WO2022176925A1 - 蓄電素子 - Google Patents
蓄電素子 Download PDFInfo
- Publication number
- WO2022176925A1 WO2022176925A1 PCT/JP2022/006232 JP2022006232W WO2022176925A1 WO 2022176925 A1 WO2022176925 A1 WO 2022176925A1 JP 2022006232 W JP2022006232 W JP 2022006232W WO 2022176925 A1 WO2022176925 A1 WO 2022176925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- gas
- storage element
- positive electrode
- negative electrode
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 88
- 230000005611 electricity Effects 0.000 title abstract description 6
- 239000003792 electrolyte Substances 0.000 claims abstract description 37
- 239000008151 electrolyte solution Substances 0.000 claims description 97
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 50
- 239000007773 negative electrode material Substances 0.000 claims description 36
- 239000001569 carbon dioxide Substances 0.000 claims description 25
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 25
- 238000004804 winding Methods 0.000 claims description 15
- 239000003575 carbonaceous material Substances 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 description 143
- 239000010410 layer Substances 0.000 description 67
- 238000007789 sealing Methods 0.000 description 47
- 239000000463 material Substances 0.000 description 44
- 239000007774 positive electrode material Substances 0.000 description 38
- 239000011255 nonaqueous electrolyte Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 33
- 239000000758 substrate Substances 0.000 description 26
- 238000002347 injection Methods 0.000 description 25
- 239000007924 injection Substances 0.000 description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 238000009825 accumulation Methods 0.000 description 23
- -1 mesh Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 15
- 239000006258 conductive agent Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 13
- 239000004743 Polypropylene Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 229920001155 polypropylene Polymers 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 229910052723 transition metal Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000002905 metal composite material Substances 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 239000000654 additive Substances 0.000 description 10
- 239000003125 aqueous solvent Substances 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229920000573 polyethylene Polymers 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 150000005678 chain carbonates Chemical class 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 150000005676 cyclic carbonates Chemical class 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 239000002612 dispersion medium Substances 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 230000004308 accommodation Effects 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 150000002484 inorganic compounds Chemical class 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920000447 polyanionic polymer Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- VSKCGJBMHRNFCZ-UHFFFAOYSA-N (2,2-dioxo-1,3,2-dioxathiolan-4-yl)methyl methanesulfonate Chemical compound CS(=O)(=O)OCC1COS(=O)(=O)O1 VSKCGJBMHRNFCZ-UHFFFAOYSA-N 0.000 description 1
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- IOBWAHRFIPQEQL-UHFFFAOYSA-N 1,3-difluoro-2-methoxybenzene Chemical compound COC1=C(F)C=CC=C1F IOBWAHRFIPQEQL-UHFFFAOYSA-N 0.000 description 1
- OTGQPYSISUUHAF-UHFFFAOYSA-N 1,3-difluoro-5-methoxybenzene Chemical compound COC1=CC(F)=CC(F)=C1 OTGQPYSISUUHAF-UHFFFAOYSA-N 0.000 description 1
- GUYHXQLLIISBQF-UHFFFAOYSA-N 1-cyclohexyl-2-fluorobenzene Chemical compound FC1=CC=CC=C1C1CCCCC1 GUYHXQLLIISBQF-UHFFFAOYSA-N 0.000 description 1
- YAOIFBJJGFYYFI-UHFFFAOYSA-N 1-cyclohexyl-4-fluorobenzene Chemical compound C1=CC(F)=CC=C1C1CCCCC1 YAOIFBJJGFYYFI-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- KLECYOQFQXJYBC-UHFFFAOYSA-N 1-fluoro-2-phenylbenzene Chemical group FC1=CC=CC=C1C1=CC=CC=C1 KLECYOQFQXJYBC-UHFFFAOYSA-N 0.000 description 1
- CRMJLJFDPNJIQA-UHFFFAOYSA-N 2,4-difluoro-1-methoxybenzene Chemical compound COC1=CC=C(F)C=C1F CRMJLJFDPNJIQA-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QHTJSSMHBLGUHV-UHFFFAOYSA-N 2-methylbutan-2-ylbenzene Chemical compound CCC(C)(C)C1=CC=CC=C1 QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.000 description 1
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 description 1
- HHCHLHOEAKKCAB-UHFFFAOYSA-N 2-oxaspiro[3.5]nonane-1,3-dione Chemical compound O=C1OC(=O)C11CCCCC1 HHCHLHOEAKKCAB-UHFFFAOYSA-N 0.000 description 1
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 description 1
- NIDAYXQNTRODPA-UHFFFAOYSA-N 3,3,3-trifluoropropyl hydrogen carbonate Chemical compound OC(=O)OCCC(F)(F)F NIDAYXQNTRODPA-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- SROHGOJDCAODGI-UHFFFAOYSA-N 4,5-diphenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 SROHGOJDCAODGI-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- VMAJRFCXVOIAAS-UHFFFAOYSA-N 4-phenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC=C1C1=CC=CC=C1 VMAJRFCXVOIAAS-UHFFFAOYSA-N 0.000 description 1
- ZKOGUIGAVNCCKH-UHFFFAOYSA-N 4-phenyl-1,3-dioxolan-2-one Chemical compound O1C(=O)OCC1C1=CC=CC=C1 ZKOGUIGAVNCCKH-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- XKSLPQDNIPGDDG-UHFFFAOYSA-M C(C(=O)O)(=O)[O-].C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] Chemical class C(C(=O)O)(=O)[O-].C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] XKSLPQDNIPGDDG-UHFFFAOYSA-M 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000578 Li2CoPO4F Inorganic materials 0.000 description 1
- 229910010142 Li2MnSiO4 Inorganic materials 0.000 description 1
- 229910001367 Li3V2(PO4)3 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013084 LiNiPO4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910012672 LiTiO Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- SXDASMFNTHIRRS-UHFFFAOYSA-M P(=O)([O-])(F)F.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] Chemical compound P(=O)([O-])(F)F.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] SXDASMFNTHIRRS-UHFFFAOYSA-M 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical class COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- WLLOZRDOFANZMZ-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) carbonate Chemical compound FC(F)(F)COC(=O)OCC(F)(F)F WLLOZRDOFANZMZ-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- ZTCLFSRIWSZUHZ-UHFFFAOYSA-N but-1-yne;carbonic acid Chemical compound CCC#C.OC(O)=O ZTCLFSRIWSZUHZ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- SYLNJGIBLUVXCG-UHFFFAOYSA-N carbonic acid;prop-1-yne Chemical compound CC#C.OC(O)=O SYLNJGIBLUVXCG-UHFFFAOYSA-N 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- DGTVXEHQMSJRPE-UHFFFAOYSA-M difluorophosphinate Chemical compound [O-]P(F)(F)=O DGTVXEHQMSJRPE-UHFFFAOYSA-M 0.000 description 1
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical class [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical class O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- MBABOKRGFJTBAE-UHFFFAOYSA-N methyl methanesulfonate Chemical compound COS(C)(=O)=O MBABOKRGFJTBAE-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- YVBBRRALBYAZBM-UHFFFAOYSA-N perfluorooctane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YVBBRRALBYAZBM-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005678 polyethylene based resin Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- RBYFNZOIUUXJQD-UHFFFAOYSA-J tetralithium oxalate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O RBYFNZOIUUXJQD-UHFFFAOYSA-J 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/136—Flexibility or foldability
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
- H01G11/20—Reformation or processes for removal of impurities, e.g. scavenging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present disclosure relates to power storage elements.
- Non-aqueous electrolyte secondary batteries typified by lithium-ion non-aqueous electrolyte secondary batteries
- the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically isolated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and ions are formed between the electrodes. It is configured to charge and discharge by performing delivery.
- Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as storage elements other than non-aqueous electrolyte secondary batteries.
- the additive may decompose during the first charge and discharge, generating gases such as carbon monoxide.
- gases such as carbon monoxide.
- gas may be generated due to oxidation-reduction decomposition of the electrolyte.
- this gas tends to accumulate in the gap between the electrodes.
- the gas existing inside the container may flow into the gap between the electrodes and accumulate therein. In this way, when a gas pool occurs between the electrodes, the active material of the electrode facing the portion where the gas pool exists cannot be charged or discharged, and the performance of the electric storage element may deteriorate.
- An object of the present invention is to provide an electric storage element that can reduce the occurrence of gas accumulation between electrodes.
- a power storage element includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, an electrolytic solution, and a sealable container for containing the electrode body and the electrolytic solution,
- the compression elastic modulus of the separator is 15 MPa or more, and the inside of the container is in a negative pressure state.
- the power storage device can reduce the occurrence of gas accumulation between electrodes.
