WO2023032752A1 - 蓄電素子及び蓄電装置 - Google Patents

蓄電素子及び蓄電装置 Download PDF

Info

Publication number
WO2023032752A1
WO2023032752A1 PCT/JP2022/031696 JP2022031696W WO2023032752A1 WO 2023032752 A1 WO2023032752 A1 WO 2023032752A1 JP 2022031696 W JP2022031696 W JP 2022031696W WO 2023032752 A1 WO2023032752 A1 WO 2023032752A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
surface area
specific surface
Prior art date
Application number
PCT/JP2022/031696
Other languages
English (en)
French (fr)
Inventor
大輔 遠藤
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202280058502.2A priority Critical patent/CN117981133A/zh
Publication of WO2023032752A1 publication Critical patent/WO2023032752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electric storage element and an electric storage device.
  • Non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes. is configured to charge and discharge by performing Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as storage elements other than non-aqueous electrolyte secondary batteries.
  • initial output characteristics in a low temperature environment are required. Since the initial output characteristics in this low-temperature environment are also affected by factors other than the electronic conductivity of the positive electrode active material, further improvement is required even when using a polyanion compound whose surface is coated with carbon.
  • An object of the present invention is to provide a power storage element and power storage device with high initial output in a low-temperature environment.
  • a power storage device includes a positive electrode having a positive electrode active material layer containing a positive electrode active material, and a non-aqueous electrolyte.
  • the ratio of the second BET specific surface area, which is the BET specific surface area of the carbon, to the first BET specific surface area, which is the BET specific surface area of the positive electrode active material layer, is more than 10% and less than 35%.
  • the non-aqueous electrolyte contains an electrolyte salt containing no elemental sulfur and a sulfur-based compound.
  • a power storage device includes two or more power storage elements, and one or more power storage elements according to another aspect of the present invention.
  • the power storage device has high initial output in a low temperature environment.
  • a power storage device has high initial output in a low-temperature environment.
  • FIG. 1 is a see-through perspective view showing one embodiment of a power storage device.
  • FIG. 2 is a schematic diagram showing an embodiment of a power storage device configured by assembling a plurality of power storage elements.
  • a power storage device includes a positive electrode having a positive electrode active material layer containing a positive electrode active material, and a non-aqueous electrolyte.
  • the ratio of the second BET specific surface area, which is the BET specific surface area of the carbon, to the first BET specific surface area, which is the BET specific surface area of the positive electrode active material layer, is more than 10% and less than 35%.
  • the non-aqueous electrolyte contains an electrolyte salt containing no elemental sulfur and a sulfur-based compound.
  • the power storage device has a high initial output in a low-temperature environment.
  • the reason for this is not necessarily clear, but is presumed, for example, as follows.
  • the ratio of the second BET specific surface area to the first BET specific surface area is less than 35%, the coating amount of the carbon is relatively small and the diffusion of charge carrier ions such as lithium ions is improved.
  • the ratio of the second BET specific surface area to the first BET specific surface area is more than 10%, the contact resistance between the positive electrode active materials in the positive electrode active material layer can be reduced. In this way, when the ratio of the second BET specific surface area to the first BET specific surface area satisfies the above range, it is possible to increase the initial output of the electric storage element in a low temperature environment.
  • the non-aqueous electrolyte contains a sulfur-based compound
  • a film with relatively low resistance is formed on the surface of the negative electrode of the power storage element, which increases the initial output of the power storage element in a low-temperature environment. be able to. Therefore, when the ratio of the second BET specific surface area to the first BET specific surface area satisfies the above range and the non-aqueous electrolyte contains the sulfur-based compound, the power storage element can be operated in a low-temperature environment. It is speculated that the initial output of is high.
  • the above-mentioned "BET specific surface area” is obtained by immersing the measurement sample in liquid nitrogen and supplying nitrogen gas, thereby measuring the pressure and nitrogen adsorption amount at that time based on the physical adsorption of nitrogen molecules on the particle surface. Desired.
  • the BET specific surface area is measured by the following method.
  • the nitrogen adsorption amount (m 2 ) for the measurement sample is determined using a specific surface area measuring device (trade name: MONOSORB) manufactured by Yuasa Ionics.
  • a value obtained by dividing the obtained adsorption amount by the mass (g) of the measurement sample is defined as the BET specific surface area (m 2 /g).
  • the first BET specific surface area is measured by the following method.
  • As a sample of the positive electrode active material layer used for the measurement of the first BET specific surface area when the positive electrode is available before the production of the electric storage element, the powder of the positive electrode active material layer collected from the positive electrode is directly subjected to the measurement.
  • the sample of the positive electrode active material layer to be used for the measurement of the first BET specific surface area is prepared by the following method.
  • the storage element is discharged at a constant current of 0.05 C to the lower limit voltage for normal use.
  • the storage element is dismantled, the positive electrode is taken out as a working electrode, and a half cell is assembled using metal Li as a counter electrode.
  • the potential of the working electrode is 2.0 V vs. Constant current discharge is performed until Li/Li + .
  • the half cell is disassembled, the working electrode is taken out, and it is thoroughly washed with dimethyl carbonate.
  • the positive electrode active material layer powder collected from the positive electrode is used as a measurement sample of the positive electrode active material layer for measurement of the first BET specific surface area.
  • 1.00 g of the powder of the positive electrode active material layer is placed in a sample tube for measurement and dried under reduced pressure at 120° C. for 12 hours to sufficiently remove moisture in the measurement sample.
  • P/P0 about 770 mmHg
  • the process from dismantling the storage element to collecting the powder of the positive electrode active material layer is carried out in an argon atmosphere with a dew point of ⁇ 60° C. or lower.
  • the second BET specific surface area is measured by the following method.
  • a sample of the positive electrode active material layer to be used for the measurement of the second BET specific surface area is prepared by the following method. First, the powder of the positive electrode active material layer sampled in the same manner as the sample of the positive electrode active material layer used for the measurement of the first BET specific surface area is mixed with the powder of the positive electrode active material layer using air classification or the like. Optional components such as conductive agents are removed. Then, the powder of the positive electrode active material whose surface is coated with carbon is sampled, and the BET specific surface area is determined by the above method. Next, the positive electrode active material surface-coated with carbon is heat-treated in an air atmosphere at 400° C.
  • the obtained positive electrode active material powder is sampled and the BET specific surface area is determined by the above method.
  • the second BET specific surface area which is the BET specific surface area of the carbon, is calculated by finding the difference between the BET specific surface area of the positive electrode active material coated with carbon and the BET specific surface area of the positive electrode active material. Then, the ratio (%) of the calculated second BET specific surface area to the measured first BET specific surface area is calculated.
  • the electric storage element includes one in which the positive electrode active material layer does not substantially contain a conductive agent.
  • the positive electrode active material layer does not contain a conductive agent, the output retention rate of the electric storage element after high-temperature storage is enhanced.
  • the reason for this is not necessarily clear, but is presumed, for example, as follows. Since the particle size of the conductive agent is usually smaller than the particle size of the carbon-coated polyanion compound, the BET specific surface area (first BET specific surface area) of the entire positive electrode active material layer increases as the content of the conductive agent increases. becomes larger.
  • the contact area (reaction area) between the nonaqueous electrolyte and the polyanion compound increases, and the transition metal element in the polyanion compound may be eluted into the nonaqueous electrolyte. be.
  • the resistance tends to increase after storage in a high-temperature environment.
  • the positive electrode active material layer does not substantially contain the conductive agent, the BET specific surface area of the entire positive electrode active material layer becomes small, and the contact area (reaction area) between the nonaqueous electrolyte and the polyanion compound becomes small.
  • the increase in resistance after storage in a high-temperature environment is small.
  • it is presumed that the output retention rate of the power storage device after high-temperature storage is increased.
  • a power storage device includes two or more power storage elements, and one or more power storage elements according to another aspect of the present invention.
  • the power storage device includes a power storage element with high initial output in a low temperature environment, the initial output in a low temperature environment is increased.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material contains a polyanion compound containing a transition metal element and at least a portion of the surface of which is coated with carbon.
  • a positive electrode base material has electroconductivity. Whether or not a material has “conductivity” is determined using a volume resistivity of 10 7 ⁇ cm as a threshold measured according to JIS-H-0505 (1975).
  • the material for the positive electrode substrate metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • Examples of the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloy include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H-4160 (2006).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer.
  • the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer contains optional components such as a binder (binder), thickener, filler, etc., if necessary.
  • the positive electrode active material layer may or may not substantially contain a conductive agent.
  • the positive electrode active material contains a polyanion compound containing a transition metal element and at least a portion of the surface of which is coated with carbon.
  • Polyanion compounds can store and release ions.
  • Polyanion compounds include oxoacid anions (PO 4 3- , SO 4 2- , SiO 4 4- , BO 3 3- , VO 4 3- etc.), transition metal elements, alkali metal elements or alkaline earth metal elements. is a compound containing The oxoacid anions may be condensed anions (P 2 O 7 4- , P 3 O 10 5- , etc.).
  • the polyanion compound may further contain other elements (eg, halogen elements, etc.).
  • a phosphate anion (PO 4 3 ⁇ ) is preferred as the oxoacid anion possessed by the polyanion compound.
  • transition metal element contained in the polyanion compound iron element, manganese element, nickel element and cobalt element are preferable, and iron element is more preferable.
  • a lithium element is preferable as the alkali metal element or alkaline earth metal element contained in the polyanionic compound.
  • the polyanion compound is preferably a compound represented by Formula 1 below.
  • M is at least one transition metal element.
  • A is at least one selected from B, Al, Si, P, S, Cl, Ti, V, Cr, Mo and W;
  • X is at least one halogen element.
  • a, b, c, d, and e are numbers satisfying 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 2, 2 ⁇ c ⁇ 4, 1 ⁇ d ⁇ 3, and 0 ⁇ e ⁇ 1.
  • Each of a, b, c, d and e may be an integer or a decimal.
  • polyanion compounds include LiFePO4 , LiCoPO4 , LiFe0.5Co0.5PO4 , LiMnPO4 , LiNiPO4 , LiMn0.5Fe0.5PO4 , LiCrPO4 , LiFeVO4 , Li 2FeSiO4 , Li2Fe2 ( SO4 ) 3 , LiFeBO3 , LiFePO3.9F0.2 , Li3V2( PO4 ) 3 , Li2MnSiO4 , Li2CoPO4F , etc. .
  • LiFePO 4 lithium iron phosphate
  • Atoms or polyanions in these exemplified polyanion compounds may be partially substituted with other atoms or anionic species.
  • a polyanion compound may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • At least part of the surface of the polyanion compound is covered with carbon.
  • Carbon refers to carbon as an inorganic substance.
  • At least part of the surface of the polyanion compound is covered with carbon, thereby improving electron conductivity.
  • a polyanion compound is a particle (powder).
  • the average particle size of the polyanion compound is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average particle diameter of the polyanion compound is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the production or handling of the polyanion compound becomes easy.
  • Ion diffusibility in the positive electrode active material layer is improved by setting the average particle size of the polyanion compound to the above upper limit or less.
  • the average particle size of the composite is taken as the average particle size of the positive electrode active material.
  • Average particle size is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%. In the following, "average particle size” has the same meaning.
  • Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size.
  • Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
  • wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
  • a sieve, an air classifier, or the like is used as necessary, both dry and wet.
  • a polyanion compound can be produced, for example, according to the following procedure. That is, first, an aqueous solution of one or more of the oxoacid anion salts of the transition metal element is mixed with an aqueous sodium hydroxide (NaOH) solution in the presence of a buffer to obtain the hydroxide of the transition metal element. A precursor is made. Next, the prepared precursor is solid-phase mixed with a lithium oxoacid anion salt and a carbon material such as sucrose. Then, by firing the resulting mixture in an inert atmosphere, a polyanion compound having at least a portion of the surface covered with carbon can be produced. In addition, the amount of carbon coating can be increased or decreased by increasing or decreasing the amount of carbon raw material such as sucrose.
