WO2024053496A1 - 電極、蓄電素子及び蓄電装置 - Google Patents

電極、蓄電素子及び蓄電装置 Download PDF

Info

Publication number
WO2024053496A1
WO2024053496A1 PCT/JP2023/031362 JP2023031362W WO2024053496A1 WO 2024053496 A1 WO2024053496 A1 WO 2024053496A1 JP 2023031362 W JP2023031362 W JP 2023031362W WO 2024053496 A1 WO2024053496 A1 WO 2024053496A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
power storage
positive electrode
mass
carbon
Prior art date
Application number
PCT/JP2023/031362
Other languages
English (en)
French (fr)
Inventor
大輔 遠藤
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024053496A1 publication Critical patent/WO2024053496A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to an electrode, a power storage element, and a power storage device.
  • Nonaqueous electrolyte secondary batteries represented by lithium ion nonaqueous electrolyte secondary batteries
  • a non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically isolated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers charge transport ions between the two electrodes.
  • the battery is configured to be charged and discharged by performing the following steps.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
  • Lithium transition metal compounds having a polyanion structure such as lithium iron phosphate
  • Patent Document 1 describes a non-aqueous electrolyte secondary battery including a positive electrode containing lithium iron phosphate as a positive electrode active material and a negative electrode containing graphite as a negative electrode active material.
  • a lithium transition metal compound having a polyanion structure is usually used in the form of granules coated with a carbon material from the viewpoint of electronic conductivity and the like.
  • the present invention was made based on the above circumstances, and an object of the present invention is to provide an electrode, a power storage element, and a power storage device that can reduce AC resistance.
  • the electrode according to one aspect of the present invention is a granular material in which particles containing a lithium transition metal compound having a polyanionic structure are coated with a first carbon material, and the particle size changes when pressurized from 20 mN to 100 mN.
  • the active material particles have an amount of 1.1 nm or less and a second carbon material.
  • a power storage element includes the electrode.
  • a power storage device includes one or more power storage elements according to another aspect of the present invention, and includes two or more power storage elements.
  • an electrode it is possible to provide an electrode, a power storage element, and a power storage device that can reduce AC resistance.
  • FIG. 1 is a transparent perspective view showing one embodiment of a power storage element.
  • FIG. 2 is a schematic diagram showing an embodiment of a power storage device configured by collecting a plurality of power storage elements.
  • the electrode according to one aspect of the present invention is a granular material in which particles containing a lithium transition metal compound having a polyanionic structure are coated with a first carbon material, and the particles when pressurized from 20 mN to 100 mN It includes active material particles whose diameter changes by 1.1 nm or less and a second carbon material.
  • the electrode described in [1] above can reduce alternating current resistance (hereinafter also referred to as ACR). Although the reason for this is not certain, the following reasons are presumed. Particles containing lithium transition metal compounds with conventional polyanionic structures are relatively brittle. Therefore, when particles containing a lithium transition metal compound with a conventional polyanion structure are used, the particles are significantly deformed during pressing of the active material layer in the electrode manufacturing process, resulting in poor adhesion between the base material and the active material layer. As a result, the interfacial resistance between the base material and the active material layer becomes high, and the ACR of the electrode cannot be sufficiently reduced.
  • ACR alternating current resistance
  • the active material particles included in the electrode described in [1] above have a small amount of deformation when pressurized, the adhesion between the base material and the active material layer can be improved by pressing, and the electrode It is estimated that the ACR can be reduced.
  • the amount of change in particle size of active material particles is measured when the active material particles are incorporated into a power storage element as a positive electrode active material and are brought into a fully discharged state by the following method.
  • the electricity storage element is charged at a constant current of 0.05 C until it reaches the end-of-charge voltage during normal use, and is brought into a fully charged state.
  • constant current discharge is performed at a discharge current of 0.05C to the discharge end voltage (lower limit voltage) during normal use. It was dismantled, the positive electrode was taken out, and a test battery was assembled using a metal lithium electrode as a counter electrode. At a current value of 10 mA per 1 g of positive electrode mixture, the positive electrode potential was 2.0 V vs.
  • Constant current discharge is performed until Li/Li + , and the positive electrode is adjusted to a completely discharged state. Disassemble it again and take out the positive electrode. Using dimethyl carbonate, the electrolyte and the like adhering to the taken out positive electrode are thoroughly washed away, and after drying at room temperature for a day and night, the active material particles are collected. The collected active material particles are subjected to measurement. The work from dismantling the power storage element to collecting active material particles is performed in an argon atmosphere with a dew point of -60°C or lower. "Normal use” refers to the case where the energy storage element is used under the charging and discharging conditions recommended or specified for the energy storage element. Regarding the charging condition, for example, if a charger for the electricity storage element is prepared, the charger is used to use the electricity storage element.
  • the amount of change in particle size of the active material particles is measured by a microcompression test using a microcompression tester ("MCT-511" manufactured by Shimadzu Corporation).
  • MCT-511 manufactured by Shimadzu Corporation
  • the probe uses a diamond flat indenter with a diameter of 50 ⁇ m. Pressure is applied to one active material particle at a probe speed of 0.134 mN/sec, and the amount of displacement of the probe in the pressure range from 20 mN to 100 mN is defined as the amount of change in particle size when the pressure is applied from 20 mN to 100 mN. Further, the amount of change in particle size is measured for five active material particles, and the average value thereof is used.
  • the active material particles to be measured are selected from particles whose particle size is 1/2 or more and 2 times or less of the average particle size of the active material particles.
  • the "particle size" of each particle is the average value of the short axis and long axis.
  • the minor axis is the shortest diameter passing through the center of the smallest circumscribed circle of the particle, and the major axis is the diameter passing through the center and perpendicular to the minor axis. If there are two or more shortest diameters, the shortest diameter is the longest diameter orthogonal to the shortest diameter.
  • Average particle size is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by laser diffraction/scattering method on a diluted solution of particles diluted with a solvent. 2 (2001) at which the volume-based integrated distribution is 50%.
  • the second carbon material may be a carbon nanotube.
  • the electrode described in [2] above can reduce ACR and improve initial output characteristics.
  • the rate of change in particle size when the active material particles are pressurized from 20 mN to 100 mN may be 0.015% or less.
  • the electrode described in [3] above can further reduce ACR.
  • the particle size deformation rate is defined as a percentage of the amount of change in particle size when the pressure is applied from 20 mN to 100 mN with respect to the average particle size of the active material particles.
  • a power storage element according to another aspect of the present invention includes the electrode according to any one of [1] to [3] above. Since the electricity storage element described in [4] above includes the electrode described in any one of [1] to [3], ACR can be reduced.
  • a power storage device includes one or more power storage elements described in [4] above, and includes two or more power storage elements. Since the power storage device according to [5] above includes one or more power storage elements according to [4] above, the initial output can be increased.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • An electrode according to an embodiment of the present invention is a granular material in which particles containing a lithium transition metal compound having a polyanionic structure are coated with a first carbon material, and has a particle size when pressurized from 20 mN to 100 mN. It includes active material particles whose variation is 1.1 nm or less and a second carbon material.
  • the active material particles included in the electrode according to one embodiment of the present invention are granules in which particles containing a lithium transition metal compound having a polyanionic structure are coated with a first carbon material.
  • a lithium transition metal compound having a polyanion structure includes an oxoacid anion (PO 4 3- , SO 4 2- , SiO 4 4- , BO 3 3- , VO 4 3-, etc.), a lithium ion, and a transition metal ion. Examples include compounds containing.
  • the oxoacid anion may be a condensed anion (P 2 O 7 4- , P 3 O 10 5- , etc.).
  • the lithium transition metal compound having a polyanion structure may have an olivine crystal structure.
  • the lithium transition metal compound having a polyanion structure is typically a polyanion compound containing a lithium element and a transition metal element, and may further contain other elements (for example, a halogen element, etc.).
  • the transition metal element contained in the lithium transition metal compound having a polyanion structure iron element, manganese element, nickel element and cobalt element are preferable, and iron element is more preferable.
  • a phosphate anion (PO 4 3- ) is preferable.
  • the lithium transition metal compound having a polyanion structure is preferably a compound represented by the following formula (1).
  • M is at least one transition metal element.
  • A is at least one selected from B, Al, Si, P, S, Cl, Ti, V, Cr, Mo, and W.
  • X is at least one halogen element.
  • a, b, c, d, and e are numbers satisfying 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 2, 2 ⁇ c ⁇ 4, 1 ⁇ d ⁇ 3, and 0 ⁇ e ⁇ 1.
  • a, b, c, d, and e may all be integers or decimals.
  • any one of Fe, Mn, Ni, and Co, or a combination of any two of these is preferable.
  • Fe, Mn, or a combination thereof is further preferable, and Fe is more preferable.
  • the content of Fe in M is preferably 50 mol% or more, more preferably 70 mol% or more, 90 mol% or more, or 99 mol% or more.
  • A P is preferable.
  • lithium transition metal compounds having a polyanion structure include, for example, LiFePO 4 , LiCoPO 4 , LiFe 0.5 Co 0.5 PO 4 , LiMnPO 4 , LiNiPO 4 , LiMn 0.5 Fe 0.5 PO 4 , LiCrPO 4 , LiFeVO 4 , Li 2 FeSiO 4 , Li 2 Fe 2 (SO 4 ) 3 , LiFeBO 3 , LiFePO 3.9 F 0.2 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO Examples include 4F .
  • the atoms or polyanions in these lithium transition metal compounds having a polyanion structure may be partially substituted with other atoms or anion species.
  • the lithium transition metal compounds having a polyanion structure may be used alone or in combination of two or more.
  • the content of the lithium transition metal compound having a polyanionic structure in the particles containing the lithium transition metal compound having a polyanionic structure may be 60% by mass or more, 80% by mass or more, and 90% by mass or more.
  • the amount may be 95% by mass or more or 99% by mass or more.
  • Particles containing a lithium transition metal compound having a polyanion structure may be formed by a plurality of primary particles existing independently without aggregation (single particle), but may be formed by aggregation of a plurality of primary particles. Preferably, they are secondary particles.
  • the particles are, for example, secondary particles of a lithium transition metal compound having a polyanionic structure.
  • First carbon material Particles containing a lithium transition metal compound having a polyanion structure are coated with a first carbon material to constitute active material particles included in an electrode according to an embodiment of the present invention.
  • a part of the first carbon material may be present inside the particles containing the lithium transition metal compound having a polyanionic structure.
  • the active material particles may have a portion that is not covered with the first carbon material (for example, a portion where a lithium transition metal compound having a polyanion structure is exposed).
  • the first carbon material covers particles containing a lithium transition metal compound having a polyanionic structure, the active material particles can exhibit sufficient electron conductivity between particles.