- FIG. 1 is a schematic exploded perspective view showing a power storage device according to one embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view of an electric storage element in one embodiment of the present invention.
- FIG. 3 is a schematic diagram showing an embodiment of a power storage device configured by assembling a plurality of power storage elements.
- a power storage element includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, an electrolytic solution, and a sealable container for containing the electrode body and the electrolytic solution,
- the compression elastic modulus of the separator is 15 MPa or more, and the inside of the container is in a negative pressure state.
- the electric storage element can reduce the occurrence of gas accumulation between the electrodes.
- the reason for this is not clear, the following reasons are presumed, for example.
- the expansion and contraction of the electrode due to charging and discharging causes a large change in the load applied to the electrode body, so the gap between the electrodes is rather generated.
- gas accumulation between the when the inside of the container of the electric storage element is put in a negative pressure state, a force is generated that pulls the container inward, pressing the electrode assembly, thereby discharging the gas existing between the electrodes to the outside of the electrode assembly.
- the occurrence of gas accumulation between the electrodes can be reduced.
- the present inventors have found that if the compressive elastic modulus of the separator is small, the separator is compressed when the electrode body is compressed, and the effect of reducing the gap between the electrodes is reduced.
- the inside of the container is in a negative pressure state, and the compression elastic modulus of the separator is set to 15 MPa or more, so that the gas existing between the electrodes is effectively discharged to the outside of the electrode body, and the gas between the electrodes is discharged. It is possible to reduce the occurrence of pooling.
- the electric storage element can reduce the occurrence of gas accumulation between the electrodes.
- the inside of the container is in a negative pressure state means that the pressure in the excess space inside the container is lower than the pressure outside the container.
- the “surplus space inside the container” means the space obtained by subtracting the portions occupied by the structures such as the electrode body, the electrolytic solution, and the current collector from the space inside the container.
- the method of making the inside of the container into a negative pressure state is not particularly limited.
- a method of making the inside of the container into a negative pressure state for example, a method of sealing the inside of the container while reducing the pressure using a vacuum pump or the like, or a method of accommodating a member that adsorbs gas inside the container. , a method of accommodating a gas soluble in the electrolytic solution in the inside of the container, or the like can be adopted.
- the above methods of creating a negative pressure inside the container can be used singly or in combination.
- a gas soluble in the electrolytic solution is accommodated inside the container.
- a gas that is soluble in the electrolytic solution is contained in the sealed container, and the gas dissolves in the electrolytic solution.
- the pressure inside the container decreases, so that the inside of the container can be brought into a negative pressure state more reliably.
- the pressure on the electrode body caused by the gas soluble in the electrolytic solution contained in the container is due to the atmospheric pressure, the change in the load on the electrode body is small, and the gap between the electrodes is generated. Hateful.
- "a gas soluble in an electrolytic solution” means a gas having a solubility of 1 cm 3 or more in 1 cm 3 of electrolytic solution at 25° C. under 1 atmospheric pressure.
- each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
- a power storage device includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, an electrolytic solution, and a sealable container for containing the electrode assembly and the electrolytic solution. .
- the interior of the container is under negative pressure.
- the container contains a gas soluble in the electrolyte.
- the electrolyte exists in a state contained in the positive electrode, the negative electrode, and the separator.
- a non-aqueous electrolyte secondary battery hereinafter also simply referred to as a "secondary battery" will be described as an example of a storage element with reference to the drawings. Note that the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.
- FIG. 1 shows a power storage element 1 as an example of a square battery.
- FIG. 2 is a schematic cross-sectional view of the storage element in FIG. 1 above.
- the storage element 1 includes a wound electrode body 2 in which a positive electrode and a negative electrode stacked with a separator interposed therebetween are wound, and a positive electrode current collector 14 and a negative electrode current collector 15 connected to both ends of the electrode body 2, respectively. , and a positive electrode terminal 4 and a negative electrode terminal 5 provided in the container 3 .
- the container 3 a known metal container, resin container, or the like, which is usually used as a container for a non-aqueous electrolyte secondary battery, can be used. Examples of the metal include aluminum, stainless steel, nickel-plated steel, and the like.
- the container 3 is made of aluminum or an alloy mainly composed of aluminum.
- the plate thickness of the container is not particularly limited, but may be approximately 0.2 mm to 2 mm (eg, 0.3 mm to 1.5 mm, typically 0.35 mm to 1 mm).
- the container 3 has a flat bottomed rectangular tube-shaped container body 3a and an elongated rectangular plate-like lid 3b capable of closing the elongated rectangular opening of the container body 3a.
- the electrode body 2 is in direct or indirect contact with the inner surface of the container body 3a.
- the container body 3a has a pair of wide side surfaces facing each other, a pair of narrow side surfaces facing each other, and a bottom surface facing the lid 3b, with the electrode body 2 interposed therebetween.
- the electrode body 2 is in direct or indirect contact with the inner surface and the bottom surface of a pair of wide side surfaces of the container body 3a facing each other.
- a positive electrode terminal 4 and a negative electrode terminal 5 that conduct electricity with the outside are provided on the lid 3b.
- the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode current collector 14 connected to the positive electrode substrate
- the negative electrode is electrically connected to the negative electrode terminal 4 via a negative electrode current collector 15 connected to the negative electrode substrate. 5 are electrically connected.
- the inside of the container 3 is in a negative pressure state.
- a negative pressure state that is, a force is generated to pull the container 3 inward
- the gas present between the electrodes is discharged to the outside of the electrode body. Therefore, the electric storage device 1 can reduce the occurrence of gas accumulation between the electrodes.
- the pressure inside the container 3 is preferably 0.09 MPa or less, more preferably 0.085 MPa or less, and further preferably 0.075 MPa or less, from the viewpoint of better exhibiting the effect of reducing the occurrence of gas accumulation between the electrodes. preferable.
- the pressure may be 0.07 MPa or less, or 0.065 MPa or less (eg, 0.055 MPa).
- the lower limit of the internal pressure of the container 3 is not particularly limited, it may be 0.02 MPa, for example.
- the pressure inside the container 3 may be 0.03 MPa or higher, or may be 0.04 MPa or higher (for example, 0.045 MPa or higher) from the viewpoint of negative pressure resistance of the container.
- the technology disclosed herein can be preferably implemented in a mode in which the pressure inside the container 3 is 0.02 MPa or more and 0.09 MPa or less (preferably 0.03 MPa or more and 0.07 MPa or less).
- the container 3 contains a gas soluble in the electrolytic solution. Since the gas soluble in the electrolytic solution is contained in the sealed container 3, the gas dissolves in the electrolytic solution, the pressure inside the container 3 can be effectively lowered, and the inside of the container can be brought into a negative pressure state more reliably.
- the gas soluble in the non-aqueous electrolyte includes, for example, carbon dioxide gas (solubility 5 cm 3 in 1 cm 3 of the non-aqueous electrolyte at 25° C. under 1 atm), Nitrogen gas etc. are mentioned.
- Carbon dioxide which is easy to handle and obtain, is preferable as the gas. Since carbon dioxide readily dissolves in the non-aqueous electrolyte, the expansion and contraction of the electrodes due to charging and discharging causes the gas existing inside the container (gas containing high-concentration carbon dioxide) to flow into the gap between the electrodes. Even if the gas accumulates in the non-aqueous electrolyte, the gas can be quickly dissolved in the non-aqueous electrolyte, and as a result, the gas accumulation can be easily eliminated.
- the content (concentration) of carbon dioxide in the excess space inside the container is not particularly limited, but the inside of the container is preferably in a negative pressure state. etc., the content is preferably 2% by volume or more, more preferably 2.5% by volume or more, and even more preferably 3% by volume or more.
- the carbon dioxide content may be 4% by volume or more, or 5% by volume or more (eg, 6% by volume or more, typically 7% by volume or more).
- the upper limit of the carbon dioxide content is not particularly limited, it may be approximately 100% by volume (eg, 80% by volume).
- the carbon dioxide content may be, for example, 50% by volume or less, or may be 30% by volume or less (eg, 20% by volume or less, typically 15% by volume or less).
- the content (concentration) of carbon dioxide in the electrolyte inside the container is not particularly limited. From the viewpoint of, for example, 0.001% by volume or more, and more preferably 0.003% by volume or more.
- the content (concentration) of carbon dioxide in the electrolytic solution inside the container may be 0.0035% by volume or more, or 0.005% by volume or more.
- the electrolytic solution is a non-aqueous electrolytic solution
- gases that are sparingly soluble or insoluble in the non-aqueous electrolytic solution include oxygen gas, nitrogen gas, and methane gas.