  • the polyanion compound is lithium iron phosphate (LiFePO 4 )
  • an aqueous solution of FeSO 4 is first dropped into the reaction vessel at a constant rate, and an aqueous NaOH solution and an aqueous NH 3 solution are added so as to keep the pH at a constant value. and an aqueous NH 2 NH 2 solution are added dropwise to prepare a Fe(OH) 2 precursor.
  • the prepared Fe(OH) 2 precursor is taken out from the reaction vessel and solid-phase mixed with LiH 2 PO 4 and sucrose powder. Then, by firing the obtained mixture at a firing temperature of 550° C. or higher and 750° C. or lower in a nitrogen atmosphere, a polyanion compound in which the LiFePO4 particles as the polyanion compound are coated with carbon can be produced.
  • the content of the polyanion compound in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the positive electrode active material may further contain a positive electrode active material other than the polyanion compound (hereinafter also referred to as "another positive electrode active material").
  • a positive electrode active material other than the polyanion compound hereinafter also referred to as "another positive electrode active material”
  • Such other positive electrode active material can be appropriately selected from known positive electrode active materials for lithium ion secondary batteries.
  • the lower limit of the total content of the carbon-coated polyanion compound in the positive electrode active material is preferably 90% by mass, more preferably 99% by mass.
  • the upper limit of the total content of the carbon-coated polyanion compound in the positive electrode active material may be 100% by mass.
  • Positive electrode active material Materials capable of intercalating and deintercalating lithium ions are usually used as the positive electrode active material for the known lithium ion secondary battery.
  • Other positive electrode active materials include, for example, lithium-transition metal composite oxides having an ⁇ -NaFeO 2 -type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, chalcogen compounds, and sulfur.
  • lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Co (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[ Li x Ni ⁇ Mn (1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1), Li[Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ]O 2 ( 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1) and the like.
  • lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide. Atoms in these materials may be partially substituted with atoms of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
  • Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluorine resins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • fluororubber polysaccharide polymers and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • the functional group may be previously deactivated by methylation or the like.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
  • the electric storage element includes one in which the positive electrode active material layer does not substantially contain a conductive agent.
  • the carbon covering at least part of the surface of the polyanion compound is not included in the conductive agent.
  • “The positive electrode active material layer does not substantially contain a conductive agent” means that the positive electrode active material layer contains a conductive agent that adversely affects the initial improvement in output under a low-temperature environment, which is the problem of the present embodiment. It means that the amount is substantially 0% by mass, but excludes the inclusion of a trace amount of the conductive agent in the positive electrode active material layer within a range that does not hinder the improvement of the initial output in the low temperature environment. not something to do.
  • the positive electrode active material layer does not substantially contain a conductive agent
  • the upper limit of the content of the conductive agent in the positive electrode active material layer is 2% by mass, and 1% by mass. is more preferable, 0.5% by mass is more preferable, and 0% by mass is particularly preferable.
  • the conductive agent is not particularly limited as long as it is a material having conductivity.
  • conductive agents include carbonaceous materials, metals, and conductive ceramics.
  • Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
  • carbon black include furnace black, acetylene black, and ketjen black.
  • Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
  • the shape of the conductive agent may be powdery, fibrous, or the like.
  • the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
  • the positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like.
  • typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
  • the ratio of the second BET specific surface area to the first BET specific surface area is more than 10% and less than 35%, preferably 11% or more and 34% or less, more preferably 12% or more and 33% or less, and 13% It is more preferably 32% or less, and even more preferably 14% or more and 31% or less.
  • the ratio of the second BET specific surface area to the first BET specific surface area can be adjusted by increasing or decreasing the amount of carbon coated on the polyanion compound. Specifically, when producing a polyanion compound in which at least a portion of the surface is coated with carbon, the addition amount of a carbon raw material such as sucrose mixed in the solid phase, the sintering temperature of the resulting mixture, etc. are controlled. etc., can be adjusted.
  • the first BET specific surface area of the positive electrode active material layer is preferably 2.0 m 2 /g or more and 10.0 m 2 /g or less, and more preferably 0.5 m 2 /g or more and 8.0 m 2 /g or less. more preferred.
  • the first BET specific surface area satisfies the above range, there is an advantage that both output characteristics and life characteristics can be achieved.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer disposed directly on the negative electrode base material or via an intermediate layer.
  • the structure of the intermediate layer is not particularly limited, and can be selected from, for example, the structures exemplified for the positive electrode.
  • a negative electrode base material has electroconductivity.
  • materials for the negative electrode substrate metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
  • the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
  • Examples of copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains arbitrary components such as a conductive agent, a binder, a thickener, a filler, etc., as required.
  • Optional components such as conductive agents, binders, thickeners, and fillers can be selected from the materials exemplified for the positive electrode.
  • the negative electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like. and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W are used as negative electrode active materials, conductive agents, binders, and thickeners. You may contain as a component other than a sticky agent and a filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials. Materials capable of intercalating and deintercalating lithium ions are usually used as negative electrode active materials for lithium ion secondary batteries.
  • the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done. Among these materials, graphite and non-graphitic carbon are preferred.
  • one type of these materials may be used alone, or two or more types may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
  • Non-graphitic carbon means a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. say.
  • Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon.
  • Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.
  • the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging.
  • the open circuit voltage is 0.7 V or higher.
  • non-graphitizable carbon refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.
  • Graphitizable carbon refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphate compound
  • the average particle size may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like
  • the average particle size may be 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the active material layer is improved.
  • a pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size.
  • the pulverization method and classification method can be selected from, for example, the methods exemplified for the positive electrode.
  • the negative electrode active material is metal such as metal Li
  • the negative electrode active material may be foil-shaped.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
  • the separator can be appropriately selected from known separators.
  • a separator consisting of only a substrate layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one or both surfaces of a substrate layer, or the like can be used.
  • Examples of the shape of the base layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a non-woven fabric is preferred from the viewpoint of non-aqueous electrolyte retention.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide, aramid, and the like are preferable from the viewpoint of oxidative decomposition resistance.
  • a material obtained by combining these resins may be used as the base material layer of the separator.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500 ° C. in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800 ° C. is more preferably 5% or less.
  • An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate
  • covalent crystals such as silicon and diamond
  • Mineral resource-derived substances such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the inorganic compound a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of the safety of the electric storage device.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity” is a volume-based value and means a value measured with a mercury porosimeter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator.
  • examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • a polymer gel may be used in combination with the porous resin film or non-woven fabric as described above.
  • the non-aqueous electrolyte contains an electrolyte salt containing no elemental sulfur and a sulfur-based compound.
  • a non-aqueous electrolyte may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolytic solution includes a non-aqueous solvent, an electrolyte salt containing no sulfur element dissolved in the non-aqueous solvent, and the sulfur-based compound.
  • the above sulfur-based compound corresponds to additives other than the non-aqueous solvent and electrolyte salt.
  • the non-aqueous electrolyte may contain other additives in addition to the non-aqueous solvent, the electrolyte salt containing no sulfur element, and the sulfur-based compound.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, ethers, amides, nitriles and the like.
  • the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, EC is preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC is preferred.
  • the non-aqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • a chain carbonate By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the non-aqueous electrolyte of the power storage element contains a sulfur-based compound as an additive.
  • the sulfur-based compound is not included in the electrolyte salt.
  • a film with relatively low resistance is formed on the surface of the negative electrode of the power storage element, so that the initial output of the power storage element in a low-temperature environment can be increased. .
  • sulfur-based compounds examples include chain compounds containing sulfur (sulfur-based chain compounds), cyclic compounds containing sulfur (sulfur-based cyclic compounds), and the like.
  • sulfur-based chain compounds include imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), and sulfurous acid.
  • sulfur-based cyclic compounds include ethylene sulfite, propylene sulfite, sulfolane, thioanisole, tetramethylene sulfoxide, diphenyl sulfide, diphenyl disulfide, dipyridinium disulfide, compounds having a sultone structure, and compounds having a cyclic sulfate structure.
  • compounds having a sultone structure include propane sultone, propene sultone, butane sultone, and butene sultone.
  • Examples of compounds having a cyclic sulfate structure include 4,4′-bis(2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonylethyl-2,2-dioxo-1,3,2 -dioxathiolane, ethylene sulfate, 4-fluoro-2,2-dioxo-1,3,2-dioxathiolane, 4,5-difluoro-2,2-dioxo-1,3,2-dioxathiolane, propylene glycol sulfate, butylene glycol sulfate, pentene glycol sulfate, 4-5,dimethyl-dioxo-1,3,2-dioxathiolane, 4-fluorosulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, 4-methylsulfonyloxymethyl- 2,2-dioxo-1,3,2-diox
  • the lower limit of the content of the sulfur-based compound in the non-aqueous electrolyte is preferably 0.1% by mass, more preferably 0.2% by mass, and even more preferably 0.3% by mass.
  • the upper limit of this content is preferably 9% by mass, more preferably 8% by mass or less, and even more preferably 5% by mass.
  • the non-aqueous electrolyte may contain additives other than the above sulfur compounds (hereinafter also referred to as "other additives").
  • the lower limit of the total content of the above sulfur-based compounds in all additives contained in the non-aqueous electrolyte is preferably 50% by mass, more preferably 70% by mass.
  • the upper limit of the total content of the above sulfur compounds in all additives may be 100% by mass.
  • halogenated carbonate esters such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalate borate (LiFOB), lithium Oxalates such as bis(oxalate) difluorophosphate (LiFOP); fragrances such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran group compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene and other partial halides of the above aromatic compounds; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-di
  • the electrolyte salt containing no sulfur element can be appropriately selected from known electrolyte salts.
  • electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts and the like. Among these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 and LiClO 4 , lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), lithium bis(oxalate)difluorophosphate.
  • Lithium oxalate salts such as (LiFOP) and the like can be mentioned.
  • inorganic lithium salts are preferred, and LiPF6 is more preferred.
  • the content of the electrolyte salt containing no sulfur element in the non-aqueous electrolyte is preferably 0.1 mol/ dm3 or more and 2.5 mol/ dm3 or less, and 0.3 mol/dm3 or more and 2 at 20°C and 1 atm. 0 mol/dm 3 or less, more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less preferable.
  • FIG. 1 shows a storage element 1 as an example of a square battery. In addition, the same figure is taken as the figure which saw through the inside of a container.