  • the first carbon material is, for example, a material having a carbon element content of 80% by mass or more and 100% by mass or less.
  • the content of carbon element in the first carbon material may be 90% by mass or more, or may be 95% by mass.
  • elements other than carbon that may be included in the first carbon material include oxygen, hydrogen, and nitrogen.
  • Examples of the first carbon material include graphite and non-graphitic carbon.
  • the content of the first carbon material in the active material particles is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.2% by mass or more and 10% by mass or less, and 0.3% by mass or more and 5% by mass or less. It is more preferably at most 0.5% by mass and at most 2% by mass.
  • the content of the first carbon material in the active material particles is equal to or higher than the lower limit, electronic conductivity can be improved.
  • the content of the lithium transition metal compound having a polyanion structure can be increased, and the discharge capacity per volume of the active material layer can be increased. I can do things like that.
  • the total content of the lithium transition metal compound having a polyanion structure and the first carbon material in the active material particles is preferably 90% by mass or more and 100% by mass or less, 95% by mass or more, 98% by mass or more, and 99% by mass. % or more or 99.9% by mass or more.
  • the lower limit of the ratio of the specific surface area of the first carbon material to the total specific surface area of the lithium transition metal compound having a polyanion structure and the first carbon material is preferably 5%, and 10%. It is more preferable that Further, the upper limit is preferably 60%, more preferably 50%.
  • the "specific surface area” is determined by immersing the sample to be measured in liquid nitrogen, supplying nitrogen gas to physically adsorb nitrogen molecules on the particle surface, and measuring the pressure and adsorption amount at that time. BET specific surface area.
  • the nitrogen adsorption amount [m 2 ] for the sample is determined by a single point method.
  • the value obtained by dividing the obtained nitrogen adsorption amount by the mass [g] of the sample is defined as the BET specific surface area [m 2 /g].
  • the ratio of the specific surface area of the first carbon material to the total specific surface area of the lithium transition metal compound having a polyanion structure and the first carbon material is determined by the following procedure.
  • a positive electrode was taken out by disassembling a non-aqueous electrolyte storage element that had been brought into a fully discharged state by the same method as in the measurement of the amount of change in particle size of active material particles described above, and the positive electrode was collected after being washed and dried as described above.
  • the BET specific surface area of a particulate material in which particles containing a lithium transition metal compound having a polyanion structure are coated with a first carbon material is measured.
  • the first carbon material is removed by baking the granular material at 350° C. for 4 hours in an air atmosphere. Thereafter, the BET specific surface area of particles containing a lithium transition metal compound having a polyanionic structure from which the first carbon material has been removed is measured.
  • the BET specific surface area Bp 1 [m 2 /g] of the first carbon material is the BET specific surface area of the granular material Bp [m 2 /g], and the BET specific surface area of the granular material is Bp [m 2 /g].
  • Bp 1 Bp - Bp 2 ...1
  • the upper limit of the amount of change in particle size when the active material particles are pressurized from 20 mN to 100 mN is 1.1 nm, preferably 1.0 nm, more preferably 0.9 nm, 0.7 nm or 0.5 nm. More preferably 0.4 nm or 0.2 nm.
  • the lower limit of the amount of change in particle size may be, for example, 0.001 nm, 0.01 nm, or 0.1 nm.
  • the amount of change in the particle size may be greater than or equal to any of the lower limits described above and less than or equal to any of the upper limits described above.
  • the upper limit of the rate of change in particle size when the active material particles are pressurized from 20 mN to 100 mN is preferably 0.015%, more preferably 0.013%, 0.010%, 0.008%, 0.015%, and more preferably 0.013%. 0.006% or 0.004% is more preferred.
  • the rate of change in particle size is equal to or less than the above upper limit, the density of the active material layer can be further increased, and the discharge capacity per volume of the active material layer can be further increased.
  • the lower limit of the rate of change in particle size may be, for example, 0.0001%, 0.001%, or 0.002%.
  • the rate of change in particle size may be greater than or equal to any of the lower limits described above and less than or equal to any of the upper limits described above.
  • the average particle diameter of the active material particles is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, more preferably 1 ⁇ m or more and 20 ⁇ m or less, still more preferably 2 ⁇ m or more and 15 ⁇ m or less, 4 ⁇ m or more and 10 ⁇ m or less, or 6 ⁇ m or more and 8 ⁇ m or less.
  • the average particle size of the active material particles is within the above range, the density of the active material layer can be further increased, and the discharge capacity per volume of the active material layer can be further increased.
  • a pulverizer, classifier, etc. are used to obtain the active material particles with a predetermined average particle size.
  • Examples of the pulverization method include methods using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling jet mill, a sieve, and the like.
  • wet pulverization in which water or an organic solvent such as hexane is present can also be used.
  • a sieve, a wind classifier, etc. may be used, both dry and wet, as necessary.
  • the active material particles included in the electrode according to an embodiment of the present invention are reacted using an ammonia aqueous solution or the like when producing a hydroxide precursor. It can be efficiently obtained by adjusting the pH of the liquid.
  • active material particles that are spherical and whose particle shape is not easily deformed even when pressed can be obtained.
  • the manufacturing method will be explained in detail below.
  • the active material particles included in the present invention are not limited to those manufactured by the following manufacturing method.
  • a hydroxide precursor is obtained by a precipitation reaction between transition metal ions and hydroxide ions in water.
  • a hydroxide precursor transition metal hydroxide
  • the transition metal salt may be any salt that contains the transition metal element constituting the target lithium transition metal compound and is water-soluble, such as iron sulfate, iron chloride, cobalt sulfate, manganese sulfate, nickel sulfate, etc. be able to.
  • a potassium hydroxide aqueous solution or the like can be used instead of the sodium hydroxide aqueous solution.
  • reaction liquid When dropping a transition metal salt aqueous solution, a sodium hydroxide aqueous solution, etc. into water, an ammonia aqueous solution or the like is further dropped into the reaction liquid in order to maintain the pH of the water (reaction liquid) into which these aqueous solutions are dropped within a predetermined range.
  • the pH of the reaction solution is preferably in the range of 8.5 to 10.5. If the pH of the reaction solution is outside the above range, or if an ammonia aqueous solution or the like is not added dropwise to the reaction solution even if the pH of the reaction solution is within the above range, the final active material particles obtained will The amount of change in particle size tends to be large.
  • the concentration of the ammonia aqueous solution to be dropped can be, for example, about 0.3 mol/dm 3 or more and 1 mol/dm 3 or less.
  • the pH of the reaction solution can be adjusted by adjusting the concentration, amount, etc. of the ammonia aqueous solution, sodium hydroxide aqueous solution, etc. to be added dropwise.
  • Another alkaline aqueous solution such as a hydrazine aqueous solution may be added dropwise together with the ammonia aqueous solution.
  • the pH of the reaction solution can also be adjusted by adjusting the amount of other alkaline aqueous solution added dropwise.
  • the obtained hydroxide precursor, a lithium source, and a carbon source are mixed and fired in an inert atmosphere (for example, a nitrogen atmosphere) to produce active material particles according to an embodiment of the present invention.
  • an inert atmosphere for example, a nitrogen atmosphere
  • the lithium source compounds having a polyanion structure and containing the lithium element, such as LiH 2 PO 4 , Li 3 PO 4 , LiHSO 4 , etc., can be suitably used.
  • LiOH, lithium halide, etc. can be used as the lithium source.
  • the lithium source used is not a compound having a polyanion structure, a compound having a polyanion structure is further mixed and firing is performed.
  • Compounds having a polyanion structure include ammonium cations and polyanions such as NH 4 H 2 PO 4 , (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 2 SO 4 , and NH 4 VO 3 . Salts and the like can be suitably used.
  • the carbon source organic substances such as sucrose, lactose, maltose, sucrose, polyvinyl alcohol, and ascorbic acid can be used.
  • the firing temperature can be, for example, 500°C or higher and 800°C or lower.
  • An electrode according to an embodiment of the present invention includes the active material particles and a second carbon material.
  • the second carbon material will be explained.
  • the second carbon material has electrical conductivity.
  • Examples of the second carbon material include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • non-graphitic carbon include carbon nanofibers, pitch-based carbon fibers, carbon black, and the like.
  • Examples of carbon black include furnace black, acetylene black, Ketjen black, and the like.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerene.
  • Examples of the shape of the second carbon material include powder, fiber, and the like.
  • As the second carbon material one type of these materials may be used alone, or two or more types may be mixed and used. Further, these materials may be used in combination.
  • a composite material of carbon black and CNT may be used.
  • acetylene black and CNT are preferable from the viewpoint of electronic conductivity and coatability, and CNT is particularly preferable.
  • CNTs include single-walled carbon nanotubes (SWCNTs) formed from one layer of graphene, and multi-walled carbon nanotubes (MWCNTs) formed from two or more layers (for example, 2 to 20 layers) of graphene.
  • the structure of CNT is not particularly limited, and may be any type such as chiral (helical) type, zigzag type, armchair type, etc.
  • the CNTs may contain catalyst metals (for example, Fe, Co, and platinum group elements (Ru, Rh, Pd, Os, Ir, Pt)) used in the synthesis of the CNTs.
  • the average diameter of the CNTs may be, for example, 0.3 nm or more and 100 nm or less, 0.5 nm or more and 50 nm or less, or 1 nm or more and 20 nm or less.
  • the upper limit of this average diameter may be 10 nm, 5 nm or 3 nm.
  • the average aspect ratio (average length to average diameter) of CNTs is not particularly limited, but is, for example, 10 or more.
  • the lower limit of the average aspect ratio of CNTs may be 20, 30, 40 or 50.
  • the upper limit of the average aspect ratio of CNTs may be, for example, 10,000, 5,000, 2,000, 1,000, or 500.
  • the average diameter and average aspect ratio of CNTs are the average values measured from arbitrary 10 CNTs observed with an electron microscope.
  • CNTs can be obtained, for example, by a method in which polymers are made into fibers by a spinning method or the like and heat treated in an inert atmosphere, or by a vapor phase growth method in which an organic compound is reacted at high temperature in the presence of a catalyst.
  • Commercially available CNTs can be used.
  • a power storage element includes an electrode body having a positive electrode, a negative electrode, and a separator, an electrolyte, and a container housing the electrode body and the electrolyte.
  • the electrode body is usually a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are laminated with a separator in between, or a wound type in which a positive electrode and a negative electrode are laminated with a separator in between and are wound.
  • the electrolyte exists in a state included in the positive electrode, negative electrode, and separator.
  • the electrolyte may be a non-aqueous electrolyte.
  • a non-aqueous electrolyte secondary battery hereinafter also simply referred to as a "secondary battery" in which the electrolyte is a non-aqueous electrolyte will be described.
  • the positive electrode included in the electricity storage element can be the one described above as the electrode according to the embodiment of the present invention.
  • the positive electrode includes a positive electrode base material and a positive electrode active material layer disposed on the positive electrode base material directly or via an intermediate layer.
  • the positive electrode base material has electrical conductivity. Whether or not it has “conductivity” is determined using a volume resistivity of 10 ⁇ 2 ⁇ cm as a threshold value, which is measured in accordance with JIS-H-0505 (1975).