- the content (concentration) of nitrogen in the extra space inside the container may be 50% by volume or less (eg, 45% by volume or less).
- the content (concentration) of nitrogen may be 40% by volume or less, or 30% by volume or less.
- the lower limit of the nitrogen content is not particularly limited, it can be approximately 10% by volume.
- the nitrogen content may be, for example, 15% by volume or more, or may be 20% by volume or more.
- the gas soluble in the non-aqueous electrolyte is accommodated in the container so that the nitrogen concentration is as described above, so that the gas between the electrodes is A negative pressure state suitable for reducing the occurrence of gas accumulation can be achieved.
- the total volume of gases other than nitrogen gas and oxygen gas e.g., carbon dioxide gas, methane gas, carbon monoxide gas, hydrogen gas, etc.
- the proportion of carbon dioxide may be 4% by volume or more (for example, 4% by volume or more and 20% by volume or less).
- the proportion of carbon dioxide is preferably 6% by volume or more (eg, 6% by volume or more and 18% by volume or less), more preferably 8% by volume or more (eg, 8% by volume or more and 16% by volume or less). In some embodiments, the proportion of carbon dioxide may be 10% by volume or more, or 12% by volume or more.
- a member capable of adsorbing a gas soluble in the electrolytic solution is further accommodated in the container.
- the content (concentration) of the gas soluble in the electrolytic solution in the excess space inside the container is easily reduced,
- the inside of the container is in a more suitable negative pressure state, the gas between the electrodes can be more easily discharged to the outside of the electrode body. Therefore, it is possible to further improve the effect of reducing the occurrence of gas accumulation between the electrodes.
- the gas soluble in the electrolytic solution is also adsorbed by the member capable of adsorbing the gas soluble in the electrolytic solution, the time required for the inside of the container to become in a negative pressure state after the container is sealed. can be shortened.
- the electrode body 2 may be of a wound type in which positive electrodes and negative electrodes are laminated with separators interposed therebetween and wound, or may be of a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are laminated with separators interposed therebetween.
- the electrode body 2 is a flat wound electrode body. In the wound electrode body, the gas generated between the electrodes is less likely to be discharged out of the electrode body than in the laminated electrode body.
- the electrode body 2 has two winding R portions and two flat portions. The two flat portions correspond to the flat portions of the outer wall side surface forming the electrode body 2, and are arranged to face the wide side surfaces of the inner wall side forming the container body.
- the two flat portions are arranged so as to be in contact with the wide side surface of the container body.
- the two winding R portions correspond to the curved portions (curved portions) of the outer wall side surfaces of the electrode body 2, and are arranged facing the bottom surface and the lid of the container body, respectively.
- the two winding R portions are arranged so as not to come into contact with the wide side surface of the container body.
- the flat portion (flat surface) is pressed in the thickness direction (the direction of the short side of the rectangular plate-like lid and the stacking direction of the positive electrode, the negative electrode, and the separator). By compressing the flat portion (flat surface) of the electrode body 2 in the thickness direction in this way, it is possible to further reduce the occurrence of gas accumulation between the electrodes.
- the electrode body 2 When the electrode body 2 is of a winding type, the electrode body 2 may further include a winding core in the central portion and may be wound around the winding core.
- the core may have either a hollow structure or a solid structure, but a hollow core is preferred. Since the electrode body 2 is provided with a core having a hollow structure, the gas soluble in the electrolytic solution is sealed in the state where the hollow region is formed at the center of the electrode body 2, so that the pressure inside the container 3 is reduced. can be lowered more effectively.
- the positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
- a positive electrode base material has electroconductivity. Whether or not a material has "conductivity" is determined using a volume resistivity of 10 7 ⁇ cm as a threshold measured according to JIS-H-0505 (1975).
- the material for the positive electrode substrate metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
- the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloys include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H4160 (2006).
- the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
- the intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer.
- the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer.
- the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
- the positive electrode active material layer contains a positive electrode active material.
- the positive electrode active material layer contains arbitrary components such as a conductive agent, a binder (binding agent), a thickener, a filler, etc., as required.
- the positive electrode active material can be appropriately selected from known positive electrode active materials.
- a positive electrode active material for lithium ion secondary batteries a material capable of intercalating and deintercalating lithium ions is usually used.
- positive electrode active materials include lithium-transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, polyanion compounds, chalcogen compounds, and sulfur.
- lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Co (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[ Li x Ni ⁇ Mn (1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1), Li[Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ]O 2 ( 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1) and the like.
- lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
- polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like.
- chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide.
- the atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
- the positive electrode active material is composed of a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure in terms of charge/discharge performance, energy density, and the like.
- the lithium-transition metal composite oxide nickel-containing lithium-transition metal composite oxide containing at least nickel (Ni) as a constituent element in addition to Li, cobalt-containing lithium-transition metal composite oxide containing at least cobalt (Co) as a constituent element
- Examples include oxides, manganese-containing lithium transition metal composite oxides containing at least manganese (Mn) as a constituent element, and the like. Among them, nickel-containing lithium-transition metal composite oxides are preferred, and lithium-transition metal composite oxides containing nickel, manganese and cobalt are more preferred.
- the positive electrode active material is usually particles (powder).
- the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material.
- Average particle size is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%.
- Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size.
- Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
- wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
- a sieve, an air classifier, or the like is used as necessary, both dry and wet.
- the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
- the conductive agent is not particularly limited as long as it is a conductive material.
- Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics.
- Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
- Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
- Examples of carbon black include furnace black, acetylene black, and ketjen black.
- Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
- the shape of the conductive agent may be powdery, fibrous, or the like.
- As the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
- a composite material of carbon black and CNT may be used.
- carbon black is preferable from the viewpoint of electron conductivity and coatability
- acetylene black is particularly preferable
- the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
- Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
- fluorine resins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
- thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide
- EPDM ethylene-propylene-diene rubber
- SBR styrene-butadiene rubber
- fluororubber polysaccharide polymers and the like.
- the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
- thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
- CMC carboxymethylcellulose
- methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
- the functional group may be previously deactivated by methylation or the like.
- the filler is not particularly limited.
- Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
- the positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like.
- typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
- the mass per unit area of the positive electrode active material layer (one side) is not particularly limited, but may be, for example, 2.0 mg/cm 2 or more and 30.0 mg/cm 2 or less in terms of solid content.
- the mass per unit area of the positive electrode active material layer is preferably 3.0 mg/cm 2 or more and 20.0 mg/cm 2 or less, more preferably 4.0 mg/cm 2 or more and 15.0 mg/cm 2 or less, and 5.0 mg. /cm 2 or more and 10.0 mg/cm 2 or less is more preferable.
- the negative electrode has a negative electrode base material and a negative electrode active material layer disposed directly on the negative electrode base material or via an intermediate layer.
- the structure of the intermediate layer is not particularly limited, and can be selected from, for example, the structures exemplified for the positive electrode.
- the negative electrode base material has conductivity.
- materials for the negative electrode substrate metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
- the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
- Examples of copper foil include rolled copper foil and electrolytic copper foil.
- the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
- the negative electrode active material layer contains a negative electrode active material.
- the negative electrode active material layer contains arbitrary components such as a conductive agent, a binder, a thickener, a filler, etc., as required.
- Optional components such as conductive agents, binders, thickeners, and fillers can be selected from the materials exemplified for the positive electrode.
- the negative electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. are used as negative electrode active materials, conductive agents, binders, You may contain as a component other than a thickener and a filler.
- the negative electrode active material can be appropriately selected from known negative electrode active materials. Materials capable of intercalating and deintercalating lithium ions are usually used as negative electrode active materials for lithium ion secondary batteries.
- the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done.
- non-graphitic carbon especially non-graphitizable carbon
- one type of these materials may be used alone, or two or more types may be mixed and used.
- Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
- Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
- Non-graphitic carbon means a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less.
- Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon.
- Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.
- the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging.
- the open circuit voltage is 0.7 V or higher.
- non-graphitizable carbon refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.
- Graphitizable carbon refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.
- the negative electrode active material is usually particles (powder).
- the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
- the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphate compound
- the average particle size may be 1 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like
- the average particle size may be 1 nm or more and 1 ⁇ m or less.
- the electron conductivity of the active material layer is improved.
- a pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size.
- the pulverization method and the powder class method can be selected from, for example, the methods exemplified for the positive electrode.
- the negative electrode active material is metal such as metal Li
- the negative electrode active material may be foil-shaped.
- the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
- the mass per unit area of the negative electrode active material layer (one side) is not particularly limited, but may be, for example, 0.5 mg/cm 2 or more and 20.0 mg/cm 2 or less in terms of solid content.