  • An electrode body 2 having a positive electrode and a negative electrode wound with a separator sandwiched therebetween is housed in a rectangular container 3 .
  • the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode lead 41 .
  • the negative electrode is electrically connected to the negative terminal 5 via a negative lead 51 .
  • the power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage.
  • EV electric vehicles
  • HEV hybrid vehicles
  • PHEV plug-in hybrid vehicles
  • power sources for electronic devices such as personal computers and communication terminals
  • power sources for power storage
  • it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements.
  • the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
  • a power storage device according to one embodiment of the present invention includes two or more power storage elements and one or more power storage elements according to one embodiment of the present invention (hereinafter referred to as "second embodiment").
  • FIG. 2 shows an example of a power storage device 30 according to a second embodiment, in which power storage units 20 each including two or more electrically connected power storage elements 1 are assembled.
  • the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
  • the power storage unit 20 or power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
  • a method for manufacturing the electric storage device of the present embodiment can be appropriately selected from known methods.
  • the manufacturing method includes, for example, preparing an electrode body, preparing a non-aqueous electrolyte, and housing the electrode body and the non-aqueous electrolyte in a container.
  • Preparing the electrode body includes preparing a positive electrode and a negative electrode, and forming the electrode body by laminating or winding the positive electrode and the negative electrode with a separator interposed therebetween.
  • Containing the non-aqueous electrolyte in the container can be appropriately selected from known methods.
  • the non-aqueous electrolyte may be injected through an inlet formed in the container, and then the inlet may be sealed.
  • a known method can be used to prepare the negative electrode and the separator.
  • a positive electrode is prepared by a known method except for using a polyanion compound containing the transition metal element described above and having at least a portion of the surface covered with carbon, and handling the conductive agent as described above. be able to.
  • the non-aqueous electrolyte is prepared by a known method except for using the non-aqueous solvent, the electrolyte salt containing no elemental sulfur, the sulfur-based compound as an additive, and optionally other additives. be able to.
  • the electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments can be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the storage element are arbitrary. .
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • the electrode body in which the positive electrode and the negative electrode are laminated with a separator interposed therebetween has been described, but the electrode body does not have to have a separator.
  • the positive electrode and the negative electrode may be in direct contact with each other in a state in which a layer having no conductivity is formed on the active material layer of the positive electrode or the negative electrode.
  • Example 1 (Preparation of polyanion compound) A 1 mol/dm 3 FeSO 4 aqueous solution was dropped at a constant rate into a 2 dm 3 reaction vessel containing 750 cm 3 of ion-exchanged water, while the pH was maintained at a constant value of 10.0 ⁇ 0.1. dm 3 NaOH aqueous solution, 0.5 mol/dm 3 NH 3 aqueous solution, and 0.5 mol/dm 3 NH 2 NH 2 aqueous solution were added dropwise to prepare Fe(OH) 2 precursor. The temperature of the reaction vessel was set at 50°C ⁇ 2°C.
  • the prepared Fe(OH) 2 precursor was taken out from the reaction vessel, and 116 parts by mass of LiH 2 PO 4 and 10 parts by mass of sucrose powder were mixed in solid phase with 100 parts by mass of the Fe(OH) 2 precursor . bottom. Then, the obtained mixture was fired at a firing temperature of 650° C. in a nitrogen atmosphere to prepare a polyanion compound in which LiFePO 4 as a polyanion compound was coated with carbon.
  • the first BET specific surface area was obtained by measuring the BET specific surface area of the positive electrode active material layer obtained above by the measurement method described above. After the BET specific surface area of the polyanion compound surface-coated with carbon obtained above was measured by the measurement method described above, the coated carbon was removed by firing to obtain a polyanion compound. Next, the BET specific surface area of the obtained polyanion compound is measured by the above-described measurement method, and the difference between the BET specific surface area of the polyanion compound surface-coated with carbon and the BET specific surface area of the polyanion compound from which carbon is removed is determined. Thus, the second BET specific surface area was obtained. Then, the ratio (%) of the second BET specific surface area of the carbon to the first BET specific surface area of the obtained positive electrode active material layer was obtained. Table 1 shows the results.
  • Non-aqueous electrolyte In a mixed solvent in which EC and EMC are mixed at a volume ratio of 3:7, LiPF 6 as an electrolyte salt containing no sulfur element is dissolved at a concentration of 1 mol/dm 3 , and 4, as an additive sulfur-based compound.
  • a non-aqueous electrolyte was prepared by dissolving 4′-bis(2,2-dioxo-1,3,2-dioxathiolane) at a concentration of 0.5 mass %.
  • the positive electrode and the negative electrode were laminated via a separator composed of a polyethylene microporous membrane substrate and a heat-resistant layer formed on the polyethylene microporous membrane substrate to prepare an electrode assembly.
  • the heat-resistant layer was arranged on the surface facing the positive electrode.
  • This electrode assembly was housed in an aluminum prismatic container, and a positive electrode terminal and a negative electrode terminal were attached. After injecting the non-aqueous electrolyte into the inside of this container, the container was sealed to obtain an electric storage element of Example 1.
  • Example 2 A power storage element of Example 2 was produced in the same manner as in Example 1, except that the firing temperature in the production of the polyanion compound was 675°C.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • Example 3 4-Methylsulfonylethyl-2,2-dioxo- as a sulfur compound instead of 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane) as an additive in the preparation of a non-aqueous electrolyte
  • a power storage element of Example 3 was produced in the same manner as in Example 2, except that 1,3,2-dioxathiolane was dissolved at a concentration of 0.5% by mass.
  • Example 3 since the same positive electrode active material layer as in Example 2 is used, as shown in Table 1, the ratio (%) of the second BET specific surface area to the first BET specific surface area in Example 3 is It is the same value as 2.
  • Example 4 A power storage element of Example 4 was fabricated in the same manner as in Example 1, except that acetylene black as a conductive agent was added to the positive electrode active material layer paste in fabricating the positive electrode. Specifically, preparation of the positive electrode active material layer paste in Example 4 was performed as follows. That is, the above polyanion compound, N-methylpyrrolidone (NMP) as a dispersion medium, acetylene black as a conductive agent, and PVDF as a binder were used. The above polyanion compound, conductive agent, binder and dispersion medium were mixed.
  • NMP N-methylpyrrolidone
  • acetylene black as a conductive agent
  • PVDF as a binder
  • the solid content mass ratio of the polyanion compound: conductive agent: binder was set to 90:5:5, and a suitable amount of dispersion medium was added to the mixture to adjust the viscosity to prepare a positive electrode active material layer paste.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • Example 5 A power storage element of Example 5 was produced in the same manner as in Example 1, except that the firing temperature in the production of the polyanion compound was 690°C.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • Example 6 A power storage element of Example 6 was produced in the same manner as in Example 1, except that the firing temperature in the production of the polyanion compound was 700°C.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • Comparative Example 1 A power storage device of Comparative Example 1 was produced in the same manner as in Example 1, except that the firing temperature in the production of the polyanion compound was 630°C.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • Comparative Example 2 A power storage element of Comparative Example 2 was produced in the same manner as in Example 1, except that the baking temperature was set to 720° C. in the production of the polyanion compound.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • Comparative Example 3 Except for dissolving LiPO 2 F 2 at a concentration of 1% by mass instead of 4,4′-bis(2,2-dioxo-1,3,2-dioxathiolane) as an additive in the preparation of the non-aqueous electrolyte.
  • a power storage device of Comparative Example 3 was produced in the same manner as in Example 2.
  • Comparative Example 3 since the same positive electrode active material layer as in Example 2 is used, as shown in Table 1, the ratio (%) of the second BET specific surface area to the first BET specific surface area in Comparative Example 3 is It is the same value as 2.
  • Comparative Example 5 Lithium bis(oxalate)borate (LiBOB) is dissolved at a concentration of 1% by mass instead of 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane) as an additive in the preparation of a non-aqueous electrolyte.
  • a power storage device of Comparative Example 5 was produced in the same manner as in Example 2, except that In Comparative Example 5, since the same positive electrode active material layer as in Example 2 is used, as shown in Table 1, the ratio (%) of the second BET specific surface area to the first BET specific surface area in Comparative Example 5 is Same as 2.
  • Comparative Example 6 Electric storage devices of Comparative Examples 6 and 7 were produced in the same manner as in Example 1, except that in the production of the polyanion compound, the mixed amount of sucrose powder was set to 15 parts by mass, and the firing temperature was set to 680° C. and 750° C., respectively. made.
  • the ratio (%) of the second BET specific surface area to the first BET specific surface area was calculated in the same manner as in Example 1. Table 1 shows the results.
  • SOC State of Charge
  • SOC 50% SOC 50% at a charging current of 0.1 C from a fully discharged state in a 25 ° C. environment. Constant current charging was performed until the amount of electricity reached . After that, it was stored in an environment of -10°C for 3 hours, then discharged at a discharge current of 0.1C for 30 seconds, and after a rest period of 10 minutes, it was charged at a charge current of 0.1C for 30 seconds until the SOC reached 50%. Supplementary charging was performed for 1 second.
  • the discharge current is adjusted to 0.3 C and 0.5 C, each is discharged for 30 seconds, and after a rest period of 10 minutes is provided, supplementary charging is performed at a charging current of 0.1 C until the SOC reaches 50%. done.
  • the VI characteristics were plotted from the current in each discharge and the voltage 10 seconds after the start of discharge. After performing linear approximation by the method of least squares on the VI characteristic, the maximum output current value corresponding to the discharge end voltage is calculated, and the maximum output current value and the discharge end voltage are multiplied.
  • the initial output in a low temperature environment (-10°C) (shown as "initial output (-10°C)" in Table 1) was calculated.
  • the discharge final voltage was set to 2.0V. Table 1 shows initial output performance test results in a low temperature environment (-10°C).
  • the amount of electricity that is 15/100 of this "0.1C discharge capacity in a 25°C environment" was set as "initial SOC 15%”.
  • constant current charging was performed at a charging current of 0.1 C until the electric quantity reached the initial SOC of 15%.
  • the batteries were discharged at a discharge current of 0.1 C for 30 seconds, provided with a rest period of 10 minutes, and then supplemented with a charge current of 0.1 C for 30 seconds until the SOC reached 15%.
  • the discharge and supplementary charge were performed in the same manner, except that the discharge current was changed to 0.3C and 0.5C, and the supplementary charge was performed until the SOC reached 15%.
  • the VI characteristics were plotted from the current in each discharge and the voltage 10 seconds after the start of discharge. After performing linear approximation by the method of least squares on the VI characteristic, the maximum output current value corresponding to the discharge end voltage is calculated, and the maximum output current value and the discharge end voltage are multiplied. "Output at initial SOC 15%" was obtained. The discharge final voltage was set to 2.0V.
  • the storage elements of Examples 2 and 4 were charged at a constant current of 0.1 C to 3.6 V in an environment of 25° C., and then charged at a constant voltage of 3.6 V. The charging termination condition was until the charging current reached 0.02C. After charging to 100% SOC in this manner, the battery was stored in a constant temperature bath at 85° C. for 10 days.
  • the power storage elements of Examples 2 and 4 were stored in a 25° C. environment for 3 hours, and then discharged to 2.0 V at a constant current of 0.1 C. After that, constant current charging was performed at a charging current of 0.1 C up to 3.6V, and then constant voltage charging was performed at 3.6V. The charging termination condition was until the charging current reached 0.02C. After a rest of 10 minutes after charging, constant current discharge is performed at a discharge current of 0.1 C to 2.0 V in a 25 ° C. environment, and "0.1 C discharge in a 25 ° C. environment after storage in a high temperature environment capacity was measured. Next, the electric quantity of 15/100 of this "0.1C discharge capacity under 25 ° C.
  • Example 2 when comparing Example 2 and Example 4 in which the ratio of the second BET specific surface area to the first BET specific surface area and the sulfur-based compound are the same, the positive electrode active material layer contains the conductive agent.
  • Example 2 which did not contain a conductive agent, had a higher output retention rate after storage in a high-temperature environment than Example 4, in which the positive electrode active material layer contained a conductive agent.
  • the output retention rate after storage in a high-temperature environment at a relatively low SOC was shown, but it is believed that a similar effect can be obtained at a relatively high SOC.

