltd 水添ジエン系共重合体およびその組成物
JPH0345646A (ja) * 1989-07-12 1991-02-27 Kuraray Co Ltd Abs樹脂組成物
JPH0372512A (ja) 1989-05-19 1991-03-27 Japan Synthetic Rubber Co Ltd 水添ジエン系共重合体、変性水添ジエン系共重合体およびその組成物
JPH05331246A (ja) * 1992-06-03 1993-12-14 Japan Synthetic Rubber Co Ltd ゴム強化熱可塑性樹脂およびその組成物
WO2004003027A1 (ja) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation 水添共重合体及びその組成物
JP2008208213A (ja) * 2007-02-26 2008-09-11 Asahi Kasei Chemicals Corp 制振材用水添共重合体及びアスファルト制振材組成物
JP2009191187A (ja) * 2008-02-15 2009-08-27 Asahi Kasei Chemicals Corp ビニル芳香族炭化水素系樹脂シート
JP2011137066A (ja) 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2020186306A (ja) * 2019-05-14 2020-11-19 旭化成株式会社 水添ブロック共重合体
JP2021043780A (ja) 2019-09-12 2021-03-18 Kddi株式会社 情報処理装置、情報処理方法及び端末用プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083249A (ja) 1994-06-23 1996-01-09 Kuraray Co Ltd 熱可塑性樹脂及びその組成物
JP2001158841A (ja) 1999-12-02 2001-06-12 Techno Polymer Co Ltd 制振性難燃樹脂組成物
JP5331246B2 (ja) 2010-06-10 2013-10-30 パナソニック株式会社 ポジションセンサ
JP5977506B2 (ja) 2011-12-01 2016-08-24 テクノポリマー株式会社 軋み音低減用熱可塑性樹脂組成物、接触用部品及び構造体
JP7122194B2 (ja) * 2017-08-29 2022-08-19 テクノUmg株式会社 打音の低減された熱可塑性樹脂組成物及び成形品
JP7343985B2 (ja) 2019-02-27 2023-09-13 テクノUmg株式会社 打音の低減された熱可塑性樹脂組成物及び成形品
US11603465B1 (en) * 2021-03-17 2023-03-14 Techno-Umg Co., Ltd. Thermoplastic composition and molded article thereof

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436636B1 (ja) 1963-04-25 1968-03-12
JPS428704B1 (ja) 1963-12-26 1967-04-20
US3419634A (en) 1966-01-03 1968-12-31 Gen Electric Organopolysiloxane polycarbonate block copolymers
JPS4820038B1 (ja) 1969-07-31 1973-06-18
JPS634841B2 (ja) 1983-01-20 1988-02-01 Asahi Chemical Ind
JPS635401B2 (ja) 1983-10-07 1988-02-03 Asahi Chemical Ind
JPH01297413A (ja) 1988-05-25 1989-11-30 Japan Synthetic Rubber Co Ltd ゴム変性熱可塑性樹脂の製造方法
JPH02133406A (ja) 1988-11-14 1990-05-22 Japan Synthetic Rubber Co Ltd 水素化ブロック共重合体及びその組成物
JPH02305814A (ja) 1989-05-19 1990-12-19 Japan Synthetic Rubber Co Ltd 水添ジエン系共重合体およびその組成物
JPH0372512A (ja) 1989-05-19 1991-03-27 Japan Synthetic Rubber Co Ltd 水添ジエン系共重合体、変性水添ジエン系共重合体およびその組成物
JPH0345646A (ja) * 1989-07-12 1991-02-27 Kuraray Co Ltd Abs樹脂組成物
JPH05331246A (ja) * 1992-06-03 1993-12-14 Japan Synthetic Rubber Co Ltd ゴム強化熱可塑性樹脂およびその組成物
WO2004003027A1 (ja) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation 水添共重合体及びその組成物
JP2008208213A (ja) * 2007-02-26 2008-09-11 Asahi Kasei Chemicals Corp 制振材用水添共重合体及びアスファルト制振材組成物
JP2009191187A (ja) * 2008-02-15 2009-08-27 Asahi Kasei Chemicals Corp ビニル芳香族炭化水素系樹脂シート
JP2011137066A (ja) 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2020186306A (ja) * 2019-05-14 2020-11-19 旭化成株式会社 水添ブロック共重合体
JP2021043780A (ja) 2019-09-12 2021-03-18 Kddi株式会社 情報処理装置、情報処理方法及び端末用プログラム

Also Published As

Publication number Publication date
US20230118932A1 (en) 2023-04-20
JP2022143324A (ja) 2022-10-03
JP7074227B1 (ja) 2022-05-24
CN116685640A (zh) 2023-09-01
US11739209B2 (en) 2023-08-29
EP4310144A1 (en) 2024-01-24
CA3195318A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US10487164B2 (en) Automobile interior part with reduced squeaking noises
JP7195260B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
US11603465B1 (en) Thermoplastic composition and molded article thereof
WO2022195972A1 (ja) 熱可塑性組成物及びその成形品
WO2020175612A9 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
JP7085479B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形体
JP2022150927A (ja) 打音低減材、熱可塑性組成物及びその成形品
JP7122194B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
JP7092273B1 (ja) 熱可塑性組成物及びその成形品
JP7468606B1 (ja) 熱可塑性樹脂組成物
JP2015137298A (ja) 熱可塑性樹脂組成物及び成形品
JP7240898B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
JP5647480B2 (ja) 軋み音を低減した熱可塑性樹脂組成物製接触用部品
JP7241895B2 (ja) 樹脂組成物の製造方法及び成形品の製造方法
JP7360838B2 (ja) ゴム強化樹脂用の艶消剤、これを含有する熱可塑性樹脂組成物及び成形品
JP2015105337A (ja) 熱可塑性樹脂組成物及び成形品
JP5977316B2 (ja) 軋み音を低減した熱可塑性樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3195318

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180079301.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301005645

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010732

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2021931715

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021931715

Country of ref document: EP

Effective date: 20231017