- the mass per unit area of the negative electrode active material layer is preferably 0.8 mg/cm 2 or more and 15.0 mg/cm 2 or less, more preferably 1.0 mg/cm 2 or more and 10.0 mg/cm 2 or less, and 2.0 mg. /cm 2 or more and 7.0 mg/cm 2 or less is more preferable.
- the lower limit of the compressive elastic modulus of the separator of the electric storage element of the present embodiment is 15 MPa, preferably 17 MPa, more preferably 19 MPa (eg, 20 MPa).
- the compressive elastic modulus of the separator is equal to or higher than the lower limit, compression of the separator is suppressed when pressed, and the effect of reducing gas accumulation between electrodes can be improved.
- the upper limit of the compression modulus of the separator is preferably 50 MPa, more preferably 40 MPa, and even more preferably 30 MPa.
- the compressive elastic modulus of the separator When the compressive elastic modulus of the separator is equal to or less than the upper limit, the compressive force applied to the electrode assembly is less likely to be biased, and the effect of reducing gas accumulation between the electrodes can be improved.
- a separator having such a compressive elastic modulus is also suitable from the viewpoint of reducing the resistance of the storage element.
- the compressive modulus of the separator can be adjusted by changing the porosity, material, drawing method, and molecular weight in the case of a polymer material.
- the relationship between the compressive elastic modulus X (MPa) of the separator and the pressure P (absolute pressure: MPa) inside the container satisfies 180 ⁇ (X/P) ⁇ 600. Fulfill.
- MPa compressive elastic modulus X
- P absolute pressure: MPa
- the relationship between X and P is 200 ⁇ (X/P) ⁇ 580, more preferably 220 ⁇ (X/P) ⁇ 550, and still more preferably 300 ⁇ (X/P ) ⁇ 500, particularly preferably 350 ⁇ (X/P) ⁇ 450.
- a separator having an appropriate compressive elastic modulus can be appropriately selected and used from known separators.
- the separator for example, a separator consisting of only a substrate layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one or both surfaces of a substrate layer, or the like can be used.
- the form of the base material layer of the separator include woven fabric, non-woven fabric, porous resin film, and the like. Among these forms, a porous resin film is preferable from the viewpoint of strength.
- Materials for the base layer of the separator include polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyacrylonitrile; Sulfide, polyimide, fluorine resin and the like are included. Among these, polyolefin is preferred. Copolymers of monomers constituting these resins may also be used.
- the base material layer of the separator is made of polyethylene resin.
- the polyethylene-based resin an ethylene homopolymer or an ethylene copolymer is preferably used.
- ethylene copolymer a resin containing 50% by mass or more of repeating units derived from ethylene, a copolymer obtained by polymerizing an olefin copolymerizable with ethylene, or at least one copolymerizable with ethylene.
- a copolymer obtained by polymerizing the monomers of can be used.
- Propylene etc. are illustrated as ethylene and an olefin which can be copolymerized.
- Other monomers include conjugated dienes (eg, butadiene), acrylic acid, and the like.
- a uniaxially stretched or biaxially stretched porous resin film can be suitably used as the substrate layer of the separator.
- a porous resin film uniaxially stretched in the longitudinal direction can be preferably used.
- "uniaxial stretching” refers to stretching only in one direction (e.g., longitudinal direction) in the process of stretching a resin film at a temperature equal to or higher than the glass transition temperature to orient the molecules. It refers to stretching in two directions (for example, the longitudinal direction and the width direction).
- the width direction refers to a direction parallel to the conveying surface of the resin film and perpendicular to the longitudinal direction.
- a dry base material layer in which dry stretching e.g., uniaxial stretching
- a wet state e.g., a state in which a raw material resin and a solvent are mixed
- a wet base layer employing wet stretching can be used.
- a dry base layer is preferable.
- the dry stretching of the microporous membrane can be performed by roll stretching or the like while heating.
- a dry-stretched base material layer is particularly preferable because it is easy to adjust the compressive modulus of the separator to the preferred numerical value disclosed herein, and has moderate strength and less heat shrinkage in the width direction. .
- the structure of the substrate layer may be a single layer structure, a mixed structure (for example, a mixed structure of PP and PE), or a multilayer structure (for example, a three-layer structure of PP/PE/PP or a PP /PE two-layer structure). Among them, a three-layer structure of PP/PE/PP is preferable.
- the porosity of the base layer of the separator is not particularly limited, but the lower limit is preferably 20% by volume, more preferably 30% by volume. In some aspects, the porosity of the separator may be, for example, 35% by volume or more, typically 40% by volume or more. On the other hand, the upper limit of the porosity is preferably 80% by volume, more preferably 70% by volume. In some embodiments, the porosity of the separator may be, for example, 65% by volume or less, typically 60% by volume or less (eg, 55% by volume or less). The porosity of the separator may be, for example, 50% by volume or less, or may be 45% by volume or less.
- the "porosity" is a volume-based value and means a value measured with a mercury porosimeter.
- the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500 ° C. in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800 ° C. is more preferably 5% or less.
- An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
- carbonates such as calcium carbonate
- sulfates such as barium sulfate
- sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate
- covalent crystals such as silicon and diamond
- Mineral resource-derived substances such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
- the inorganic compound a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used.
- silicon oxide, aluminum oxide, boehmite, or aluminosilicate is preferable from the viewpoint of the safety of the electric storage device.
- the thickness of the separator (the total thickness of the base layer and the heat-resistant layer when the heat-resistant layer is included) is not particularly limited, but the lower limit is preferably 3 ⁇ m, more preferably 5 ⁇ m. In some embodiments, the thickness of the separator may be, for example, 8 ⁇ m or greater, typically 10 ⁇ m or greater. On the other hand, the upper limit of the heat is preferably 30 ⁇ m, more preferably 25 ⁇ m. In some embodiments, the thickness of the separator may be, for example, 20 ⁇ m or less, typically 15 ⁇ m or less (eg, 12 ⁇ m or less).
- a non-aqueous electrolyte As the electrolyte, a non-aqueous electrolyte is used when the storage element is a non-aqueous electrolyte secondary battery.
- the non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
- the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in this non-aqueous solvent.
- the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
- Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
- the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used.
- Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, EC and PC are preferred.
- chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like.
- DEC diethyl carbonate
- DMC dimethyl carbonate
- EMC ethylmethyl carbonate
- diphenyl carbonate trifluoroethylmethyl carbonate
- trifluoroethylmethyl carbonate trifluoroethylmethyl carbonate
- bis(trifluoroethyl) carbonate and the like.
- the non-aqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate.
- a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
- a chain carbonate By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
- the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
- the electrolyte salt can be appropriately selected from known electrolyte salts.
- electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts and the like. Among these, lithium salts are preferred.
- Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), lithium difluorooxalate borate (LiFOB).
- lithium oxalate salts such as lithium bis(oxalate) difluorophosphate ( LiFOP ), LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) (SO 2 C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiC(SO 2 C 2 F 5 ) 3 and other lithium salts having a halogenated hydrocarbon group.
- inorganic lithium salts are preferred, and LiPF6 is more preferred.
- the content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm3 or more and 2.5 mol/dm3 or less , and 0.3 mol/dm3 or more and 2.0 mol/dm3 or less at 20 °C and 1 atm. It is more preferably 3 or less, more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
- the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
- additives include halogenated carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), lithium bis(oxalate ) oxalates such as difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene
- the content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolyte. More preferably, it is 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less.
- the shape of the electric storage element of the present embodiment is not particularly limited, for example, a flat rectangular battery is preferable. Since the shape of the storage element is a flat rectangular battery, when the inside of the container is in a negative pressure state, a force that pulls the container inward is generated, so that at least one side surface of the container body is likely to be dented. . Since the side surface of the electrode body that faces the recessed side surface of the container body is pressurized in the thickness direction by the negative pressure, the gas between the electrodes is more easily discharged outside the electrode body, and the occurrence of gas accumulation between the electrodes is reduced. can improve effectiveness.
- the method for manufacturing the electric storage element of the present embodiment includes, for example, housing an electrode body in which a negative electrode and a positive electrode are stacked in a container (hereinafter also referred to as an electrode body housing step), and housing an electrolytic solution in the container (hereinafter also referred to as an electrode body housing step). , also referred to as an electrolytic solution accommodating step), creating a negative pressure state inside the container (hereinafter also referred to as a negative pressure forming step), and sealing the container (hereinafter also referred to as a sealing step).
- a container housing step also referred to as an electrode body housing step
- an electrolytic solution accommodating step also referred to as an electrolytic solution accommodating step
- creating a negative pressure state inside the container hereinafter also referred to as a negative pressure forming step
- sealing step hereinafter also referred to as a sealing step.