Abstract

本発明の一側面に係る蓄電素子は、正極活物質を含む正極活物質層を有する正極と、非水電解質とを備え、上記正極活物質が、遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を含有し、上記正極活物質層のBET比表面積である第1BET比表面積に対する上記炭素のBET比表面積である第2BET比表面積の比率が10%超35%未満であり、上記非水電解質が、硫黄元素を含まない電解質塩と硫黄系化合物とを含有する。

Description

蓄電素子及び蓄電装置
 本発明は、蓄電素子及び蓄電装置に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間で電荷担体イオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 近年、上記蓄電素子に用いられる正極活物質として、安価かつ安全性の高いオリビン型正極活物質等のポリアニオン化合物が着目されている。例えばオリビン型正極活物質においては、電子伝導性が低いため、理論容量に近い放電容量を得られにくかったが、電子伝導性を向上するために炭素を表面に被覆する技術が提案されている(特許文献1参照)。
特開2008-034306号公報
 蓄電素子を上記自動車等の始動用バッテリーなどに適用しようとした場合には低温環境での初期の出力特性が要求される。この低温環境での初期の出力特性は、正極活物質の電子伝導性以外の因子によっても影響を受けるため、表面に炭素被覆されたポリアニオン化合物を用いた場合においてもさらなる向上が求められている。
 本発明の目的は、低温環境下での初期の出力が高い蓄電素子及び蓄電装置を提供することである。
 本発明の一側面に係る蓄電素子は、正極活物質を含む正極活物質層を有する正極と、非水電解質とを備え、上記正極活物質が、遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を含有し、上記正極活物質層のBET比表面積である第1BET比表面積に対する上記炭素のBET比表面積である第2BET比表面積の比率が10%超35%未満であり、上記非水電解質が、硫黄元素を含まない電解質塩と硫黄系化合物とを含有する。
 本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の他の一側面に係る蓄電素子を一以上備える。
 本発明の一側面に係る蓄電素子は、低温環境下での初期の出力が高い。
 本発明の他の一側面に係る蓄電装置は、低温環境下での初期の出力が高い。
図1は、蓄電素子の一実施形態を示す透視斜視図である。 図2は、蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。
 初めに、本明細書によって開示される蓄電素子の概要について説明する。  
 本発明の一側面に係る蓄電素子は、正極活物質を含む正極活物質層を有する正極と、非水電解質とを備え、上記正極活物質が、遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を含有し、上記正極活物質層のBET比表面積である第1BET比表面積に対する上記炭素のBET比表面積である第2BET比表面積の比率が10%超35%未満であり、上記非水電解質が、硫黄元素を含まない電解質塩と硫黄系化合物とを含有する。
 当該蓄電素子は、低温環境下での初期の出力が高い。この理由としては、必ずしも明確ではないが、例えば以下のように推測される。上記第1BET比表面積に対する第2BET比表面積の比率が35%未満であることで、上記炭素の被覆量が相対的に少なくなり、リチウムイオン等の電荷担体イオンの拡散が向上する。一方、上記第1BET比表面積に対する第2BET比表面積の比率が10%超であることで、正極活物質層中の正極活物質間の接触抵抗を低減できる。このように、上記第1BET比表面積に対する第2BET比表面積の比率が上記範囲を満たすことで、当該蓄電素子における低温環境下での初期の出力を高めることができる。加えて、非水電解質が硫黄系化合物を含有することで、当該蓄電素子の負極の表面に比較的抵抗が低い被膜が形成されるため、当該蓄電素子における低温環境下での初期の出力を高めることができる。
 従って、上記第1BET比表面積に対する第2BET比表面積の比率が上記範囲を満たすことと、非水電解質が上記硫黄系化合物を含有することとが相俟って、当該蓄電素子は、低温環境下での初期の出力が高いと推測される。
 上記「BET比表面積」とは、測定試料を液体窒素中に浸し、窒素ガスを供給することにより粒子表面に窒素分子が物理吸着することを基にその時の圧力と窒素吸着量を測定することにより求められる。BET比表面積は、以下の方法で測定する。ユアサアイオニクス社製比表面積測定装置(商品名:MONOSORB)を用いて、測定試料に対する窒素吸着量(m)を求める。得られた吸着量を、測定試料の質量(g)で除した値をBET比表面積(m/g)とする。
 第1BET比表面積は、次の方法により測定する。
 上記第1BET比表面積の測定に供する正極活物質層の試料は、蓄電素子作製前の正極が入手できる場合は、その正極から採取された正極活物質層の粉体をそのまま測定に供する。一方、蓄電素子を解体して取り出した正極から測定試料を採取する場合には、上記第1BET比表面積の測定に供する正極活物質層の試料は、次の方法により準備する。蓄電素子を、通常使用時の下限電圧まで0.05Cで定電流放電する。蓄電素子を解体し、正極を取り出して作用極とし、金属Liを対極として半電池を組み立てる。正極活物質1gあたり10mAの電流値で作用極の電位が2.0V vs.Li/Liとなるまで定電流放電を行う。半電池を解体して作用極を取り出し、ジメチルカーボネートにより充分に洗浄する。室温にて24時間減圧乾燥した後、その正極から採取された正極活物質層の粉体を第1BET比表面積の測定に供する正極活物質層の測定試料とする。
 次に、正極活物質層の粉体1.00gを測定用のサンプル管に入れ、120℃にて12時間減圧乾燥することで、測定試料中の水分を十分に除去する。次に、液体窒素を用いて冷却し、真空排気した後、窒素ガス吸着法により、相対圧力P/P0(P0=約770mmHg)が0から1の範囲内で吸着等温線を測定する。得られた吸着等温線のP/P0=0.05から0.3の領域から5点を抽出してBETプロットを行い、その直線のy切片と傾きから第1BET比表面積を算出する。蓄電素子の解体から正極活物質層の粉体の採取までは、露点-60℃以下のアルゴン雰囲気中で行う。
 第2BET比表面積は、次の方法により測定する。
 上記第2BET比表面積の測定に供する正極活物質層の試料は、次の方法により準備する。初めに、上記第1BET比表面積の測定に供する正極活物質層の試料と同様の方法で採取された正極活物質層の粉体について、風力分級等を用いて正極活物質層の粉体に混合した導電剤等の任意成分を除去する。そして、炭素で表面被覆された正極活物質の粉体を採取してBET比表面積を上記方法により求める。次に、上記炭素で表面被覆された正極活物質を空気雰囲気下にて、400℃で2時間熱処理することで、表面被覆された炭素を除去し、正極活物質の粉体を得る。次に、得られた正極活物質の粉体を採取してBET比表面積を上記方法により求める。さらに、炭素で表面被覆された正極活物質のBET比表面積と、正極活物質のBET比表面積との差分を求めることにより、上記炭素のBET比表面積である第2BET比表面積を算出する。
 そして、上記測定された第1BET比表面積に対する上記算出された第2BET比表面積の比率(%)を算出する。
 当該蓄電素子においては、上記正極活物質層が導電剤を実質的に含有しないものも含まれる。上記正極活物質層が導電剤を含有しない場合、当該蓄電素子の高温保存後の出力維持率が高められる。この理由としては、必ずしも明らかではないが、例えば以下のように推測される。通常、上記導電剤の粒径は上記炭素被覆されたポリアニオン化合物の粒径よりも小さいため、上記導電剤の含有量が大きくなる程、正極活物質層全体のBET比表面積(第1BET比表面積)が大きくなる。正極活物質層全体のBET比表面積が大きくなると、非水電解質と上記ポリアニオン化合物との接触面積(反応面積)が大きくなって、ポリアニオン化合物中の遷移金属元素が非水電解質中に溶出する場合がある。このように、上記遷移金属元素が非水電解質中に溶出すると、高温環境下で保存後に抵抗上昇が生じやすい。しかしながら、上記正極活物質層が上記導電剤を実質的に含有しない場合、正極活物質層全体のBET比表面積が小さくなり、非水電解質と上記ポリアニオン化合物との接触面積(反応面積)が小さくなる結果、高温環境下での保存後における抵抗上昇が小さくなる。これにより、当該蓄電素子における高温保存後の出力維持率が高められると推測される。
 本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の他の一側面に係る蓄電素子を一以上備える。
 当該蓄電装置は、低温環境下での初期の出力が高い蓄電素子を備えるため、低温環境下での初期の出力が高められる。
 本発明の一実施形態に係る蓄電素子の構成、蓄電装置の構成、蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<蓄電素子の構成>
[正極]
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。正極活物質層は、正極活物質を含む。上記正極活物質は、遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を含有する。
(正極基材)
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。
(正極活物質層)
 正極活物質層は、正極活物質を含む。正極活物質層は、必要に応じて、バインダ(結着剤)、増粘剤、フィラー等の任意成分を含有する。一方、正極活物質層は、導電剤を含有してもよく、実質的に含有しなくてもよい。正極活物質は、遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を含有する。
 ポリアニオン化合物は、イオンを吸蔵及び放出することができる。ポリアニオン化合物は、オキソ酸アニオン(PO 3-、SO 2-、SiO 4-、BO 3-、VO 3-等)と、遷移金属元素と、アルカリ金属元素又はアルカリ土類金属元素とを含む化合物である。オキソ酸アニオンは、縮合アニオン(P 4-、P10 5-等)であってもよい。ポリアニオン化合物には、その他の元素(例えばハロゲン元素等)がさらに含まれていてもよい。ポリアニオン化合物が有するオキソ酸アニオンとしては、リン酸アニオン(PO 3-)が好ましい。ポリアニオン化合物が有する遷移金属元素としては、鉄元素、マンガン元素、ニッケル元素及びコバルト元素が好ましく、鉄元素がより好ましい。ポリアニオン系化合物が有するアルカリ金属元素又はアルカリ土類金属元素としては、リチウム元素が好ましい。