  • the material of the positive electrode base material metals such as aluminum, titanium, tantalum, stainless steel, or alloys thereof are used. Among these, aluminum or aluminum alloy is preferred from the viewpoint of potential resistance, high conductivity, and cost.
  • Examples of the positive electrode base material include foil, vapor deposited film, mesh, porous material, etc., and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085, A3003, A1N30, etc. specified in JIS-H-4000 (2014) or JIS-H-4160 (2006).
  • the average thickness of the positive electrode base material is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer disposed between the positive electrode base material and the positive electrode active material layer.
  • the intermediate layer reduces contact resistance between the positive electrode base material and the positive electrode active material layer by containing a conductive agent such as carbon particles.
  • the structure of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer includes the active material particles and a second carbon material.
  • the positive electrode active material layer contains optional components such as a positive electrode active material other than the active material particles, a conductive agent other than the second carbon material, a binder, a thickener, and a filler, as necessary.
  • the content of the active material particles in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the positive electrode active material layer may further contain a positive electrode active material other than the active material particles.
  • a positive electrode active material other positive electrode active materials
  • various conventionally known positive electrode active materials can be used.
  • the content of the active material particles with respect to all the positive electrode active materials (total of the active material particles and other positive electrode active materials) contained in the positive electrode active material layer is preferably 90% by mass or more, and 99% by mass or more. More preferably, 100% by mass is even more preferred.
  • the content of the second carbon material in the positive electrode active material layer is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 9% by mass or less, and 7% by mass or more. It is more preferably less than % by mass.
  • the energy density etc. of the electricity storage element can be increased.
  • the content of CNT in the positive electrode active material layer is preferably 0.01% by mass or more and 3.0% by mass or less, and 0.1% by mass or more and 1.0% by mass. The following is more preferable, and 0.3% by mass or more and 0.7% by mass or less is even more preferable.
  • the CNT content is within the above range, a better electron conduction path tends to be formed.
  • the positive electrode active material layer may further contain a conductive agent other than the second carbon material.
  • the other conductive agent is not particularly limited as long as it is a conductive material. Examples of such other conductive agents include metals, conductive ceramics, and the like.
  • the content of the second carbon material with respect to all the conductive agents (total of the second carbon material and other conductive agents) contained in the positive electrode active material layer is preferably 90% by mass or more, and 99% by mass or more. More preferably, 100% by mass is even more preferred.
  • binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic, polyimide, etc.; ethylene-propylene-diene rubber (EPDM), sulfone.
  • EPDM ethylene-propylene-diene rubber
  • examples include elastomers such as chemically modified EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers, and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • the content of the thickener in the positive electrode active material layer can be, for example, 0.1% by mass or more and 8% by mass or less, and 5% by mass or less or 1% by mass or less. You can also do it.
  • the technology disclosed herein can be preferably implemented in an embodiment in which the positive electrode active material layer does not contain a thickener.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide.
  • Hydroxides such as aluminum, carbonates such as calcium carbonate, poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Examples include substances derived from mineral resources such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the content of the filler in the positive electrode active material layer can be, for example, 0.1% by mass or more and 8% by mass or less, and can also be 5% by mass or less or 1% by mass or less.
  • the technology disclosed herein can be preferably implemented in an embodiment in which the positive electrode active material layer does not contain filler.
  • the positive electrode active material layer is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, etc.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W, and other transition metal elements are used in the active material particles, other positive electrode active materials, and the second It may be contained as a component other than the carbon material, the other conductive agent, the binder, the thickener, and the filler.
  • the lower limit of the density of the positive electrode active material layer is preferably 1.8 g/cm 3 , more preferably 1.9 g/cm 3 , even more preferably 2.0 g/cm 3 , and particularly preferably 2.1 g/cm 3 .
  • the upper limit of the density of the positive electrode active material layer may be 2.6 g/cm 3 , 2.5 g/cm 3 , 2.4 g/cm 3 or 2.3 g/cm 3 .
  • the density of the positive electrode active material layer may be greater than or equal to any of the above lower limits and less than or equal to any of the above upper limits.
  • the density of the positive electrode active material layer can be adjusted by the type of active material particles, the strength of pressing when manufacturing the positive electrode, and the like.
  • the density of the positive electrode active material layer is determined by dividing the mass per unit area of one positive electrode active material layer by the average thickness of one positive electrode active material layer.
  • the mass per unit area of one positive electrode active material layer is preferably 0.3 g/cm 2 or more and 3 g/cm 2 or less, more preferably 0.5 g/cm 2 or more and 2 g/cm 2 or less, and 0.7 g/cm 2 or less. cm 2 or more and 1.5 g/cm 2 or less is more preferable.
  • the mass per unit area of one positive electrode active material layer is within the above range, the discharge capacity of the electricity storage element can be increased.
  • the positive electrode can be produced, for example, by applying a positive electrode mixture paste to the positive electrode base material and drying it, thereby laminating a positive electrode active material layer along at least one surface of the positive electrode base material.
  • the positive electrode mixture paste includes, for example, each component constituting the positive electrode active material layer and a dispersion medium. It is preferable to press after applying and drying the positive electrode mixture paste. By pressing, a high-density positive electrode active material layer can be obtained.
  • the negative electrode includes a negative electrode base material and a negative electrode active material layer disposed on the negative electrode base material directly or via an intermediate layer.
  • the configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified for the positive electrode.
  • the negative electrode base material has electrical conductivity.
  • metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbon materials, etc. are used. Among these, copper or copper alloy is preferred.
  • the negative electrode base material include foil, vapor deposited film, mesh, porous material, etc. Foil is preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode base material. Examples of copper foil include rolled copper foil, electrolytic copper foil, and the like.
  • the average thickness of the negative electrode base material is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary.
  • Arbitrary components such as a conductive agent, a binder, a thickener, and a filler can be appropriately selected from known components, and may be selected from the materials exemplified for the positive electrode.
  • the negative electrode active material layer is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, etc. Typical metal elements of It may be contained as a component other than the adhesive and filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials.
  • a negative electrode active material for a lithium ion secondary battery a material that can insert and release lithium ions is usually used.
  • negative electrode active materials include metal Li; metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide, Ti oxide, and Sn oxide; Li 4 Ti 5 O 12 , Examples include titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphoric acid compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon); It will be done. Among these materials, graphite and non-graphitic carbon are preferred. In the negative electrode active material layer, one type of these materials may be used alone, or two or more types may be used in combination.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.33 nm or more and less than 0.34 nm, as determined by X-ray diffraction before charging and discharging or in a discharge state.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferred from the viewpoint of being able to obtain a material with stable physical properties.
  • Non-graphitic carbon refers to a carbon material whose average lattice spacing (d 002 ) of the (002) plane is 0.34 nm or more and 0.42 nm or less, as determined by X-ray diffraction before charging and discharging or in a discharge state.
  • Examples of non-graphitic carbon include non-graphitizable carbon and easily graphitizable carbon.
  • Examples of the non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, alcohol-derived materials, and the like.
  • discharged state refers to a state in which the carbon material that is the negative electrode active material is discharged such that lithium ions that can be intercalated and released are sufficiently released during charging and discharging.
  • the open circuit voltage is 0.7 V or more.
  • Non-graphitizable carbon refers to a carbon material in which the above d 002 is 0.36 nm or more and 0.42 nm or less.
  • Graphitizable carbon refers to a carbon material in which the above d 002 is 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide, or a polyphosphoric acid compound, the average particle size thereof may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like, the average particle size thereof may be 1 nm or more and 1 ⁇ m or less.
  • the electronic conductivity of the negative electrode active material layer is improved.
  • a pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size.
  • the negative electrode active material is a metal such as metal Li
  • the negative electrode active material layer may be in the form of a foil.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
  • the separator can be appropriately selected from known separators.
  • a separator consisting of only a base material layer, a separator in which a heat resistant layer containing heat resistant particles and a binder is formed on one or both surfaces of the base material layer, etc.
  • Examples of the shape of the base material layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a nonwoven fabric is preferred from the viewpoint of liquid retention of the nonaqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferred from the viewpoint of shutdown function, and polyimide, aramid, etc. are preferred from the viewpoint of oxidative decomposition resistance.
  • a composite material of these resins may be used as the base material layer of the separator.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500°C in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800°C. is more preferably 5% or less.
  • Inorganic compounds are examples of materials whose mass loss is less than a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium titanate
  • covalent crystals such as silicon and diamond
  • talc montmorillonite, boehmite
  • examples include substances derived from mineral resources such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • these substances may be used alone or in combination, or two or more types may be used in combination.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the electricity storage element.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • porosity is a value based on volume, and means a value measured with a mercury porosimeter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator.
  • the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like.
  • Use of polymer gel has the effect of suppressing liquid leakage.
  • a separator a porous resin film or nonwoven fabric as described above and a polymer gel may be used in combination.
  • Nonaqueous electrolyte The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • a non-aqueous electrolyte may be used as the non-aqueous electrolyte.
  • the nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic esters, phosphoric esters, sulfonic esters, ethers, amides, and nitriles.
  • compounds in which some of the hydrogen atoms contained in these compounds are replaced with halogens may be used.
  • cyclic carbonates examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and the like. Among these, EC is preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC is preferred.
  • the nonaqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a cyclic carbonate and a chain carbonate together.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • chain carbonate By using chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, and the like. Among these, lithium salts are preferred.
  • lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), and lithium difluorooxalate borate (LiFOB).
  • inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , and LiN(SO 2 F) 2
  • LiBOB lithium bis(oxalate) borate
  • LiFOB lithium difluorooxalate borate
  • lithium oxalate salts such as lithium bis(oxalate) difluorophosphate (LiFOP), LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 )
  • lithium salts having halogenated hydrocarbon groups such as (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 and LiC (SO 2 C 2 F 5 ) 3 .
  • inorganic lithium salts are preferred, and LiPF 6 is more preferred.
  • the content of the electrolyte salt in the nonaqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, and 0.3 mol/dm 3 or more and 2.0 mol/dm at 20° C. and 1 atmosphere. It is more preferably 3 or less, even more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
  • the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
  • additives include halogenated carbonate esters such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate).
  • Oxalates such as difluorophosphate (LiFOP); Imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene and other aromatic compounds such as partial halides; 2,4-difluoroanisole, 2 , 5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and other halogenated anisole compounds; vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic an
  • the content of the additive contained in the nonaqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less based on the mass of the entire nonaqueous electrolyte. It is more preferable if it is present, more preferably from 0.2% by mass to 5% by mass, and particularly preferably from 0.3% by mass to 3% by mass.
  • a solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte and a solid electrolyte may be used together.
  • the solid electrolyte can be selected from any material that has ionic conductivity, such as lithium, sodium, and calcium, and is solid at room temperature (for example, 15° C. to 25° C.).
  • Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, polymer solid electrolytes, and the like.
  • Examples of the sulfide solid electrolyte in the case of a lithium ion secondary battery include Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 , and the like.
  • the shape of the power storage element of this embodiment is not particularly limited, and examples include a cylindrical battery, a square battery, a flat battery, a coin battery, a button battery, and the like.
  • FIG. 1 shows a power storage element 1 as an example of a square battery. Note that this figure is a perspective view of the inside of the container.
  • An electrode body 2 having a positive electrode and a negative electrode wound together with a separator in between is housed in a rectangular container 3.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode lead 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via a negative electrode lead 51.
  • the power storage element of this embodiment can be used as a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), or a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer or a communication terminal, or a power source for power storage. etc., it can be mounted as a power storage unit (battery module) configured by collecting a plurality of power storage elements.
  • the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
  • a power storage device according to an embodiment of the present invention includes one or more power storage elements according to the embodiment of the present invention, and includes two or more power storage elements (hereinafter referred to as "second embodiment").
  • the technology according to an embodiment of the present invention may be applied to at least one power storage element included in the power storage device according to the second embodiment, and the power storage element according to the embodiment of the present invention may be applied to the power storage device according to the second embodiment.
  • the battery may include one or more power storage elements that are not related to the embodiment of the present invention, or may include two or more power storage elements that are not related to the embodiment of the present invention.
  • FIG. 2 shows an example of a power storage device 30 according to the second embodiment in which a power storage unit 20 in which two or more electrically connected power storage elements 1 are assembled is further assembled.
  • the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, etc. good.
  • the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
  • a method for manufacturing the electricity storage element of this embodiment can be appropriately selected from known methods.
  • the manufacturing method includes, for example, preparing an electrode body, preparing an electrolyte, and accommodating the electrode body and the electrolyte in a container.
  • Preparing the electrode body includes preparing a positive electrode and a negative electrode, and forming the electrode body by laminating or winding the positive electrode and the negative electrode with a separator in between.
  • Storing the electrolyte in a container can be appropriately selected from known methods.
  • the injection port may be sealed after the non-aqueous electrolyte is injected through an injection port formed in the container.
  • the active material particles, electrodes, and power storage elements of the present invention are not limited to the embodiments described above, and various changes may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments may be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the electricity storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described, but the type, shape, size, capacity, etc. of the electricity storage element are arbitrary. .
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • the power storage element of the present invention may be a power storage element other than a non-aqueous electrolyte power storage element.
  • an electrode body in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween has been described, but the electrode body does not need to include a separator.
  • the positive electrode and the negative electrode may be in direct contact with each other with a non-conductive layer formed on the active material layer of the positive electrode or the negative electrode.
  • the electrode of the present invention is a positive electrode
  • the electrode of the present invention may be a negative electrode.
  • the electrode of the present invention can also be used as a negative electrode by combining with a positive electrode using an appropriate positive electrode active material.
  • Example 1 preparation of active material particles
  • active material particles in which secondary particles of lithium iron phosphate were coated with the first carbon material were obtained.
  • a 1 mol/dm 3 FeSO 4 aqueous solution was dropped at a constant rate into a 2 dm 3 reaction vessel containing 750 cm 3 of ion-exchanged water, while maintaining the pH of the reaction solution at a constant value of 8.5 ⁇ 0.1.
  • 4 mol/dm 3 NaOH aqueous solution, 0.5 mol/dm 3 NH 3 aqueous solution, and 0.5 mol/dm 3 NH 2 NH 2 aqueous solution were added dropwise to produce a Fe(OH) 2 precursor.
  • the temperature of the reaction vessel was set at 50°C ⁇ 2°C.
  • the prepared Fe(OH) 2 precursor was taken out from the reaction vessel and mixed in a solid phase with 116 parts by mass of LiH 2 PO 4 and 10 parts by mass of sucrose powder per 100 parts by mass of the Fe(OH) 2 precursor. did.
  • the obtained mixture was fired at a firing temperature of 650° C. in a nitrogen atmosphere to produce a sample of Example 1 in which particles of LiFePO 4 , which is a lithium transition metal compound having a polyanionic structure, were coated with the first carbon material. Active material particles were obtained.
  • the content of the first carbon material in the obtained active material particles of Example 1 was 1.0% by mass.
  • the average particle diameter of the active material particles of Example 1 measured by the method described above was 7.5 ⁇ m.
  • the amount of change in particle size measured by the method described above was 0.2 nm, and the rate of change in particle size was 0.003%.
  • a positive electrode mixture paste was made using the obtained active material particles, acetylene black (AB) as a second carbon material, polyvinylidene fluoride (PVDF) as a binder, and N-methylpyrrolidone (NMP) as a dispersion medium. Prepared. The mass ratio of active material particles, AB, and PVDF was 90:5:5 in terms of solid content.
  • This positive electrode mixture paste was applied to an aluminum foil serving as a positive electrode base material, dried, and roll pressed to form a positive electrode active material layer to obtain the positive electrode of Example 1.
  • the coating amount of the positive electrode mixture paste was 1.0 g/cm 2 in terms of solid content, the pressure of the roll press was 320 kgf/cm, the temperature of the roll was 120° C., and the speed was 2.0 m/min.
  • the density of the positive electrode active material layer measured by the method described above was 2.2 g/cm 3 .
  • a negative electrode mixture paste was prepared by mixing graphite as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water as a dispersion medium.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • This negative electrode mixture paste was applied to a copper foil serving as a negative electrode base material, dried, and roll pressed to form a negative electrode active material layer to obtain a negative electrode.
  • Nonaqueous electrolyte LiPF 6 was dissolved at a concentration of 1.1 mol/dm 3 in a solvent containing ethylene carbonate (EC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) mixed at a volume ratio of 30:35:35. A water electrolyte was obtained.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the positive electrode, negative electrode, and separator were laminated to produce an electrode body.
  • the obtained electrode body was placed in a container, and then the non-aqueous electrolyte was poured into the container and the container was sealed, thereby obtaining the electricity storage element of Example 1.
  • Example 2 In the production of active material particles, Example 2 was carried out in the same manner as in Example 1, except that the pH of the reaction solution and the concentration of the NH 3 aqueous solution when producing the Fe(OH) 2 precursor were as shown in Table 1. 5 and Comparative Examples 1 to 3, positive electrodes, and power storage elements were obtained. The pH of the reaction solution was adjusted by changing the amount of each aqueous solution added dropwise. Note that in Comparative Example 3, the NH 3 aqueous solution was not dropped.
  • Comparative example 4 Active material particles, a positive electrode, and a power storage element of Comparative Example 4 were obtained in the same manner as in Example 1 except that the active material particles were produced by the solid phase method described below. Li 2 CO 3 , FePO 4 , and sucrose powders were mixed in a solid phase at a molar ratio of 1:2:1. By firing the obtained mixture at a firing temperature of 650°C in a nitrogen atmosphere, an active material of Comparative Example 4 in which particles of LiFePO 4 , which is a lithium transition metal compound having a polyanionic structure, is coated with the first carbon material Particles were obtained.
  • Example 1 except that the second carbon material was CNT instead of acetylene black (AB), and the mass ratio of active material particles, CNT, and PVDF was 94.5:0.5:5 in terms of solid content. Electricity storage elements of Examples 6 to 10 and Comparative Examples 5 to 8 were obtained in the same manner as in Comparative Examples 1 to 5 and Comparative Examples 1 to 4, respectively.
  • the amount of change in particle size (amount of particle size change) when each of the obtained active material particles is pressurized from 20 mN to 100 mN and the rate of change in particle size at this time (particle size change rate) measured by the above method. are shown in Table 1.
  • each power storage element was charged at a constant current of 1.0 C at 25° C. to bring the SOC to 50%. Subsequently, a current of 0.2C, 0.5C, or 1.0C was discharged for 30 seconds, respectively. After each discharge, constant current charging was performed at a current of 1.0 C to bring the SOC to 50%.
  • the relationship between the current in each discharge and the voltage 10 seconds after the start of discharge was plotted, and the direct current resistance was determined from the slope of the straight line obtained from the three points plotted.
  • the output 10 seconds after the start of discharge was calculated from the determined DC resistance, and was taken as the initial output. The results are shown in Table 1.
  • each of the power storage elements of Examples 1 to 10 using active material particles in which the change in particle size when a predetermined pressure is applied is 1.1 nm or less
  • ACR was reduced compared to each of the power storage elements of Comparative Examples 1 to 8 in which active material particles having an amount exceeding 1.1 nm were used.
  • each of the power storage elements of Examples 6 to 10 using CNT as the second carbon material has an initial output of It was found that the characteristics were improved.
  • the present invention is suitably used as power storage elements such as non-aqueous electrolyte secondary batteries used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.