- the negative pressure forming step includes accommodating a gas soluble in the electrolytic solution in the container after the electrolytic solution accommodating step and before the sealing step (hereinafter also referred to as a gas accommodating step).
- a gas accommodating step a gas soluble in the electrolytic solution in the container after the electrolytic solution accommodating step and before the sealing step.
- other steps include, for example, forming a positive electrode (hereinafter also referred to as a positive electrode forming step) and forming a negative electrode (hereinafter also referred to as a negative electrode forming step). (hereinafter also referred to as an electrode body forming step).
- a positive electrode having a positive electrode base material and a positive electrode active material layer is formed.
- the positive electrode material mixture containing the positive electrode active material is applied to the positive electrode substrate so that the positive electrode mixture can be arranged along at least one surface of the positive electrode substrate.
- the positive electrode active material layer is arranged by coating the positive electrode mixture on the positive electrode base material and drying it.
- the positive electrode mixture may be a positive electrode mixture paste that further contains a dispersion medium in addition to the above optional components.
- a dispersion medium examples include aqueous solvents such as water and mixed solvents mainly containing water; and organic solvents such as N-methylpyrrolidone (NMP) and toluene.
- the positive electrode active material layer may be laminated on the positive electrode substrate directly or via an intermediate layer.
- a negative electrode having a negative electrode base material and a negative electrode active material layer is formed.
- the negative electrode mixture containing the negative electrode active material is applied to the negative electrode substrate, so that the negative electrode mixture can be arranged along at least one surface of the negative electrode substrate.
- the negative electrode active material layer is arranged by coating the negative electrode mixture on the negative electrode base material and drying it.
- the negative electrode mixture may be a negative electrode mixture paste containing a dispersion medium in addition to the optional components described above.
- the dispersion medium can be arbitrarily selected from those exemplified in the positive electrode forming step.
- the negative electrode active material layer may be laminated on the negative electrode substrate directly or via an intermediate layer.
- an electrode assembly is formed using the positive electrode and the negative electrode.
- the electrode body is preferably a flat wound electrode body having a pair of winding R portions facing each other and a flat portion positioned between the pair of winding R portions.
- the positive electrode and the negative electrode are stacked or wound with the separator interposed therebetween to form an alternately stacked electrode body.
- Electrode assembly step In the electrode body accommodating step, the electrode body in which the negative electrode and the positive electrode are laminated is accommodated in a container.
- the electrolytic solution accommodating step the electrolytic solution is accommodated in the container.
- the electrolytic solution can be accommodated by a known method.
- the electric storage element is a non-aqueous electrolyte secondary battery
- the non-aqueous electrolyte is contained in the container by, for example, pouring the non-aqueous electrolyte through an inlet provided in the container.
- the gas soluble in the electrolyte is accommodated in the container.
- a gas soluble in the electrolytic solution is injected into the container through the injection port, so that the gas soluble in the electrolytic solution is contained in the container.
- the injection of the gas soluble in the electrolytic solution may be performed at atmospheric pressure, or may be performed in a state where the pressure inside the container is reduced using a vacuum pump or the like.
- reduced pressure means that the pressure in the excess space inside the container is less than the atmospheric pressure.
- the gas accommodation step is performed in a pressurized state, the gas soluble in the electrolyte solution is too dissolved in the electrolyte solution before sealing, so the gas soluble in the electrolyte solution is dissolved in the electrolyte solution after the sealing step. Furthermore, it becomes difficult to dissolve, and there is a risk that the inside of the container will not be in a sufficiently negative pressure state.
- the injection port may be provided separately from the injection port for injecting the electrolytic solution.
- the inside of the container is in a negative pressure state.
- Accommodating a gas that is soluble in the electrolytic solution can be mentioned.
- the gas dissolves in the electrolytic solution after the sealing step, thereby increasing the pressure inside the container. can be brought down to a suitable negative pressure inside the container.
- the electrolytic solution is accommodated in the container after the gas soluble in the electrolytic solution is accommodated in the container, most of the gas soluble in the electrolytic solution is contained in the electrolytic solution when the electrolytic solution is accommodated.
- the gas soluble in the electrolyte dissolves too much in the electrolyte before the sealing step (for example, saturated dissolution). That is, if too much gas soluble in the electrolytic solution dissolves in the electrolytic solution before the sealing step, it becomes difficult for the gas soluble in the electrolytic solution to further dissolve in the electrolytic solution after the sealing step. It may not be possible to effectively reduce the pressure inside the container.
- precharging is performed, and after the pressure inside the container is reduced using a vacuum pump or the like, the pressure inside the container is adjusted to near atmospheric pressure. It is preferable to inject a gas soluble in the electrolytic solution.
- the pressure inside the container immediately after injection of the gas soluble in the electrolytic solution is an important factor from the viewpoint of bringing the inside of the container into a suitable negative pressure state after the sealing step.
- the pressure inside the container immediately after injection of the gas soluble in the electrolytic solution is preferably 0.1 MPa or more and 0.2 MPa or less, more preferably 0.1 MPa or more and 0.15 MPa or less, further preferably 0.1 MPa or more and 0.1 MPa or more. 0.12 MPa or less, particularly preferably 0.1 MPa or more and 0.11 MPa or less.
- the amount of the gas soluble in the electrolytic solution is preferably 40% by volume or more with respect to the volume of the excess space inside the container from the viewpoint of reducing the pressure inside the container, and is preferably 70% by volume. % or more, and may be, for example, 95 volume % or more.
- the capacity of the gas soluble in the electrolytic solution may be 100% by volume with respect to the volume of the excess space inside the container.
- the amount of gas soluble in the electrolytic solution is preferably 70% by volume or more and 100% by volume or less, more preferably 80% by volume or more with respect to the volume of the excess space inside the container. It can be preferably carried out in a mode of 95% by volume or less.
- the volume of the surplus space in the container means the volume obtained by subtracting the volume of the structure such as the electrode body, the electrolytic solution, and the current collector from the internal volume of the container.
- the volume of the electrode body means the actual volume of the constituent elements (active material, separator, etc.) of the electrode, and does not include the voids present between the active materials and within the separator. That is, the volume of the surplus space inside the container means the volume of the gas contained inside the container when the pressure inside the container is 1 atm (0.1013 MPa) at 25°C.
- the content of the gas soluble in the electrolyte contained in the container is 80 volumes with respect to the total gas contained in the container from the viewpoint of reducing the pressure inside the container. % or more, preferably 98 volume % or more, more preferably 100 volume %. From the viewpoint of easy handling of the gas, the content of the gas soluble in the electrolytic solution may be 80% by volume or less of the total amount of gas contained in the container.
- the container is sealed while the gas soluble in the electrolytic solution is contained in the container.
- the storage device can be obtained by sealing the injection port after the gas is contained in the container.
- the injection port is sealed, for example, by closing the injection port with a sealing member and fixing the sealing member by laser welding or the like.
- the sealing process must be performed immediately after sealing the gas soluble in the electrolyte. If the gas soluble in the electrolyte solution is left for a long time after sealing, the gas soluble in the electrolyte solution will dissolve too much in the electrolyte solution before the sealing process, so the gas soluble in the electrolyte solution will not be dissolved after the sealing process. becomes more difficult to dissolve in the electrolytic solution, and the interior of the container may not be in a sufficiently negative pressure state. As for the elapsed time from the accommodation of the gas soluble in the electrolyte to the sealing of the injection port, the gas soluble in the electrolyte before the sealing process dissolves in the electrolyte, or the gas passes through the injection port by diffusion.
- the elapsed time is preferably 30 minutes or less (eg, 1 to 30 minutes), more preferably 20 minutes or less, even more preferably 15 minutes or less, and particularly preferably 10 minutes or less (eg, 5 minutes or less).
- the step of temporarily sealing the injection port is, for example, a step of temporarily closing the injection port using a rubber plug member or the like.
- the injection port may be closed with the sealing member, and the sealing member may be fixed by laser welding or the like.
- a sealing member may be arranged to cover the plug member or the like for closing the injection port, and the sealing member may be fixed by laser welding or the like.
- the internal pressure of the container when the dissolution of the gas soluble in the electrolytic solution into the electrolytic solution reaches an equilibrium state effectively suppresses an increase in the distance between the electrodes. From the point of view, it is preferably 0.02 MPa or more and 0.09 MPa or less at 25°C.
- the pressure inside the container immediately after sealing is preferably 0.1 MPa or more and 0.2 MPa or less. That is, immediately after the sealing process, most of the gas soluble in the electrolyte solution is not dissolved in the electrolyte solution, and after the sealing process, the gas soluble in the electrolyte solution is dissolved in the electrolyte solution. , the pressure inside the container can be reduced.