 ポリアニオン化合物は、下記式1で表される化合物が好ましい。
 Li(AO ・・・1
 式1中、Mは、少なくとも1種の遷移金属元素である。Aは、B、Al、Si、P、S、Cl、Ti、V、Cr、Mo及びWから選ばれる少なくとも1種である。Xは、少なくとも1種のハロゲン元素である。a、b、c、d及びeは、0<a≦3、0<b≦2、2≦c≦4、1≦d≦3、0≦e≦1を満たす数である。a、b、c、d及びeは、いずれも整数であってもよく、小数であってもよい。
 式1中のMとしては、Fe、Mn、Ni及びCoのうちの少なくとも1種を含むことが好ましく、Mに占めるFe、Mn、Ni及びCoの合計含有率が50モル%以上であることがより好ましく、Mに占めるFe、Mn、Ni及びCoのうちの少なくとも1種の含有率が50モル%以上であることがさらに好ましく、Mに占めるFeの含有率が50モル%以上であることがよりさらに好ましい。また、Mとしては、Fe、Mn、Ni及びCoのうちの少なくとも1種であることも好ましく、Feであることも好ましい。Aとしては、Pが好ましい。Xとしては、Fが好ましい。一実施形態として、a=1、b=1、c=4、d=1、e=0が好ましい場合もある。
 ポリアニオン化合物の具体例としては、例えばLiFePO、LiCoPO、LiFe0.5Co0.5PO、LiMnPO、LiNiPO、LiMn0.5Fe0.5PO、LiCrPO、LiFeVO、LiFeSiO、LiFe(SO、LiFeBO、LiFePO3.90.2、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。これらの中でも、LiFePO(リン酸鉄リチウム)が好ましい。これらに例示されるポリアニオン化合物中の原子又はポリアニオンは、他の原子又はアニオン種で一部が置換されていてもよい。ポリアニオン化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ポリアニオン化合物は、その表面の少なくとも一部が炭素により被覆されている。炭素とは、無機物質としての炭素をいう。ポリアニオン化合物の表面の少なくとも一部が炭素により被覆されていることで、電子伝導性が向上する。
 ポリアニオン化合物は、粒子(粉体)である。ポリアニオン化合物の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。ポリアニオン化合物の平均粒径を上記下限以上とすることで、ポリアニオン化合物の製造又は取り扱いが容易になる。ポリアニオン化合物の平均粒径を上記上限以下とすることで、正極活物質層におけるイオン拡散性が向上する。なお、ポリアニオン化合物と炭素等の他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。以下において、「平均粒径」は同義である。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 ポリアニオン化合物は、例えば以下の手順に基づいて製造することができる。すなわち、初めに1種又は複数種の上記遷移金属元素のオキソ酸アニオン塩の水溶液を緩衝剤の存在下で水酸化ナトリウム(NaOH)水溶液と混合して、上記遷移金属元素の水酸化物である前駆体を作製する。次に、作製された前駆体をリチウムのオキソ酸アニオン塩及びスクロース等の炭素原料と固相混合する。そして、得られた混合物を不活性雰囲気下で焼成することにより、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を作製することができる。また、スクロース等の炭素原料の添加量を増減することによって、炭素の被覆量を増減することができる。
 例えばポリアニオン化合物がリン酸鉄リチウム(LiFePO)である場合、初めに反応容器にFeSOの水溶液を一定速度で滴下しつつ、その間のpHが一定値を保つようにNaOH水溶液と、NH水溶液と、NHNH水溶液とを滴下し、Fe(OH)前駆体を作製する。次に、作製されたFe(OH)前駆体を反応容器から取り出し、LiHPO及びスクロース粉と固相混合する。そして、得られた混合物を窒素雰囲気下において550℃以上750℃以下の焼成温度で焼成することにより、ポリアニオン化合物としてのLiFePO粒子が炭素で被覆されているポリアニオン化合物を作製することができる。
 正極活物質層におけるポリアニオン化合物の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。ポリアニオン化合物の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。
 正極活物質には、ポリアニオン化合物以外の正極活物質(以下、「他の正極活物質」ともいう)がさらに含まれていてもよい。このような他の正極活物質としては、公知のリチウムイオン二次電池用の正極活物質の中から適宜選択できる。但し、正極活物質に占める炭素被覆されたポリアニオン化合物の合計含有量の下限としては、90質量%が好ましく、99質量%がより好ましい。正極活物質に占める炭素被覆されたポリアニオン化合物の合計含有量の上限としては、100質量%であってもよい。このように実質的に正極活物質としてポリアニオン化合物のみを用いることで、より確実に当該蓄電素子における低温環境下での初期の出力を高めることができる。
 上記公知のリチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。他の正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn(2-γ)等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子は、他の元素からなる原子で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 当該蓄電素子においては、上記正極活物質層が導電剤を実質的に含有しないものも含まれる。上記ポリアニオン化合物の表面の少なくとも一部を被覆している炭素は、導電剤には含まれない。「正極活物質層が導電剤を実質的に含有しない」とは、本実施形態の課題である低温環境下での初期の出力の向上に悪影響を与えるような導電剤の正極活物質層における含有量が実質的に0質量%であることを意味するが、上記低温環境下での初期の出力の向上を阻害しないような範囲で微量の導電剤が正極活物質層に含有されることを排除するものではない。具体的には、「正極活物質層が導電剤を実質的に含まない」とは、正極活物質層における導電剤の含有量の上限が、2質量%であることを意味し、1質量%がより好ましく、0.5質量%がさらに好ましく、0質量%が特に好ましい。
 正極活物質層が導電剤を含有する場合、導電剤としては、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 上記第1BET比表面積に対する第2BET比表面積の比率は、10%超35%未満であり、11%以上34%以下であることが好ましく、12%以上33%以下であることがより好ましく、13%以上32%以下であることがさらに好ましく、14%以上31%以下であることがよりさらに好ましい。上記第1BET比表面積に対する第2BET比表面積の比率が上記範囲を満たすことで、当該蓄電素子における低温環境下での初期の出力が高められる。
 上記第1BET比表面積に対する第2BET比表面積の比率は、ポリアニオン化合物に対する炭素の被覆量を増減すること等によって調整することができる。具体的には、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を作製する際の、固相混合するスクロース等の炭素原料の添加量、得られた混合物の焼成温度等を制御すること等により、調整することができる。
 上記正極活物質層の第1BET比表面積は、2.0m/g以上10.0m/g以下であることが好ましく、0.5m/g以上8.0m/g以下であることがより好ましい。上記第1BET比表面積が上記範囲を満たすことで、出力特性と寿命特性の両立ができるという利点がある。
[負極]
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
(負極基材)
 負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
(負極活物質層)
 負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極で例示した材料から選択できる。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた半電池において、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、上記正極で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。
 負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
[セパレータ]
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
[非水電解質]
 非水電解質は、硫黄元素を含まない電解質塩と硫黄系化合物とを含有する。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている上記硫黄元素を含まない電解質塩と、上記硫黄系化合物とを含む。上記硫黄系化合物は、非水溶媒、電解質塩以外の添加剤に相当する。非水電解液は、非水溶媒、上記硫黄元素を含まない電解質塩、上記硫黄系化合物以外に、他の添加剤を含んでもよい。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、上記電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 当該蓄電素子の非水電解質は、添加剤として硫黄系化合物を含有する。上記硫黄系化合物は、電解質塩には含まれない。非水電解質が硫黄系化合物を含有することで、当該蓄電素子の負極の表面に比較的抵抗が低い被膜が形成されるため、当該蓄電素子における低温環境下での初期の出力を高めることができる。
 上記硫黄系化合物としては、例えば硫黄元素を含有する鎖状化合物(硫黄系鎖状化合物)、硫黄元素を含有する環状化合物(硫黄系環状化合物)等が挙げられる。硫黄系鎖状化合物としては、例えばリチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)等のイミド塩、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸ジエチル、硫酸ジプロピル、硫酸ジブチル、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド等が挙げられる。
 硫黄系環状化合物としては、例えば亜硫酸エチレン、亜硫酸プロピレン、スルホラン、チオアニソール、テトラメチレンスルホキシド、ジフェニルスルフィド、ジフェニルジスルフィド、ジピリジニウムジスルフィド、スルトン構造を有する化合物、環状サルフェート構造を有する化合物等が挙げられる。上記スルトン構造を有する化合物としては、例えばプロパンスルトン、プロペンスルトン、ブタンスルトン、ブテンスルトン等が挙げられる。上記環状サルフェート構造を有する化合物としては、例えば4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルエチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、硫酸エチレン、4-フルオロ-2,2-ジオキソ-1,3,2-ジオキサチオラン、4,5-ジフルオロ-2,2-ジオキソ-1,3,2-ジオキサチオラン、プロピレングリコールサルフェート、ブチレングリコールサルフェート、ペンテングリコールサルフェート、4-5,ジメチル-ジオキソ-1,3,2-ジオキサチオラン、4-フルオロスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-トリフルオロメチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-5-フルオロ-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-5-メチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4,4’-ビス(5-フルオロ-2,2-ジオキソ-1,3,2-ジオキサチオラン)、4,4’-ビス(5-メチル-2,2-ジオキソ-1,3,2-ジオキサチオラン)、4,4’-ビス(5-エチル-2,2-ジオキソ-1,3,2-ジオキサチオラン)等が挙げられる。これらの中でも、硫黄系環状化合物が好ましく、スルトン構造を有する化合物及び環状サルフェート構造を有する化合物がより好ましい。これら硫黄系化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 上記非水電解質における上記硫黄系化合物の含有量の下限としては、0.1質量%が好ましく、0.2質量%がより好ましく、0.3質量%がさらに好ましい。一方、この含有量の上限としては、9質量%が好ましく、8質量%以下がより好ましく、5質量%がさらに好ましい。上記硫黄系化合物の含有量を上記下限以上及び上記上限以下とすることで、より確実に当該蓄電素子における低温環境下での初期の出力を高めることができる。
 非水電解質は、上記硫黄系化合物以外の添加剤(以下、「他の添加剤」ともいう)を含んでもよい。但し、非水電解質に含まれる全添加剤に占める上記硫黄系化合物の合計含有量の下限としては、50質量%が好ましく、70質量%がより好ましい。全添加剤に占める上記硫黄系化合物の合計含有量の上限としては、100質量%であってもよい。このように実質的に添加剤として上記硫黄系化合物のみを用いることで、より確実に当該蓄電素子における低温環境下での初期の出力を高めることができる。
 上記他の添加剤としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 上記硫黄元素を含まない電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解質における硫黄元素を含まない電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。硫黄元素を含まない電解質塩の含有量を上記の範囲とすることで、非水電解質のイオン伝導度を高めることができる。
 本実施形態の蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図1に角型電池の一例としての蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。
<蓄電装置の構成>
 本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。
 本発明の一実施形態に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の一実施形態に係る蓄電素子を一以上備える(以下、「第二の実施形態」という。)。第二の実施形態に係る蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよく、上記本発明の一実施形態に係る蓄電素子を一備え、かつ上記本発明の一実施形態に係らない蓄電素子を一以上備えていてもよく、上記本発明の一実施形態に係る蓄電素子を二以上備えていてもよい。
 図2に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した第二の実施形態に係る蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<蓄電素子の製造方法> 
 本実施形態の蓄電素子の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体を準備することと、非水電解質を準備することと、電極体及び非水電解質を容器に収容することと、を備える。電極体を準備することは、正極及び負極を準備することと、セパレータを介して正極及び負極を積層又は巻回することにより電極体を形成することとを備える。
 非水電解質を容器に収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。
 負極及びセパレータを準備することとしては、公知の方法によって行うことができる。正極を準備することとしては、上述した遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を用い、上述したように導電剤を取り扱うこと以外は公知の方法によって行うことができる。非水電解質を準備することとしては、上述した非水溶媒、硫黄元素を含まない電解質塩、添加剤としての上記硫黄系化合物、及び任意に他の添加剤を用いること以外は公知の方法によって行うことができる。
<その他の実施形態> 
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 上記実施形態では、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。
 上記実施形態では、正極及び負極がセパレータを介して積層された電極体について説明したが、電極体は、セパレータを備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
[実施例1]
(ポリアニオン化合物の作製)
 750cmのイオン交換水が入った2dmの反応容器に1mol/dmのFeSO水溶液を一定速度で滴下しつつ、その間のpHが一定値10.0±0.1を保つように4mol/dmのNaOH水溶液と、0.5mol/dmのNH水溶液と、0.5mol/dmのNHNH水溶液を滴下し、Fe(OH)前駆体を作製した。反応容器の温度は50℃±2℃に設定した。次に、作製されたFe(OH)前駆体を反応容器から取り出し、上記Fe(OH)前駆体100質量部に対してLiHPO116質量部及びスクロース粉10質量部を固相混合した。そして、得られた混合物を窒素雰囲気下において焼成温度650℃で焼成することにより、ポリアニオン化合物であるLiFePOが炭素で被覆されているポリアニオン化合物を作製した。
(正極の作製)
 上記で得られたポリアニオン化合物、分散媒としてN-メチルピロリドン(NMP)、及びバインダとしてPVDFを用いた。上記ポリアニオン化合物、バインダ及び分散媒を混合した。その際、正極活物質:バインダの固形分質量比率を95:5とし、混合物に分散媒を適量加えて粘度を調整し、正極活物質層ペーストを作製した。次に、上記正極活物質層ペーストを、正極基材としてのアルムニウム箔上に塗布し、120℃で乾燥し、ロールプレスすることにより、正極基材上に正極活物質層を形成した。正極活物質層ペーストの塗布量は、固形分で10mg/cmとした。このようにして正極を得た。
(BET比表面積の測定)
 上記で得られた正極活物質層のBET比表面積を上述した測定方法で測定することによって、第1BET比表面積を得た。上記で得られた炭素で表面被覆されたポリアニオン化合物のBET比表面積を上述した測定方法で測定した後、焼成することで被覆された炭素を除去してポリアニオン化合物を得た。次に、得られたポリアニオン化合物のBET比表面積を上述した測定方法で測定し、炭素で表面被覆されたポリアニオン化合物のBET比表面積と、炭素を除去したポリアニオン化合物のBET比表面積との差分を求めることによって、第2BET比表面積を得た。そして、得られた正極活物質層の第1BET比表面積に対する上記炭素の第2BET比表面積の比率(%)を得た。結果を表1に示す。
(負極の作製)
 負極活物質としてグラファイト、バインダとしてSBR、増粘剤としてCMCを用いた。負極活物質、バインダ、増粘剤及び分散媒としての水を混合した。その際、負極活物質:バインダ:増粘剤の固形分質量比率を97:2:1とした。得られた混合物に水を適量加えて粘度を調整し、負極合剤ペーストを作製した。この負極合剤ペーストを、負極基材としての銅箔上に塗布し、乾燥することにより、負極基材上に負極活物質層を作製した。その後、ロールプレスを行い、負極を作製した。
(非水電解質の調製)
 ECとEMCを体積比3:7の割合で混合した混合溶媒に、硫黄元素を含まない電解質塩としてのLiPFを1mol/dmの濃度で溶解させ、添加剤として硫黄系化合物としての4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)を0.5質量%の濃度で溶解させ、非水電解質を調製した。
(蓄電素子の作製)
 次に、ポリエチレン製微多孔膜基材及び上記ポリエチレン製微多孔膜基材上に形成された耐熱層からなるセパレータを介して、上記正極と上記負極とを積層し、電極体を作製した。なお、上記耐熱層は、正極と対向する面に配設されるようにした。この電極体をアルミニウム製の角形容器に収納し、正極端子及び負極端子を取り付けた。この容器内部に上記非水電解質を注入した後、封口し、実施例1の蓄電素子を得た。
[実施例2]
 ポリアニオン化合物の作製において焼成温度を675℃とすること以外は実施例1と同様にして、実施例2の蓄電素子を作製した。実施例2について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[実施例3]