Abstract

本発明の一側面に係る電極は、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物であり、20mNから100mNまで加圧したときの粒径の変化量が1.1nm以下である活物質粒子と、第二の炭素材料とを備える。

Description

電極、蓄電素子及び蓄電装置
 本発明は、電極、蓄電素子及び蓄電装置に関する。
 リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間で電荷輸送イオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタ、電気二重層キャパシタ等のキャパシタも広く普及している。
 蓄電素子に用いられる正極活物質として、リン酸鉄リチウム等のポリアニオン構造を有するリチウム遷移金属化合物が知られている。特許文献1には、正極活物質としてリン酸鉄リチウムを含む正極と、負極活物質として黒鉛を含む負極とを備える非水電解質二次電池が記載されている。ポリアニオン構造を有するリチウム遷移金属化合物は、通常、電子伝導性等の観点から、炭素材料で被覆された粒状物の形態で使用される。
特開2007-213961号公報
 ポリアニオン構造を有するリチウム遷移金属化合物を活物質に用いた蓄電素子においては、交流抵抗を低減することが難しい。
 本発明は、以上のような事情に基づいてなされたものであり、交流抵抗を低減することができる電極、蓄電素子及び蓄電装置を提供することを目的とする。
 本発明の一側面に係る電極は、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物であり、20mNから100mNまで加圧したときの粒径の変化量が1.1nm以下である活物質粒子と、第二の炭素材料とを備える。
 本発明の他の一側面に係る蓄電素子は、当該電極を備える。
 本発明の他の一側面に係る蓄電装置は、本発明の他の一側面に係る蓄電素子を一以上備え、且つ蓄電素子を二以上備える。
 本発明の一側面によれば、交流抵抗を低減することができる電極、蓄電素子及び蓄電装置を提供できる。
図1は、蓄電素子の一実施形態を示す透視斜視図である。 図2は、蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。
 初めに、本明細書によって開示される電極、蓄電素子及び蓄電装置の概要について説明する。
 [1]本発明の一側面に係る電極は、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物であり、20mNから100mNまで加圧したときの粒径の変化量が1.1nm以下である活物質粒子と、第二の炭素材料とを備える。
 前記[1]に記載の電極は、交流抵抗(以下、ACRともいう)を低減することができる。この理由については定かではないが、以下の理由が推測される。従来のポリアニオン構造を有するリチウム遷移金属化合物を含む粒子は、比較的脆い。そのため、従来のポリアニオン構造を有するリチウム遷移金属化合物を含む粒子を用いた場合、電極の製造過程における活物質層のプレスの際に粒子が大きく変形することで、基材と活物質層との密着性が悪くなり、その結果、基材と活物質層との界面抵抗が高くなり、電極のACRが十分に低減できない。これに対し、前記[1]に記載の電極が備える活物質粒子は、加圧したときの変形量が小さいため、プレスによって基材と活物質層との密着性を向上させることができ、電極のACRを低減することができると推測される。
 活物質粒子の粒径の変化量の測定は、正極活物質として蓄電素子に組み込まれている場合、以下の方法により完全放電状態としたときのものに対して行う。まず、蓄電素子を、0.05Cの充電電流で通常使用時の充電終止電圧となるまで定電流充電し、満充電状態とする。30分の休止後、0.05Cの放電電流で通常使用時の放電終止電圧(下限電圧)まで定電流放電する。解体し、正極を取り出し、金属リチウム電極を対極とした試験電池を組み立て、正極合剤1g当たり10mAの電流値で、正極電位が2.0V vs.Li/Liとなるまで定電流放電を行い、正極を完全放電状態に調整する。再解体し、正極を取り出す。ジメチルカーボネートを用いて、取り出した正極に付着した電解質等を十分に洗浄し、室温にて一昼夜乾燥後、活物質粒子を採取する。採取した活物質粒子を測定に供する。蓄電素子の解体から活物質粒子の採取までの作業は露点-60℃以下のアルゴン雰囲気中で行う。「通常使用時」とは、当該蓄電素子について推奨され、又は指定される充電条件及び放電条件を採用して当該蓄電素子を使用する場合をいう。充電条件については、例えば当該蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該蓄電素子を使用する場合をいう。
 活物質粒子の粒径の変化量の測定は、微小圧縮試験機(島津製作所製「MCT-511」)を用いた微小圧縮試験によって行う。プローブは直径が50μmのダイヤモンド製平面圧子を用いる。活物質粒子1個に対してプローブ速度0.134mN/secにて加圧し、圧力が20mNから100mNの範囲におけるプローブの変位量を20mNから100mNまで加圧したときの粒径の変化量とする。また、粒径の変化量は、5個の活物質粒子に対して測定を行い、その平均値を採用する。測定を行う活物質粒子は、粒径が活物質粒子の平均粒径の1/2倍以上2倍以下の粒子の中から選択する。個々の粒子の「粒径」は、短径と長径との平均値とする。短径は、粒子の最小外接円の中心を通る最も短い径とし、長径は、前記中心を通り短径に直交する径とする。最も短い径が2本以上存在する場合、その径に直交する径が最も長いものを短径とする。「平均粒径」は、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 [2]前記[1]に記載の電極において、第二の炭素材料はカーボンナノチューブであってもよい。前記[2]に記載の電極は、ACRを低減することができるとともに、初期の出力特性を向上することができる。
 [3]前記[1]又は[2]に記載の電極において、前記活物質粒子の20mNから100mNまで加圧したときの粒径の変化率は0.015%以下であってもよい。前記[3]に記載の電極は、ACRをより低減することができる。粒径の変形率は、活物質粒子の平均粒径に対する前記20mNから100mNまで加圧したときの粒径の変化量の百分率とする。
 [4]本発明の他の一側面に係る蓄電素子は、前記[1]から[3]のいずれか一つに記載の電極を備える。前記[4]に記載の蓄電素子は、前記[1]から[3]のいずれか一つに記載の電極を備えるため、ACRを低減することができる。
 [5]本発明の他の一側面に係る蓄電装置は、前記[4]に記載の蓄電素子を一以上備え、且つ蓄電素子を二以上備える。前記[5]に記載の蓄電装置は、前記[4]に記載の蓄電素子を一以上備えるため、初期の出力を高くすることができる。
 本発明の一実施形態に係る電極、その製造方法、蓄電素子、蓄電装置、蓄電素子の製造方法、及びその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<電極>
 本発明の一実施形態に係る電極は、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物であり、20mNから100mNまで加圧したときの粒径の変化量が1.1nm以下である活物質粒子と、第二の炭素材料とを備える。
[活物質粒子]
 本発明の一実施形態に係る電極が備える活物質粒子は、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物である。
[ポリアニオン構造を有するリチウム遷移金属化合物]
 ポリアニオン構造を有するリチウム遷移金属化合物としては、オキソ酸アニオン(PO 3-、SO 2-、SiO 4-、BO 3-、VO 3-等)とリチウムイオンと遷移金属イオンとを含む化合物が挙げられる。オキソ酸アニオンは、縮合アニオン(P 4-、P10 5-等)であってもよい。ポリアニオン構造を有するリチウム遷移金属化合物は、オリビン型の結晶構造を有していてもよい。ポリアニオン構造を有するリチウム遷移金属化合物は、典型的には、リチウム元素と遷移金属元素とを含むポリアニオン化合物であり、その他の元素(例えばハロゲン元素等)がさらに含まれていてもよい。ポリアニオン構造を有するリチウム遷移金属化合物が有する遷移金属元素としては、鉄元素、マンガン元素、ニッケル元素及びコバルト元素が好ましく、鉄元素がより好ましい。ポリアニオン構造を有するリチウム遷移金属化合物が有するオキソ酸アニオンとしては、リン酸アニオン(PO 3-)が好ましい。
 ポリアニオン構造を有するリチウム遷移金属化合物は、下記式(1)で表される化合物が好ましい。
 Li(AO ・・・(1)
 式(1)中、Mは、少なくとも1種の遷移金属元素である。Aは、B、Al、Si、P、S、Cl、Ti、V、Cr、Mo及びWから選ばれる少なくとも1種である。Xは、少なくとも1種のハロゲン元素である。a、b、c、d及びeは、0<a≦3、0<b≦2、2≦c≦4、1≦d≦3、0≦e≦1を満たす数である。a、b、c、d及びeは、いずれも整数であってもよく、小数であってもよい。
 式(1)中のMとしては、Fe、Mn、Ni及びCoのうちのいずれか1種、あるいはこれらのいずれか2種の組み合わせが好ましい。Mとしては、さらにFe、Mn又はこれらの組み合わせが好ましく、Feがより好ましい。また、MにおけるFeの含有率が50モル%以上であることが好ましく、70モル%以上、90モル%以上又は99モル%以上であることがより好ましい。Aとしては、Pが好ましい。Xとしては、Fが好ましい。一実施形態として、a=1、b=1、c=4、d=1、e=0が好ましい場合もある。
 ポリアニオン構造を有するリチウム遷移金属化合物の具体例としては、例えばLiFePO、LiCoPO、LiFe0.5Co0.5PO、LiMnPO、LiNiPO、LiMn0.5Fe0.5PO、LiCrPO、LiFeVO、LiFeSiO、LiFe(SO、LiFeBO、LiFePO3.90.2、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。これらのポリアニオン構造を有するリチウム遷移金属化合物中の原子又はポリアニオンは、他の原子又はアニオン種で一部が置換されていてもよい。ポリアニオン構造を有するリチウム遷移金属化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子におけるポリアニオン構造を有するリチウム遷移金属化合物の含有量は、60質量%以上であってもよく、80質量%以上であってもよく、90質量%以上であってもよく、95質量%以上又は99質量%以上であってもよい。
 ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子は、複数の一次粒子が凝集せずにそれぞれ単独に存在するもの(単粒子)であってもよいが、複数の一次粒子が凝集して形成される二次粒子であることが好ましい。当該粒子は、例えば、ポリアニオン構造を有するリチウム遷移金属化合物の二次粒子である。
[第一の炭素材料]
 ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆され、本発明の一実施形態に係る電極が備える活物質粒子が構成される。第一の炭素材料の一部は、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子の内部に存在していてもよい。当該活物質粒子においては、第一の炭素材料に被覆されていない部分(例えば、ポリアニオン構造を有するリチウム遷移金属化合物が露出した部分)があってもよい。
 第一の炭素材料が、ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子を被覆していることにより、当該活物質粒子は粒子間の十分な電子伝導性を発揮することができる。第一の炭素材料は、例えば炭素元素の含有量が80質量%以上100質量%以下の材料である。第一の炭素材料における炭素元素の含有量は、90質量%以上であってもよく、95質量%であってもよい。第一の炭素材料に含まれていてもよい炭素元素以外の元素としては、酸素元素、水素元素、窒素元素等が挙げられる。第一の炭素材料としては、黒鉛、非黒鉛質炭素等が挙げられる。
 当該活物質粒子における第一の炭素材料の含有量としては、0.1質量%以上20質量%以下が好ましく、0.2質量%以上10質量%以下がより好ましく、0.3質量%以上5質量%以下がさらに好ましく、0.5質量%以上2質量%以下が特に好ましい。活物質粒子における第一の炭素材料の含有量が前記下限以上であることで、電子伝導性を高めること等ができる。活物質粒子における第一の炭素材料の含有量が前記上限以下であることで、ポリアニオン構造を有するリチウム遷移金属化合物の含有量を高めることができ、活物質層の体積当たりの放電容量をより大きくすること等ができる。
 当該活物質粒子におけるポリアニオン構造を有するリチウム遷移金属化合物と第一の炭素材料との合計含有量としては、90質量%以上100質量%以下が好ましく、95質量%以上、98質量%以上、99質量%以上又は99.9質量%以上であってもよい。
 また、ポリアニオン構造を有するリチウム遷移金属化合物と第一の炭素材料との合計の比表面積に対する、第一の炭素材料の比表面積の比率は、下限としては、5%であることが好ましく、10%であることがより好ましい。また上限としては60%であることが好ましく、50%であることがより好ましい。前記上下限の範囲とすることで、基材と活物質層との界面抵抗の上昇を抑制することができ、電極のACRを低減することができる。
 本発明において、「比表面積」は、測定対象の試料を液体窒素中に浸し、窒素ガスを供給することにより粒子表面に窒素分子を物理吸着させ、その時の圧力と吸着量を測定することにより求められるBET比表面積をいう。具体的な測定手法としては、一点法により、試料に対する窒素吸着量[m]を求める。得られた窒素吸着量を、試料の質量[g]で除した値をBET比表面積[m/g]とする。「ポリアニオン構造を有するリチウム遷移金属化合物と第一の炭素材料との合計の比表面積に対する、第一の炭素材料の比表面積の比率」は、以下の手順によって求められる。最初に、前記した活物質粒子の粒径の変化量の測定と同様の方法により完全放電状態とした非水電解質蓄電素子を解体して取り出した正極を上述の通り洗浄及び乾燥後、採取されたポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物のBET比表面積を測定する。次に、前記粒状物を大気雰囲気にて350℃で4時間焼成することによって前記第一の炭素材料を除去する。その後、前記第一の炭素材料を除去したポリアニオン構造を有するリチウム遷移金属化合物を含む粒子に対してBET比表面積を測定する。前記第一の炭素材料のBET比表面積Bp[m/g]は、前記粒状物のBET比表面積をBp[m/g]、前記第一の炭素材料を除去したポリアニオン構造を有するリチウム遷移金属化合物を含む粒子のBET比表面積をBp[m/g]とした場合に、下記式1で算出される。
 Bp=Bp-Bp ・・・1
得られたBpをBpで除し百分率で表すことにより、前記「ポリアニオン構造を有するリチウム遷移金属化合物と第一の炭素材料との合計の比表面積に対する、第一の炭素材料の比表面積の比率」を求めることができる。
[活物質粒子の粒径変化量、粒径変化率及び平均粒径]
 当該活物質粒子を20mNから100mNまで加圧したときの粒径の変化量の上限は、1.1nmであり、1.0nmが好ましく、0.9nm、0.7nm又は0.5nmがより好ましく、0.4nm又は0.2nmがさらに好ましい。粒径の変化量が前記上限以下であることにより、基材と活物質層との密着性を向上させ、電極のACRを低減することができる。前記粒径の変化量の下限は、例えば0.001nmであってもよく、0.01nmであってもよく、0.1nmであってもよい。前記粒径の変化量は、前記したいずれかの下限以上且つ前記したいずれかの上限以下であってもよい。
 当該活物質粒子を20mNから100mNまで加圧したときの粒径の変化率の上限は、0.015%が好ましく、0.013%がより好ましく、0.010%、0.008%、0.006%又は0.004%がさらに好ましい。粒径の変化率が前記上限以下であることにより、活物質層の密度をより高め、活物質層の体積当たりの放電容量をより大きくすることができる。前記粒径の変化率の下限は、例えば0.0001%であってもよく、0.001%であってもよく、0.002%であってもよい。前記粒径の変化率は、前記したいずれかの下限以上且つ前記したいずれかの上限以下であってもよい。
 当該活物質粒子の平均粒径としては、0.5μm以上30μm以下が好ましく、1μm以上20μm以下がより好ましく、2μm以上15μm以下、4μm以上10μm以下、又は6μm以上8μm以下がさらに好ましい。活物質粒子の平均粒径が前記範囲であることにより、活物質層の密度をより高め、活物質層の体積当たりの放電容量をより大きくすることができる。当該活物質粒子を所定の平均粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
<活物質粒子の製造方法>
 本発明の一実施形態に係る電極が備える活物質粒子は、水酸化物前駆体とリチウム源と炭素源とを用いる方法において、水酸化物前駆体を製造する際にアンモニア水溶液等を用いて反応液のpHを調整することによって効率的に得ることができる。このような製造方法によって、球状であり且つプレスしても粒子形状が変形し難い活物質粒子が得られる。以下、当該製造方法について詳説する。但し、本発明が備える活物質粒子は、以下の製造方法によって製造されるものに限定されるものではない。
 まず、水中での遷移金属イオンと水酸化物イオンとの沈殿反応により、水酸化物前駆体を得る。具体的には例えば、遷移金属塩水溶液と水酸化ナトリウム水溶液等とを水中に滴下することにより、水酸化物前駆体(遷移金属の水酸化物)を得る。遷移金属塩としては、目的とするリチウム遷移金属化合物を構成する遷移金属元素を含み、水溶性を有する塩であればよく、例えば硫酸鉄、塩化鉄、硫酸コバルト、硫酸マンガン、硫酸ニッケル等を用いることができる。また、水酸化ナトリウム水溶液に替えて水酸化カリウム水溶液等を用いることもできる。遷移金属塩水溶液と水酸化ナトリウム水溶液等とを水中に滴下する際、これらの水溶液を滴下する水(反応液)のpHを所定範囲に保つために、アンモニア水溶液等をさらに反応液に滴下する。反応液のpHは、8.5から10.5の範囲であることが好ましい。反応液のpHが前記範囲を外れる場合、及び反応液のpHが前記範囲内であっても反応液にアンモニア水溶液等を滴下しない場合、最終的に得られる活物質粒子は、加圧の際の粒径の変化量が大きいものとなる傾向にある。滴下するアンモニア水溶液の濃度としては、例えば0.3mol/dm以上1mol/dm以下程度とすることができる。滴下するアンモニア水溶液、水酸化ナトリウム水溶液等の濃度、滴下量等を調整することで、反応液のpHを調整することができる。アンモニア水溶液と共にヒドラジン水溶液等の他のアルカリ性水溶液をさらに滴下してもよい。他のアルカリ性水溶液の滴下量等により反応液のpHを調整することもできる。
 次いで、得られた水酸化物前駆体と、リチウム源と、炭素源とを混合し、不活性雰囲気下(例えば窒素雰囲気下)において焼成することで、本発明の一実施形態に係る活物質粒子が得られる。リチウム源としては、LiHPO、LiPO、LiHSO等のポリアニオン構造を有し、リチウム元素を含む化合物を好適に用いることができる。その他、リチウム源としては、LiOH、ハロゲン化リチウム等を用いることができる。用いるリチウム源がポリアニオン構造を有する化合物ではない場合、ポリアニオン構造を有する化合物をさらに混合して焼成を行う。ポリアニオン構造を有する化合物としては、NHPO、(NHPO、(NHHPO、(NHSO、NHVO等のアンモニウムカチオンとポリアニオンとの塩等を好適に用いることができる。炭素源としては、スクロース、ラクトース、マルトース、ショ糖、ポリビニルアルコール、アスコルビン酸等の有機物を用いることができる。焼成温度としては、例えば500℃以上800℃以下とすることができる。
[第二の炭素材料]
 本発明の一実施形態に係る電極は、前記活物質粒子と、第二の炭素材料とを備える。その第二の炭素材料について説明する。
 第二の炭素材料は、導電性を有する。第二の炭素材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。第二の炭素材料の形状としては、粉状、繊維状等が挙げられる。第二の炭素材料としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりアセチレンブラック及びCNTが好ましく、中でもCNTが好ましい。
 CNTとしては、1層のグラフェンにより形成される単層カーボンナノチューブ(SWCNT)、2層以上(例えば2から20層)のグラフェンにより形成される多層カーボンナノチューブ(MWCNT)等が挙げられる。CNTの構造は特に限定されず、カイラル(らせん)型、ジグザグ型、アームチェア型等のいずれのタイプであってもよい。CNTには、CNTの合成に用いられた触媒金属(例えば、Fe、Co及び白金族元素(Ru、Rh、Pd、Os、Ir、Pt))等が含まれていてもよい。
 CNTの平均直径としては、例えば0.3nm以上100nm以下であってもよく、0.5nm以上50nm以下であってもよく、1nm以上20nm以下であってもよい。この平均直径の上限は、10nm、5nm又は3nmであってもよい。平均直径が比較的小さいCNTを用いることで、良好な電子伝導経路が形成されやすい傾向にある。
 CNTの平均アスペクト比(平均直径に対する平均長さ)としては、特に制限はないが、例えば10以上である。CNTの平均アスペクト比の下限は、20、30、40又は50であってもよい。CNTの平均アスペクト比の上限は、例えば10,000、5,000、2,000、1,000又は500であってもよい。平均アスペクト比が比較的高いCNTを用いることで、良好な電子伝導経路が形成されやすい傾向にある。
 CNTの平均直径及び平均アスペクト比とは、電子顕微鏡で観察される任意の10個のCNTから測定される値の平均値とする。
 CNTは、例えば紡糸法等により高分子を繊維状にし、不活性雰囲気下で熱処理する方法、触媒存在下、高温で有機化合物を反応させる気相成長法等によって得ることができる。CNTは、市販されているものを用いることができる。
<蓄電素子の構成>
 本発明の一実施形態に係る蓄電素子は、正極、負極及びセパレータを有する電極体と、電解質と、前記電極体及び電解質を収容する容器と、を備える。電極体は、通常、複数の正極及び複数の負極がセパレータを介して積層された積層型、又は、正極及び負極がセパレータを介して積層された状態で巻回された巻回型である。電解質は、正極、負極及びセパレータに含まれた状態で存在する。電解質は非水電解質であってもよい。蓄電素子の一例として、電解質が非水電解質である非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。
(正極)
 当該蓄電素子に備わる正極は、本発明の一実施形態に係る電極として前記したものを用いることができる。
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10-2Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを前記の範囲とすることで、正極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。
 正極活物質層は、前記活物質粒子と第二の炭素材料とを含む。正極活物質層は、必要に応じて、前記活物質粒子以外の他の正極活物質、前記第二の炭素材料以外の他の導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。
 正極活物質層における前記活物質粒子の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。前記活物質粒子の含有量を前記の範囲とすることで、正極活物質層の体積当たりの放電容量を大きくすることと製造性とを両立できる。
 正極活物質層は、前記活物質粒子以外の他の正極活物質をさらに含んでいてもよい。他の正極活物質としては、従来公知の各種正極活物質を用いることができる。但し、正極活物質層に含まれる全ての正極活物質(前記活物質粒子及び他の正極活物質の合計)に対する前記活物質粒子の含有量は、90質量%以上が好ましく、99質量%以上がより好ましく、100質量%がさらに好ましい。このように正極活物質を実質的に前記活物質粒子のみから構成することで、正極活物質層の体積当たりの放電容量をより大きくすること等ができる。
 正極活物質層における前記第二の炭素材料の含有量は、0.01質量%以上10質量%以下が好ましく、0.1質量%以上9質量%以下がより好ましく、0.3質量%以上7質量%以下がさらに好ましい。前記第二の炭素材料の含有量を前記の範囲とすることで、蓄電素子のエネルギー密度等を高めることができる。前記第二の炭素材料がCNTである場合は、正極活物質層におけるCNTの含有量は、0.01質量%以上3.0質量%以下が好ましく、0.1質量%以上1.0質量%以下がより好ましく、0.3質量%以上0.7質量%以下がさらに好ましい。CNTの含有量が前記範囲であることにより、より良好な電子伝導経路が形成されやすい傾向にある。
 正極活物質層は、前記第二の炭素材料以外の他の導電剤をさらに含んでいてもよい。前記他の導電剤は、導電性を有する材料であれば特に限定されない。このような他の導電剤としては、例えば、金属、導電性セラミックス等が挙げられる。但し、正極活物質層に含まれる全ての導電剤(第二の炭素材料及び他の導電剤の合計)に対する第二の炭素材料の含有量は、90質量%以上が好ましく、99質量%以上がより好ましく、100質量%がさらに好ましい。このように導電剤を実質的に第二の炭素材料のみから構成することで、電極のACRの低減や、初期の出力特性の向上等をすることができる。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を前記の範囲とすることで、正極活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。増粘剤を使用する場合、正極活物質層における増粘剤の含有量は、例えば0.1質量%以上8質量%以下とすることができ、5質量%以下又は1質量%以下とすることもできる。ここで開示される技術は、正極活物質層が増粘剤を含まない態様で好ましく実施され得る。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。フィラーを使用する場合、正極活物質層におけるフィラーの含有量は、例えば0.1質量%以上8質量%以下とすることができ、5質量%以下又は1質量%以下とすることもできる。ここで開示される技術は、正極活物質層がフィラーを含まない態様で好ましく実施され得る。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を、活物質粒子、他の正極活物質、第二の炭素材料、前記他の導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 正極活物質層の密度の下限としては、1.8g/cmが好ましく、1.9g/cmがより好ましく、2.0g/cmがさらに好ましく、2.1g/cmが特に好ましい。正極活物質層の密度が前記下限以上であることで、正極活物質層の体積当たりの放電容量をより大きくすることができる。正極活物質層の密度の上限としては、2.6g/cmであってもよく、2.5g/cm、2.4g/cm又は2.3g/cmであってもよい。正極活物質層の密度は、前記したいずれかの下限以上且つ前記したいずれかの上限以下であってもよい。正極活物質層の密度は、活物質粒子の種類、正極を製造する際のプレスの強度等によって調整することができる。正極活物質層の密度は、正極活物質層1層の単位面積あたりの質量を正極活物質層1層の平均厚さで除して求められる。
 正極活物質層1層の単位面積当たりの質量としては、0.3g/cm以上3g/cm以下が好ましく、0.5g/cm以上2g/cm以下がより好ましく、0.7g/cm以上1.5g/cm以下がさらに好ましい。正極活物質層1層の単位面積当たりの質量が前記範囲内であることで、蓄電素子の放電容量を大きくすること等ができる。
 正極の作製は、例えば、正極基材への正極合剤ペーストの塗工及び乾燥により、正極活物質層を正極基材の少なくとも一方の面に沿って積層することにより行うことができる。正極合剤ペーストは、例えば、正極活物質層を構成する各成分と分散媒とを含む。正極合剤ペーストの塗工及び乾燥後、プレスを行うことが好ましい。プレスにより、密度の高い正極活物質層を得ることができる。
(負極)
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば前記正極で例示した構成から選択することができる。
 負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを前記の範囲とすることで、負極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、公知のものから適宜選択することができ、前記正極で例示した材料から選択してもよい。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた半電池において、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、前記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、前記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を前記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を前記上限以下とすることで、負極活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。負極活物質が金属Li等の金属である場合、負極活物質層は、箔状であってもよい。
 負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を前記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を前記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を前記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。
 非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。
 固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ポリマー固体電解質等が挙げられる。
 硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。
 本実施形態の蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図1に角型電池の一例としての蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。
<蓄電装置の構成>
 本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも1つの蓄電素子に対して、本発明の技術が適用されていればよい。
 本発明の一実施形態に係る蓄電装置は、前記本発明の一実施形態に係る蓄電素子を一以上備え、且つ蓄電素子を二以上備える(以下、「第二の実施形態」という。)。第二の実施形態に係る蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよく、前記本発明の一実施形態に係る蓄電素子を一備え、且つ前記本発明の一実施形態に係らない蓄電素子を一以上備えていてもよく、前記本発明の一実施形態に係る蓄電素子を二以上備えていてもよい。
 図2に、電気的に接続された2つ以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した第二の実施形態に係る蓄電装置30の一例を示す。蓄電装置30は、2つ以上の蓄電素子1を電気的に接続するバスバ(図示せず)、2つ以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、1つ以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<蓄電素子の製造方法>
 本実施形態の蓄電素子の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体を準備することと、電解質を準備することと、電極体及び電解質を容器に収容することと、を備える。電極体を準備することは、正極及び負極を準備することと、セパレータを介して正極及び負極を積層又は巻回することにより電極体を形成することとを備える。
 電解質を容器に収容することは、公知の方法から適宜選択できる。例えば、電解質に非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。
<その他の実施形態>
 尚、本発明の活物質粒子、電極及び蓄電素子は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 前記実施形態では、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。本発明の蓄電素子は、非水電解質蓄電素子以外の蓄電素子であってもよい。
 前記実施形態では、正極及び負極がセパレータを介して積層された電極体について説明したが、電極体は、セパレータを備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。
 前記実施形態では、本発明の電極が正極である場合について説明したが、本発明の電極は負極であってもよい。適当な正極活物質が用いられた正極と組み合わせることで、本発明の電極は負極として用いることもできる。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
[実施例1]
(活物質粒子の作製)
 以下の手順により、リン酸鉄リチウムの二次粒子が第一の炭素材料で被覆されてなる活物質粒子を得た。
 750cmのイオン交換水が入った2dmの反応容器に1mol/dmのFeSO水溶液を一定速度で滴下しつつ、その間の反応液のpHが一定値8.5±0.1を保つように4mol/dmのNaOH水溶液と、0.5mol/dmのNH水溶液と、0.5mol/dmのNHNH水溶液を滴下し、Fe(OH)前駆体を作製した。反応容器の温度は50℃±2℃に設定した。次に、作製されたFe(OH)前駆体を反応容器から取り出し、前記Fe(OH)前駆体100質量部に対してLiHPO116質量部及びスクロース粉10質量部と固相混合した。そして、得られた混合物を窒素雰囲気下において焼成温度650℃で焼成することにより、ポリアニオン構造を有するリチウム遷移金属化合物であるLiFePOの粒子が第一の炭素材料で被覆されてなる実施例1の活物質粒子を得た。
 得られた実施例1の活物質粒子における第一の炭素材料の含有量は、1.0質量%であった。前記方法にて測定した実施例1の活物質粒子の平均粒径は7.5μmであった。前記方法にて測定した実施例1の活物質粒子の20mNから100mNまで加圧したときの粒径の変化量は0.2nmであり、粒径の変化率は0.003%であった。
(正極の作製)
 得られた前記活物質粒子、第二の炭素材料であるアセチレンブラック(AB)、バインダであるポリフッ化ビニリデン(PVDF)及び分散媒であるN-メチルピロリドン(NMP)を用いて正極合剤ペーストを調製した。活物質粒子とABとPVDFとの質量比率は固形分換算で90:5:5とした。この正極合剤ペーストを、正極基材であるアルミニウム箔に塗工し、乾燥し、ロールプレスすることにより正極活物質層を形成し、実施例1の正極を得た。正極合剤ペーストの塗工量は固形分換算で1.0g/cmとし、ロールプレスの圧力は320kgf/cmとし、ロールの温度は120℃、速度は2.0m/minとした。
 得られた実施例1の正極における、前記方法にて測定した正極活物質層の密度は2.2g/cmであった。
(負極の作製)
 負極活物質である黒鉛、バインダであるスチレン-ブタジエンゴム(SBR)、増粘剤であるカルボキシメチルセルロース(CMC)、及び分散媒である水を混合して負極合剤ペーストを調製した。黒鉛とSBRとCMCとの質量比率は固形分換算で96:3.3:0.7とした。この負極合剤ペーストを、負極基材である銅箔に塗工し、乾燥し、ロールプレスすることにより負極活物質層を形成し、負極を得た。
(非水電解質)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とエチルメチルカーボネート(EMC)とを体積比率30:35:35で混合した溶媒に、1.1mol/dmの濃度でLiPFを溶解させて、非水電解質を得た。
(セパレータ)
 セパレータには、ポリエチレン微多孔膜を用いた。
(蓄電素子の組み立て)
 前記正極、負極及びセパレータを積層し、電極体を作製した。得られた電極体を容器に収容し、次いで前記非水電解質を容器に注入した後封口することにより、実施例1の蓄電素子を得た。
[実施例2から5、比較例1から3]
 活物質粒子の作製において、Fe(OH)前駆体を製造する際の反応液のpH及びNH水溶液の濃度を表1の通りとしたこと以外は実施例1と同様にして、実施例2から5及び比較例1から3の各活物質粒子、正極及び蓄電素子を得た。反応液のpHは、滴下する各水溶液の滴下量を変えることにより調整した。なお、比較例3においては、NH水溶液を滴下しなかった。
[比較例4]
 以下の固相法により活物質粒子を作製したこと以外は実施例1と同様にして、比較例4の活物質粒子、正極及び蓄電素子を得た。
 LiCOとFePOとスクロースの各粉末をモル比で1:2:1となるよう固相混合した。得られた混合物を窒素雰囲気下において焼成温度650℃で焼成することにより、ポリアニオン構造を有するリチウム遷移金属化合物であるLiFePOの粒子が第一の炭素材料で被覆されてなる比較例4の活物質粒子を得た。
[実施例6から10、比較例5から8]
 第二の炭素材料をアセチレンブラック(AB)に替えてCNTとし、活物質粒子とCNTとPVDFとの質量比率を固形分換算で94.5:0.5:5としたこと以外、実施例1から5、比較例1から4とそれぞれ同様にして、実施例6から10、比較例5から8の蓄電素子を得た。
 前記方法にて測定した、得られた各活物質粒子の20mNから100mNまで加圧したときの粒径の変化量(粒径変化量)及びこのときの粒径の変化率(粒径変化率)を表1に示す。
[評価]
(初期充放電)
 得られた各蓄電素子について、25℃にて、充電電流0.1C、充電終止電圧3.6Vとして定電流定電圧充電した。充電の終了条件は、総充電時間が15時間となるまでとした。10分間の休止期間を設けた後、放電電流0.1C、放電終止電圧2.0Vとして定電流放電した。
(初期の出力)
 前記初期充放電後の各蓄電素子について、25℃にて、1.0Cの電流で定電流充電を行い、SOCを50%にした。続いて、0.2C、0.5C、又は1.0Cの電流で、それぞれ30秒間放電した。各放電終了後には、1.0Cの電流で定電流充電を行い、SOCを50%にした。各放電における電流と放電開始後10秒目の電圧との関係をプロットし、3点のプロットから得られた直線の傾きから直流抵抗を求めた。求めた直流抵抗から放電開始後10秒後の出力を算出し、初期の出力とした。結果を表1に示す。 
(交流抵抗の測定)
前記初期充放電後の各蓄電素子について、25℃にて、1kHzの交流抵抗(ACR)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、所定の加圧をしたときの粒径の変化量が1.1nm以下である活物質粒子が用いられた実施例1から10の各蓄電素子は、粒径の変化量が1.1nmを超える活物質粒子が用いられた比較例1から8の各蓄電素子と比較して、ACRが低減されていた。また、第二の炭素材料としてCNTを用いた実施例6から10の各蓄電素子は、第二の炭素材料としてABを用いた実施例1から5の各蓄電素子と比較して、初期の出力特性が向上していることがわかった。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質二次電池をはじめとした蓄電素子等として好適に用いられる。
1  蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (5)

  1.  ポリアニオン構造を有するリチウム遷移金属化合物を含む粒子が第一の炭素材料で被覆されてなる粒状物であり、
     20mNから100mNまで加圧したときの粒径の変化量が1.1nm以下である活物質粒子と、
     第二の炭素材料と
    を備える電極。
  2.  前記第二の炭素材料が、カーボンナノチューブである請求項1に記載の電極。
  3.  前記活物質粒子の20mNから100mNまで加圧したときの粒径の変化率が0.015%以下である請求項1に記載の電極。
  4.  請求項1から請求項3のいずれか1項に記載の電極を備える蓄電素子。
  5.  請求項4に記載の蓄電素子を一以上備え、且つ蓄電素子を二以上備える蓄電装置。
PCT/JP2023/031362 2022-09-07 2023-08-30 電極、蓄電素子及び蓄電装置 WO2024053496A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022142555A JP2024037609A (ja) 2022-09-07 2022-09-07 電極及び蓄電素子
JP2022-142555 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024053496A1 true WO2024053496A1 (ja) 2024-03-14

Family

ID=90191018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031362 WO2024053496A1 (ja) 2022-09-07 2023-08-30 電極、蓄電素子及び蓄電装置

Country Status (2)

Country Link
JP (1) JP2024037609A (ja)
WO (1) WO2024053496A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081002A (ja) * 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The リチウム二次電池用正極活物質の製造法、正極活物質及びリチウム二次電池
WO2010134156A1 (ja) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質粉末材料
JP2011146284A (ja) * 2010-01-15 2011-07-28 Toyota Motor Corp 複合正極活物質の製造方法
JP2016048698A (ja) * 2016-01-04 2016-04-07 日立化成株式会社 リチウムイオン二次電池正極用導電剤並びにこれを用いたリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極合剤、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2022073197A (ja) * 2020-10-30 2022-05-17 株式会社Gsユアサ 蓄電素子用正極活物質合剤、蓄電素子用正極及び蓄電素子
JP2022075345A (ja) * 2020-11-06 2022-05-18 株式会社Gsユアサ 蓄電素子用正極及び蓄電素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081002A (ja) * 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The リチウム二次電池用正極活物質の製造法、正極活物質及びリチウム二次電池
WO2010134156A1 (ja) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質粉末材料
JP2011146284A (ja) * 2010-01-15 2011-07-28 Toyota Motor Corp 複合正極活物質の製造方法
JP2016048698A (ja) * 2016-01-04 2016-04-07 日立化成株式会社 リチウムイオン二次電池正極用導電剤並びにこれを用いたリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極合剤、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2022073197A (ja) * 2020-10-30 2022-05-17 株式会社Gsユアサ 蓄電素子用正極活物質合剤、蓄電素子用正極及び蓄電素子
JP2022075345A (ja) * 2020-11-06 2022-05-18 株式会社Gsユアサ 蓄電素子用正極及び蓄電素子

Also Published As

Publication number Publication date
JP2024037609A (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
JP2022075345A (ja) 蓄電素子用正極及び蓄電素子
WO2021246186A1 (ja) 正極及び蓄電素子
JP2022134613A (ja) 非水電解質蓄電素子用正極合剤、非水電解質蓄電素子用正極及び非水電解質蓄電素子
WO2024053496A1 (ja) 電極、蓄電素子及び蓄電装置
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
WO2024062862A1 (ja) 電極、蓄電素子及び蓄電装置
WO2022202576A1 (ja) 非水電解質蓄電素子
WO2024057925A1 (ja) 非水電解質蓄電素子及び蓄電装置
WO2023171796A1 (ja) 負極、蓄電素子及び蓄電装置
WO2022091825A1 (ja) 電極、蓄電素子及び蓄電装置
WO2022097612A1 (ja) 非水電解質蓄電素子用正極、非水電解質蓄電素子及び蓄電装置
WO2022249667A1 (ja) 非水電解質蓄電素子及び蓄電装置
WO2022163422A1 (ja) 蓄電素子及び蓄電素子用の負極
WO2023032752A1 (ja) 蓄電素子及び蓄電装置
WO2023190422A1 (ja) 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子
WO2023224071A1 (ja) 非水電解質蓄電素子
WO2023281960A1 (ja) 正極、蓄電素子及び蓄電装置
WO2023189140A1 (ja) 蓄電素子用正極、蓄電素子及び蓄電装置
WO2022097400A1 (ja) 蓄電素子用正極活物質、蓄電素子用正極、蓄電素子及び蓄電装置
WO2024010016A1 (ja) 非水電解質蓄電素子、機器、非水電解質蓄電素子の使用方法及び非水電解質蓄電素子の製造方法
US20230155180A1 (en) Energy storage device, method for manufacturing the same and energy storage apparatus
WO2023145677A1 (ja) 非水電解質蓄電素子
WO2023286718A1 (ja) 蓄電素子
WO2022209815A1 (ja) 非水電解質蓄電素子用正極活物質、非水電解質蓄電素子用正極、非水電解質蓄電素子、蓄電ユニット及び蓄電装置
WO2023224070A1 (ja) 非水電解質蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863035

Country of ref document: EP

Kind code of ref document: A1