- the details of the electrode body, the electrolyte, the gas soluble in the electrolyte, the container, etc. in the method of manufacturing the electric storage element are as described above.
- the electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
- the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
- some of the configurations of certain embodiments can be deleted.
- well-known techniques can be added to the configuration of a certain embodiment.
- the flat-shaped wound electrode body has two winding R portions and two flat portions, and the two flat portions are the wide width portion constituting the container body.
- the two winding R portions are arranged to face the wide side surface so as to be in direct or indirect contact with the wide side surface, and the two winding R portions are arranged so as not to contact the wide side surface.
- the two winding R portions may be arranged so as to face the narrow side surfaces of the container body so as not to come into contact with the wide side surfaces. Since such a wound electrode body is more resistant to gas accumulation than a laminated electrode body, the effect of applying this aspect can be exhibited more effectively.
- the present invention is not limited to this.
- a method of making the inside of the container into a negative pressure state a method of sealing the inside of the container while reducing the pressure inside the container using a vacuum pump or the like may be adopted.
- the negative pressure forming step may include a pressure reducing step of reducing the pressure inside the container using a vacuum pump or the like instead of the gas containing step.
- Such a depressurization step can be performed after the electrolytic solution accommodating step and before the sealing step.
- the storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the storage element are arbitrary. be.
- the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
- the power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage.
- EV electric vehicles
- HEV hybrid vehicles
- PHEV plug-in hybrid vehicles
- power sources for electronic devices such as personal computers and communication terminals
- power sources for power storage
- it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements 1 .
- the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
- FIG. 3 shows an example of a power storage device 30 in which power storage units 20 each including two or more electrically connected power storage elements 1 are assembled.
- the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
- the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements 1 .
- Examples 1 to 3 and Comparative Examples 1 to 3 (1) Positive electrode formation step LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, PVDF as a binder, and acetylene black as a conductive agent are contained, and NMP is used as a dispersion medium.
- a positive electrode mixture paste was prepared. The ratio of the positive electrode active material, the binder, and the conductive agent was set to 90:5:5 in mass ratio in terms of solid content.
- the positive electrode mixture paste was applied to both sides of a 12 ⁇ m thick aluminum foil as a positive electrode base material and dried to form a positive electrode active material layer. was obtained.
- the coating amount of the positive electrode mixture (a product obtained by evaporating the dispersion medium from the positive electrode mixture paste) per unit area on one side after drying was set to 8.5 mg/cm 2 .
- Negative Electrode Forming Step A negative electrode mixture paste containing non-graphitizable carbon as a negative electrode active material, PVDF as a binder, and NMP as a dispersion medium was prepared. The ratio of the negative electrode active material and the binder was set to 95:5 in terms of solid content mass ratio. The negative electrode mixture paste was applied to both sides of a copper foil having a thickness of 8 ⁇ m as a negative electrode base material and dried to form a negative electrode active material layer. was obtained. The coating amount of the negative electrode mixture (a dispersion medium evaporated from the negative electrode mixture paste) per unit area on one side after drying was set to 4 mg/cm 2 .
- Electrode body forming step The negative electrode and positive electrode described above and a separator having a thickness of 20 ⁇ m having the compression elastic modulus and porosity shown in Table 1 are laminated and wound around a core having a hollow structure. Thus, wound electrode bodies of Examples 1 to 3 and Comparative Examples 1 to 3 were produced.
- As the separator material Examples 1 to 3 and Comparative Example 2 used a dry porous resin film separator with a three-layer structure made of PP/PE/PP, and Comparative Examples 1 and 3 used a single PE film separator. A layer wet porous resin film separator was used.
- Electrode Body Accommodating Step The electrode body was accommodated in a flat bottomed prismatic container body made of an aluminum alloy.
- Electrolyte Solution Accommodating Step A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/dm 3 in a non-aqueous solvent in which PC, DMC and EMC were mixed at a volume ratio of 1:1:1.
- a non-aqueous solvent in which PC, DMC and EMC were mixed at a volume ratio of 1:1:1.
- 30 cm 3 of the prepared electrolytic solution was accommodated in the container.
- the volume of the extra space inside the container was 12 cm 3 .
- the compressive elastic modulus (MPa) of the separator was measured by pressing a cylindrical indenter with a diameter of 50 mm against a sample of 200 laminated separators at 30°C using a load cell type creep tester (manufactured by Mise Tester Co., Ltd.). After the compressive stress reached 1 MPa, the stress state was maintained, and the amount of change in thickness ( ⁇ m) of the separator after 1 hour was measured and calculated by the above formula.