 非水電解質の調製において添加剤として4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)に代えて硫黄系化合物としての4-メチルスルホニルエチル-2,2-ジオキソ-1,3,2-ジオキサチオランを0.5質量%の濃度で溶解させること以外は実施例2と同様にして、実施例3の蓄電素子を作製した。なお、実施例3では、実施例2と同様の正極活物質層を用いるため、表1に示すように、実施例3の上記第1BET比表面積に対する第2BET比表面積の比率(%)は実施例2と同じ値である。
[実施例4]
 正極の作製において、正極活物質層ペーストに導電剤としてのアセチレンブラックを添加すること以外は、実施例1と同様にして、実施例4の蓄電素子を作製した。本実施例4における正極活物質層ペーストの作製は、具体的には、以下のようにして行った。すなわち、上記ポリアニオン化合物、分散媒としてN-メチルピロリドン(NMP)、導電剤としてアセチレンブラック、及びバインダとしてPVDFを用いた。上記ポリアニオン化合物、導電剤、バインダ及び分散媒を混合した。その際、上記ポリアニオン化合物:導電剤:バインダの固形分質量比率を90:5:5とし、混合物に分散媒を適量加えて粘度を調整し、正極活物質層ペーストを作製した。実施例4について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[実施例5]
 ポリアニオン化合物の作製において焼成温度を690℃とすること以外は実施例1と同様にして、実施例5の蓄電素子を作製した。実施例5について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[実施例6]
 ポリアニオン化合物の作製において焼成温度を700℃とすること以外は実施例1と同様にして、実施例6の蓄電素子を作製した。実施例6について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[比較例1]
 ポリアニオン化合物の作製において焼成温度を630℃とすること以外は実施例1と同様にして、比較例1の蓄電素子を作製した。比較例1について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[比較例2]
 ポリアニオン化合物の作製において焼成温度を720℃とすること以外は実施例1と同様にして、比較例2の蓄電素子を作製した。比較例2について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[比較例3]
 非水電解質の調製において添加剤として4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)に代えてLiPOを1質量%の濃度で溶解させること以外は実施例2と同様にして、比較例3の蓄電素子を作製した。なお、比較例3では、実施例2と同様の正極活物質層を用いるため、表1に示すように、比較例3の上記第1BET比表面積に対する第2BET比表面積の比率(%)は実施例2と同じ値である。
[比較例4]
 非水電解質の調製において添加剤として4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)に代えてリチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)を1質量%の濃度で溶解させること以外は実施例2と同様にして、比較例4の蓄電素子を作製した。なお、比較例4では、実施例2と同様の正極活物質層を用いるため、表1に示すように、比較例4の上記第1BET比表面積に対する第2BET比表面積の比率(%)は実施例2と同じ値である。
[比較例5]
 非水電解質の調製において添加剤として4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)に代えてリチウムビス(オキサレート)ボレート(LiBOB)を1質量%の濃度で溶解させること以外は実施例2と同様にして、比較例5の蓄電素子を作製した。なお、比較例5では、実施例2と同様の正極活物質層を用いるため、表1に示すように、比較例5の上記第1BET比表面積に対する第2BET比表面積の比率(%)は実施例2と同じである。
[比較例6、比較例7]
 ポリアニオン化合物の作製において、スクロース粉の混合量を15質量部とし、焼成温度をそれぞれ680℃、750℃としたこと以外、実施例1と同様にして、比較例6、比較例7の蓄電素子を作製した。比較例6、比較例7について、実施例1と同様にして、上記第1BET比表面積に対する第2BET比表面積の比率(%)を算出した。結果を表1に示す。
[評価]
(容量確認試験)
 上記各蓄電素子について、25℃環境下で3.6Vまで0.1Cの充電電流で定電流充電した後、3.6Vで定電圧充電した。充電の終了条件は、充電電流が0.02Cになるまでとした。充電後に10分間の休止を設けたのちに、25℃環境下で2.0Vまで0.1Cの放電電流で定電流放電した。放電後に10分間の休止を設けた。上記のサイクルを2回繰り返した。
(低温環境における初期の出力性能試験)
 下記の手順により、低温環境における初期の出力性能を評価した。
 上記各蓄電素子について、25℃環境下で3.6Vまで0.1Cの充電電流で定電流充電したのちに、3.6Vで定電圧充電した。充電の終了条件は、充電電流が0.02Cになるまでとした。充電後に10分間の休止期間を設けたのちに、25℃環境下で2.0Vまで0.1Cの放電電流で定電流放電を行い、「25℃環境下における0.1C放電容量」を測定した。つぎに、この「25℃環境下における0.1C放電容量」の半分の電気量をSOC(State of Charge)50%とし、25℃環境下で完全放電状態から0.1Cの充電電流でSOC50%の電気量になるまで定電流充電をおこなった。その後、-10℃環境下で3時間保管した後、0.1Cの放電電流で30秒間放電し、10分間の休止期間を設けたのちに、0.1Cの充電電流でSOC50%になるまで30秒間補充電をおこなった。同様に、放電電流を0.3C、及び0.5Cに調整し、それぞれ30秒間放電し、10分間の休止期間を設けたのちに、0.1Cの充電電流でSOC50%になるまで補充電をおこなった。各放電における電流と放電開始後10秒目の電圧から、V-I特性を描画した。そのV-I特性において、最小二乗法で直線近似をおこなった後、放電終止電圧に対応する最大出力電流値を算出し、さらに、上記最大出力電流値と上記放電終止電圧とを乗算することによって「低温環境(-10℃)における初期の出力(表1には「初期出力(-10℃)」と示す)を算出した。上記放電終止電圧は2.0Vとした。低温環境(-10℃)における初期の出力性能試験結果を表1に示す。
(高温環境下で保存後の出力維持率)
(1)実施例2及び実施例4の蓄電素子について、下記の手順により、SOC15%における出力性能試験を実施した。25℃環境下で3.6Vまで0.1Cの充電電流で定電流充電したのちに、3.6Vで定電圧充電した。充電の終了条件は、充電電流が0.02Cになるまでとした。充電後に10分間の休止期間を設けたのちに、25℃環境下で2.0Vまで0.1Cの放電電流で定電流放電を行い、「25℃環境下における0.1C放電容量」を測定した。つぎに、この「25℃環境下における0.1C放電容量」の15/100の電気量を「初期のSOC15%」と設定した。つぎに、完全放電状態から0.1Cの充電電流で初期のSOC15%の電気量になるまで定電流充電を行った。その後、0.1Cの放電電流で30秒間放電し、10分間の休止期間を設けたのち、0.1Cの充電電流でSOC15%になるまで30秒間補充電した。同様に、放電電流を0.3C、及び0.5Cに変更し、補充電の時間をSOC15%になるまでとしたこと以外は同様にして、上記放電及び補充電をおこなった。各放電における電流と放電開始後10秒目の電圧から、V-I特性を描画した。そのV-I特性において、最小二乗法で直線近似をおこなった後、放電終止電圧に対応する最大出力電流値を算出し、さらに、上記最大出力電流値と上記放電終止電圧とを乗算することによって「初期のSOC15%における出力」を求めた。上記放電終止電圧は2.0Vとした。
(2)次に、実施例2及び実施例4の蓄電素子について、25℃環境下で3.6Vまで0.1Cの充電電流で定電流充電したのちに、3.6Vで定電圧充電した。充電の終了条件は、充電電流が0.02Cになるまでとした。このようにしてSOC100%まで充電した後、85℃の恒温槽にて10日間保存した。10日経過後、実施例2及び実施例4の蓄電素子を、25℃環境下で3時間保管したのちに、2.0Vまで0.1Cの放電電流で定電流放電した。その後、3.6Vまで0.1Cの充電電流で定電流充電した後、3.6Vで定電圧充電した。充電の終了条件は、充電電流が0.02Cになるまでとした。充電後に10分間の休止を設けたのちに、25℃環境下で2.0Vまで0.1Cの放電電流で定電流放電し、「高温環境下で保存後の25℃環境下における0.1C放電容量」を測定した。つぎに、この「高温環境下で保存後の25℃環境下における0.1C放電容量」の15/100の電気量を「高温環境下で保存後のSOC15%」と設定し、0.1Cの充電電流で高温環境下で保存後のSOC15%の電気量になるまで定電流充電を行った。その後、上記(1)と同様の手法でV-I特性を描画し、「高温環境下で保存後のSOC15%における出力」を求めた。
(3)上記高温環境下で保存後のSOC15%における出力を初期のSOC15%における出力で除して100を乗ずることによって、高温環境下で保存後の出力維持率(表2には「高温保存後の出力維持率」と示す)を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1に示されるように、第1BET比表面積に対する第2BET比表面積の比率が10%超35%未満であり、かつ非水電解質が硫黄系化合物を含有する実施例1から実施例6は、低温環境下での初期の出力が高かった。一方、第1BET比表面積に対する第2BET比表面積の比率が10%以下又は35%以上である比較例1、比較例2、比較例6及び比較例7、並びに非水電解質が硫黄系化合物を含有しない比較例3から比較例5は、実施例1から実施例6と比べて低温環境下での初期の出力が低くなった。
 また、上記表2に示されるように、第1BET比表面積に対する第2BET比表面積の比率及び硫黄系化合物が同じである実施例2と実施例4とを比較すると、正極活物質層が導電剤を含有しない実施例2は、正極活物質層が導電剤を含有する実施例4よりも、高温環境下で保存後の出力維持率が高くなった。なお、実施例2及び実施例4では、比較的低いSOCでの高温環境下で保存後の出力維持率について示したが、比較的高いSOCにおいても同様の効果が得られると考えられる。
 以上の結果、当該蓄電素子は、低温環境下での初期の出力が高いことが示された。
1  蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (3)

  1.  正極活物質を含む正極活物質層を有する正極と、
     非水電解質と
     を備え、
     上記正極活物質が、遷移金属元素を含むとともに、炭素により表面の少なくとも一部が被覆されているポリアニオン化合物を含有し、
     上記正極活物質層のBET比表面積である第1BET比表面積に対する上記炭素のBET比表面積である第2BET比表面積の比率が10%超35%未満であり、
     上記非水電解質が、硫黄元素を含まない電解質塩と硫黄系化合物とを含有する蓄電素子。
  2.  上記正極活物質層が導電剤を実質的に含有しない請求項1に記載の蓄電素子。
  3.  蓄電素子を二以上備え、かつ請求項1又は請求項2に記載の蓄電素子を一以上備える蓄電装置。
PCT/JP2022/031696 2021-08-31 2022-08-23 蓄電素子及び蓄電装置 WO2023032752A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058502.2A CN117981133A (zh) 2021-08-31 2022-08-23 蓄电元件和蓄电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141887 2021-08-31
JP2021-141887 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032752A1 true WO2023032752A1 (ja) 2023-03-09

Family

ID=85412266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031696 WO2023032752A1 (ja) 2021-08-31 2022-08-23 蓄電素子及び蓄電装置

Country Status (2)

Country Link
CN (1) CN117981133A (ja)
WO (1) WO2023032752A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715452A (zh) * 2013-12-19 2014-04-09 山东威能环保电源有限公司 一种低温磷酸铁锂锂离子动力电池
JP2016012458A (ja) * 2014-06-27 2016-01-21 住友大阪セメント株式会社 電極材料、電極用ペースト及びリチウムイオン電池
WO2020026914A1 (ja) * 2018-07-30 2020-02-06 株式会社村田製作所 リチウムイオン二次電池
JP2022134613A (ja) * 2021-03-03 2022-09-15 株式会社Gsユアサ 非水電解質蓄電素子用正極合剤、非水電解質蓄電素子用正極及び非水電解質蓄電素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715452A (zh) * 2013-12-19 2014-04-09 山东威能环保电源有限公司 一种低温磷酸铁锂锂离子动力电池
JP2016012458A (ja) * 2014-06-27 2016-01-21 住友大阪セメント株式会社 電極材料、電極用ペースト及びリチウムイオン電池
WO2020026914A1 (ja) * 2018-07-30 2020-02-06 株式会社村田製作所 リチウムイオン二次電池
JP2022134613A (ja) * 2021-03-03 2022-09-15 株式会社Gsユアサ 非水電解質蓄電素子用正極合剤、非水電解質蓄電素子用正極及び非水電解質蓄電素子

Also Published As

Publication number Publication date
CN117981133A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
JP2022075345A (ja) 蓄電素子用正極及び蓄電素子
JP2022073197A (ja) 蓄電素子用正極活物質合剤、蓄電素子用正極及び蓄電素子
WO2021246186A1 (ja) 正極及び蓄電素子
JP2022134613A (ja) 非水電解質蓄電素子用正極合剤、非水電解質蓄電素子用正極及び非水電解質蓄電素子
WO2023032752A1 (ja) 蓄電素子及び蓄電装置
WO2022202576A1 (ja) 非水電解質蓄電素子
WO2022209815A1 (ja) 非水電解質蓄電素子用正極活物質、非水電解質蓄電素子用正極、非水電解質蓄電素子、蓄電ユニット及び蓄電装置
WO2022097400A1 (ja) 蓄電素子用正極活物質、蓄電素子用正極、蓄電素子及び蓄電装置
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
WO2022097612A1 (ja) 非水電解質蓄電素子用正極、非水電解質蓄電素子及び蓄電装置
WO2024062862A1 (ja) 電極、蓄電素子及び蓄電装置
WO2024029333A1 (ja) 非水電解質蓄電素子
WO2023032751A1 (ja) 非水電解質蓄電素子用の正極、非水電解質蓄電素子及び蓄電装置
WO2024053496A1 (ja) 電極、蓄電素子及び蓄電装置
WO2024010016A1 (ja) 非水電解質蓄電素子、機器、非水電解質蓄電素子の使用方法及び非水電解質蓄電素子の製造方法
WO2023190422A1 (ja) 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子
WO2023224071A1 (ja) 非水電解質蓄電素子
WO2022249667A1 (ja) 非水電解質蓄電素子及び蓄電装置
WO2023008012A1 (ja) 蓄電素子及び蓄電装置
WO2023224070A1 (ja) 非水電解質蓄電素子
WO2023281960A1 (ja) 正極、蓄電素子及び蓄電装置
WO2023286718A1 (ja) 蓄電素子
WO2023276863A1 (ja) 非水電解質蓄電素子
WO2023167235A1 (ja) 蓄電素子及び蓄電装置
WO2022168845A1 (ja) 非水電解質蓄電素子、及び蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545474

Country of ref document: JP