- Examples 1 to 3 in which the compression elastic modulus of the separator is 15 MPa or more and the inside of the container is in a negative pressure state, are excellent in the effect of reducing the generation of gas pools between the electrodes. rice field.
- the lower the compressive modulus of elasticity of the separator and the pressure inside the container the better the effect of reducing the generation of gas pools between the electrodes.
- Comparative Examples 1 and 3 in which the compressive elastic modulus of the separator was less than 15 MPa, could not obtain the effect of reducing the occurrence of gas accumulation between the electrodes regardless of the internal pressure of the container.
- the separator has a compressive elasticity modulus of 15 MPa or more, and the inside of the container is in a negative pressure state, so that the occurrence of gas accumulation between the electrodes can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明の一実施形態に係る蓄電素子は、セパレータを介して正極及び負極が積層された電極体と、電解液と、上記電極体及び上記電解液を収容するための密閉可能な容器とを備える。上記容器の内部は負圧状態である。この実施形態では、上記容器の内部に電解液に可溶な気体が収容されている。電解液は、正極、負極及びセパレータに含まれた状態で存在する。以下、図面を参照しながら、蓄電素子の一例として、非水電解液二次電池(以下、単に「二次電池」ともいう。)について説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
電極体2は、正極及び負極がセパレータを介して積層された状態で巻回された巻回型であってもよく、複数の正極及び複数の負極がセパレータを介して積層された積層型であってもよい。この実施形態では、電極体2は、扁平形状の巻回電極体である。巻回電極体は、積層型の電極体に比べて電極間に発生するガスが電極体外に排出されにくいため、本態様を適用することによる効果がより効果的に発揮され得る。この実施形態では、電極体2は、2つの巻回R部と、2つの平坦部とを有する。2つの平坦部は、電極体2を構成する外壁側面の扁平部分に相当し、それぞれ、容器本体を構成する内壁側面の幅広な側面に対向して配置されている。この実施形態1では、2つの平坦部は、容器本体の幅広な側面と接するように配置されている。2つの巻回R部は、電極体2を構成する外壁側面の曲率部分(湾曲部分)に相当し、それぞれ、容器本体の底面および蓋体に面して配置されている。2つの巻回R部は、容器本体の幅広な側面と接しないように配置されている。かかる構成によると、上記容器3の内部を負圧状態にすることで、容器3を内側に向けて引く力が生じて容器3の少なくとも一つの幅広な側面が撓み、扁平状の電極体2の平坦部(扁平面)が厚さ方向(矩形板状の蓋体における短辺方向であって、正極、負極及びセパレータの積層方向)に圧迫される。このように、電極体2の平坦部(扁平面)を厚さ方向に圧迫することで、電極間のガス溜りの発生をより良く低減することができる。
正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
本実施形態の蓄電素子のセパレータの圧縮弾性率の下限は、15MPaであり、17MPaが好ましく、19MPa(例えば20MPa)がより好ましい。上記セパレータの圧縮弾性率が上記下限以上であることで、圧迫時におけるセパレータの圧縮が抑制され、電極間のガス溜りの発生の低減効果を向上できる。一方、上記セパレータの圧縮弾性率の上限は、50MPaが好ましく、40MPaがより好ましく、30MPaがさらに好ましい。上記セパレータの圧縮弾性率が上記上限以下であることで、電極体にかかる圧迫力が偏りにくくなり、電極間のガス溜まりの発生の低減効果を向上できる。かかる圧縮弾性率を有するセパレータは、蓄電素子の抵抗低減の観点からも好適である。上記セパレータの圧縮弾性率は、空孔率や材料、延伸方法、高分子材料の場合は分子量等を変えることによって、調整することができる。
圧縮弾性率=1/{セパレータの1枚当たりの厚さ変化量(μm)/セパレータ1枚の圧縮前の厚さ(μm)}
電解液としては、当該蓄電素子が非水電解液二次電池である場合、非水電解液が用いられる。非水電解液としては、公知の非水電解液の中から適宜選択できる。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
本実施形態の蓄電素子の形状については特に限定されるものではないが、例えば、偏平の角型電池が好ましい。当該蓄電素子の形状が偏平の角型電池であることで、容器の内部が負圧状態の場合、容器を内側に向けて引く力が生じることにより、容器本体の少なくとも一つの側面が凹みやすくなる。負圧により凹んだ容器本体の側面に対向する電極体の側面が厚さ方向に加圧されるので、電極間のガスがより電極体外に排出されやすくなり、電極間のガス溜りの発生の低減効果を向上できる。
本実施形態の蓄電素子の製造方法は、例えば負極及び正極が積層された電極体を容器に収容すること(以下、電極体収容工程ともいう。)、電解液を上記容器に収容すること(以下、電解液収容工程ともいう。)、上記容器の内部を負圧状態にすること(以下、負圧形成工程ともいう。)、及び、上記容器を密閉すること(以下、密閉工程ともいう。)を備える。この実施形態では、上記負圧形成工程は、上記電解液収容工程後かつ上記密閉工程前に、上記電解液に可溶な気体を上記容器に収容すること(以下、気体収容工程ともいう。)を備える。さらに、当該蓄電素子の製造方法は、その他の工程として、例えば、正極を形成すること(以下、正極形成工程ともいう。)、負極を形成すること(以下、負極形成工程ともいう。)電極体を形成すること(以下、電極体形成工程ともいう。)等を備えることができる。
正極形成工程では、正極基材及び正極活物質層を有する正極を形成する。上記正極形成工程では、正極活物質を含有する正極合剤を正極基材へ塗工することにより正極合剤を正極基材の少なくとも一方の面に沿って配置することができる。具体的には、例えば正極基材に正極合剤を塗工して乾燥することにより正極活物質層を配置する。
負極形成工程では、負極基材及び負極活物質層を有する負極を形成する。上記負極形成工程では、負極活物質を含有する負極合剤を負極基材に塗工することにより負極合剤を負極基材の少なくとも一方の面に沿って配置することができる。具体的には、例えば負極基材に負極合剤を塗工して乾燥することにより負極活物質層を配置する。また、上記負極合剤は、上述の任意成分以外に、さらに分散媒を含んだ状態である負極合剤ペーストであってもよい。分散媒は、上記正極形成工程で例示したものから任意に選択できる。負極活物質層は、負極基材に直接又は中間層を介して積層されてもよい。
電極体形成工程では、上記正極及び上記負極を用いて電極体を形成する。上記電極体は、対向する一対の巻回R部と、上記一対の巻回R部の間に位置する平坦部とを有する扁平形状の巻回型電極体であると好ましい。当該蓄電素子の電極体形成工程では、上述のセパレータを介して上記正極及び負極を積層又は巻回することにより、交互に重畳された電極体を形成する。
電極体収容工程では、負極及び正極が積層された電極体を容器に収容する。
電解液収容工程では、上記電解液を上記容器に収容する。電解液の収容は、公知の方法により行うことができる。当該蓄電素子が非水電解液二次電池の場合は、例えば容器に設けられた注入口から非水電解液を注入することで上記非水電解液を上記容器に収容する。
気体収容工程では、上記電解液収容工程の後、上記電解液に可溶な気体を容器に収容する。具体的には、上記電解液を上記容器に収容した後、上記容器に上記電解液に可溶な気体を上記注入口から注入することで上記電解液に可溶な気体を容器に収容する。上記電解液に可溶な気体の注入は、大気圧で実施してもよく、真空ポンプ等を用いて容器の内部の圧力を減圧した状態で実施してもよい。ここで、「減圧」とは、容器の内部の余剰空間の圧力が大気圧未満であることをいう。なお、気体収容工程を加圧した状態で実施すると、封口前の電解液に上記電解液に可溶な気体が溶けすぎるため、密閉工程の後に上記電解液に可溶な気体が上記電解液にさらに溶解することが困難になり、上記容器の内部が十分に負圧状態にならないおそれがある。また、上記注入口は、上記電解液を注入するための注入口と別に設けられていてもよい。
密閉工程では、上記電解液に可溶な気体が上記容器に収容された状態で上記容器を密閉する。具体的には、上記容器に上記気体を収容した後に注入口を封止することにより蓄電素子を得ることができる。注入口の封止は、例えば、上記注入口を封止部材で塞ぎ、上記封止部材をレーザ溶接等により固定することにより行われる。
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。例えば、上述した実施形態では、上記扁平形状の巻回電極体は、2つの巻回R部と、2つの平坦部とを有し、上記2つの平坦部は、上記容器本体を構成する上記幅広な側面と直接又は間接的に接するように、該幅広な側面に対向して配置され、上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体を構成する底面および蓋体に面して配置されている場合を例示したが、これに限定されない。上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体を構成する幅狭な側面に面して配置されていてもよい。かかる巻回電極体は、積層型の電極体に比べてガス溜りが抜けにくいため、本態様を適用することによる効果がより効果的に発揮され得る。
図3に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
(1)正極形成工程
正極活物質としてのLiNi1/3Co1/3Mn1/3O2と、バインダとしてのPVDFと、導電剤としてのアセチレンブラックとを含有し、NMPを分散媒とする正極合剤ペーストを調製した。正極活物質、バインダ、導電剤の比率は、固形分換算の質量比で、90:5:5とした。正極合剤ペーストを正極基材としての厚さ12μmのアルミニウム箔の両面に塗工し、乾燥して、正極活物質層を形成し、実施例1から実施例3及び比較例1から比較例3の正極を得た。乾燥後の片面の単位面積当たりの正極合剤(正極合剤ペーストから分散媒を蒸発させたもの)の塗布量は、8.5mg/cm2となるようにした。
負極活物質としての難黒鉛化性炭素と、バインダとしてのPVDFとを含有し、NMPを分散媒とする負極合剤ペーストを調製した。負極活物質及びバインダの比率は、固形分換算の質量比で、95:5とした。負極合剤ペーストを負極基材としての厚さ8μmの銅箔の両面に塗工し、乾燥して、負極活物質層を形成し、実施例1から実施例3及び比較例1から比較例3の負極を得た。乾燥後の片面の単位面積当たりの負極合剤(負極合剤ペーストから分散媒を蒸発させたもの)の塗布量は、4mg/cm2となるようにした。
上記負極及び正極と、表1に記載の圧縮弾性率及び空孔率を有する厚さ20μmのセパレータとを積層した状態で中空構造の巻芯を中心として巻回することで、実施例1から実施例3及び比較例1から比較例3の巻回型電極体を作製した。セパレータの材料としては、実施例1から実施例3及び比較例2がPP/PE/PP製の三層構造の乾式多孔質樹脂フィルムセパレータを用い、比較例1及び比較例3がPE製の単層の湿式多孔質樹脂フィルムセパレータを用いた。
上記電極体をアルミニウム合金製の偏平の有底角筒形状の容器本体に収容した。
PC、DMC及びEMCを体積比率1:1:1で混合した非水溶媒にLiPF6を1.2mol/dm3の濃度で溶解した非水電解液を調製した。実施例1から実施例3及び比較例1から比較例3の蓄電素子において、調整された電解液を上記容器に30cm3収容した。上記容器の内部の余剰空間の体積は12cm3であった。
上記電解液の収容後、予備充電を行った。その後、実施例1から実施例3及び比較例3の蓄電素子において、真空ポンプを用いて容器の内部の圧力を10000Paまで減圧した後に、電解液に可溶な気体としての二酸化炭素ガスおよび空気を表1に示す注入量で上記容器の内部に収容した。比較例1及び比較例2の蓄電素子は、二酸化炭素ガスの代わりに空気を容器の内部に収容した。
上記二酸化炭素ガス又は上記空気を上記容器に収容した5分後に注入口の封止を行うことにより容器を密閉し、試験用セルである実施例1から実施例3及び比較例1から比較例3の蓄電素子を得た。
(容器の内部の圧力)
容器の内部の圧力は、容器に内圧測定器を取り付けて測定した。密閉後、48時間経過後の容器の内部の圧力(ゲージ圧力)を表1に示す。容器の内部の絶対圧としては、実施例1、2及び比較例3が0.0613MPa、実施例3が0.0513MPa、比較例1、2が0.1413MPaであった。
セパレータの圧縮弾性率(MPa)は、200枚積層したセパレータのサンプルに対して、30℃にて、ロードセル式クリープ試験機(株式会社マイズ試験機製)を用いて、直径50mmの円柱圧子を押し当て、圧縮の応力が1MPaに達してから、その応力状態で保持し、1時間後のセパレータの厚さ変化量(μm)を測定し、上記式により算出した。
実施例及び比較例の電極間のガス溜りの発生数は、蓄電素子を解体して電極体を展開し、目視で確認した。
2 電極体
3 容器
4 正極端子
14 正極集電体
5 負極端子
15 負極集電体
3a 容器本体
3b 蓋体
20 蓄電ユニット
30 蓄電装置
Claims (11)
- セパレータを介して正極及び負極が積層された電極体と、
電解液と、
上記電極体及び上記電解液を収容するための密閉可能な容器と
を備え、
上記セパレータの圧縮弾性率が15MPa以上であり、
上記容器の内部が負圧状態である蓄電素子。 - 上記容器の内部に上記電解液に可溶な気体が収容されている請求項1に記載の蓄電素子。
- 上記電解液に可溶な気体として、二酸化炭素を含む、請求項2に記載の蓄電素子。
- 上記容器の内部の余剰空間における上記二酸化炭素の含有量が5体積%以上である、請求項3に記載の蓄電素子。
- 上記セパレータの圧縮弾性率が40MPa以下である、請求項1から4の何れか一項に記載の蓄電素子。
- 上記容器の内部の圧力が0.07MPa以下である、請求項1から5の何れか一項に記載の蓄電素子。
- 上記負極は、負極活物質として炭素材料を含む、請求項1から6の何れか一項に記載の蓄電素子。
- 上記電極体は、上記セパレータを介して積層された上記正極及び上記負極を巻回した巻回電極体である、請求項1から7の何れか一項に記載の蓄電素子。
- 上記電極体は、上記セパレータを介して積層された上記正極及び上記負極を巻回した扁平形状の巻回電極体であり、
上記容器は、偏平の有底角筒形状の容器本体と、該容器本体の開口部を閉塞する蓋体とを有し、
上記容器本体の少なくとも一つの側面が上記容器の内側に向けて凹んでいる、請求項1から8の何れか一項に記載の蓄電素子。 - 上記容器本体は、上記電極体を間に挟んで、
互いに対向する一対の幅広な側面と、互いに対向する一対の幅狭な側面と、上記蓋体と対向する底面とを有し、
上記扁平形状の巻回電極体は、2つの巻回R部と、2つの平坦部とを有し、
上記2つの平坦部は、上記容器本体を構成する幅広な側面と直接又は間接的に接するように、該幅広な側面に対向して配置され、
上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体の底面および上記蓋体に面して配置されている、請求項9に記載の蓄電素子。 - 上記容器本体は、上記電極体を間に挟んで、
互いに対向する一対の幅広な側面と、互いに対向する一対の幅狭な側面と、上記蓋体と対向する底面とを有し、
上記扁平形状の巻回電極体は、2つの巻回R部と、2つの平坦部とを有し、
上記2つの平坦部は、上記容器本体を構成する上記幅広な側面と直接又は間接的に接するように、該幅広な側面に対向して配置され、
上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体を構成する上記幅狭な側面に面して配置されている、請求項9に記載の蓄電素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280016156.1A CN116918115A (zh) | 2021-02-22 | 2022-02-16 | 蓄电元件 |
US18/277,932 US20240234847A9 (en) | 2021-02-22 | 2022-02-16 | Energy storage device |
JP2023500909A JPWO2022176925A1 (ja) | 2021-02-22 | 2022-02-16 | |
EP22756243.6A EP4276862A1 (en) | 2021-02-22 | 2022-02-16 | Electricity storage element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-026816 | 2021-02-22 | ||
JP2021026816 | 2021-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022176925A1 true WO2022176925A1 (ja) | 2022-08-25 |
Family
ID=82930652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006232 WO2022176925A1 (ja) | 2021-02-22 | 2022-02-16 | 蓄電素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240234847A9 (ja) |
EP (1) | EP4276862A1 (ja) |
JP (1) | JPWO2022176925A1 (ja) |
CN (1) | CN116918115A (ja) |
WO (1) | WO2022176925A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003157898A (ja) * | 2001-11-20 | 2003-05-30 | Japan Storage Battery Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2005346965A (ja) * | 2004-05-31 | 2005-12-15 | Sanyo Electric Co Ltd | 電池及び電池の製造方法 |
JP2007165125A (ja) | 2005-12-14 | 2007-06-28 | Central Glass Co Ltd | 非水電解液電池用電解液及び非水電解液電池 |
JP2008097940A (ja) * | 2006-10-10 | 2008-04-24 | Nissan Motor Co Ltd | 双極型二次電池 |
JP2011028883A (ja) * | 2009-07-22 | 2011-02-10 | Panasonic Corp | 非水電解質二次電池 |
JP2011187288A (ja) * | 2010-03-08 | 2011-09-22 | Hitachi Maxell Energy Ltd | 密閉型電池 |
JP2017188465A (ja) * | 2010-06-30 | 2017-10-12 | 株式会社Gsユアサ | 二次電池の製造方法、二次電池及び組電池 |
-
2022
- 2022-02-16 CN CN202280016156.1A patent/CN116918115A/zh active Pending
- 2022-02-16 EP EP22756243.6A patent/EP4276862A1/en active Pending
- 2022-02-16 US US18/277,932 patent/US20240234847A9/en active Pending
- 2022-02-16 JP JP2023500909A patent/JPWO2022176925A1/ja active Pending
- 2022-02-16 WO PCT/JP2022/006232 patent/WO2022176925A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003157898A (ja) * | 2001-11-20 | 2003-05-30 | Japan Storage Battery Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2005346965A (ja) * | 2004-05-31 | 2005-12-15 | Sanyo Electric Co Ltd | 電池及び電池の製造方法 |
JP2007165125A (ja) | 2005-12-14 | 2007-06-28 | Central Glass Co Ltd | 非水電解液電池用電解液及び非水電解液電池 |
JP2008097940A (ja) * | 2006-10-10 | 2008-04-24 | Nissan Motor Co Ltd | 双極型二次電池 |
JP2011028883A (ja) * | 2009-07-22 | 2011-02-10 | Panasonic Corp | 非水電解質二次電池 |
JP2011187288A (ja) * | 2010-03-08 | 2011-09-22 | Hitachi Maxell Energy Ltd | 密閉型電池 |
JP2017188465A (ja) * | 2010-06-30 | 2017-10-12 | 株式会社Gsユアサ | 二次電池の製造方法、二次電池及び組電池 |
Also Published As
Publication number | Publication date |
---|---|
US20240234847A9 (en) | 2024-07-11 |
CN116918115A (zh) | 2023-10-20 |
JPWO2022176925A1 (ja) | 2022-08-25 |
US20240136610A1 (en) | 2024-04-25 |
EP4276862A1 (en) | 2023-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230112577A1 (en) | Energy storage device | |
US20230055952A1 (en) | Energy storage device and energy storage apparatus | |
WO2022176925A1 (ja) | 蓄電素子 | |
WO2022176836A1 (ja) | 蓄電素子 | |
WO2023074559A1 (ja) | 蓄電素子 | |
WO2023145677A1 (ja) | 非水電解質蓄電素子 | |
WO2022239861A1 (ja) | 蓄電素子 | |
JP7540218B2 (ja) | 蓄電素子及びその製造方法 | |
US20230155180A1 (en) | Energy storage device, method for manufacturing the same and energy storage apparatus | |
WO2023281886A1 (ja) | 蓄電素子及び蓄電装置 | |
WO2023008012A1 (ja) | 蓄電素子及び蓄電装置 | |
WO2023248769A1 (ja) | 活物質粒子、電極、蓄電素子及び蓄電装置 | |
WO2022210643A1 (ja) | 蓄電素子 | |
WO2024053496A1 (ja) | 電極、蓄電素子及び蓄電装置 | |
WO2023195434A1 (ja) | 蓄電素子及び蓄電装置 | |
WO2022239520A1 (ja) | 蓄電素子、その製造方法及び蓄電装置 | |
WO2022249667A1 (ja) | 非水電解質蓄電素子及び蓄電装置 | |
WO2024062862A1 (ja) | 電極、蓄電素子及び蓄電装置 | |
EP4280330A1 (en) | Nonaqueous electrolyte power storage element | |
JP2022129314A (ja) | 蓄電素子 | |
JP2023166909A (ja) | 蓄電素子及び蓄電装置 | |
JP2022129039A (ja) | 蓄電素子 | |
JP2024001780A (ja) | 正極及び非水電解質蓄電素子 | |
JP2023110684A (ja) | 非水電解質蓄電素子 | |
JP2023117881A (ja) | 非水電解液蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22756243 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023500909 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18277932 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280016156.1 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022756243 Country of ref document: EP Effective date: 20230811 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |