WO2022168928A1 - 樹脂組成物の製造方法 - Google Patents

樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2022168928A1
WO2022168928A1 PCT/JP2022/004323 JP2022004323W WO2022168928A1 WO 2022168928 A1 WO2022168928 A1 WO 2022168928A1 JP 2022004323 W JP2022004323 W JP 2022004323W WO 2022168928 A1 WO2022168928 A1 WO 2022168928A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
zone
less
mixing zone
dispersive mixing
Prior art date
Application number
PCT/JP2022/004323
Other languages
English (en)
French (fr)
Inventor
功一 上野
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US18/275,605 priority Critical patent/US20240117127A1/en
Priority to CN202280011357.2A priority patent/CN116867839A/zh
Priority to EP22749799.7A priority patent/EP4289887A4/en
Priority to JP2022579611A priority patent/JP7579365B2/ja
Publication of WO2022168928A1 publication Critical patent/WO2022168928A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/428Parts or accessories, e.g. casings, feeding or discharging means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2359/00Characterised by the use of polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a method for producing a resin composition.
  • Thermoplastic resins are light and have excellent processing characteristics, so they are widely used in various fields such as automobile parts, electrical and electronic parts, office equipment housings, and precision parts. is often insufficient, composites are generally used in which a filler is dispersed in a polymer continuous phase or a polymer dispersed phase is formed.
  • organic fibers such as cellulose fibers as the filler has been studied.
  • Cellulose fiber is a material that has a low environmental load, has a low specific gravity, and can have an excellent effect of improving the physical properties of the resin composition. Therefore, it is used as a filler for environmentally friendly resin compositions. Promising.
  • organic fibers such as cellulose fibers well in polymers (resins).
  • organic fibers and a resin are melt-kneaded using an extruder, the intended effect of improving physical properties may not be imparted to the resin composition depending on the kneading conditions.
  • the desired effect of improving physical properties may not be obtained depending on the kneading conditions.
  • Patent Document 1 describes a method for producing a resin composition in which the resin pressures in the kneading zone and the full flight zone satisfy a specific relationship in the production of a polyamide resin composition using a twin-screw extruder. be described.
  • Patent Document 1 The method described in Patent Document 1 is intended to obtain a molded article excellent in retention stability, heat aging resistance, surface appearance, etc., but fillers such as organic fibers such as cellulose fibers and / or polymer dispersions In a resin composition containing a phase, no attention is paid to a method for exhibiting the effect of improving physical properties by the filler and/or the dispersed phase to the intended extent.
  • Resin compositions containing organic fibers such as cellulose fibers and/or polymer dispersed phases are used in various applications such as automobiles because of their advantageous properties depending on the material composition (e.g., lightness and dimensional stability of cellulose fibers). Application to the use of is being considered.
  • One aspect of the present invention is a resin capable of solving the above problems and forming a molded article having excellent tensile elongation and / or rigidity, more preferably a molded article having both high and stable tensile elongation and rigidity. It is an object of the present invention to provide a method for producing a composition.
  • the method includes a kneading step of kneading the first component and the second component by an extruder having a kneading zone including a plurality of narrow gap zones with a gap between the inner wall of the cylinder and the screw of 2 mm or less.
  • the ratio of the gap [G1] of the narrowest gap zone, which has the smallest gap among the plurality of narrow gap zones, to the average value [G2] of the gaps of the narrow gap zones other than the narrowest gap zone [G1/G2] is 0.001 or more and less than 1.
  • [3] The ratio of the gap [G1] of the narrowest gap zone having the smallest gap among the plurality of narrow gap zones to the gap [G3] of each of the narrow gap zones other than the narrowest gap zone [ G1/G3] is 0.001 or more and less than 1.
  • the second component comprises an organic fiber;
  • the organic fibers supplied to the extruder have an average fiber length of 1 ⁇ m to 10000 ⁇ m, Any of the above aspects 1 to 3, wherein the ratio of the gap [G1] of the narrowest gap zone, which has the smallest gap among the plurality of narrow gap zones, to the average fiber length is 0.001 to 10.
  • the second component comprises an organic fiber;
  • the organic fibers supplied to the extruder form particles with an average particle size of 1 ⁇ m to 10000 ⁇ m, Any one of the above aspects 1 to 4, wherein the ratio of the gap [G1] of the narrowest gap zone having the smallest gap among the plurality of narrow gap zones to the average particle size is 0.001 to 10.
  • the method comprises a kneading step of kneading the first component and the second component with an extruder having a kneading zone including a pressure drop zone,
  • the pressure drop zone has an inlet pressure of 0.5 to 20 MPa, and a ratio of the pressure of the outlet from the pressure drop zone to the pressure of the inlet to the pressure drop zone. 0.2 or less,
  • a method wherein the content of said second component in the influent to said pressure drop zone is between 15 and 90% by weight.
  • a method for producing a resin composition containing a first component and a second component the first component is a polymer, the second component is an organic fiber, a polymer different from the first component, or a combination thereof;
  • the method comprises a kneading step of kneading the first component and the second component with an extruder having a kneading zone including a pressure drop zone,
  • the pressure drop zone has an inlet pressure of 0.5 to 20 MPa, and a ratio of the pressure of the outlet from the pressure drop zone to the pressure of the inlet to the pressure drop zone.
  • the method includes a kneading step of kneading the first component and the second component by an extruder equipped with a kneading zone including a plurality of high pressure zones with a pressure of 0.1 MPa or more,
  • the pressure [P1] of the highest pressure zone having the maximum pressure among the plurality of high pressure zones is 0.5 MPa or more, and the pressure [P1] is an average of the pressures of the high pressure zones other than the highest pressure zone.
  • the method wherein the ratio [P1/P2] to the value [P2] is greater than 1 and 100 or less.
  • the method according to aspect 12 wherein the ratio [P1/P3] of the pressure [P1] to the pressure [P3] of each of the high pressure zones other than the highest pressure zone is more than 1 and 100 or less.
  • the method according to aspect 12 or 13 wherein the zone length/cylinder inner diameter ratio of each of the plurality of high pressure zones is 1-30.
  • Any one of aspects 12 to 14 above, wherein the ratio of the zone length/cylinder inner diameter ratio of the highest pressure zone to the zone length/cylinder inner diameter ratio of each of the high pressure zones other than the highest pressure zone is 1 or more. described method.
  • the method comprises a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of an extruder;
  • the method comprises a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of an extruder; In the dispersive mixing zone, by varying one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and space volume fraction in the cylinder length direction, the mixture advances in the cylinder.
  • ⁇ M (GPa) per 1/d of tensile elongation change ⁇ E (%) per value (l/d) obtained by dividing length l (mm) by cylinder inner diameter d (mm) A method in which the ratio [ ⁇ E/ ⁇ M] to is varied in the cylinder length direction.
  • the concentration [CA] of the second component in the dispersive mixing zone is 10% to 90% by mass, the concentration [CB] of the second component in the distributive mixing zone is 1% to 50% by mass,
  • the method, wherein the ratio [CA]/[CB] is 2-90.
  • the method comprises a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of an extruder;
  • the method comprises a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of an extruder; In the dispersive mixing zone, by varying one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and space volume fraction in the cylinder length direction, the mixture advances in the cylinder.
  • the method comprising: a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of the extruder to obtain a dispersive mixing product; a distributive mixing step of distributively mixing at least the dispersive mixing product in a distributive mixing zone of an extruder to obtain a resin composition; including The dispersive mixing zone and the distributive mixing zone differ from each other in one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and spatial volume fraction; incremental tensile elongation [EA] of effluent from said dispersive mixing zone relative to tensile elongation of influent to said distributive mixing zone and from said distributive mixing zone relative to tensile elongation of influent to said distributive mixing zone The increment of tensile elongation [EB] of the effluent satisfies the relationship [EA] > [EB], increment of the flexural modulus of the outflow from the
  • the method comprising: a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of the extruder to obtain a dispersive mixing product; a distributive mixing step of distributively mixing at least the dispersive mixing product in a distributive mixing zone of an extruder to obtain a resin composition; including
  • the concentration [CA] of the second component in the dispersive mixing zone is 10% to 90% by mass, the concentration [CB] of the second component in the distributive mixing zone is 1% to 50% by mass, 21.
  • a method for producing a resin composition capable of forming a molded article having excellent tensile elongation and/or rigidity, more preferably a molded article having both high tensile elongation and rigidity and stably. can be provided.
  • FIG. 2 is a diagram illustrating the steps of the method for producing a resin composition according to the first embodiment of Aspect A of the present invention.
  • FIG. 4 is a diagram illustrating steps of a method for producing a resin composition according to a second embodiment of Aspect A of the present invention.
  • FIG. 4 is a diagram illustrating steps of a method for producing a resin composition according to a third embodiment of Aspect A of the present invention.
  • FIG. 2 is a diagram illustrating the steps of the method for producing a resin composition according to the first embodiment of Aspect B of the present invention.
  • FIG. 4 is a diagram illustrating change behavior of tensile elongation and flexural modulus in the method according to the first embodiment of Aspect B of the present invention.
  • FIG. 4 is a diagram illustrating steps of a method for producing a resin composition according to a second embodiment of Aspect B of the present invention.
  • FIG. 10 is a diagram illustrating change behavior of tensile elongation and bending elastic modulus in the method according to the second embodiment of Aspect B of the present invention.
  • FIG. 4 is a diagram illustrating steps of a method for producing a resin composition according to Aspect C of the present invention.
  • present embodiments Exemplary embodiments of the present invention (hereinafter abbreviated as "present embodiments") will be described below, but the present invention is in no way limited to these embodiments.
  • characteristic values of the present disclosure are values measured by the method described in the [Examples] section of the present disclosure or a method understood to be equivalent thereto by those skilled in the art.
  • One aspect of the present disclosure provides a method for producing a resin composition containing a first component and a second component.
  • the first component is a polymer and the second component is an organic fiber, polymer, or a combination thereof.
  • the polymer in the second component is different than the first component.
  • the first component constitutes the continuous phase in the resin composition.
  • the organic fibers that the second component may contain are dispersed throughout the first component in the resin composition.
  • the polymer that the second component may contain is present as a dispersed phase in the continuous phase of the first component in the resin composition.
  • the method of the present disclosure includes a kneading step of kneading the first component and the second component by an extruder equipped with a kneading zone.
  • a kneading step of kneading the first component and the second component by an extruder equipped with a kneading zone.
  • the kneading conditions be designed so as not to impose an excessive load on the second component, which is necessary for the refinement of the second component.
  • the first component and the second component are kneaded in a kneading zone controlled to specific kneading conditions.
  • a partial area within the kneading zone is a zone where a large force is applied to the mixture.
  • a region that mainly improves the tensile elongation and a region that mainly improves the bending and a region for improving the modulus of elasticity in the dispersive mixing zone, among the tensile elongation and the flexural modulus of the mixture, a region that mainly improves the tensile elongation and a region that mainly improves the bending and a region for improving the modulus of elasticity.
  • dispersive mixing means a form of mixing that involves a substantial size change of the second component (disintegration of aggregates, cutting, fibrillation, etc.), and distributive mixing refers to the mixing of the second component. It means a mixed form in which the state of dispersion in the first component changes while the second component does not change substantially in size.
  • a substantial size change is a size change of 30% or more relative to 100% of the original size in at least one size index.
  • the second component is uniformly finely dispersed in the first component while avoiding damage to the second component due to the contribution of the unique kneading form as described above. It is possible to
  • the second component is added to the first in the form of a dry mass or a slurry (e.g., an aqueous dispersion). may be melt-kneaded with the components of In a preferred embodiment, the second component is fed to the extruder in dry form.
  • the heating temperature throughout melt-kneading is preferably above the glass transition point of the first component but not significantly above the glass transition point and/or melting point.
  • the glass transition point is measured at an applied frequency of 10 Hz while increasing the temperature from 23 ° C. at a rate of 2 ° C./min using a dynamic viscoelasticity measuring device. is the peak top temperature of the peak at which the loss elastic modulus is maximized. When two or more loss modulus peaks appear, the peak top temperature of the peak on the highest temperature side is indicated.
  • the melting point refers to the peak top temperature of the endothermic peak that appears when the temperature is raised from 23 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (DSC). When two or more appear, it indicates the peak top temperature of the endothermic peak on the highest temperature side.
  • DSC differential scanning calorimeter
  • the moisture content of the polymer to be melt-kneaded is preferably 0.2% by mass or less, 0.1% by mass or less, or 0.07% by mass or less.
  • the moisture content may be, for example, 0.001% by mass or more from the viewpoint of ease of process control.
  • a single-screw extruder or a twin-screw extruder may be used for melt-kneading, and the twin-screw extruder is preferable for controlling the dispersibility of the second component.
  • L/D obtained by dividing the cylinder length (L) of the extruder by the screw diameter (D) is preferably 40 or more, particularly preferably 50 or more.
  • the screw rotation speed during kneading is preferably in the range of 100 to 800 rpm, more preferably in the range of 150 to 600 rpm. These will vary depending on the screw design.
  • Each screw in the cylinder of the extruder is optimized by combining an elliptical two-wing screw-shaped full-flight screw, a kneading element called a kneading disk, and the like.
  • the screw element may have notches or flow diverting structures.
  • a damming structure called a seal ring may also be arranged in the screw construction.
  • the screw cross section may be composed of multiple cross sections such as 0, 1, 2, 3, and 4 threads. Moreover, these screw cross sections may have an eccentric shape.
  • a partial region in the kneading zone is a zone where a large force is applied to the mixture (also referred to as a high load zone in the present disclosure) (more specifically, a narrow gap zone described later, pressure drop zone or high pressure zone).
  • a high load zone in the present disclosure
  • the high-load zone achieves refinement of the second component that can greatly contribute to improving the desired physical properties of the resin composition, while the other zone , the mixing conditions can be moderated to minimize the forces on the second component to avoid damage to the second component.
  • the second component can be uniformly finely dispersed in the first component while avoiding damage to the second component, so in one aspect, the tensile elongation and / or It is possible to produce a resin composition capable of forming a molded article having excellent flexural modulus, more preferably a molded article having high and stable both tensile elongation and flexural modulus.
  • Aspect A more specifically includes the following first to third embodiments.
  • a first embodiment includes a kneading step of kneading the first component and the second component by an extruder equipped with a kneading zone including a plurality of narrow gap zones in which the gap between the inner wall of the cylinder and the screw is 2 mm or less. I will provide a.
  • FIG. 1 is a diagram explaining the steps of the method for producing a resin composition according to the first embodiment.
  • the extruder 100 comprises a kneading zone 101 and optionally a melting zone 102 .
  • the second component a2 is added to the melt obtained by melting the first component a1 in the melting zone 102 to form a preliminary mixture. and the premix may be fed to the kneading zone 101 .
  • the material to be mixed is strongly sheared in the initial melting zone, so that after the first component passes through the melting zone, the second component is applied to the molten first component.
  • the component is added from the addition port (side feeder), thermal deterioration of the second component can be suppressed.
  • the mixture is kneaded in kneading zone 101 and taken out as resin composition b.
  • the kneading zone 101 includes a plurality of narrow gap zones N1, N2, N3 in which the gap between the cylinder inner wall and the screw (also referred to as cylinder gap in the present disclosure) is 2 mm or less.
  • the cylinder gap means the gap of the widest channel among the channels through which the material to be mixed can pass from the upstream side to the downstream side of the extruder.
  • the gap in the short axis direction of the radial cross section of the screw is defined as the cylinder gap.
  • the gap between the screw and the cylinder is the cylinder gap.
  • FIG. 1 shows an example in which there are three narrow gap zones, the number of narrow gap zones in the kneading zone may be selected according to the purpose. For example, it may be 10 or less, or 5 or less.
  • the cylinder gap [G1] of the narrowest gap zone having the smallest cylinder gap is a narrow gap other than the narrowest gap zone
  • the ratio [G1/G2] to the average value [G2] of the cylinder gap of the zone is 0.001 or more, or 0.01 or more, or It is 0.1 or more, and from the viewpoint of suppressing damage to the second component, in one aspect, it is less than 1, or 0.5 or less, or 0.3 or less.
  • the average value [G2] means the cylinder clearance value of the zone if there is one zone, and means the arithmetic mean of the cylinder clearance values of the zone if there are two or more.
  • the ratio [G1/G3] of [G1] to the cylinder gap [G3] of each of the narrow gap zones other than the narrowest gap zone is, in one aspect, 0.001 or more, or 0.01 or more, or 0.1 or more, and from the viewpoint of suppressing damage to the second component, in one aspect, less than 1, or 0.5 or less, or 0.3 or less be.
  • [G1] is preferably 0.001 mm or more, or 0.01 mm or more, or 0.05 mm or more, and preferably 2 mm or less, or 1 mm or less, or 0.5 mm or less.
  • [G2] is preferably 0.001 mm or more, or 0.01 mm or more, or 0.05 mm or more, and preferably 2 mm or less, or 1 mm or less, or 0.5 mm or less.
  • [G3] is preferably 0.001 mm or more, or 0.01 mm or more, or 0.05 mm or more, and preferably 2 mm or less, or 1 mm or less, or 0.5 mm or less.
  • the organic fibers supplied to the extruder have an average fiber length of 1 ⁇ m to 10000 ⁇ m.
  • the average fiber length in the present disclosure is a value measured with a scanning electron microscope (SEM) as described below.
  • the average fiber length is, in one aspect, 1 ⁇ m or more, or 10 ⁇ m or more, or 50 ⁇ m or more, and in one aspect, 10000 ⁇ m or less, or 1000 ⁇ m or less, or 750 ⁇ m or less, or 600 ⁇ m or less.
  • the ratio of [G1] to the average fiber length is preferably 0.001 or more, or 0.01 or more, or 0.1 or more from the viewpoint of suppressing damage to organic fibers, It is preferably 10 or less, 5 or less, or 1 or less from the viewpoint of favorably advancing the miniaturization of organic fibers.
  • the organic fibers fed to the extruder form particles with an average particle size of 1 ⁇ m to 10000 ⁇ m.
  • the average particle diameter of the particles is 1 ⁇ m or more, or 10 ⁇ m or more, or 50 ⁇ m or more, and in one aspect, it is 10000 ⁇ m or less, or 1000 ⁇ m or less, or 750 ⁇ m or less, or 500 ⁇ m or less.
  • the ratio of [G1] to the average particle diameter of the particles is preferably 0.001 or more, or 0.01 or more, or 0.1 or more from the viewpoint of suppressing damage to organic fibers.
  • the average particle size in the present disclosure is the d50 particle size measured with a powder tester (for example, powder tester manufactured by Hosokawa Micron Corporation, model number: PT-X).
  • the content of the second component in the inflow to each narrow gap zone is determined from the viewpoint of obtaining the desired effect of improving the physical properties of the second component by including the second component in the resin composition at a desired concentration. Therefore, it is preferably 15% by mass or more, or 20% by mass or more, or 30% by mass or more, and from the viewpoint of favorably advancing the refinement of the second component, preferably 90% by mass or less, or 80% by mass % or less, or 70% by mass or less.
  • the pressure of the inflow into each narrow gap zone is preferably 0.5 MPa or more, or 1 MPa or more, or 3 MPa or more from the viewpoint of favorably advancing the refinement of the second component. From the viewpoint of suppressing damage, it is preferably 20 MPa or less, 15 MPa or less, or 10 MPa or less. It should be noted that, in one aspect, the pressure of the influent into each narrow gap zone is substantially equal to the pressure of the mixture to be mixed within each narrow gap zone.
  • the ratio of the pressure of the effluent from the narrow-gap zone to the pressure of the inflow into the narrow-gap zone is such that increasing the pressure of the influent to the narrow-gap zone causes the refinement of the second component. It is preferably 0.2 or less, or 0.15 or less, or 0.1 or less in terms of being able to proceed well, and suppresses damage to the second component due to sudden pressure changes in the mixture. from the point of view that it is preferably 0.0001 or more, or 0.001 or more, or 0.01 or more. It should be noted that in one aspect, the pressure of the effluent from each narrow gap zone is substantially equal to the mixed pressure in the zone adjacent downstream to each narrow gap zone. It should be noted that the inflow to each zone or the outflow from each zone may be a mixture that enters or exits from each zone. It is not limited to what is provided in advance.
  • the pressure of the effluent from the narrow gap zone may in one aspect be 0 MPa or higher, or 0.001 MPa or higher, or 0.01 MPa or higher, and in one aspect 4 MPa or lower, or 2 MPa or lower. , or 1 MPa or less.
  • a second embodiment provides a method comprising a kneading step of kneading a first component and a second component with an extruder having a kneading zone including a pressure drop zone.
  • the pressure drop zone has an inlet pressure of 0.5 to 20 MPa and a ratio of the pressure of the outlet from the pressure drop zone to the pressure of the inlet to the pressure drop zone of 0. .2 or less.
  • the pressure of the inflow into the pressure drop zone is preferably 0.5 MPa or more, or 1 MPa or more, or 3 MPa or more from the viewpoint of favorably advancing the refinement of the second component, and the second component is prevented from being damaged. is preferably 20 MPa or less, or 15 MPa or less, or 10 MPa or less. It should be noted that, in one aspect, the pressure of the inlet to the pressure drop zone is substantially equal to the mixture pressure in the pressure drop zone.
  • the content of the second component in the inflow to the pressure drop zone is 15-90% by mass and/or the mixture after passing through the pressure drop zone in the kneading step has more Cold additional polymer is added to cool the mixture.
  • the content of the second component in the inflow to the pressure drop zone is 15-90% by weight
  • the pressure of the inflow to the pressure drop zone is 0.5-20 MPa
  • the ratio of the pressure of the effluent from the pressure drop zone to the pressure of the inflow to the pressure drop zone is less than or equal to 0.2.
  • the pressure of the inlet to the pressure drop zone is between 0.5 and 20 MPa and the ratio of the pressure of the outlet from the pressure drop zone to the pressure of the inlet to the pressure drop zone is 0.2 or less. and in the kneading step, the mixture is cooled by adding additional polymer having a lower temperature than the mixture after passing through the pressure drop zone.
  • an extruder 200 comprises a kneading zone 201 and optionally a melting zone 202 .
  • the second component a2 is added to the melt obtained by melting the first component a1 in the melting zone 202 before the kneading step in the kneading zone 201.
  • a further step of obtaining a mixture may be included and a pre-mixture may be supplied to the kneading zone 201 .
  • the material to be mixed is strongly sheared in the first melting zone.
  • the second When the component is added from the addition port (side feeder), thermal deterioration of the second component can be suppressed.
  • the mixture is kneaded in kneading zone 201 and taken out as resin composition b.
  • the kneading zone 201 in the second embodiment includes a pressure drop zone D1.
  • FIG. 2 shows an example in which there is one pressure drop zone D1, in the second embodiment, the number of pressure drop zones may be selected according to the purpose. 2 or more, or 3 or more, and in one aspect, 10 or less, or 5 or less.
  • the pressure drop zone in the second embodiment may, in one aspect, be the narrow gap zone described in the first embodiment.
  • the cylinder gap of the narrow gap zone may be the same as exemplified in the first embodiment.
  • the pressure drop zone adjusts one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, screw rotation speed, feed amount, resin composition, and space volume fraction of the present disclosure. may be formed by
  • FIG. 3 is a diagram illustrating steps of a method for producing a resin composition according to the third embodiment.
  • the method according to the third embodiment has the following features, it is possible to combine one or more of the features exemplified above for the first or second embodiment except for the features.
  • an extruder 300 comprises a kneading zone 301 and optionally a melting zone 302 .
  • the melt obtained by melting the first component a1 in the melting zone 202 is fed with the second component a2 by side feeding, for example. to obtain a pre-mixture, and the pre-mixture may be fed to the kneading zone 301 .
  • Such an addition mode is preferable from the viewpoint of suppressing thermal deterioration of the second component.
  • the mixture is kneaded in kneading zone 301 and taken out as resin composition b.
  • the kneading zone 301 includes a plurality of high pressure zones H1, H2, H3 with a pressure of 0.1 MPa or higher.
  • FIG. 3 shows an example in which there are three high pressure zones, the number of high pressure zones in the kneading zone may be selected according to the purpose. or less, or 5 or less.
  • the pressure [P1] of the highest pressure zone (hereinafter also simply referred to as [P1]) having the highest pressure, the average value of the pressures of the high pressure zones other than the highest pressure zone
  • the ratio [P1/P2] to [P2] is greater than 1, or 1.5 or more, or 2 or more, from the viewpoint of favorably advancing the refinement of the second component. From the viewpoint of suppressing the damage of , in one aspect, it is 100 or less, or 50 or less, or 20 or less.
  • the average value [P2] means the pressure value of the zone if there is one zone, and means the arithmetic mean of the pressure values of the zone if there are two or more.
  • the ratio [P1/P3] of [P1] to the pressure [P3] of each of the high pressure zones other than the highest pressure zone is greater than 1, or It is 1.5 or more, or 2 or more, and from the viewpoint of suppressing damage to the second component, in one aspect, it is 100 or less, or 50 or less, or 20 or less.
  • [P1] is 0.5 MPa or more, preferably 1 MPa or more, or 2 MPa or more, and preferably 20 MPa or less, or 15 MPa or less, or 10 MPa or less.
  • [P2] is preferably 0.1 MPa or more, or 0.3 MPa or more, or 0.5 MPa or more, and preferably 20 MPa or less, or 15 MPa or less, or 10 MPa or less.
  • [P3] is preferably 0.1 MPa or more, or 0.3 MPa or more, or 0.5 MPa or more, and preferably 20 MPa or less, or 15 MPa or less, or 10 MPa or less.
  • the zone length/cylinder inner diameter ratio of each of the plurality of high-pressure zones is, in one aspect, 1 or more, 2 or more, or 4 or more, from the viewpoint of favorably advancing the refinement of the second component, and the second In one aspect, it is 30 or less, or 20 or less, or 15 or less, from the viewpoint of suppressing damage to components.
  • the pressure of the highest pressure zone is 0.3 MPa or more, or 0.5 MPa or more, or 1 MPa or more from the viewpoint of favorably advancing the refinement of the second component, and damages the second component. From the viewpoint of suppression, in one aspect, it is 50 MPa or less, or 20 MPa or less, or 15 MPa or less.
  • the kneading zones 101, 201, 301 may include dispersive mixing zones and distributive mixing zones.
  • Narrow gap zones N1, N2, N3, pressure drop zone D1, and high pressure zones H1, H2, H3 are dispersive mixing zones.
  • each of the other zones 11, 12, 13, 14, 21, 22, 31, 32, 33, 34 may be dispersive mixing zones or distributive mixing zones.
  • the kneading conditions of other zones may be arbitrarily designed to be the same or different from each other as desired.
  • the most downstream zone of the kneading zone is a miscellaneous zone (eg, miscellaneous zones 14, 22, 24 in FIGS. 1-3), preferably a distributive mixing zone.
  • additional polymer ⁇ 1-3 in the method according to embodiment A, in the kneading zone 101, 201, 301, to the mixture is added an additional polymer of the same type or a different type, preferably the same type as the polymer in the mixture (e.g. side feed).
  • the location of addition of additional polymer may be downstream of all narrow gap zones N1, N2, N3 of kneading zone 101 and downstream of pressure drop zone D1 of kneading zone 201. and downstream of all high pressure zones H1, H2, H3 of the kneading zone 301.
  • the amount of the additional polymer to be added may be determined according to the kneading conditions, the desired concentration of the second component of the resin composition, and the like. or more, or 30 parts by mass or more, or 50 parts by mass or more, and may be 1000 parts by mass or less, or 500 parts by mass or less, or 400 parts by mass or less, or 300 parts by mass or less.
  • the concentration of the second component of the mixture before the addition of the additional polymer is 10 wt% or more, or 15 wt% or more, or 20 wt% or more, or 25 wt% or more, or 30 wt% or more, and / Alternatively, 90% by mass or less, or 80% by mass or less, or 70% by mass or less, or 60% by mass or less, or 50% by mass or less, and the concentration of the second component of the mixture after addition of the additional polymer (one equivalent to the concentration of the second component in the resin composition) is 1% by mass or more, or 2% by mass or more, or 3% by mass or more, or 5% by mass or more, and/or 50% by mass or less. , or 40% by mass or less, or 30% by mass or less, or 20% by mass or less.
  • the additional polymer may be cooler than the mixture. That is, in the kneading step, all of the plurality of narrow gap zones according to the first embodiment, or the pressure drop zones according to the second embodiment (if there are multiple, all of them in one aspect), or the third Additional polymer having a lower temperature than the mixture may be added to the mixture after passing through all of the plurality of high pressure zones according to the embodiment of (1) to cool the mixture.
  • the temperature of the additional polymer added for cooling is, in one aspect, 0° C. or higher, or 10° C. or higher, or 20° C. or higher, and in one aspect, 300° C. or lower, or 200° C. or lower, or 100° C. or lower. , or 50° C. or less.
  • the temperature of the mixture to which the additional polymer is added is, in one aspect, 100° C. or higher, or 150° C. or higher, or 200° C. or higher, and in one aspect, 450° C. or lower, or 400° C. or lower, or 350° C. or lower. .
  • the rate of flexural modulus enhancement per unit mass of mixture in each of the high load zones which may be a plurality (i.e., the flexural modulus of the outflow from each zone to the ratio of flexural modulus) is the flexural modulus improvement rate per unit mass of mixture in each zone other than the high-load zone (i.e., the flexural modulus of outflow from each zone to the flexural modulus of inflow into each zone).
  • ratio is greater than the maximum value.
  • the ratio of the thixotropic index of the outflow from the kneading zone to the thixotropic index of the inflow into the kneading zone is preferably 1 or more from the viewpoint of uniform fine dispersion of the second component by the kneading zone. , or 2 or more, or 3 or more, and preferably 100 or less, or 50 or less, or 10 or less from the viewpoint of suppressing damage to the second component.
  • the method according to aspect B of the present disclosure includes a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of the extruder.
  • the method according to Aspect B has the following features, but other than this feature, one or more of the features exemplified above with respect to Aspect A can be combined.
  • the dispersive mixing zone according to aspect B may comprise a high load zone according to aspect A (more specifically a narrow gap zone, a pressure drop zone or a high pressure zone).
  • a method for producing a resin composition containing a first component and a second component comprises a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of an extruder; A first dispersive mixing zone and a second dispersive mixing zone in which at least one of the dispersive mixing zones is selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and spatial volume fraction is different from each other.
  • the second component contains organic fibers, and the mass ratio of components with a diameter of 50 ⁇ m or more in the organic fibers in the inflow to the first dispersive mixing zone is 10% to 90%; A component with a diameter of 50 ⁇ m or more in the organic fiber in the outflow from the first dispersive mixing zone relative to a mass ratio (1a) of a component with a diameter of 50 ⁇ m or more in the organic fiber in the inflow to the first dispersive mixing zone The ratio (1b/1a) of the mass ratio (1b) of is 0 to 0.6, A component with a diameter of 50 ⁇ m or more in the organic fibers in the outflow from the second dispersive mixing zone relative to a mass ratio (2a) of a component with a diameter of 50 ⁇ m or more in the organic fibers in the inflow to the second dispersive mixing zone.
  • the [E1] is 1% to 100%, the [E2] is 0% to 10%, the [M1] is 0 GPa to 1 GPa, the [M2] is 0.1 GPa to 20 GPa, and the [E1] Aspects 1 to 4 above, wherein the absolute value of the difference between [E2] is 0.1% to 100%, and the absolute value of the difference between [M1] and [M2] is 0.1 GPa to 20 GPa.
  • Method. [6] The method according to any one of aspects 1 to 5, wherein the zone length/cylinder inner diameter ratio of each of the first dispersive-mixing zone and the second dispersive-mixing zone is 1-30.
  • a method for producing a resin composition containing a first component and a second component comprises a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of an extruder; In the dispersive mixing zone, by varying one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and space volume ratio in the cylinder length direction, the mixture advances in the cylinder.
  • ⁇ M Flexural modulus change
  • the second component contains organic fibers, preferably cellulose fibers, and the organic fibers in the resin composition have an average fiber diameter of 1000 nm or less and an average fiber length/average fiber diameter ratio of 30 or more.
  • a method according to any of aspects 1-12. further comprising, prior to the dispersive mixing step, adding the second component to the melt of the first component to obtain a premix, and feeding the premix to the dispersive mixing zone; The method according to any one of aspects 1 to 13 above.
  • a region that mainly improves the tensile elongation (also referred to as a tensile elongation improving region in the present disclosure) and a region that mainly improves the tensile elongation
  • a region for improving the flexural modulus (also referred to as a flexural modulus improving region in the present disclosure) is provided.
  • the coarse agglomerates of the second component can be pulverized, thereby increasing the tensile elongation of the mixture, while pulverizing the coarse agglomerates increases the flexural modulus (i.e., stiffness) of the mixture. contribution to the increase in
  • the second component in the flexural modulus enhancing region, can be finely dispersed in the first component, thereby increasing the flexural modulus of the mixture, while fine dispersion increases the tensile elongation of the mixture.
  • one of the tensile elongation and the flexural modulus is increased in each of the tensile elongation improving region and the flexural modulus improving region, rather than trying to increase the tensile elongation and the flexural modulus at the same time. Focus on improving. According to the resin composition obtained through such a process, the tensile elongation and flexural modulus are unexpectedly higher than the resin composition obtained through the process of simultaneously increasing the tensile elongation and the flexural modulus. It is possible to achieve both high and stable flexural modulus. The above advantages can be pronounced when the second component comprises organic fibres, especially cellulose fibres. Aspect B more specifically includes the following first and second embodiments.
  • FIG. 4 is a diagram for explaining the steps of the method for producing a resin composition according to the first embodiment, and FIG. 5 shows the change behavior of tensile elongation and flexural modulus in the method according to the first embodiment. It is a figure explaining.
  • an extruder 400 in a first embodiment, has a dispersive mixing zone 401 .
  • Extruder 400 may further have a distributive mixing zone 402 .
  • Extruder 400 may also have a melt zone 403 upstream of dispersive mixing zone 401 and/or a melt zone 404 downstream of dispersive mixing zone 401 .
  • the method of the present disclosure adds the second component a2 to the melt obtained by melting the first component a1 in the melting zone 403 to form a premix prior to the dispersive mixing step in the dispersive mixing zone 401.
  • a premix may be provided to the dispersive mixing zone 401 .
  • the second component is added to the molten first component after the resin has passed through the melting zone. When adding from the mouth (side feeder), thermal deterioration of the second component can be suppressed.
  • the mixture is dispersively mixed and optionally distributed mixed in an extruder 400 and taken out as a resin composition b.
  • the method according to aspect B further comprises adding to the dispersive mixing product after the dispersive mixing step and before the distributive mixing step an additional polymer of the same or different, preferably the same type as the first component in the dispersive mixing product.
  • the step of adding to obtain an additional polymer mixture may be further included, and the additional polymer mixture may be fed to the distributive mixing zone.
  • additional polymer may be added to the effluent from dispersive mixing zone 401 (eg, by side-feeding additional polymer in melt zone 404 in FIG. 4) before being fed to distributive mixing zone 402 .
  • the amount of the additional polymer to be added may be determined according to the kneading conditions, the desired concentration of the second component of the resin composition, etc.
  • 10 parts by mass or more with respect to 100 parts by mass of the dispersed mixture product may be 20 parts by weight or more, or 30 parts by weight or more, or 50 parts by weight or more, and may be 1000 parts by weight or less, or 500 parts by weight or less, or 400 parts by weight or less, or 300 parts by weight or less.
  • the concentration of the second component of the dispersed mixture product is 10 wt% or more, or 20 wt% or more, or 25 wt% or more, or 30 wt% or more, and/or 80 wt% or less, or 70% by mass or less, or 60% by mass or less, or 50% by mass or less, and the concentration of the second component of the additional polymer mixture (in one aspect, equal to the concentration of the second component in the resin composition) 1% by mass or more, or 2% by mass or more, or 3% by mass or more, or 5% by mass or more, and/or 50% by mass or less, or 40% by mass or less, or 30% by mass or less, or 20% by mass It can be:
  • the additional polymer may be cooler than the dispersed mixture product, thereby cooling the dispersed mixture product.
  • the temperature of the additional polymer added for cooling is, in one aspect, 0° C. or higher, or 10° C. or higher, or 20° C. or higher, and in one aspect, 300° C. or lower, or 200° C. or lower, or 100° C. or lower. , or 50° C. or less.
  • the temperature of the dispersed mixture product to which the additional polymer is added is, in one aspect, 100°C or higher, or 150°C or higher, or 200°C or higher, and in one aspect, 450°C or lower, or 400°C or lower, or 350°C. It is below.
  • the dispersive mixing zone 401 comprises a first dispersive mixing zone 41 and a second dispersive mixing zone 42 with different process conditions.
  • the first dispersive mixing zone 41 and the second dispersive mixing zone 42 are in direct communication with each other.
  • upstream of the first dispersive mixing zone 41, between the first dispersive mixing zone 41 and the second dispersive mixing zone 42, and/or downstream of the second dispersive mixing zone 42, additional dispersive Mixed zones may be present.
  • a third dispersive mixing zone (not shown) configured the same as or different from the first dispersive mixing zone 41 or the second dispersive mixing zone 42;
  • a configuration can be exemplified in which the effluent from the third dispersive mixing zone is recovered as the resin composition b.
  • the process conditions are one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and spatial volume fraction.
  • the above zone length is the total length of the screw elements that make up the dispersive mixing zone and the distributive mixing zone, and depends on the screw configuration.
  • the above-mentioned mixture filling rate is the ratio of the actual filling amount (volume basis) of the mixture to the space volume of the extruder, and after suddenly stopping the rotation of the screw and the supply of raw materials, the screw is pulled out and adheres to the screw surface.
  • the filled mixture is sampled, weighed, and divided by the density of the mixture to calculate the volume of the filled mixture, followed by dividing the volume of the filled mixture by the spatial volume described below to calculate the mixture fill factor.
  • Mixture fill factor is dependent on screw configuration and extrusion conditions.
  • the above space volume ratio is calculated by subtracting the screw volume (sum of element volume and shaft volume) from the cylinder volume of the extruder to calculate the space volume, and dividing the space volume by the cylinder volume.
  • the spatial volume fraction depends on the screw configuration.
  • the increment [M1] of the flexural modulus of the effluent 41b from the first dispersive mixing zone with respect to the flexural modulus of the inflow 41a to the first dispersive mixing zone and the inflow to the second dispersive mixing zone The increment [M2] of the flexural modulus of the effluent 42b from the second dispersive mixing zone with respect to the flexural modulus of 42a satisfies the relationship [M1] ⁇ [M2]. That is, the first dispersive mixing zone is a tensile elongation improving region, and the second dispersive mixing zone is a flexural modulus improving region.
  • the first dispersive mixing zone 41 and the second dispersive mixing zone 42 are in communication (in one aspect, the direct communication). Such arrangement is advantageous from the viewpoint of further improving the elastic modulus.
  • the first and second dispersive-mixing zones may communicate (in one aspect, direct communication) so that the second dispersive-mixing zone is on the upstream side.
  • Such arrangement is advantageous from the viewpoint of further improving elongation.
  • the inflow to each zone or the outflow from each zone may be a mixture that enters or exits from each zone. It is not limited to what is provided in advance.
  • the mass ratio of the components with a diameter of 50 ⁇ m or more in the organic fibers in the inflow 41a to the first dispersive mixing zone is preferably 10% or more, or It is 20% or more, or 30% or more, or 40% or more, preferably 90% or less, or 80% or less, or 70% or less, or 60% or less. That is, the influent 41a may contain a substantial amount of coarse particles.
  • the mass ratio (1a) of the components with a diameter of 50 ⁇ m or more in the organic fibers in the first dispersive mixing zone inflow 41a in the organic fibers in the outflow 41b from the first dispersive mixing zone is preferably 0 or more, or 0.1 or more, or 0.2 or more, and preferably 0.6 or less, or 0 .5 or less, or 0.3 or less.
  • coarse particles are pulverized in the first dispersive mixing zone 41, and coarse particles are greatly reduced in the effluent 41b.
  • the ratio of the weight ratio (2a) of the 50 ⁇ m or larger diameter component in the organic fibers in the second dispersive mixing zone inflow 42a to the organic fibers in the second dispersive mixing zone effluent 42b is
  • the ratio (2b/2a) of the mass ratio (2b) of the component with a diameter of 50 ⁇ m or more is preferably 0.6 or more, or 0.7 or more, or 0.8 or more, and preferably 1 or less, or 0 .9 or less.
  • the ratio (2b/2a) is treated as 1 when both the mass ratios (2a) and (2b) are 0%.
  • [E1] is preferably 1% or more, or 2% or more, or 3% or more, preferably 100% or less, or 50% or less, or 30% or less
  • [E2 ] is preferably 0% or more, preferably 10% or less, or 5% or less, or 3% or less
  • [M1] is preferably 0 GPa or more, or 0.1 GPa or more, or 0 .3 GPa or more, preferably 1 GPa or less, or 0.7 GPa or less, or 0.5 GPa or less
  • [M2] is preferably 0.1 GPa or more, or 0.5 GPa or more, or 1 GPa or more , preferably 20 GPa or less, or 10 GPa or less, or 5 GPa or less
  • the absolute value of the difference between [E1] and [E2] is preferably 0.1% or more, or 1% or more, or 5% or more Yes, preferably 100% or less, or 50% or less, or 30% or less
  • the zone length/cylinder inner diameter ratio of each of the first and second dispersive mixing zones is preferably 1 or more, or 3 or more, or 4 or more, and preferably 30 or less, or 20 or less. , or 10 or less.
  • the mixture fill factor of each of the first and second dispersive mixing zones is preferably 10% or more, or 50% or more, or 70% or more, preferably 100% or less, or 99%. % or less, or 95% or less.
  • the temperature of each of the first and second dispersive mixing zones is preferably 100°C or higher, or 150°C or higher, or 200°C or higher, preferably 400°C or lower, or 350°C or lower. , or 300° C. or less.
  • the mixed pressure in each of the first and second dispersive mixing zones is preferably 0 MPa or higher, or 0.1 MPa or higher, or 0.3 MPa or higher, or 1 MPa or higher, preferably 15 MPa. or less, or 10 MPa or less, or 5 MPa or less, or 3 MPa or less.
  • the spatial volume fraction of each of the first and second dispersive mixing zones is preferably 10% or more, or 20% or more, or 30% or more, and preferably 70% or less, or 60% or more. % or less, or 50% or less.
  • the resin composition dispersed and mixed in the dispersive mixing zone 401 may be introduced into the distributive mixing zone 402 with or without passing through another zone (for example, the melting zone 404) for further distributive mixing.
  • Mixing conditions in the distributive mixing zone are not particularly limited, but distributive mixing may be performed by arbitrarily combining kneading disks such as progressive kneading disks and neutral kneading disks.
  • FIG. 6 is a diagram for explaining the steps of the method for producing a resin composition according to the second embodiment
  • FIG. 7 shows the change behavior of tensile elongation and flexural modulus in the method according to the second embodiment. It is a figure explaining.
  • the method according to the second embodiment has the following features, but other than the features, the same procedures and conditions as those described above for the first embodiment may be appropriately employed.
  • an extruder 600 has a dispersive mixing zone 601 and may optionally further have a distributive mixing zone 602, a melt zone 603 upstream of the dispersive mixing zone 601, and/or may further include a melt zone 604 downstream of the dispersive mixing zone 601 .
  • the second component a2 is added to the melt obtained by melting the first component a1 in the melting zone 603 before the dispersive mixing step in the dispersive mixing zone 601 to form a preliminary mixture. and the premix may be fed to the dispersive mixing zone 601 .
  • the mixture is dispersively mixed and optionally distributed mixed in an extruder 600 and taken out as a resin composition b.
  • the dispersive mixing zone 601 has a length of in-cylinder travel l of the mixture (i.e., a flow length in the cylinder length direction L as the mixture flows through the dispersive mixing zone 601) due to different process conditions.
  • the amount of change in tensile elongation ⁇ E (%) per value (l/d) obtained by dividing the length) (mm) by the cylinder inner diameter d (mm) with respect to the amount of change in flexural modulus ⁇ M (GPa) per l/d
  • the ratio [ ⁇ E/ ⁇ M] is varied in the longitudinal direction L of the cylinder.
  • the process conditions are one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture fill factor, temperature, pressure, and void volume fraction.
  • the ratio [ ⁇ E/ ⁇ M] is gradually decreased from upstream to downstream of the cylinder.
  • the more upstream side of the cylinder corresponds to the tensile elongation improvement region, and the more downstream side corresponds to the flexural modulus improvement region, which is advantageous in that a resin composition with higher rigidity can be obtained.
  • ⁇ E may gradually decrease and ⁇ M may gradually increase from the upstream side to the downstream side of the cylinder.
  • ⁇ E is 0.1% or more, or 1% or more, or 10% or more, and 300% or less, or 200% or less, or 100% or less.
  • range may be tapered to a range of 0.01% or more, or 0.1% or more, or 0.5% or more, and 10% or less, or 5% or less, or 2% or less, wherein ⁇ M is 0.001 GPa or more, or 0.01 GPa or more, or 0.05 GPa or more, and 10 GPa or less, or 5 GPa or less, or 2 GPa or less, to 0.02 GPa or more, or 0.05 GPa or more, or 0.1 GPa or more and may be gradually increased to a range that is 50 GPa or less, or 10 GPa or less, or 5 GPa or less.
  • the ratio [ ⁇ E/ ⁇ M] is gradually increased from upstream to downstream of the cylinder.
  • the more upstream side of the cylinder corresponds to the flexural modulus improving region, and the more downstream side corresponds to the tensile elongation improving region, which is advantageous in that a resin composition with higher elongation can be obtained.
  • ⁇ E may gradually increase and ⁇ M may gradually decrease from upstream to downstream of the cylinder.
  • ⁇ E is 0.01% or more, or 0.1% or more, or 0.5% or more, and 10% or less, or 5% or less, or 2% or less, may be gradually increased to a range of 0.1% or more, or 1% or more, or 10% or more, and 300% or less, or 200% or less, or 100% or less, and ⁇ M is 0 .02 GPa or more, or 0.05 GPa or more, or 0.1 GPa or more, 50 GPa or less, or 10 GPa or less, or 5 GPa or less, to 0.001 GPa or more, or 0.01 GPa or more, or 0.05 GPa or more Yes, and may be gradually decreased to a range of 10 GPa or less, or 5 GPa or less, or 2 GPa or less.
  • a method according to aspect C of the present disclosure comprises a dispersive mixing step of dispersively mixing a first component and a second component in a dispersive mixing zone of an extruder to obtain a dispersive mixing product; and a distributive mixing step of distributively mixing at least the dispersive mixing product to obtain a resin composition.
  • the method according to Aspect C has the following features, but one or more of the features exemplified above with respect to Aspect A can be combined in addition to these features.
  • the dispersive mixing zone according to aspect C may comprise a high load zone according to aspect A (more specifically a narrow gap zone, a pressure drop zone or a high pressure zone).
  • a method for producing a resin composition containing a first component and a second component comprising: a dispersive mixing step of dispersively mixing the first component and the second component in a dispersive mixing zone of the extruder to obtain a dispersive mixing product; a distributive mixing step of distributively mixing at least the dispersive mixing product in a distributive mixing zone of an extruder to obtain a resin composition; including The dispersive mixing zone and the distributive mixing zone differ from each other in one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture filling rate, temperature, pressure, and spatial volume fraction; Incremental tensile elongation [EA] of effluent from said dispersive mixing zone relative to tensile elongation of influent to said distributive mixing zone and from said distributive mixing zone relative to tensile elongation of influent to said distributive mixing zone The increment of tensile elongation [EB] of the effluent satisfies the relationship
  • the [EA] is 1% to 100%, the [EB] is 0% to 10%, the [MA] is 0.1 GPa to 20 GPa, the [MB] is 0 GPa to 1 GPa, [EA] and [ EB] and the difference ([EA] - [EB]) is 0.01% to 100%, and the difference between [MA] and [MB] ([MA] - [MB]) is 0.001GPa to 10GPa.
  • a method for producing a resin composition containing a first component and a second component comprising: a dispersive mixing step of dispersively mixing the cellulose fibers and the resin in the dispersive mixing zone of the extruder to obtain a dispersed mixed product; a distributive mixing step of distributively mixing at least the dispersive mixing product in a distributive mixing zone of an extruder to obtain a resin composition; including
  • the concentration [CA] of the second component in the dispersive mixing zone is from 10% to 90% by weight
  • the concentration [CB] of the second component in the distributive mixing zone is from 1% to 50% by weight
  • the ratio [ CA]/[CB] is 2-90.
  • FIG. 8 is a diagram explaining steps of a method for producing a resin composition according to one embodiment of the present invention.
  • extruder 800 has dispersive mixing zone 801 and distributive mixing zone 802 .
  • a distributive mixing zone 802 is positioned downstream of the dispersive mixing zone 801, as shown in FIG.
  • the extruder 800 may also have a melt zone 803 upstream from the dispersive mixing zone 801 and/or a melt zone 804 downstream from the dispersive mixing zone 801 and upstream from the distributive mixing zone 802. .
  • the second component a2 is added to the melt obtained by melting the first component a1 in the melting zone 803 before the dispersive mixing step in the dispersive mixing zone 801 to obtain a preliminary mixture.
  • a further step may be included wherein the premix may be fed to the dispersive mixing zone 801 .
  • the material to be mixed is strongly sheared in the initial melting zone, so that after the first component passes through the melting zone, the second component is applied to the molten first component.
  • the component is added from the addition port (side feeder), thermal deterioration of the second component can be suppressed.
  • the mixture is dispersively mixed and distributed mixed in an extruder 800 and taken out as a resin composition b.
  • the method according to aspect C further comprises adding to the dispersive mixing product after the dispersive mixing step and before the distributive mixing step an additional polymer of the same or different, preferably the same type as the first component in the dispersive mixing product.
  • the step of adding to obtain an additional polymer mixture may be further included, and the additional polymer mixture may be fed to the distributive mixing zone.
  • additional polymer may be added to the effluent from dispersive mixing zone 801 (eg, by side-feeding additional polymer in melt zone 804 in FIG. 8) before being fed to distributive mixing zone 802 .
  • the amount of the additional polymer to be added may be determined according to the kneading conditions, the desired concentration of the second component of the resin composition, etc.
  • 10 parts by mass or more with respect to 100 parts by mass of the dispersed mixture product may be 20 parts by weight or more, or 30 parts by weight or more, or 50 parts by weight or more, and may be 1000 parts by weight or less, or 500 parts by weight or less, or 400 parts by weight or less, or 300 parts by weight or less.
  • the concentration of the second component of the dispersed mixture product is 10 wt% or more, or 20 wt% or more, or 25 wt% or more, or 30 wt% or more, and/or 80 wt% or less, or 70% by mass or less, or 60% by mass or less, or 50% by mass or less, and the concentration of the second component of the additional polymer mixture (in one aspect, equal to the concentration of the second component in the resin composition) 1% by mass or more, or 2% by mass or more, or 3% by mass or more, or 5% by mass or more, and/or 50% by mass or less, or 40% by mass or less, or 30% by mass or less, or 20% by mass It can be:
  • the additional polymer may be cooler than the dispersed mixture product, thereby cooling the dispersed mixture product.
  • the temperature of the additional polymer added for cooling is, in one aspect, 0° C. or higher, or 10° C. or higher, or 20° C. or higher, and in one aspect, 300° C. or lower, or 200° C. or lower, or 100° C. or lower. , or 50° C. or less.
  • the temperature of the dispersed mixture product to which the additional polymer is added is, in one aspect, 100°C or higher, or 150°C or higher, or 200°C or higher, and in one aspect, 450°C or lower, or 400°C or lower, or 350°C. It is below. Aspect C more specifically includes the following first and second embodiments.
  • the dispersive mixing zone 801 and the distributive mixing zone 802 differ from each other in process conditions.
  • the process conditions are one or more selected from the group consisting of zone length/cylinder inner diameter ratio, mixture fill factor, temperature, pressure, and void volume fraction.
  • the above zone length is the total length of the screw elements that make up the dispersive mixing zone and the distributive mixing zone, and depends on the screw configuration.
  • the above-mentioned mixture filling rate is the ratio of the actual filling amount (volume basis) of the mixture to the space volume of the extruder, and after suddenly stopping the rotation of the screw and the supply of raw materials, the screw is pulled out and adheres to the screw surface.
  • the filled mixture is sampled, weighed, and divided by the density of the mixture to calculate the volume of the filled mixture, followed by dividing the volume of the filled mixture by the spatial volume described below to calculate the mixture fill factor.
  • Mixture fill factor is dependent on screw configuration and extrusion conditions.
  • the space volume ratio is calculated by subtracting the screw volume (the sum of the element volume and the shaft volume) from the barrel volume of the extruder to calculate the space volume, and then dividing the space volume by the barrel volume.
  • the spatial volume fraction depends on the screw configuration.
  • the incremental tensile elongation [EA] of the effluent from the dispersive mixing zone 801 relative to the tensile elongation of the influent to the dispersive mixing zone 801 and the tensile elongation of the influent to the distributive mixing zone 802 are
  • the incremental tensile elongation [EB] of the outflow from the distributive mixing zone 802 satisfies the relationship [EA]>[EB] and the flexural modulus of the inflow of the dispersive mixing zone 801 from the dispersive mixing zone 801 to the flexural modulus of the inflow of 801 into the dispersive mixing zone and the flexural modulus increment of the outflow from the distributive-mixing zone 802 with respect to the flexural modulus of the inflow into the distributive-mixing zone 802 [MB] is given by [MA] > satisfies the relationship of [MB].
  • the inflow to each zone or the outflow from each zone may be a mixture that enters or exits from each zone. It is not limited to what is provided in advance.
  • [EA] is preferably 1% or more, or 2% or more, or 3% or more, and preferably 100% or less, or 50% or less, or 30% or less.
  • [EB] is preferably 0% or more, or 0.1% or more, or 0.5% or more, and preferably 10% or less, or 5% or less, or 3% or less.
  • [MA] is preferably 0.1 GPa or more, or 0.5 GPa or more, or 1 GPa or more, and preferably 20 GPa or less, or 10 GPa or less, or 5 GPa or less.
  • [MB] is preferably 0 GPa or more, or 0.1 GPa or more, or 0.3 GPa or more, and preferably 1 GPa or less, or 0.7 GPa or less, or 0.5 GPa or less.
  • the difference between [EA] and [EB] is preferably 0.01% or more, or 0.1% or more, or 1% or more, and preferably 100% or less , or 50% or less, or 10% or less.
  • the difference between [MA] and [MB] ([MA]-[MB]) is preferably 0.001 GPa or more, or 0.01 GPa or more, or 0.1 GPa or more, preferably 10 GPa or less, or It is 5 GPa or less, or 1 GPa or less.
  • the zone length/cylinder inner diameter ratio of each of the dispersive mixing zone 801 and the distributive mixing zone 802 is preferably 1 or more, or 3 or more, or 4 or more, and preferably 30 or less, or 20 or less. , or 10 or less.
  • the mixture fill factor of each of the dispersive mixing zone 801 and the distributive mixing zone 802 is preferably 10% or more, or 50% or more, or 70% or more, and preferably 100% or less, or 99% or more. % or less, or 95% or less.
  • the temperature of each of the dispersive mixing zone 801 and the distributive mixing zone 802 is preferably 100°C or higher, or 150°C or higher, or 200°C or higher, and preferably 400°C or lower, or 350°C or lower. , or 300° C. or less.
  • the mixed pressure in each of the dispersive mixing zone 801 and the distributive mixing zone 802 is preferably 0 MPa or higher, or 0.1 MPa or higher, or 0.3 MPa or higher, or 1 MPa or higher, preferably 15 MPa. or less, or 10 MPa or less, or 5 MPa or less, or 3 MPa or less.
  • the spatial volume fraction of each of the dispersive mixing zone 801 and the distributive mixing zone 802 is preferably 10% or more, or 20% or more, or 30% or more, and preferably 70% or less, or 60% or more. % or less, or 50% or less.
  • the zone length/cylinder inner diameter ratio of the dispersive mixing zone 801 is 1 or more, or 2 or more, or 5 or more
  • the zone length/cylinder inner diameter ratio of the distributive mixing zone 802 is 5 or less, or 2 or less, or 1 or less.
  • the mixture pressure is 0.1 MPa or more, or 0.2 MPa or more, or 0.3 MPa or more, or 0.5 MPa or more, or 1 MPa or more, or 3 MPa or more, or 5 MPa or more, or 7 MPa or more. From the viewpoint of suppressing damage to the second component, the mixture pressure may preferably be 20 MPa or less, 15 MPa or less, or 10 MPa or less.
  • the area in which high pressure is applied to the material to be mixed can be relatively wide in the dispersive mixing zone 801 and relatively narrow in the distributive mixing zone 802 .
  • the region where the mixture pressure is within the above range may be a region where the zone length/cylinder inner diameter ratio of the dispersive mixing zone 801 is 30 or less, 20 or less, or 10 or less.
  • the pressure of the mixture to be mixed is 0.3 MPa or more in the region where the zone length/cylinder inner diameter ratio of the dispersive mixing zone is 1 or more and the zone length/cylinder inner diameter ratio of the distributive mixing zone is 5 or less.
  • the physical property improvement rate per unit mass of the second component in the mixture is higher in the distributive mixing zone than in the dispersive mixing zone. and big.
  • the physical property improvement rate of the dispersive mixing zone is the ratio of the physical properties of the outflow from the dispersive mixing zone to the physical properties of the inflow to the dispersive mixing zone. It is the ratio of the physical properties of the effluent from the distributive mixing zone to the physical properties.
  • the physical property is selected from tensile elongation and flexural modulus.
  • the ratio of the physical property improvement ratio of the distributive mixing zone to the dispersive mixing zone is preferably more than 1, or 1.2 or more, or 1.5 or more from the above viewpoint, and from the viewpoint of ease of designing process conditions , for example, 100 or less, or 10 or less, or 5 or less.
  • the concentration [CA] of the second component in dispersive mixing zone 801 is between 10% and 90% by weight, and the concentration of the second component in distributive mixing zone 802 is The concentration [CB] is 1 mass % to 50 mass %, and the ratio [CA]/[CB] is 2 to 90.
  • adding additional polymer to the effluent from dispersive mixing zone 801 e.g., by side-feeding the additional polymer in melt zone 804 of FIG. 8
  • adding additional polymer to the effluent from dispersive mixing zone 801 e.g., by side-feeding the additional polymer in melt zone 804 of FIG. 8
  • the second component is The concentration can be adjusted within the above range.
  • the second component is finely divided in the dispersive mixing zone 801 and the second component in the distributive mixing zone 802. It is possible to improve the second component dispersion state while avoiding damage to the components.
  • the concentration [CA] is 10% by mass or more, or 15% by mass or more, or 20% by mass or more from the viewpoint of favorably advancing the refinement of the second component, and damages the second component. from the viewpoint of suppressing, in one aspect, it is 90% by mass or less, or 80% by mass or less, or 70% by mass or less.
  • the concentration [CB] is, in one aspect, 1% by mass or more, or 5% by mass or more, or 10% by mass or more. , from the viewpoint of suppressing damage to the second component, in one aspect, it is 50% by mass or less, or 40% by mass or less, or 30% by mass or less.
  • the ratio [CA]/[CB] is 2 or more, or 3 or more, or 4 or more from the viewpoint of promoting miniaturization in the dispersive mixing step of the second component and suppressing damage in the distributive mixing step. From the viewpoint of avoiding damage to the second component due to too large a concentration [CA] or limiting the application of the resin composition due to too small a concentration [CB], in one aspect, 90 or less, or 50 or less, or 10 or less.
  • the increment [TA] of the thixotropic index of the output from the dispersive mixing zone 801 relative to the thixotropic index of the input to the distributive mixing zone 801 and the distributive mixing zone relative to the thixotropic index of the input to the distributive mixing zone 802 The thixotropic index increment [TB] of the outflow from 802 satisfies the relationship [TA]>[TB].
  • [TA]>[TB] is an indicator of preferential refinement of the second component in the dispersive mixing zone 801 over the distributive mixing zone 802 .
  • the [TA]/[TB] ratio is preferably greater than 1, or 2 or more, or 3 or more from the viewpoint of preferentially miniaturizing the second component in the dispersive mixing zone 801. It is preferably 100 or less, 50 or less, or 10 or less from the viewpoint of suppressing damage to the second component due to excessive refinement of the second component in .
  • a method for measuring the thixotropic index will be described later.
  • the increment [TA] is preferably greater than 0.01 and 10 or less, or 0.05-5, or 0.1-2.
  • the increment [TB] is preferably from 0.01 to less than 10, or from 0.05 to 5, or from 0.1 to 2.
  • the resin composition exiting the kneading zone 101, 201, 301 (for aspect A), the distributive mixing zone 402, 602 (for aspect B), or the distributive mixing zone 802 (for aspect C) b may be extruded out of the extruder in the desired shape.
  • pellet form is preferred for ease of post-processing and transportation.
  • shape of pellets include round, elliptical, and cylindrical shapes, which vary depending on the cutting method during extrusion.
  • the size of round pellets can be exemplified by a diameter of 1 mm or more and 3 mm or less
  • the size of cylindrical pellets can be exemplified by a diameter of 1 mm or more and 3 mm or less and a length of 2 mm or more and 10 mm or less.
  • the above diameter and length are desirably at least the lower limit, and from the viewpoint of biting into a molding machine in post-processing, they are preferably at most the upper limit.
  • the resin composition produced by the methods according to aspects A to C may be molded into various forms such as films, sheets, fibers, plates, powders, and three-dimensional structures.
  • molding methods include injection molding, extrusion molding, foam molding, insert molding, in-mold coating molding, and mold molding.
  • various extrusion molding methods are suitable for molding sheets, films, fibers, and the like.
  • the molding temperature can be appropriately selected depending on the composition of the resin composition and the like. Alternatively, the melting point may be +80° C. or lower, or the melting point +70° C. or lower.
  • the resin composition produced by the method according to the present disclosure comprises a first component that is a polymer and organic fibers and/or a second component that is a polymer different from the first component.
  • a polymer different from the first component means, in one aspect, a polymer different in molecular structure and/or molecular weight from the first component.
  • the polymer in the first component, the organic fiber in the second component, and the polymer in the second component may each be one kind or two or more kinds.
  • the polymer in the first component and the polymer in the second component differ from each other in molecular structure and/or molecular weight of at least one polymer constituting them.
  • the second component is in one aspect an organic fiber, in one aspect a polymer, and in one aspect a combination of an organic fiber and a polymer. Examples of material components used for producing the resin composition and therefore contained in the resin composition include the following.
  • the first component is, in one aspect, a polymer.
  • the polymer is appropriately selected according to the purpose of use of the resin composition.
  • a crystalline thermoplastic resin having a melting point within the range of 100°C to 350°C, or a glass transition point within the range of 100°C to 250°C. It may be an amorphous thermoplastic resin or the like.
  • the polymer include polyolefin-based resins, polyamide-based resins, polyester-based resins, polyacetal-based resins, polyphenylene ether-based resins, polyphenylene sulfide-based resins, and mixtures of two or more of these.
  • the melting point of the thermoplastic resin is preferably 140°C or higher, or 150°C or higher, or 160°C or higher, or 170°C or higher, or 180°C or higher. , or 190° C. or higher, or 200° C. or higher, or 210° C. or higher, 220° C. or higher, or 230° C. or higher, or 240° C. or higher, or 245° C. or higher, or 250° C. or higher.
  • the melting point of the thermoplastic resin is, for example, 150° C. to 190° C. or 160° C. to 180° C. for relatively low melting point resins (eg, polyolefin resins), and relatively high melting point resins (eg, polyamide resins). 220° C. to 350° C. or 230° C. to 320° C. can be exemplified.
  • the melting point refers to the peak top temperature of the endothermic peak that appears when the temperature is raised from 23 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (DSC). When two or more appear, it refers to the peak top temperature of the endothermic peak on the highest temperature side. Further, in the present disclosure, the glass transition point is the temperature obtained using the dynamic viscoelasticity measuring device as described above.
  • a polyolefin-based resin that is preferable as a polymer is a polymer obtained by polymerizing olefins (eg, ⁇ -olefins) or alkenes as monomer units.
  • polyolefin-based resins include ethylene-based (co)polymers such as low-density polyethylene (e.g., linear low-density polyethylene), high-density polyethylene, ultra-low-density polyethylene, and ultra-high-molecular-weight polyethylene, polypropylene, and ethylene.
  • polypropylene (co)polymers exemplified by propylene copolymers, ethylene-propylene-diene copolymers, ethylene-acrylic acid copolymers, ethylene-methyl methacrylate copolymers, ethylene-glycidyl methacrylate copolymers
  • examples thereof include copolymers of ⁇ -olefins such as ethylene represented by coalescence.
  • Polypropylene is the most preferred polyolefin resin here.
  • polypropylene having a melt mass flow rate (MFR) of 3 g/10 min or more and 30 g/10 min or less measured at 230° C. under a load of 21.2 N in accordance with ISO 1133 is preferred.
  • MFR melt mass flow rate
  • the lower limit of MFR is more preferably 5 g/10 minutes, still more preferably 6 g/10 minutes, and most preferably 8 g/10 minutes.
  • the upper limit is more preferably 25 g/10 minutes, still more preferably 20 g/10 minutes, and most preferably 18 g/10 minutes.
  • the MFR desirably does not exceed the above upper limit from the viewpoint of improving the toughness of the composition, and preferably does not fall below the above lower limit from the viewpoint of the fluidity of the composition.
  • acid-modified polyolefin resins can also be suitably used in order to increase affinity with cellulose.
  • the acid in this case can be appropriately selected from maleic acid, fumaric acid, succinic acid, phthalic acid, their anhydrides, and polycarboxylic acids such as citric acid. Among these, maleic acid or its anhydride is preferable because the modification rate can be easily increased.
  • the modification method is not particularly limited, but a method of heating above the melting point in the presence or absence of a peroxide to melt and knead is common.
  • the polyolefin resin to be acid-modified all of the polyolefin resins described above can be used, but polypropylene is particularly suitable for use.
  • the acid-modified polypropylene may be used alone, it is more preferable to use it in combination with unmodified polypropylene in order to adjust the modification rate of the resin as a whole.
  • the ratio of acid-modified polypropylene to all polypropylene at this time is 0.5% by mass to 50% by mass.
  • a more preferable lower limit is 1% by mass, still more preferably 2% by mass, still more preferably 3% by mass, particularly preferably 4% by mass, and most preferably 5% by mass.
  • a more preferred upper limit is 45% by mass, still more preferably 40% by mass, still more preferably 35% by mass, particularly preferably 30% by mass, and most preferably 20% by mass.
  • the lower limit or more is preferable, and in order to maintain the ductility of the resin, the upper limit The following are preferred.
  • the melt mass flow rate (MFR) of acid-modified polypropylene is measured at the interface between the first component and the second component (e.g. the interface between cellulose and resin ), it is preferably 50 g/10 minutes or more.
  • a more preferred lower limit is 100 g/10 min, even more preferably 150 g/10 min, and most preferably 200 g/10 min. Although there is no particular upper limit, it is 500 g/10 minutes for maintenance of mechanical strength.
  • Polyamide resins include polyamide 6, polyamide 11, polyamide 12 obtained by polycondensation reaction of lactams, 1,6-hexanediamine, 2-methyl-1,5-pentanediamine, 1,7-heptanediamine, 2-methyl-1-6-hexanediamine, 1,8-octanediamine, 2-methyl-1,7-heptanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1,10- Diamines such as decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, m-xylylenediamine, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid acid, decanedioic acid, benzene-1,2-dicarboxylic acid, benzene-1,3-dicarboxy
  • aliphatic polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6,10, polyamide 6,11, polyamide 6,12, polyamide 6,C, polyamide 2M5,C Alicyclic polyamides such as
  • the terminal carboxyl group concentration of the polyamide resin is not particularly limited, but is preferably 20 ⁇ mol/g or more, or 25 ⁇ mol/g or more, preferably 150 ⁇ mol/g or less, or 100 ⁇ mol/g. may be:
  • the terminal amino group concentration of the polyamide resin is preferably 20 ⁇ mol/g or more, or 30 ⁇ mol/g or more, and preferably 150 ⁇ mol/g or less, or 100 ⁇ mol/g or less.
  • the total concentration of the terminal amino group and the terminal carboxyl group of the polyamide resin is not particularly limited, but is preferably 10 ⁇ mol/g or more, or 50 ⁇ mol/g or more, or 100 ⁇ mol/g or more, or 135 ⁇ mol/g. or more, and from the viewpoint of preventing a decrease in viscosity due to an excessively low molecular weight of the resin and suppressing burr generation during molding, it is preferably 500 ⁇ mol/g or less, or 300 ⁇ mol/g or less, or 135 ⁇ mol/g or less, or 100 ⁇ mol/g or less.
  • the ratio of amino terminal groups to carboxyl terminal groups ([NH 2 ]/[COOH]) of the polyamide resin is preferably greater than 1.00, or 1.01 or more, or 1.05 or more, or 1.10 or more. is.
  • the upper limit of the amino terminal group ratio is not particularly limited, but it may be preferably 10000 or less, or 1000 or less, or 100 or less, or 10 or less from the viewpoint of maintaining good color tone of the resin composition.
  • a known method can be used as a method for adjusting the terminal group concentration of the polyamide resin.
  • a diamine compound, a monoamine compound, a dicarboxylic acid compound, a monocarboxylic acid compound, an acid anhydride, a monoisocyanate, a monoacid halide, a monoester, a monoalcohol, etc. can be used to obtain a predetermined terminal group concentration during polymerization of the polyamide.
  • a method of adding a terminal adjuster that reacts with the terminal group to the polymerization liquid can be used.
  • the amino terminal group and carboxyl terminal group concentrations of the polyamide-based resin can be determined from the integrated value of characteristic signals corresponding to each terminal group by 1 H-NMR. Specifically, the method described in JP-A-7-228775 is recommended.
  • the polyamide resin preferably has an intrinsic viscosity [ ⁇ ] of 0.6 to 2.0 dL/g, and preferably 0.7 to 1.4 dL/g, measured at 30°C in concentrated sulfuric acid. is more preferred, 0.7 to 1.2 dL/g is even more preferred, and 0.7 to 1.0 dL/g is particularly preferred.
  • the use of a polyamide having an intrinsic viscosity within the above range has the advantage of increasing the fluidity of the resin composition in the mold during injection molding and improving the appearance of the molded piece.
  • intrinsic viscosity is synonymous with viscosity generally called intrinsic viscosity, and is described, for example, in Polymer Process Engineering (Prentice-Hall, Inc. 1994), pages 291-294. can be measured by
  • Polyester-based resins include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and polybutylene adipate terephthalate (PBAT). , polyhydroxyalkanoic acid (PHA), polylactic acid (PLA), polyarylate (PAR), polycarbonate (PC), and the like. PET, PBS, PBSA, PBT, and PEN are more preferred as the polyester-based resin, and PBS, PBSA, and PBT are even more preferred.
  • the terminal groups of the polyester resin can be freely changed depending on the monomer ratio during polymerization and the presence or absence and amount of addition of a terminal stabilizer. More preferably, the ratio ([COOH]/[total terminal groups]) is from 0.30 to 0.95.
  • the carboxyl end group ratio lower limit is more preferably 0.35, still more preferably 0.40, and most preferably 0.45.
  • the upper limit of the carboxyl terminal group ratio is more preferably 0.90, still more preferably 0.85, and most preferably 0.80.
  • the carboxyl terminal group ratio is desirably 0.30 or more from the viewpoint of dispersibility of cellulose in the composition, and desirably 0.95 or less from the viewpoint of the color tone of the resulting composition.
  • polyacetal resins homopolyacetal made from formaldehyde and copolyacetal containing trioxane as a main monomer and 1,3-dioxolane as a comonomer component are generally used. From the viewpoint of thermal stability, copolyacetal can be preferably used.
  • the amount of comonomer component (eg, 1,3-dioxolane)-derived structure is more preferably in the range of 0.01 to 4 mol %.
  • a preferred lower limit for the amount of comonomer component-derived structures is 0.05 mol %, more preferably 0.1 mol %, and even more preferably 0.2 mol %.
  • a preferred upper limit is 3.5 mol %, more preferably 3.0 mol %, even more preferably 2.5 mol %, most preferably 2.3 mol %.
  • the lower limit be within the above range
  • the upper limit be within the above range
  • a polymer having a hydrophilic group (eg, one or more selected from a hydroxyl group, an amino group, and a carboxy group) is particularly preferable, for example, from the viewpoint of affinity with cellulose.
  • Preferred examples of polymers having hydrophilic groups are selected from the group consisting of acid-modified polyolefin resins, polyacetal resins, polycarbonate resins, polyamide resins, polyester resins, polyphenylene ether resins, and acrylic resins. More than seeds. Among them, polyamide-based resins and maleated polypropylene are preferred.
  • the second component is organic fibers and/or polymers.
  • the second component is dispersed in the first component by being mixed with the first component, and the physical properties of the resin composition (in one aspect, tensile elongation, flexural modulus, coefficient of thermal expansion , and physical stability, preferably all of these) can be improved over the absence of the second component.
  • the amount of the second component relative to 100% by mass of the entire resin composition, or the amount of the second component relative to the total 100% by mass of the first component and the second component is preferably , 0.1% by mass or more, or 0.5% by mass or more, or 1% by mass or more, or 3% by mass or more, preferably 30% by mass or less, or 25% by mass or less, or 20% by mass or less, Or it is 15% by mass or less.
  • the amount of the second component is within the above range, it is preferable from the viewpoint of high tensile elongation, high flexural modulus, low coefficient of thermal expansion, and/or good physical property stability. Preferred examples of each of the organic fibers and polymers are described below.
  • Organic fibers are fibers composed of organic materials.
  • Organic fibers are polymer fibers in one aspect, fibers having hydrogen bond forming structures (e.g. OH structures and/or NH structures) in one aspect, and natural fibers (e.g. cellulose fibers, cellulose fibers) in one aspect. nanocrystal, chitin fiber, chitosan fiber, wool, etc.), and synthetic fiber (e.g., aramid fiber, nylon fiber, acrylic fiber, polyester fiber, vinylon fiber, rayon fiber, polyurethane fiber, etc.). That's it.
  • cellulose fiber means cellulose with an L/D of 30 or more
  • cellulose nanocrystal means cellulose with an average fiber diameter of 1000 nm or less and an L/D of less than 30.
  • the amount of organic fibers relative to 100% by mass of the entire resin composition is preferably 0.1% by mass or more, or 0.5% by mass or more, or 1% by mass or more, or 3% by mass or more. , preferably 30% by mass or less, or 25% by mass or less, or 20% by mass or less, or 15% by mass or less.
  • An amount of organic fiber within the above range is preferable from the viewpoint of high tensile elongation, high flexural modulus, low coefficient of thermal expansion, and/or good physical property stability.
  • the organic fibers comprise or are cellulose fibers.
  • Sources of cellulose fibers include natural cellulose fibers and regenerated cellulose fibers.
  • Natural cellulose fibers include wood pulp obtained from wood species (hardwood or softwood), non-wood pulp obtained from non-wood species (bamboo, hemp fiber, bagasse, kenaf, linter, etc.), and refined pulps of these (purified linter, etc.) can be used.
  • non-wood pulp cotton-derived pulp including cotton linter pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, straw-derived pulp, and the like can be used.
  • Cotton-derived pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp are cotton lints, cotton linters, hemp-based abaca (e.g., from Ecuador or the Philippines), and zeisal, respectively. , bagasse, kenaf, bamboo, straw, etc., through a refining process such as delignification by digestion, a bleaching process, etc., and a refined pulp as a raw material.
  • the cellulose fibers are cellulose nanofibers.
  • Cellulose nanofibers are produced, for example, by treating the above-mentioned pulp with hot water at 100° C. or higher, hydrolyzing the hemicellulose portion to make it brittle, and then pulverizing with a high-pressure homogenizer, microfluidizer, ball mill, disc mill, or the like. It can be obtained by fibrillation.
  • the number average fiber diameter of the cellulose nanofibers is 2 to 1000 nm, preferably 4 nm or more, or 5 nm or more, or 10 nm or more, or 15 nm or more, or 20 nm or more, or 50 nm or more, or 100 nm or more. , preferably 500 nm or less, or 450 nm or less, or 400 nm or less, or 350 nm or less, or 300 nm or less, or 250 nm or less, or 200 nm or less.
  • the number average fiber length/number average fiber diameter ratio (L/D) of cellulose nanofibers may be 30 or more, or 50 or more, or 80 or more, or 100 or more in one embodiment, and in one embodiment, 5000 or less. , or 4000 or less, or 3000 or less.
  • the number average fiber diameter (D), number average fiber length (L), and L/D ratio of the cellulose fibers of the present disclosure are measured using a scanning electron microscope (SEM) according to the following procedure. value.
  • SEM scanning electron microscope
  • An aqueous dispersion of cellulose fibers is substituted with tert-butanol, diluted to 0.001 to 0.1% by mass, and treated with a high-shear homogenizer (for example, IKA, product name "Ultra Turrax T18”) under processing conditions: Dispersed at a rotation speed of 15,000 rpm for 3 minutes, cast on an osmium-evaporated silicon substrate, air-dried, and used as a measurement sample.
  • a high-shear homogenizer for example, IKA, product name "Ultra Turrax T18
  • the length (L) and diameter (D) of 100 randomly selected fibrous substances in an observation field whose magnification is adjusted so that at least 100 fibrous substances can be observed. is measured and the ratio (L/D) is calculated. Calculate the number average length (L), number average diameter (D), and number average ratio (L/D) for the cellulose fibers.
  • the length, diameter, and L/D ratio of the cellulose fibers in the resin composition and the molded product are determined by dissolving the polymer component in an organic or inorganic solvent capable of dissolving the polymer component, separating the cellulose fibers, and adjusting the After thorough washing with a solvent, substitution with tert-butanol to prepare a 0.001 to 0.1% by mass dispersion, and redispersion with a high shear homogenizer (eg, IKA, product name "Ultra Turrax T18"). It can be measured by the method described above.
  • a high shear homogenizer eg, IKA, product name "Ultra Turrax T18”
  • the crystallinity of the cellulose fibers is preferably 55% or more, or 60% or more, or 70% or more, or 80% or more, from the viewpoint of obtaining a resin composition excellent in heat resistance, mechanical strength and dimensional stability. .
  • the degree of crystallinity is in this range, the mechanical properties (heat resistance, strength, dimensional stability) of the cellulose fibers themselves are high. It tends to be more stable.
  • a higher crystallinity is preferable, but the preferable upper limit is 99% from the viewpoint of production.
  • the cellulose fiber is a cellulose type II crystal (derived from regenerated cellulose)
  • cellulose fibers of the present disclosure has relatively high structural mobility, and by dispersing the cellulose fiber in a resin, the linear expansion coefficient is lower, and the strength and elongation during tensile and bending deformation are excellent.
  • Cellulose fibers containing cellulose type I crystals or cellulose type II crystals are preferable, and cellulose fibers containing cellulose type I crystals and having a degree of crystallinity of 55% or more are more preferable, since a composition can be obtained.
  • the degree of polymerization of the cellulose fiber is preferably 100 or more, more preferably 150 or more, more preferably 200 or more, more preferably 300 or more, more preferably 400 or more, preferably 3500 or less, more preferably 3300. Below, more preferably 3200 or less, more preferably 3100 or less, more preferably 3000 or less.
  • the degree of polymerization of the cellulose fibers is preferably not too high, and from the viewpoint of developing mechanical properties, it is desired that the degree of polymerization is not too low.
  • the degree of polymerization of cellulose fibers means the average degree of polymerization measured according to the reduction specific viscosity method with a copper ethylenediamine solution described in the confirmation test (3) of "The Japanese Pharmacopoeia 15th Edition (published by Hirokawa Shoten)". .
  • the weight average molecular weight (Mw) of the cellulose fibers is 100,000 or more, more preferably 200,000 or more.
  • the ratio (Mw/Mn) between the weight average molecular weight and the number average molecular weight (Mn) is 6 or less, preferably 5.4 or less.
  • the larger the weight average molecular weight the smaller the number of terminal groups of the cellulose molecule.
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) represents the width of the molecular weight distribution, the smaller the Mw/Mn, the smaller the number of ends of the cellulose molecules.
  • the weight average molecular weight (Mw) of the cellulose fibers may be, for example, 600,000 or less, or 500,000 or less, from the viewpoint of availability of cellulose raw materials.
  • the ratio (Mw/Mn) between the weight average molecular weight and the number average molecular weight (Mn) may be, for example, 1.5 or more, or 2 or more from the viewpoint of ease of production of cellulose fibers.
  • Mw can be controlled within the above range by selecting a cellulose raw material having an Mw suitable for the purpose, and by appropriately subjecting the cellulose raw material to physical and/or chemical treatments within an appropriate range.
  • the Mw/Mn is also within the above range by selecting a cellulose raw material having Mw/Mn according to the purpose, by appropriately performing physical treatment and/or chemical treatment on the cellulose raw material in an appropriate range, etc.
  • the physical treatment includes dry or wet grinding such as microfluidizer, ball mill, disk mill, crusher, homomixer, high-pressure homogenizer, and ultrasonic device.
  • dry or wet grinding such as microfluidizer, ball mill, disk mill, crusher, homomixer, high-pressure homogenizer, and ultrasonic device.
  • mechanical forces such as impact, shear, shear, friction, etc., include cooking, bleaching, acid treatment, regenerated cellulose, and the like.
  • the weight-average molecular weight and number-average molecular weight of the cellulose fibers referred to here are obtained by dissolving the cellulose fibers in N,N-dimethylacetamide to which lithium chloride has been added, followed by gel permeation using N,N-dimethylacetamide as a solvent. Value determined by chromatography.
  • Methods for controlling the degree of polymerization (that is, the average degree of polymerization) or molecular weight of cellulose fibers include hydrolysis treatment.
  • the hydrolysis treatment promotes depolymerization of the amorphous cellulose inside the cellulose, resulting in a decrease in the average degree of polymerization.
  • the hydrolysis treatment removes impurities such as hemicellulose and lignin in addition to the amorphous cellulose described above, so that the interior of the fiber becomes porous.
  • the step of applying a mechanical shearing force to the cellulose such as during the kneading step described below, the cellulose is easily subjected to mechanical treatment, and the cellulose is easily pulverized.
  • Alkali-soluble polysaccharides that can be contained in cellulose fibers include ⁇ -cellulose and ⁇ -cellulose in addition to hemicellulose.
  • Alkali-soluble polysaccharides are components obtained as alkali-soluble parts of holocellulose obtained by solvent extraction and chlorine treatment of plants (for example, wood) (that is, components obtained by removing ⁇ -cellulose from holocellulose). It is understood by those skilled in the art.
  • Alkali-soluble polysaccharides are polysaccharides containing hydroxyl groups, and have poor heat resistance, causing problems such as decomposition when exposed to heat, yellowing during heat aging, and reduced strength of cellulose fibers. Therefore, it is preferable that the content of alkali-soluble polysaccharides in the cellulose fibers is as low as possible.
  • the average content of alkali-soluble polysaccharides in cellulose fibers is preferably 20% by mass or less, or 18% by mass, relative to 100% by mass of cellulose fibers, from the viewpoint of obtaining good dispersibility of cellulose fibers. % or less, or 15 mass % or less, or 12 mass % or less, or 11 mass % or less, or 8 mass % or less. From the viewpoint of ease of production of cellulose fibers, the content may be 1% by mass or more, 2% by mass or more, 3% by mass or more, or 6% by mass or more.
  • the average content of alkali-soluble polysaccharides in the cellulose raw material may be 13% by weight or less, or 12% by weight or less, or 11% by weight or less, or 8% by weight or less, and most preferably 0% by weight. %, but it may be, for example, 3% by mass or more, or 6% by mass or more from the viewpoint of availability of the cellulose raw material.
  • the average content of alkali-soluble polysaccharides can be obtained by the method described in Non-Patent Document (Wood Science Experiment Manual, edited by Japan Wood Science Society, pp. 92-97, 2000), and the holocellulose content (Wise method) It is obtained by subtracting the ⁇ -cellulose content from This method is understood in the art as a method for measuring the amount of hemicellulose.
  • the alkali-soluble polysaccharide content is calculated three times for each sample, and the number average of the calculated alkali-soluble polysaccharide contents is taken as the average alkali-soluble polysaccharide content.
  • the average content of acid-insoluble components in the cellulose fibers is preferably 10% by mass or less with respect to 100% by mass of the cellulose fibers, or It is 5% by mass or less, or 3% by mass or less. From the viewpoint of ease of production of cellulose fibers, the content may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more.
  • the average content of acid-insoluble components is determined by quantifying the acid-insoluble components using the Clason method described in Non-Patent Document (Wood Science Experiment Manual, edited by Japan Wood Research Society, pp. 92-97, 2000). This method is understood in the industry as a method for measuring the amount of lignin. After stirring the sample in a sulfuric acid solution to dissolve cellulose, hemicellulose, etc., the sample was filtered through a glass fiber filter paper, and the obtained residue corresponds to the acid-insoluble component. The acid-insoluble component content is calculated from this acid-insoluble component weight, and the number average of the acid-insoluble component content calculated for the three samples is taken as the acid-insoluble component average content.
  • Cellulose fibers may be chemically treated (eg, oxidized or chemically modified with modifiers).
  • cellulose is oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radicals as shown in Cellulose (1998) 5, 153-164, followed by washing and mechanical fibrillation.
  • Micronized cellulose fibers obtained by the method may also be used.
  • the cellulose fibers may be cellulose fibers hydrophobized with a hydrophobizing agent (also referred to as chemically modified cellulose fibers in this disclosure). Hydrophobization weakens the hydrogen bonds between cellulose fibers, which contributes to fine dispersion. At the same time, the heat resistance of cellulose fibers improves, and deterioration due to kneading with resin can be suppressed. There is an effect that the fibers are less likely to become starting points of physical property defects. Hydrophobizing agents (also referred to as modifying agents in this disclosure) can be compounds that react with the hydroxyl groups of cellulose and include esterifying agents, etherifying agents, and silylating agents.
  • Esterifying agents are particularly preferred.
  • hydrophobization is acylation using an esterifying agent.
  • Preferred esterifying agents are acid halides, acid anhydrides and carboxylic acid vinyl esters.
  • hydrophobization is acetylation.
  • these esterification reagents at least one selected from the group consisting of acetic anhydride, propionic anhydride, butyric anhydride, vinyl acetate, vinyl propionate, vinyl butyrate, and acetic acid, especially acetic anhydride and vinyl acetate, It is preferable from the viewpoint of reaction efficiency.
  • hydrophobized cellulose nanofibers there are no particular restrictions on the method of refining the natural cellulose raw material to reduce the fiber diameter. Higher efficiency is preferred.
  • a cellulose raw material having a cellulose purity of 85% by mass or more with a fibrillation solution containing an aprotic solvent, the cellulose swells in a short period of time, and the cellulose can be swelled with only a small amount of stirring and shearing energy. becomes smaller.
  • hydrophobized cellulose nanofibers can be obtained. This method is preferable from the viewpoint of production efficiency and purification efficiency (that is, high cellulose purification of hydrophobized cellulose nanofibers) and physical properties of the resin composition.
  • aprotic solvents examples include alkylsulfoxides, alkylamides, pyrrolidones, etc., which can be used alone or in combination of two or more.
  • aprotic solvents such as DMSO (29.8), DMF (26.6), DMAc (27.8), NMP (27.3) (numbers in parentheses are donor numbers), especially DMSO can be used to more efficiently produce hydrophobized cellulose nanofibers with a high thermal decomposition initiation temperature.
  • DMSO such as DMSO (29.8), DMF (26.6), DMAc (27.8), NMP (27.3) (numbers in parentheses are donor numbers)
  • DMSO can be used to more efficiently produce hydrophobized cellulose nanofibers with a high thermal decomposition initiation temperature.
  • the degree of hydrophobicity (degree of modification) of cellulose fibers is expressed as the average degree of substitution of hydroxyl groups (the average number of substituted hydroxyl groups per glucose, which is the basic structural unit of cellulose, also known as DS).
  • the DS of the chemically modified cellulose fiber is preferably 0.01 or more and 2.0 or less. If the DS is 0.01 or more, a resin composition containing chemically modified cellulose fibers having a high thermal decomposition initiation temperature can be obtained.
  • a resin composition containing chemically modified cellulose fibers can be obtained.
  • DS is more preferably 0.05 or more, still more preferably 0.1 or more, particularly preferably 0.2 or more, most preferably 0.3 or more, and more preferably 1.8 or less, still more preferably 1.8. 5 or less, particularly preferably 1.2 or less, most preferably 1.0 or less.
  • the peak position of the absorption band changes depending on the type of hydrophobizing modification group. From the change in peak position, it is possible to determine which absorption band the peak is based on, and to identify the modifying group. Moreover, the modification rate can be calculated from the peak intensity ratio of the peak derived from the modifying group and the peak derived from the cellulose skeleton.
  • the degree of acyl substitution can be calculated from the reflection infrared absorption spectrum of the esterified cellulose fiber.
  • the peak of the C ⁇ O absorption band based on the acyl group appears at 1730 cm ⁇ 1
  • the peak of the C—O absorption band based on the cellulose backbone chain appears at 1030 cm ⁇ 1 .
  • the total signal attributed to carbon C1-C6 derived from the pyranose ring of cellulose appearing in the range of 50 ppm to 110 ppm. It can be obtained by the following formula from the area intensity (Inf) of the signal attributed to one carbon atom derived from the modifying group with respect to the area intensity (Inp).
  • DS (Inf) x 6/(Inp)
  • the modifying group is an acetyl group
  • the 23 ppm signal attributed to --CH 3 may be used.
  • the cellulose nanocrystals may be crystalline cellulose obtained by cutting pulp or the like as a raw material and remaining after dissolving the amorphous portion of the cellulose in an acid such as hydrochloric acid or sulfuric acid.
  • the length/diameter ratio (L/D ratio) of the cellulose nanocrystals is less than 30 in one embodiment.
  • the average diameter of the cellulose nanocrystals is 1000 nm or less, preferably 500 nm or less, or 200 nm or less, and preferably 10 nm or more, or 20 nm or more, or 30 nm or more.
  • the above L/D ratio and average diameter are values measured by the same method as the average fiber diameter of cellulose fibers.
  • the L/D of the cellulose nanocrystals is less than 30, preferably 25 or less, or 20 or less, or 15 or less, or 10 or less, or 5 or less.
  • the lower limit is not particularly limited as long as it exceeds 1.
  • Cellulose nanocrystals can improve the tensile elongation of the resin composition.
  • the cellulose whiskers may have similar properties (such as native or modified aspects) as described above for cellulose fibers, except for their size.
  • the chitin fiber may be a polymer of acetylglucosamine obtained by separating and purifying the shell of a crustacean or the like as a raw material, that is, a fiber containing chitin as a main component.
  • the chitosan fiber is a fiber obtained by deacetylating chitin fiber, and may be a fiber containing a polymer of glucosamine, that is, chitosan as a main component.
  • the average diameter of the chitin fibers and the chitosan fibers is, in one embodiment, 2 to 1000 nm, preferably 500 nm or less, or 200 nm or less, and preferably 10 nm or more, or 20 nm or more, or 30 nm or more.
  • the L/D of chitin fiber and chitosan fiber is respectively 30 or more in one aspect, preferably 50 or more, or 100 or more, and in one aspect, 100,000 or less, or 50,000 or less, or 10,000 or less, or 5,000 may be:
  • Aramid fibers are synthetic fibers composed mainly of aromatic polyamide, and are roughly classified into para-aramid fibers and meta-aramid fibers according to the aromatic structure.
  • the average diameter of the aramid fibers is in one embodiment 2 to 1000 nm, preferably 500 nm or less, or 200 nm or less, preferably 10 nm or more, or 20 nm or more, or 30 nm or more.
  • the L/D of the aramid fiber is 30 or more in one aspect, preferably 50 or more, or 100 or more, and in one aspect, may be 100,000 or less, or 50,000 or less, or 10,000 or less, or 5,000 or less. .
  • the fiber length, fiber diameter and L/D of organic fibers other than cellulose fibers are measured in the same manner as cellulose fibers.
  • the second component comprises a polymer in one aspect.
  • the polymer in the first component and the polymer in the second component differ from each other in molecular structure and/or molecular weight of at least one polymer constituting them.
  • Polymers as the second component include, for example, polyolefin resins, polyamide resins, polyester resins, polyacetal resins, polyphenylene sulfide resins, polyvinyl alcohol resins, polyvinylidene chloride resins, polystyrene resins, and polyvinyl chloride.
  • polycarbonate-based resin polymethyl methacrylate-based resin, polyurethane-based resin, fluorine-based resin, polyacrylonitrile-based resin, polybutene-based resin, polyimide-based resin, polyarylate-based resin, cellulose-based resin, polyphenylene ether-based resin, elastomer, and modified products thereof (for example, modified products such as maleic anhydride), or may be one or more selected from the group consisting of these.
  • Polyphenylene ether has the following general formula (1): (In the formula (1), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 7 carbon atoms, a phenyl group, a haloalkyl group and an aminoalkyl group. , a hydrocarbonoxy group, or a halohydrocarbonoxy group in which at least two carbon atoms separate a halogen atom and an oxygen atom, and n is an integer of 20 or more. .) It has a structure represented by The use of polyphenylene ether as the second component is advantageous in terms of bending properties of the resin composition.
  • the halogen atoms represented by R 1 , R 2 , R 3 and R 4 include fluorine, chlorine and bromine atoms, preferably chlorine and bromine atoms.
  • the “alkyl group” represented by R 1 , R 2 , R 3 and R 4 preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and is linear or branched.
  • chain alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl and hexyl. Methyl and ethyl are preferred, and methyl is more preferred.
  • the alkyl groups represented by R 1 , R 2 , R 3 and R 4 may be substituted at substitutable positions with one or more substituents.
  • substituents include halogen atoms (e.g., fluorine atom, chlorine atom, bromine atom), alkyl groups having 1 to 6 carbon atoms (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl), aryl groups (e.g. phenyl, naphthyl), alkenyl groups (e.g.
  • alkynyl groups e.g. ethynyl, 1-propynyl, 2-propynyl
  • aralkyl groups e.g, benzyl, phenethyl
  • alkoxy groups eg, methoxy, ethoxy
  • n in the above formula (1) may be 20 or more, or 100 or more, or 200 or more, and may be 2000 or less, or 1000 or less, or 400 or less.
  • the polyphenylene ether is not particularly limited, and known ones may be used.
  • 2,6-dimethylphenol and other phenols for example, 2,3,6-trimethylphenol or 2 -methyl-6-butylphenol
  • 2,3,6-trimethylphenol or 2 -methyl-6-butylphenol can also be used.
  • polyphenylene ethers may be used alone or in combination of two or more.
  • the intrinsic viscosity [ ⁇ ] of the polyphenylene ether is preferably 0.1 dl/g or more, or 0.2 dl/g or more, or 0.3 dl/g or more from the viewpoint of obtaining a highly rigid resin composition, and the resin From the viewpoint of imparting good fluidity to the composition, it is preferably 1.0 dl/g or less, or 0.7 dl/g or less, or 0.6 dl/g or less, or 0.5 dl/g or less.
  • the intrinsic viscosity is a value measured in chloroform at 25°C.
  • the polyphenylene ether may be at least partially acid-modified.
  • Acid modification can be achieved by reacting polyphenylene ether with a modifier (eg, ⁇ , ⁇ -unsaturated carboxylic acid and derivatives thereof).
  • ⁇ , ⁇ -unsaturated carboxylic acids include (meth)acrylic acid, crotonic acid, isocrotonic acid, furanic acid, pentenoic acid, vinylacetic acid, monobasic acids such as angelic acid, maleic acid, chloromaleic acid, fumaric acid, Dibasic acids such as tetrahydrophthalic acid, itaconic acid, citraconic acid, endocis-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic acid (nadic acid), citric acid, aconitic acid, etc. Tribasic acid, etc. can be exemplified.
  • Examples of ⁇ , ⁇ -unsaturated carboxylic acid derivatives include acid halides, amides, imides, acid anhydrides, and esters of the ⁇ , ⁇ -unsaturated carboxylic acids described above.
  • preferred modifiers include maleic acid, citric acid, itaconic acid, itaconic anhydride and maleic anhydride, more preferably citric acid and maleic anhydride.
  • the degree of acid modification of the polyphenylene ether is preferably 0.01% or more, or 0.1% or more, or 0.2% or more, or 0.25% or more, from the viewpoint of finely dispersing the second component. From the viewpoint of obtaining the advantage of using polyphenylene ether, preferably 10% or less, or 5% or less, or 2% or less, or 1% or less, or 0.7% or less, or 0.6% It is below.
  • Polyphenylene ethers of the present disclosure may be mixtures of two or more polymers with different degrees of acid modification. In this case, the degree of acid modification of the entire polyphenylene ether in the resin composition is preferably within the above range.
  • the degree of acid modification is an addition rate calculated from infrared spectrometry.
  • the acidic functional group is derived from maleic anhydride
  • a mixture of polyphenylene ether and maleic anhydride was used to create a calibration curve in advance for the maleic acid-derived peak at 1790 cm ⁇ 1 , and then the maleic anhydride-modified polyphenylene ether at 1790 cm ⁇ 1 was calibrated. Calculate the addition rate from the -1 peak intensity.
  • a method for acid modification of polyphenylene ether a method of reacting a modifier with a polyphenylene ether in a fluid state (for example, by melting, or by dispersing or dissolving in a solvent), coexisting with a modifier, lowering the glass transition point of the polyphenylene ether or lower.
  • a method of reacting powdery polyphenylene ether with a modifying agent at temperature can be exemplified.
  • An example of a method of reacting a polyphenylene ether in a fluid state with a modifier is a method of melt-kneading a polyphenylene ether and a modifier with a roll mill, Banbury mixer, extruder, or the like at 250° C. to 350° C.
  • a method of dissolving polyphenylene ether in an organic solvent eg, toluene, xylene, decalin, tetralin, etc.
  • an organic solvent eg, toluene, xylene, decalin, tetralin, etc.
  • a predetermined amount of polyphenylene ether and a modifying agent are added to a stirring device capable of high-speed stirring, and the shear heat generated by high-speed stirring and / or jacket
  • the reaction may be performed in the presence of a radical initiator.
  • Radical initiators include organic peroxides (benzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, cumene hydroperoxide, 2,5-dimethyl-2,5- di-(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-di-(tert-butylperoxy)hexyne-3, etc.), azo compounds (azobisisobutylnitrile, dimethylazoisobutyrate, etc.) ).
  • the amount of the radical initiator used may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of polyphenylene ether.
  • the polyphenylene ether may be a mixture of polyphenylene ethers with acidic functional groups and polyphenylene ethers without acidic functional groups.
  • the mixing ratio of the polyphenylene ether having an acidic functional group and the polyphenylene ether having no acidic functional group is, when the total of both is 100% by mass, from the viewpoint of obtaining the advantages of the polyphenylene ether having an acidic functional group. It is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and most preferably 40% by mass or more.
  • the upper limit is not particularly limited, and substantially all of the polyphenylene ether may be polyphenylene ether having an acidic functional group.
  • the polymer as the second component is an elastomer in one aspect.
  • an elastomer is a material (specifically a natural or synthetic polymeric material) that is elastic at room temperature (23° C.). Elastomers are advantageous in terms of improving the toughness and elongation (especially elongation under low temperature environment) of the resin composition.
  • elastomers include natural rubber, conjugated diene compound polymers, aromatic compound-conjugated diene copolymers, hydrogenated aromatic compound-conjugated diene copolymers, polyolefins, polyester elastomers, polyurethane elastomers, Examples include polyamide elastomers and elastomers having a core-shell structure. Among these, aromatic compound-conjugated diene copolymers and hydrogenated products thereof, polyolefins, and elastomers having a core-shell structure are preferred from the viewpoint of facilitating the modification reaction of the acidic functional groups described below.
  • the aromatic compound-conjugated diene copolymer and its hydrogenated product are more preferably aromatic compound-conjugated diene block copolymer and its hydrogenated product, and the polyolefin is a copolymer of ethylene and ⁇ -olefin. Polymers are more preferred.
  • the elastomer is an ethylene- ⁇ olefin copolymer, a block copolymer of an aromatic vinyl compound and a conjugated diene compound, and a hydrogenated product of a block copolymer of an aromatic vinyl compound and a conjugated diene compound. It is one or more selected from the group consisting of
  • the aromatic compound-conjugated diene block copolymer is a block composed of a polymer block (A) mainly composed of an aromatic vinyl compound and a polymer block (B) mainly composed of a conjugated diene compound. It is a copolymer.
  • Block copolymers in which each block is bonded in any one of AB type, ABA type and ABAB type are preferred from the viewpoint of developing impact strength, and ABA type and ABAB type are more preferred.
  • the mass ratio of the aromatic vinyl compound unit and the conjugated diene compound unit in the block copolymer is preferably 10/90 to 70/30. More preferably 15/85 to 55/45, most preferably 20/80 to 45/55. Furthermore, two or more of these compounds having different mass ratios of the aromatic vinyl compound and the conjugated diene compound may be blended.
  • the aromatic vinyl compound include styrene, ⁇ -methylstyrene, vinyltoluene and the like, and one or more compounds selected from these are used, with styrene being particularly preferred.
  • the conjugated diene compound examples include butadiene, isoprene, piperylene, 1,3-pentadiene and the like, and one or more compounds selected from these are used, but butadiene, isoprene and combinations thereof are preferred. , butadiene is particularly preferred.
  • the microstructure of the polybutadiene block portion has a 1,2-vinyl content or a 1,2-vinyl content from the viewpoint of suppressing crystallization of the soft segment.
  • the total amount with the 3,4-vinyl content is preferably 5 to 80%, more preferably 10 to 50%, most preferably 15 to 40%, on a molar basis.
  • An aromatic compound-conjugated diene block copolymer is a block copolymer composed of a polymer block mainly composed of an aromatic vinyl compound and a polymer block mainly composed of a conjugated diene compound.
  • the hydrogenated product of the block copolymer of the aromatic vinyl compound and the conjugated diene compound is obtained by hydrogenating the block copolymer of the aromatic vinyl compound and the conjugated diene compound to obtain a polymer mainly composed of the diene compound.
  • a united block in which the aliphatic double bonds are controlled in the range of more than 0% to 100%.
  • the hydrogenation rate of the hydrogenated block copolymer is preferably 50% or more, more preferably 80% or more, and most preferably 98% or more, from the viewpoint of suppressing thermal deterioration during processing. From the viewpoint of toughness, it is preferably 50% or less, more preferably 20% or less, and most preferably 0% (that is, a block copolymer of an aromatic vinyl compound and a conjugated diene compound).
  • the number average molecular weight (Mn) of the block copolymer of the aromatic vinyl compound and the conjugated diene compound and the hydrogenated product thereof should be from 10,000 to 10,000. 500,000 is preferred and 40,000 to 250,000 is most preferred.
  • the number average molecular weight is a value measured with a gel permeation chromatography apparatus using chloroform as a solvent at a measurement temperature of 40° C. and converted to a polystyrene standard.
  • aromatic vinyl compound-conjugated diene compound block copolymers have different bond types, different molecular weights, different types of aromatic vinyl compounds, different types of conjugated diene compounds, and 1,2-vinyl content.
  • two or more of different total amounts of 1,2-vinyl content and 3,4-vinyl content, different aromatic vinyl compound component contents, different hydrogenation rates, etc. are mixed and used. I don't mind. In mixtures with different hydrogenation rates, the preferred hydrogenation rate of the mixture is as described above.
  • an ethylene- ⁇ -olefin copolymer can be suitably used from the viewpoint of developing impact resistance.
  • Monomers copolymerizable with ethylene units include propylene, butene-1, pentene-1, 4-methylpentene-1, hexene-1, heptene-1, octene-1, nonene-1, decene-1, and undecene-1.
  • copolymers of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms more preferably copolymers of ethylene and one or more ⁇ -olefins having 3 to 16 carbon atoms, most preferably ethylene and It is a copolymer with one or more ⁇ -olefins having 3 to 12 carbon atoms.
  • the molecular weight of the ethylene- ⁇ -olefin copolymer was measured with a gel permeation chromatography measuring device using 1,2,4-trichlorobenzene as a solvent at 140° C. with a polystyrene standard from the viewpoint of developing impact resistance.
  • the calculated number average molecular weight (Mn) is preferably 10,000 or more, more preferably 10,000 to 100,000, still more preferably 20,000 to 60,000.
  • the molecular weight distribution (weight average molecular weight/number average molecular weight: Mw/Mn) is preferably 3 or less, more preferably 1.8 to 2.7, from the viewpoint of compatibility between fluidity and impact resistance.
  • the preferred ethylene unit content of the ethylene- ⁇ -olefin copolymer is 30 to 95% by mass based on the total amount of the ethylene- ⁇ -olefin copolymer from the viewpoint of handleability during processing.
  • ethylene- ⁇ -olefin copolymers are, for example, JP-B-4-12283, JP-A-60-35006, JP-A-60-35007, JP-A-60-35008, It can be produced by the production methods described in JP-A-5-155930, JP-A-3-163088, US Pat. No. 5,272,236, and the like.
  • the elastomer having a core-shell structure includes a core-shell type elastomer having a core that is a particulate rubber and a shell that is a glassy graft layer formed on the outside of the core.
  • a rubber component for the core butadiene rubber, acrylic rubber, silicone/acrylic composite rubber, and the like can be suitably used.
  • the shell glassy polymers such as styrene resin, acrylonitrile-styrene copolymer, and acrylic resin are suitable.
  • the first component contains a polyamide
  • an elastomer having a core-shell structure having a butadiene rubber core and an acrylic resin shell can be suitably used from the viewpoint of compatibility with the polyamide.
  • the elastomer has an acidic functional group.
  • that the elastomer has an acidic functional group means that an acidic functional group is added to the molecular skeleton of the elastomer via a chemical bond.
  • the acidic functional group means a functional group capable of reacting with a basic functional group, and specific examples include a hydroxyl group, a carboxyl group, a carboxylate group, a sulfo group, an acid anhydride group, and the like. mentioned.
  • the addition amount of the acidic functional group in the elastomer is preferably 0.01% by mass based on 100% by mass of the elastomer. Above, it is more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less.
  • the number of acidic functional groups is determined by measuring a calibration curve sample mixed with an acidic substance in advance using an infrared absorption spectrometer, and based on a calibration curve prepared using the characteristic absorption band of the acid. It is a value obtained by measuring a sample.
  • elastomers having acidic functional groups include elastomers having a core-shell structure having a layer formed by using acrylic acid or the like as a copolymer component as a shell, ethylene- ⁇ olefin copolymers containing acrylic acid or the like as monomers, polyolefins, aromatic Grafting an ⁇ , ⁇ -unsaturated dicarboxylic acid or a derivative thereof to a group compound-conjugated diene copolymer or an aromatic compound-conjugated diene copolymer hydrogenated product in the presence or absence of a peroxide. and elastomers which are modified products.
  • the elastomer is an acid anhydride-modified elastomer.
  • polyolefins, aromatic-conjugated diene copolymers, or aromatic-conjugated diene copolymer hydrogenates, in the presence or absence of peroxides, have ⁇ , ⁇ -unsaturation.
  • a modified product obtained by grafting a dicarboxylic acid or a derivative thereof is more preferable, and in particular, an ethylene- ⁇ -olefin copolymer or an aromatic compound-conjugated diene block copolymer hydrogenated product is treated in the presence of a peroxide or Modifications grafted in the absence of ⁇ , ⁇ -unsaturated dicarboxylic acids and their derivatives are particularly preferred.
  • ⁇ , ⁇ -unsaturated dicarboxylic acids and derivatives thereof include maleic acid, fumaric acid, maleic anhydride, and fumaric anhydride, with maleic anhydride being particularly preferred.
  • the elastomer may be a mixture of an elastomer with acidic functional groups and an elastomer without acidic functional groups.
  • the elastomer having an acidic functional group contributes to the high toughness and physical property stability of the resin composition when the total of both is 100% by mass. is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and most preferably 40% by mass or more.
  • the upper limit is not particularly limited, and substantially all elastomers may be elastomers having an acidic functional group, but from the viewpoint of not causing problems with fluidity, it is preferably 80% by mass or less.
  • the polymer may form a particulate dispersed phase (dispersed particles) in the resin composition.
  • the number average particle size of the dispersed particles is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • the lower limit is not particularly limited, it is, for example, 0.01 ⁇ m. From the viewpoint of high toughness and stability of physical properties, it is preferable to be within the above range.
  • the amount of the polymer as the second component with respect to 100% by mass of the entire resin composition is preferably 0.1% by mass or more, or 0.5% by mass or more, or 1% by mass or more, or It is 3% by mass or more, preferably 30% by mass or less, or 25% by mass or less, or 20% by mass or less, or 15% by mass or less.
  • the amount of the polymer is within the above range, it is preferable from the viewpoint of high tensile elongation, high flexural modulus, low coefficient of thermal expansion, and/or good physical property stability.
  • the resin compositions according to aspects A to C may further contain additional components as necessary in order to improve their performance.
  • Additional components include dispersants; filler components other than organic fibers; compatibilizers; plasticizers; polysaccharides such as starches and alginic acid; Inorganic compounds such as metal oxides and metal powders; coloring agents; fragrances; pigments; be done.
  • the content of any additional component in the resin composition is appropriately selected within a range that does not impair the desired effect of the present invention, for example, 0.01 to 50% by mass, or 0.1 to 30% by mass. can be
  • the dispersant is preferably a compound that can react or interact with the second component.
  • the dispersant when the second component has a hydrogen-bond-forming structure (for example, a hydroxyl group), the dispersant is preferably a compound capable of reacting with or hydrogen-bonding with the hydrogen-bond-forming structure.
  • Preferred examples of dispersants are one or more selected from the group consisting of cellulose derivatives, polyalkylene oxides, amides and amines.
  • the cellulose derivative is a cellulose-based substance and thus has a high affinity with the cellulose. It is preferable because it has a high effect of improving dispersion stability.
  • Dispersants having a boiling point higher than that of water are preferred.
  • the boiling point higher than that of water refers to a boiling point higher than the boiling point at each pressure in the vapor pressure curve of water (for example, 100° C. under 1 atm).
  • the amount of the dispersant with respect to 100 parts by mass of the second component is, from the viewpoint of good dispersion of the second component and network formation between fibers when the second component contains organic fibers, Preferably, it is 1 part by mass or more, or 5 parts by mass or more, or 10 parts by mass or more, or 20 parts by mass or more, and from the viewpoint of reducing variations in performance of the resin composition, preferably 500 parts by mass or less, or 300 parts by mass. Part by mass or less, or 200 parts by mass or less.
  • the resin composition obtained by the methods according to aspects A to C may have the following properties.
  • the average fiber diameter of the organic fibers in the resin composition is 1000 nm or less, or 500 nm or less, or 450 nm or less, or 400 nm or less, or 350 nm or less, or 300 nm or less, or 250 nm or less, or 200 nm or less, or 150 nm. or 100 nm or less; you can
  • the average fiber length/average fiber diameter ratio (L/D) of the organic fibers in the resin composition may be 30 or more, or 50 or more, or 80 or more, or 100 or more. It may be 5000 or less, or 4000 or less, or 3000 or less.
  • the second component can be uniformly dispersed.
  • the thixotropy index of the resin composition is an index of the uniformity of dispersion of the second component, and the higher the uniformity of dispersion, the larger the thixotropy index. This phenomenon can be pronounced when the second component comprises organic fibers, especially cellulose fibers.
  • the thixotropy index of the resin composition is preferably 2 or more, or 3 or more, or 4 or more in terms of good dispersion uniformity of the second component, and from the viewpoint of ease of production of the resin composition, Preferably, it is 10 or less, or 9 or less, or 8 or less.
  • the above thixotropy index is obtained by using a dynamic viscoelasticity measuring device, and the melting point of the thermoplastic resin contained in the resin composition (the melting point of the highest temperature when there are multiple types of thermoplastic resins) + 25 ° C. at a shear rate of 10 seconds. It is a value obtained as a ratio of the viscosity at a shear rate of 1 sec -1 to the viscosity at -1 .
  • the tensile elongation of the resin composition measured in accordance with ISO527-1 may be 2% or more, or 3% or more, or 5% or more, and from the viewpoint of ease of production of the resin composition , 500% or less, or 300% or less, or 100% or less.
  • the flexural modulus of the resin composition measured according to ISO178 may be 1 GPa or more, 2 GPa or more, or 3 GPa or more, and from the viewpoint of ease of production of the resin composition, 20 GPa or less, Or it may be 15 GPa or less, or 10 GPa or less.
  • the tensile strength of the resin composition measured according to ISO527-1 may be 10 MPa or more, or 20 MPa or more, or 50 MPa or more, and from the viewpoint of ease of production of the resin composition, 300 MPa or less. , or 250 MPa or less, or 150 MPa or less.
  • the linear thermal expansion coefficient of the resin composition measured by thermomechanical analysis (TMA) in accordance with ISO 11359-2 is 140 ppm/K or less, or 100 ppm/K in a temperature range of 20 ° C. to 100 ° C. or less, or 70 ppm/K or less, or 60 ppm/K or less, or 50 ppm/K or less, or 45 ppm/K or less, or 40 ppm/K or less, or 35 ppm/K or less. From a viewpoint, it may be 5 ppm/K or more, or 10 ppm/K or more.
  • the resin compositions according to aspects A to C are useful as substitutes for steel plates, fiber-reinforced plastics (eg, carbon-fiber-reinforced plastics, glass-fiber-reinforced plastics, etc.), resin composites containing inorganic fillers, and the like.
  • Suitable applications of the resin composition include industrial machine parts, general machine parts, automobile/railway/vehicle/vessel/aerospace parts, electronic/electrical parts, construction/civil engineering materials, household goods, sports/leisure goods, Case members for wind power generation, containers/packaging members, and the like can be exemplified.
  • Example A (Example according to Aspect A of the present disclosure) ⁇ Evaluation method ⁇ ⁇ Gap between cylinder inner wall and screw> It was obtained by direct measurement using vernier calipers. Specifically, the gap between the inner wall of the cylinder and the screw at the widest part of the channel of the mixture was measured. For the sealing, the gap between the outer edge of the sealing and the inner wall of the cylinder was measured, and for the kneading disk and the flight, the gap between the outer edge in the minor axis direction and the inner wall of the cylinder was measured.
  • ⁇ Average fiber length, average fiber diameter and L/D of the organic fibers used and the organic fibers in the resin composition Dilute the wet cake with tert-butanol to 0.01% by mass, use a high-shear homogenizer (manufactured by IKA, trade name "Ultra Turrax T18"), treatment conditions: rotation speed 25,000 rpm ⁇ 5 minutes Dispersed, Cast on mica, air dried and measured with a high resolution scanning microscope. The measurement is performed by adjusting the magnification so that at least 100 organic fibers are observed, and the length (L), major diameter (D) and ratio thereof of 100 randomly selected organic fibers are obtained, An addition average of 100 organic fibers was calculated.
  • a high-shear homogenizer manufactured by IKA, trade name "Ultra Turrax T18”
  • the resin component when the polymer is polyamide, the resin component is dissolved in hexafluoroisopropanol. After that, the wet cake obtained by substituting with tert-butanol was used.
  • d50 particle size was measured using a powder tester manufactured by Hosokawa Micron Corporation, model number: PT-X.
  • a porous sheet having an air resistance of 100 sec/100 ml or less per 10 g/m 2 sheet basis weight was used as a measurement sample.
  • an Oken type air resistance tester manufactured by Asahi Seiko Co., Ltd., model EG01
  • N,N-dimethylacetamide After separating N,N-dimethylacetamide from the solid content again by centrifugation, 20 mL of N,N-dimethylacetamide was added, and the mixture was gently stirred and allowed to stand for one day. N,N-dimethylacetamide and the solid content are separated by centrifugation, 19.2 g of an N,N-dimethylacetamide solution prepared so that lithium chloride is 8% by mass is added to the solid content, and the mixture is stirred with a stirrer, Dissolution was confirmed visually. The solution in which the organic fibers were dissolved was filtered through a 0.45 ⁇ m filter, and the filtrate was used as a sample for gel permeation chromatography. The apparatus and measurement conditions used are as follows.
  • alkali-soluble polysaccharides in cellulose fibers The content of alkali-soluble polysaccharides is obtained from the method described in Non-Patent Document (Wood Science Experiment Manual, edited by Japan Wood Research Society, pp. 92-97, 2000) for cellulose, from the holocellulose content (Wise method) to ⁇ cellulose It was obtained by subtracting the content rate.
  • the alkali-soluble polysaccharide content was calculated three times for each sample, and the number average of the calculated alkali-soluble polysaccharide contents was taken as the average alkali-soluble polysaccharide content of cellulose.
  • ⁇ Degree of substitution (DS) of cellulose fiber> The infrared spectroscopic spectrum of the porous sheet was measured by the ATR-IR method at 5 points with a Fourier transform infrared spectrophotometer (FT/IR-6200 manufactured by JASCO). Infrared spectral measurement was performed under the following conditions.
  • IR index H1730/H1030 (1)
  • H1730 and H1030 are absorbances at 1730 cm -1 and 1030 cm -1 (absorption bands of cellulose backbone CO stretching vibration).
  • a line connecting 1900 cm ⁇ 1 and 1500 cm ⁇ 1 and a line connecting 800 cm ⁇ 1 and 1500 cm ⁇ 1 are used as baselines, respectively, and the absorbance is defined as the absorbance of this baseline is 0.
  • the average degree of substitution at each measurement location was calculated according to the following formula (2) from the IR index, and the average value was taken as DS.
  • DS 4.13 ⁇ IR index (2)
  • ⁇ Content rate of particles having a diameter of 50 ⁇ m or more in the mixture and in the resin composition A multi-purpose test piece conforming to ISO294-3 was molded from the mixture or resin composition using an injection molding machine under conditions conforming to JIS K6920-2. A sample having a size of about 2 mm square was cut from this test piece, and aggregates were analyzed using an X-CT (X-ray CT device) (Bruker Japan, Skyscan 1272). Measurement conditions are as follows.
  • Tube voltage 40kV Tube current: 100 ⁇ A Pixel resolution: 1.2 ⁇ m Number of detector pixels: 2452 x 1640 pixels Accumulation times: 4 times Measurement angle step: 0.2 degrees Scan range: 0 to 180 degrees The data after measurement was smoothed by applying a Kuwabara filter over 2 pixels in the 3D direction to improve image quality. .
  • the 3D data thus obtained were subjected to automatic binarization by the triangle method to extract pixels of aggregates only.
  • the content of particles with a diameter of 50 ⁇ m or more (% by volume) is calculated, and the content of particles with a diameter of 50 ⁇ m or more (% by volume) is calculated from the amount of organic fibers in the mixture or resin composition.
  • the value obtained by dividing by the total content (% by volume) was regarded as the content (% by mass) of particles having a diameter of 50 ⁇ m or more in the organic fibers.
  • ⁇ Particle size of dispersed phase in resin composition The particle size of the dispersed phase was measured by observing the cross section of the resin composition using a scanning electron microscope.
  • Dyeing of the styrene-based thermoplastic elastomer was carried out by impregnating it with an aqueous solution of ruthenium tetroxide.
  • Dyeing of the polyamide resin was carried out by impregnating it with an aqueous solution of phosphotungstic acid.
  • PA6 Polyamide 6
  • PP Polypropylene
  • POM Polyacetal
  • CNF-A Commercially available Celish KY100G (manufactured by Daicel Finechem) was used as the CNF-A cake.
  • CNF-B acetylated CNF 1 part by mass of cotton linter pulp was stirred at room temperature for 1 hour at 500 rpm in 30 parts by mass of dimethyl sulfoxide (DMSO) using a uniaxial stirrer (DKV-1 ⁇ 125 mm dissolver manufactured by Aimex). Subsequently, it is fed to a bead mill (NVM-1.5 manufactured by Imex Co., Ltd.) with a hose pump, and circulated only with DMSO for 180 minutes to obtain a fine cellulose fiber slurry having a solid content of 3.2% by mass Slurry S1 (DMSO solvent ).
  • DMSO dimethyl sulfoxide
  • the rotation speed of the bead mill was 2500 rpm
  • the peripheral speed was 12 m/s
  • the beads used were made of zirconia, ⁇ 2.0 mm
  • the filling rate was 70% (the slit gap of the bead mill was 0.6 mm).
  • the temperature of the slurry was controlled at 40° C. by a chiller in order to absorb heat generated by friction.
  • CNF-C (CNF with disc refiner treatment) 3 parts by mass of cotton linter pulp was immersed in 27 parts by mass of water and heat-treated at 130° C. for 4 hours in an autoclave. The resulting swollen pulp was washed with water to obtain purified pulp (30 parts by mass) containing water. Subsequently, 170 parts by mass of water was added to 30 parts by mass of purified pulp containing water and dispersed in water (solid content: 1.5% by mass). Using a pressurized DISK system, the aqueous dispersion was beaten for 20 minutes with a clearance between discs of 1 mm. Then, it was concentrated to a solid content of 10% by mass using a dehydrator to obtain a CNF-C cake (aqueous solvent).
  • CNF-D CNF-C further fibrillated with a high-pressure homogenizer
  • the CNF-C cake was thoroughly beaten under conditions in which the clearance was reduced to a level close to zero to obtain a beaten water dispersion (solid concentration: 1.5% by mass).
  • the resulting beaten water dispersion was directly subjected to a high-pressure homogenizer (NSO15H manufactured by Nilo Soavi (Italy)) under an operating pressure of 100 MPa for 15 times to obtain a cellulose fiber slurry (solid concentration: 1.5 mass). %) was obtained.
  • NSO15H manufactured by Nilo Soavi (Italy)
  • CNF-E acetylated CNF It was produced in the same manner as CNF-B, except that the reaction time was 60 minutes. A porous sheet was produced from this cake, and the degree of acyl substitution (DS) was found to be 0.5.
  • Ceorus FD-301 manufactured by Asahi Kasei Corp. was used.
  • Binfis Efo-08002 (manufactured by Sugino Machine) was used.
  • Table 1 shows the characteristics of organic fibers.
  • Screws 1-6 were designed with high load zone 1, high load zone 2, high load zone 3, and distributive mixing zones arranged as described in Table 2.
  • a kneading element consisting of a diverted flight screw, notched screw, kneading disc, eccentric multi-start disc, or eccentric multi-start screw is arranged, and downstream a seal ring with a predetermined gap. was designed to dam up the mixture.
  • the distributive mixing zone was arranged in the cylinder 11 with two neutral kneading discs followed by one counterclockwise screw.
  • Example A1 A resin composition was produced by preparing a dried cellulose fiber and mixing the dried cellulose fiber with a resin according to the following procedure.
  • a dispersant was added to a cellulose fiber cake (10% by mass of solid content) in an amount of 43 parts by mass per 100 parts by mass of cellulose solid content, and stirred well to obtain a cellulose fiber cake containing a dispersant.
  • These raw materials were put into a drying apparatus and dried at a predetermined shear rate, degree of pressure reduction, and heating temperature (jacket temperature or hot air temperature). Measure the moisture content using an infrared heating moisture meter (MX-50 (manufactured by A&D)), and dry the time when the moisture content is 7% by mass or less (solid content mass 93% or more). End point.
  • the conditions are as follows.
  • Planetary mixer (PM) Equipment Planetary mixer manufactured by Kodaira Seisakusho Co., Ltd. (model number: ACM-5LVT: hook type) Conditions: The pressure was reduced to -90 kPa with a vacuum pump while stirring at a jacket temperature of 60°C and 307 rpm. Vacuum drying was performed until the product temperature reached 50°C. As the clearance, the minimum distance between the hook blade (diameter 100 mm) and the jacket was measured. The drying time under these conditions was 180 minutes. For the drying temperature, the surface temperature of the jacket was measured at three points, and the average value was taken.
  • Polyamide 6 was added to 4.86 kg/h of the dispersed mixture by side feeding at 15.14 kg/h, and then heated and melt-kneaded in a distribution mixing zone to obtain a resin composition.
  • the obtained resin composition was processed into pellets by a pelletizer.
  • the extrusion characteristics when the screen mesh was clogged within 1 hour from the start of extruder operation during extrusion processing, the operation stability was rated as "poor", and when the screen mesh was not clogged, the operation stability was rated as "good”.
  • Examples A2 to A19, Comparative Examples A1 to A3 A resin composition was produced in the same manner as in Example A1 except that the composition of the resin composition and the setting conditions of the extruder were changed as shown in Tables 3 to 5, and various evaluations were performed. The results are shown in Tables 3-5.
  • Example B (Example according to Aspect B of the present disclosure) ⁇ Evaluation method ⁇ ⁇ Gap between cylinder inner wall and screw> It was measured in the same manner as in Example A.
  • Space volume ratio The space volume was calculated by subtracting the screw volume (total of the element volume and shaft volume) from the cylinder volume of the extruder, and the space volume ratio was calculated by dividing the space volume by the cylinder volume.
  • the cylinder 14 was provided with a vent port in the upper part of the cylinder so that vacuum suction could be performed, and vacuum suction was carried out.
  • a 50 mesh screen mesh was installed between the die adapter and the die head.
  • Screws 1-5 were designed with a first dispersive mixing zone, a second dispersive mixing zone, and a distributive mixing zone arranged as described in Table 6.
  • a kneading element consisting of a diverted flight screw, a notched screw, a kneading disk, an eccentric multi-threaded disk, or an eccentric multi-threaded screw is arranged in the first half, A seal ring and/or a counterclockwise screw were combined in the latter half to retain the mixture.
  • the distributive mixing zone was arranged in cylinder 11 with two neutral kneading discs followed by one counterclockwise screw.
  • Example B1 A resin composition was produced by preparing a dried cellulose fiber and mixing the dried cellulose fiber with a resin according to the following procedure.
  • Planetary mixer (PM) Equipment Planetary mixer manufactured by Kodaira Seisakusho Co., Ltd. (model number: ACM-5LVT: hook type) Conditions: The pressure was reduced to -90 kPa with a vacuum pump while stirring at a jacket temperature of 60°C and 307 rpm. Vacuum drying was performed until the product temperature reached 50°C. As the clearance, the minimum distance between the hook blade (diameter 100 mm) and the jacket was measured. The drying time under these conditions was 180 minutes. For the drying temperature, the surface temperature of the jacket was measured at three points, and the average value was taken.
  • Polyamide 6 was added to 4.86 kg/h of the second dispersion mixture by side feeding at 15.14 kg/h, and then heated and melt-kneaded in a distribution mixing zone to obtain a resin composition.
  • the obtained resin composition was processed into pellets by a pelletizer.
  • the extrusion characteristics when the screen mesh was clogged within 1 hour from the start of extruder operation during extrusion processing, the operation stability was rated as "poor", and when the screen mesh was not clogged, the operation stability was rated as "good”.
  • Examples B2 to B7, Comparative Example B1 A resin composition was produced in the same manner as in Example B1 except that the composition of the resin composition and the setting conditions of the extruder were changed as shown in Table 7, and various evaluations were performed. Table 7 shows the results.
  • Example C (Example according to Aspect C of the present disclosure) ⁇ Evaluation method ⁇ ⁇ Gap between cylinder inner wall and screw> It was measured in the same manner as in Example A.
  • Space volume ratio The space volume was calculated by subtracting the screw volume (the sum of the element volume and the shaft volume) from the barrel volume of the extruder, and the space volume ratio was calculated by dividing the space volume by the barrel volume.
  • ⁇ Physical property improvement rate per unit mass of cellulose fibers in the mixture (flexural modulus improvement rate)> The concentration of cellulose fibers in the mixture was obtained from the ratio of feed amounts to the extruder during extrusion, and the property improvement rate per unit mass of cellulose fibers in the mixture was calculated according to the following formula. (flexural modulus of mixture - flexural modulus of base resin)/cellulose fiber concentration (% by mass)
  • Screws 1-5 were designed with zones 1 and 2 arranged as described in Table 8.
  • Zone 1 of screw 1 is the dispersive mixing zone and includes a kneading element consisting of either a split flight screw, a notched screw, a kneading disc, an eccentric multi-start disc, or an eccentric multi-start screw, and sealing rings and/or counterclockwise
  • the design consisted of multiple kneading zones combined with retention elements consisting of screws.
  • Zone 2 of screws 1-5 was the distributive mixing zone, with cylinder 11 having two neutral kneading discs followed by one counter-clockwise screw.
  • Zone 1 of screw 2 was a distributive mixing zone and was designed with a combination of single and/or multiple kneading discs, single and/or multiple counter-clockwise screws.
  • Zone 1 of screw 3 is a dispersive mixing zone, and was designed to have one more kneading zone than screw 1.
  • Table 8 shows the zone length/cylinder inner diameter ratio and space volume ratio for each screw configuration.
  • Example C1 A resin composition was produced by preparing a dried cellulose fiber and mixing the dried cellulose fiber with a polymer according to the following procedures.
  • Planetary mixer (PM) Device Planetary mixer manufactured by Kodaira Seisakusho Co., Ltd. (model number: ACM-5LVT: hook type) Conditions: The pressure was reduced to -90 kPa with a vacuum pump while stirring at a jacket temperature of 60°C and 307 rpm. Vacuum drying was performed until the product temperature reached 50°C. As the clearance, the minimum distance between the hook blade (diameter 100 mm) and the jacket was measured. The drying time under these conditions was 180 minutes. For the drying temperature, the surface temperature of the jacket was measured at three points, and the average value was taken.
  • Polyamide 6 was added to 4.86 kg/h of the dispersed mixture by side feeding at 15.14 kg/h, and then heated and melt-kneaded in a distribution mixing zone to obtain a resin composition.
  • the obtained resin composition was processed into pellets by a pelletizer.
  • the extrusion characteristics when the screen mesh was clogged within 1 hour after starting the operation of the extruder during extrusion processing, the operation stability was rated as "poor", and when the screen mesh was not clogged, the operation stability was rated as "good”.
  • Examples C2 to C9 Comparative Example C1
  • a resin composition was produced in the same manner as in Example C1 except that the composition of the resin composition and the setting conditions of the extruder were changed as shown in Tables 9 and 10, and various evaluations were performed. Results are shown in Tables 9 and 10.
  • the resin composition obtained by the method for producing the resin composition of the present disclosure can be used for industrial machine parts, general machine parts, automobile/railway/vehicle/vessel/aerospace-related parts, electronic/electrical parts, construction/civil engineering materials, living It can be suitably applied to a wide range of uses such as articles, sports/leisure goods, housing members for wind power generation, containers/packaging members, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

引張伸度及び/又は剛性に優れる成形体、より好ましくは引張伸度及び剛性が高度且つ安定的に両立された成形体を形成し得る樹脂組成物の製造方法を提供する。一態様においては、第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、シリンダー内壁とスクリューとの間隙が2mm以下の複数の狭間隙ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含む方法が提供される。また一態様においては、第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、圧力が0.1MPa以上の複数の高圧ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、前記複数の高圧ゾーンのうち前記圧力が最大である最高圧ゾーンの前記圧力[P1]が0.5MPa以上であり、前記圧力[P1]の、前記最高圧ゾーン以外の高圧ゾーンの前記圧力の平均値[P2]に対する比[P1/P2]が、1超100以下である方法が提供される。

Description

樹脂組成物の製造方法
 本発明は、樹脂組成物の製造方法に関する。
 熱可塑性樹脂は、軽く、加工特性に優れるため、自動車部材、電気・電子部材、事務機器ハウジング、精密部品等の多方面に広く使用されているが、樹脂単体では、機械特性、寸法安定性等が不十分である場合が多いことから、ポリマー連続相中にフィラーを分散させ又はポリマー分散相を形成してなるコンポジットが一般的に用いられている。上記フィラーとしては、近年、セルロース繊維等の有機繊維を使用することが検討されている。セルロース繊維は、環境への負荷が少ない素材であること、低比重であること、及び樹脂組成物に対して優れた物性向上効果を有し得ることから、環境調和型の樹脂組成物のフィラーとして有望である。しかし、セルロース繊維等の有機繊維をポリマー(樹脂)中に良好に分散させることは必ずしも容易ではない。例えば押出機を用いて有機繊維と樹脂とを溶融混練する際、混練条件によっては、意図した物性向上効果が樹脂組成物に対して付与されない場合があった。ポリマー連続相及びポリマー分散相を有するポリマーアロイを形成する場合も同様であり、押出機を用いた溶融混練の際、混練条件によっては、所望の物性向上効果が得られない場合があった。
 樹脂組成物の混練に関し、例えば特許文献1は、二軸押出機を用いたポリアミド樹脂組成物の製造において、ニーディングゾーン及びフルフライトゾーンの樹脂圧が特定の関係を満たす樹脂組成物の製造方法を記載する。
特開2016-108547号公報
 特許文献1に記載の方法は、滞留安定性、耐熱老化性、表面外観等に優れる成形品を得ようとするものであるが、セルロース繊維等の有機繊維のようなフィラー、及び/又はポリマー分散相を含む樹脂組成物において、当該フィラー及び/又は分散相による物性向上効果を意図した程度に発現させるための方法には着目していない。セルロース繊維等の有機繊維、及び/又はポリマー分散相を含む樹脂組成物は、その材料組成に応じた有利な特性(例えば、セルロース繊維における軽量性、寸法安定性等)から、自動車用途等の種々の用途への適用が検討されている。例えば自動車用途等の、要求性能が厳しい用途においては、複数の特性(特に引張伸度及び剛性)の高度の両立並びにこれら特性の安定的な発現が望まれている。しかし従来技術では、このような優れた物性を有する成形体を形成し得る樹脂組成物は提供されていない。
 本発明の一態様は、上記の課題を解決し、引張伸度及び/又は剛性に優れる成形体、より好ましくは引張伸度及び剛性が高度且つ安定的に両立された成形体を形成し得る樹脂組成物の製造方法を提供することを目的とする。
 本開示は、以下の態様を包含する。
[1] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法は、シリンダー内壁とスクリューとの間隙が2mm以下の複数の狭間隙ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含む、方法。
[2] 前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記最狭間隙ゾーン以外の狭間隙ゾーンの前記間隙の平均値[G2]に対する比[G1/G2]が、0.001以上1未満である、上記態様1に記載の方法。
[3] 前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記最狭間隙ゾーン以外の狭間隙ゾーンの各々の前記間隙[G3]に対する比[G1/G3]が、0.001以上1未満である、上記態様1又は2に記載の方法。
[4] 前記第2の成分が有機繊維を含み、
 前記押出機に供給される前記有機繊維が平均繊維長1μm~10000μmを有し、
 前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記平均繊維長に対する比が、0.001~10である、上記態様1~3のいずれかに記載の方法。
[5] 前記第2の成分が有機繊維を含み、
 前記押出機に供給される前記有機繊維が平均粒子径1μm~10000μmの粒子を形成しており、
 前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記平均粒子径に対する比が、0.001~10である、上記態様1~4のいずれかに記載の方法。
[6] 前記複数の狭間隙ゾーンの各々における混合物単位質量当たりの曲げ弾性率向上率が、前記狭間隙ゾーン以外の各ゾーンにおける混合物単位質量当たりの曲げ弾性率の最大値よりも大きい、上記態様1~5のいずれかに記載の方法。
[7] 前記狭間隙ゾーンの各々について、
 前記狭間隙ゾーンへの流入物の圧力が0.5~20MPaであり、且つ
 前記狭間隙ゾーンへの流入物の圧力に対する前記狭間隙ゾーンからの流出物の圧力の比率が0.2以下である、上記態様1~6のいずれかに記載の方法。
[8] 前記狭間隙ゾーンの各々について、前記狭間隙ゾーンへの流入物の前記第2の成分の含有率が、15~90質量%である、上記態様1~7のいずれかに記載の方法。
[9] 前記混練工程において、前記複数の狭間隙ゾーンを通過した後の混合物に混合物よりも低温の追加ポリマーを添加して前記混合物を冷却する、上記態様1~8のいずれかに記載の方法。
[10] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法は、圧力降下ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、
 前記圧力降下ゾーンは、前記圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、且つ前記圧力降下ゾーンへの流入物の圧力に対する前記圧力降下ゾーンからの流出物の圧力の比率が0.2以下である部位であり、
 前記圧力降下ゾーンへの流入物の前記第2の成分の含有率が15~90質量%である
、方法。
[11] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法は、圧力降下ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、
 前記圧力降下ゾーンは、前記圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、且つ前記圧力降下ゾーンへの流入物の圧力に対する前記圧力降下ゾーンからの流出物の圧力の比率が0.2以下である部位であり、
 前記混練工程において、前記圧力降下ゾーンを通過した後の混合物に前記混合物よりも低温の追加ポリマーを添加して前記混合物を冷却する、方法。
[12] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法は、圧力が0.1MPa以上の複数の高圧ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、
 前記複数の高圧ゾーンのうち前記圧力が最大である最高圧ゾーンの前記圧力[P1]が0.5MPa以上であり、前記圧力[P1]の、前記最高圧ゾーン以外の高圧ゾーンの前記圧力の平均値[P2]に対する比[P1/P2]が、1超100以下である、方法。
[13] 前記最高圧ゾーン以外の高圧ゾーンの各々の前記圧力[P3]に対する前記圧力[P1]の比[P1/P3]が、1超100以下である、上記態様12に記載の方法。
[14] 前記複数の高圧ゾーンの各々のゾーン長/シリンダー内径比が、1~30である、上記態様12又は13に記載の方法。
[15] 前記最高圧ゾーン以外の高圧ゾーンの各々のゾーン長/シリンダー内径比に対する前記最高圧ゾーンのゾーン長/シリンダー内径比の比が、1以上である、上記態様12~14のいずれかに記載の方法。
[16] 前記複数の高圧ゾーンの各々における混合物単位質量当たりの曲げ弾性率向上率が、前記高圧ゾーン以外の各ゾーンにおける混合物単位質量当たりの曲げ弾性率の最大値よりも大きい、上記態様12~15のいずれかに記載の方法。
[17] 前記高圧ゾーンの各々について、
 前記高圧ゾーンへの流入物の圧力が0.5~20MPaであり、且つ
 前記高圧ゾーンへの流入物の圧力に対する前記高圧ゾーンからの流出物の圧力の比率が0.2以下である、上記態様12~16のいずれかに記載の方法。
[18] 前記高圧ゾーンの各々について、前記高圧ゾーンへの流入物の前記第2の成分の含有率が、15~90質量%である、上記態様12~17のいずれかに記載の方法。
[19] 前記混練工程において、前記複数の高圧ゾーンの全てを通過した後の混合物に前記混合物よりも低温の追加ポリマーを添加して前記混合物を冷却する、上記態様12~18のいずれかに記載の方法。
[20] 前記混練工程の前に、前記第1の成分の溶融物に前記第2の成分を添加して予備混合物を得る工程を更に含み、前記予備混合物を前記混練ゾーンに供給する、上記態様1~19のいずれかに記載の方法。
[21] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
 前記分散混合ゾーンが、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上が互いに異なる第1の分散混合ゾーンと第2の分散混合ゾーンとを備え、
 前記第1の分散混合ゾーンへの流入物の引張伸度に対する前記第1の分散混合ゾーンからの流出物の引張伸度の増分[E1]と、前記第2の分散混合ゾーンへの流入物の引張伸度に対する前記第2の分散混合ゾーンからの流出物の引張伸度の増分[E2]とが、[E1]>[E2]の関係を満たし、
 前記第1の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第1の分散混合ゾーンからの流出物の曲げ弾性率の増分[M1]と、前記第2の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第2の分散混合ゾーンからの流出物の曲げ弾性率の増分[M2]とが、[M1]<[M2]の関係を満たす、方法。
[22] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
 前記分散混合ゾーンにおいて、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上をシリンダー長方向において異ならせることによって、混合物のシリンダー内進行長さl(mm)をシリンダー内径d(mm)で除した値(l/d)当たりの引張伸度変化量ΔE(%)の、前記l/d当たりの曲げ弾性率変化量ΔM(GPa)に対する比[ΔE/ΔM]を、シリンダー長方向において変化させる、方法。
[23] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法が、
 押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
 押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
を含み、
 前記分散混合ゾーンと前記分配混合ゾーンとは、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上において互いに異なっており、
 前記分散混合ゾーンへの流入物の引張伸度に対する前記分散混合ゾーンからの流出物の引張伸度の増分[EA]と、前記分配混合ゾーンへの流入物の引張伸度に対する前記分配混合ゾーンからの流出物の引張伸度の増分[EB]とが、[EA]>[EB]の関係を満たし、
 前記分散混合ゾーンへの流入物の曲げ弾性率に対する前記分散混合ゾーンからの流出物の曲げ弾性率の増分[MA]と、前記分配混合ゾーンへの流入物の曲げ弾性率に対する前記分配混合ゾーンからの流出物の曲げ弾性率の増分[MB]とが、[MA]>[MB]の関係を満たす、方法。
[24] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記第1の成分は、ポリマーであり、
 前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
 前記方法が、
 押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
 押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
を含み、
 分散混合ゾーンにおける前記第2の成分の濃度[CA]が10質量%~90質量%であり、分配混合ゾーンにおける前記第2の成分の濃度[CB]が1質量%~50質量%であり、比[CA]/[CB]が2~90である、方法。
[25] 前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
 前記分散混合ゾーンが、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上が互いに異なる第1の分散混合ゾーンと第2の分散混合ゾーンとを備え、
 前記第1の分散混合ゾーンへの流入物の引張伸度に対する前記第1の分散混合ゾーンからの流出物の引張伸度の増分[E1]と、前記第2の分散混合ゾーンへの流入物の引張伸度に対する前記第2の分散混合ゾーンからの流出物の引張伸度の増分[E2]とが、[E1]>[E2]の関係を満たし、
 前記第1の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第1の分散混合ゾーンからの流出物の曲げ弾性率の増分[M1]と、前記第2の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第2の分散混合ゾーンからの流出物の曲げ弾性率の増分[M2]とが、[M1]<[M2]の関係を満たす、上記態様1~20のいずれかに記載の方法。
[26] 前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
 前記分散混合ゾーンにおいて、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上をシリンダー長方向において異ならせることによって、混合物のシリンダー内進行長さl(mm)をシリンダー内径d(mm)で除した値(l/d)当たりの引張伸度変化量ΔE(%)の、前記l/d当たりの曲げ弾性率変化量ΔM(GPa)に対する比[ΔE/ΔM]を、シリンダー長方向において変化させる、上記態様1~20のいずれかに記載の方法。
[27] 前記方法が、
 押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
 押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
を含み、
 前記分散混合ゾーンと前記分配混合ゾーンとは、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上において互いに異なっており、
 前記分散混合ゾーンへの流入物の引張伸度に対する前記分散混合ゾーンからの流出物の引張伸度の増分[EA]と、前記分配混合ゾーンへの流入物の引張伸度に対する前記分配混合ゾーンからの流出物の引張伸度の増分[EB]とが、[EA]>[EB]の関係を満たし、
 前記分散混合ゾーンへの流入物の曲げ弾性率に対する前記分散混合ゾーンからの流出物の曲げ弾性率の増分[MA]と、前記分配混合ゾーンへの流入物の曲げ弾性率に対する前記分配混合ゾーンからの流出物の曲げ弾性率の増分[MB]とが、[MA]>[MB]の関係を満たす、上記態様1~20のいずれかに記載の方法。
[28] 前記方法が、
 押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
 押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
を含み、
 分散混合ゾーンにおける前記第2の成分の濃度[CA]が10質量%~90質量%であり、分配混合ゾーンにおける前記第2の成分の濃度[CB]が1質量%~50質量%であり、比[CA]/[CB]が2~90である、上記態様1~20のいずれかに記載の方法。
[29] 前記分散混合工程の前に、前記第1の成分の溶融物に前記第2の成分を添加して予備混合物を得る工程を更に含み、前記予備混合物を前記分散混合ゾーンに供給する、上記態様21~28のいずれかに記載の方法。
[30] 前記第2の成分が有機繊維を含む、上記態様1~29のいずれかに記載の方法。
[31] 前記有機繊維がセルロース繊維である、上記態様30に記載の方法。
[32] 前記樹脂組成物中の有機繊維が、平均繊維径1000nm以下、及び平均繊維長/平均繊維径比30以上を有する、上記態様30又は31に記載の方法。
[33] 前記有機繊維を乾燥体の形態で押出機に供給する、上記態様30~32のいずれかに記載の方法。
 本発明の一態様によれば、引張伸度及び/又は剛性に優れる成形体、より好ましくは引張伸度及び剛性が高度且つ安定的に両立された成形体を形成し得る樹脂組成物の製造方法が提供され得る。
本発明の態様Aの第一の実施形態に係る樹脂組成物の製造方法の工程について説明する図である。 本発明の態様Aの第二の実施形態に係る樹脂組成物の製造方法の工程について説明する図である。 本発明の態様Aの第三の実施形態に係る樹脂組成物の製造方法の工程について説明す図である。 本発明の態様Bの第一の実施形態に係る樹脂組成物の製造方法の工程について説明する図である。 本発明の態様Bの第一の実施形態に係る方法における引張伸度及び曲げ弾性率の変化挙動について説明する図である。 本発明の態様Bの第二の実施形態に係る樹脂組成物の製造方法の工程について説明する図である。 本発明の態様Bの第二の実施形態に係る方法における引張伸度及び曲げ弾性率の変化挙動について説明する図である。 本発明の態様Cに係る樹脂組成物の製造方法の工程について説明する図である。
 以下、本発明の例示の実施の形態(以下、「本実施形態」と略記する。)について説明するが、本発明はこれら実施形態に何ら限定されない。なお本開示の特性値は、特記がない限り、本開示の[実施例]の項に記載される方法又はこれと同等であることが当業者に理解される方法で測定される値である。
 本開示の一態様は、第1の成分と第2の成分とを含む樹脂組成物の製造方法を提供する。一態様において、第1の成分はポリマーであり、第2の成分は、有機繊維、ポリマー、又はこれらの組合せである。一態様において、第2の成分中のポリマーは第1の成分と異なる。一態様において、第1の成分は樹脂組成物中で連続相を構成している。一態様において、第2の成分が含み得る有機繊維は樹脂組成物中で第1の成分中に分散している。一態様において、第2の成分が含み得るポリマーは樹脂組成物中で第1の成分の連続相中に分散相として存在している。
 本開示の方法は、混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含む。第1の成分と第2の成分とを押出機で混練して樹脂組成物を製造する際、第2の成分を第1の成分中に均一に微分散させるためには、第2の成分自体の微細化と、第2の成分の第1の成分中での分散状態の向上との両方が必要である。第2の成分を微細化するためには、混合物に対してある程度強い力を掛ける必要があるが、このような力は第2の成分の損傷(例えば、第2の成分が有機繊維を含む場合の当該有機繊維の折り曲げによる破断)をもたらす場合がある。したがって、混練条件は、第2の成分の微細化に必要であるが第2の成分に対して過度の負荷が掛からないように設計されることが望まれる。本開示の方法においては、特定の混練条件に制御された混練ゾーンで第1の成分と第2の成分とを混練する。
 例えば、本開示の例示の実施形態である後述の態様Aの方法においては、混練ゾーン内の一部領域を、混合物に対して大きな力が掛かるゾーンとする。
 また、本開示の例示の実施形態である後述の態様Bの方法においては、分散混合ゾーン内に、混合物の引張伸度及び曲げ弾性率のうち、主として引張伸度を向上させる領域と、主として曲げ弾性率を向上させる領域とを設ける。
 また、本開示の例示の実施形態である後述の態様Cの方法においては、特定の態様で第1の成分と第2の成分とを分散混合及び分配混合する。
 なお本開示で、分散混合とは、第2の成分の実質的なサイズ変化(凝集塊の崩壊、切断、解繊等)を伴う混合形態を意味し、分配混合とは、第2の成分の第1の成分中での分散状態が変化する一方第2の成分の実質的なサイズ変化を伴わない混合形態を意味する。一態様において、実質的なサイズ変化とは、少なくとも1つのサイズ指標における、元のサイズ100%に対して30%以上のサイズ変化である。
 本開示の一態様に係る方法によれば、上記のような特異な混練形態の寄与によって、第2の成分の損傷を回避しつつ当該第2の成分を第1の成分中に均一に微分散させることが可能である。
 本開示の方法において、押出機を用いた第1の成分と第2の成分との溶融混合の際には、第2の成分を、乾燥体又はスラリー(例えば水分散体)の形態で第1の成分と溶融混練してよい。好ましい態様においては、第2の成分を、乾燥体の形態で押出機に供給する。溶融混練全般を通じた加熱温度は、第1の成分のガラス転移点以上であるが当該ガラス転移点及び/又は融点を大幅に上回らない温度が好ましい。
 なお本開示で、ガラス転移点とは、動的粘弾性測定装置を用いて、23℃から2℃/分の昇温速度で昇温しながら、印加周波数10Hzで測定した際に、貯蔵弾性率が大きく低下し、損失弾性率が最大となるピークのピークトップの温度をいう。損失弾性率のピークが2つ以上現れる場合は、最も高温側のピークのピークトップ温度を指す。また本開示で、融点とは、示差走査熱量分析装置(DSC)を用いて、23℃から10℃/分の昇温速度で昇温した際に現れる吸熱ピークのピークトップ温度を指し、吸熱ピークが2つ以上現れる場合は、最も高温側の吸熱ピークのピークトップ温度を指す。
 溶融混練に供されるポリマーの水分率は、好ましくは、0.2質量%以下、又は0.1質量%以下、又は0.07質量%以下である。上記水分率は、工程管理容易性の観点から、例えば、0.001質量%以上であってよい。
 溶融混練には、単軸押出機、又は二軸押出機を使用してよく、二軸押出機が第2の成分の分散性を制御する上で好ましい。押出機のシリンダー長(L)をスクリュー径(D)で除したL/Dは、40以上が好ましく、特に好ましくは50以上である。また、混練時のスクリュー回転数は、100~800rpmの範囲が好ましく、より好ましくは150~600rpmの範囲内である。これらはスクリューのデザインにより、変化する。
 押出機のシリンダー内の各スクリューは、楕円形の二翼のねじ形状のフルフライトスクリュー、ニーディングディスクと呼ばれる混練エレメント、等を組み合わせて最適化される。最適化にあたって、スクリューエレメントには切り欠きや分流構造があっても良い。また、スクリュー構成中にシールリングと呼ばれる堰き止め構造を配置しても良い。一態様として、スクリュー断面は、0条、一条、二条、三条、四条などの多条断面で構成されていても良い。また、これらのスクリュー断面は偏心形状になっていても良い。
 以下、本開示の例示の実施形態である態様A~Cについて具体的に説明する。
[態様A]
 態様Aに係る方法においては、混練ゾーン内の一部領域を、混合物に対して大きな力が掛かるゾーン(本開示で、高負荷ゾーンともいう。)(より具体的には後述の狭間隙ゾーン、圧力降下ゾーン又は高圧ゾーン)とする。混練ゾーン内に、高負荷ゾーンとその他ゾーンとを設けることにより、高負荷ゾーンでは、樹脂組成物の所望の物性の向上に大きく寄与し得る第2の成分の微細化を実現する一方、その他ゾーンでは、第2の成分に掛かる力が最小限となるように混合条件を緩やかにして、第2の成分の損傷を回避できる。このようなプロセスによれば、第2の成分の損傷を回避しつつ当該第2の成分を第1の成分中に均一に微分散させることができるため、一態様において、引張伸度及び/又は曲げ弾性率に優れる成形体、より好ましくは引張伸度及び曲げ弾性率が高度且つ安定的に両立された成形体を形成し得る樹脂組成物を製造できる。
 態様Aは、より具体的には以下の第一~第三の実施形態を包含する。
≪第一の実施形態≫
 第一の実施形態は、シリンダー内壁とスクリューとの間隙が2mm以下の複数の狭間隙ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含む方法を提供する。
 図1は、第一の実施形態に係る樹脂組成物の製造方法の工程について説明する図である。第一の実施形態において、押出機100は混練ゾーン101を備え、任意に溶融ゾーン102を備えてよい。例えば、第一の実施形態の方法は、混練ゾーン101における混練工程の前に、第1の成分a1を溶融ゾーン102で溶融して得た溶融物に第2の成分a2を添加して予備混合物を得る工程を更に含んでよく、予備混合物を混練ゾーン101に供給してよい。押出機を用いた通常の混練では、最初の溶融ゾーンにおいて被混合物への剪断が強くかかるため、第1の成分が溶融ゾーンを通過した後、溶融状態の第1の成分に対して第2の成分を添加口(サイドフィーダー)から添加する場合、第2の成分の熱劣化を抑制できる。混合物は、混練ゾーン101で混練され、樹脂組成物bとして取り出される。
 一態様において、混練ゾーン101は、シリンダー内壁とスクリューとの間隙(本開示で、シリンダー間隙ともいう。)が2mm以下である複数の狭間隙ゾーンN1,N2,N3を含む。なお本開示で、シリンダー間隙とは、被混合物が押出機の上流から下流に向けて通りうる流路のうち、最も広い流路の間隙を意味する。例えば、二条フライトスクリューのようなスクリューエレメントにおいては、スクリュー径方向断面の短軸方向での間隙をシリンダー間隙とする。また例えば、シールリングのようなスクリューエレメントにおいては、スクリューとシリンダーの間隙をシリンダー間隙とする。図1では狭間隙ゾーンが3つ存在する例を示しているが、混練ゾーン内の狭間隙ゾーンの数は目的に応じて選定してよく、例えば、2以上、又は3以上であってよく、例えば10以下、又は5以下であってよい。
 複数の狭間隙ゾーンN1,N2,N3のうち、シリンダー間隙が最小である最狭間隙ゾーンのシリンダー間隙[G1](以下、単に[G1]ともいう。)の、最狭間隙ゾーン以外の狭間隙ゾーンのシリンダー間隙の平均値[G2]に対する比[G1/G2]は、第2の成分の微細化を良好に進行させる観点から、一態様において、0.001以上、又は0.01以上、又は0.1以上であり、第2の成分の損傷を抑制する観点から、一態様において、1未満、又は0.5以下、又は0.3以下である。なお上記平均値[G2]とは、該当するゾーンが1つであれば当該ゾーンのシリンダー間隙値を意味し、2つ以上であれば当該ゾーンのシリンダー間隙値の算術平均を意味する。
 最狭間隙ゾーン以外の狭間隙ゾーンの各々のシリンダー間隙[G3]に対する上記[G1]の比[G1/G3]は、第2の成分の微細化を良好に進行させる観点から、一態様において、0.001以上、又は0.01以上、又は0.1以上であり、第2の成分の損傷を抑制する観点から、一態様において、1未満、又は0.5以下、又は0.3以下である。
 [G1]は、好ましくは、0.001mm以上、又は0.01mm以上、又は0.05mm以上であり、好ましくは、2mm以下、又は1mm以下、又は0.5mm以下である。
 [G2]は、好ましくは、0.001mm以上、又は0.01mm以上、又は0.05mm以上であり、好ましくは、2mm以下、又は1mm以下、又は0.5mm以下である。
 [G3]は、好ましくは、0.001mm以上、又は0.01mm以上、又は0.05mm以上であり、好ましくは、2mm以下、又は1mm以下、又は0.5mm以下である。
 第2の成分が有機繊維を含む場合、一態様において、押出機に供給される有機繊維は、平均繊維長1μm~10000μmを有する。なお本開示の平均繊維長は後述のように走査型電子顕微鏡(SEM)で測定される値である。平均繊維長は、一態様において、1μm以上、又は10μm以上、又は50μm以上であり、一態様において、10000μm以下、又は1000μm以下、又は750μm以下、又は600μm以下である。一態様においては、当該平均繊維長に対する上記[G1]の比が、有機繊維の損傷を抑制する観点から、好ましくは、0.001以上、又は0.01以上、又は0.1以上であり、有機繊維の微細化を良好に進行させる観点から、好ましくは、10以下、又は5以下、又は1以下である。
 第2の成分が有機繊維を含む場合、一態様において、押出機に供給される有機繊維は、平均粒子径1μm~10000μmの粒子を形成している。当該粒子の平均粒子径は、一態様において、1μm以上、又は10μm以上、又は50μm以上であり、一態様において、10000μm以下、又は1000μm以下、又は750μm以下、又は500μm以下である。一態様においては、当該粒子の平均粒子径に対する上記[G1]の比が、有機繊維の損傷を抑制する観点から、好ましくは、0.001以上、又は0.01以上、又は0.1以上であり、有機繊維の微細化を良好に進行させる観点から、好ましくは、10以下、又は5以下、又は1以下である。
 なお本開示の平均粒子径は、パウダーテスター(例えばホソカワミクロン株式会社製パウダーテスター、型番:PT-X)で測定されるd50粒径である。
 各狭間隙ゾーンへの流入物の第2の成分の含有率は、それぞれ、樹脂組成物中に第2の成分を所望の濃度含有させることで第2の成分による物性向上効果を良好に得る観点から、好ましくは、15質量%以上、又は20質量%以上、又は30質量%以上であり、第2の成分の微細化を良好に進行させる観点から、好ましくは、90質量%以下、又は80質量%以下、又は70質量%以下である。
 各狭間隙ゾーンへの流入物の圧力は、第2の成分の微細化を良好に進行させる観点から、好ましくは、0.5MPa以上、又は1MPa以上、又は3MPa以上であり、第2の成分の損傷を抑制する観点から、好ましくは、20MPa以下、又は15MPa以下、又は10MPa以下である。なお、一態様において、各狭間隙ゾーンへの流入物の圧力は、各狭間隙ゾーン内の被混合物圧力に実質的に等しい。
 各狭間隙ゾーンについて、狭間隙ゾーンへの流入物の圧力に対する狭間隙ゾーンからの流出物の圧力の比率は、狭間隙ゾーンへの流入物の圧力を高くして第2の成分の微細化を良好に進行させることが可能である点で、好ましくは、0.2以下、又は0.15以下、又は0.1以下であり、被混合物の急激な圧力変化による第2の成分の損傷を抑制する観点から、好ましくは、0.0001以上、又は0.001以上、又は0.01以上である。なお、一態様において、各狭間隙ゾーンからの流出物の圧力は、各狭間隙ゾーンに下流側で接するゾーン内の被混合物圧力に実質的に等しい。なお、各ゾーンへの流入物又は各ゾーンからの流出物は、各ゾーンに入り又は各ゾーンから出る混合物であればよく、例えば流出物は、押出機構成において押出機外への排出流路が予め設けられているものに限定されない。
 各狭間隙ゾーンについて、狭間隙ゾーンからの流出物の圧力は、一態様において、0MPa以上、又は0.001MPa以上、又は0.01MPa以上であってよく、一態様において、4MPa以下、又は2MPa以下、又は1MPa以下であってよい。
≪第二の実施形態≫
 第二の実施形態は、圧力降下ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含む方法を提供する。第二の実施形態に係る方法は、以下のような特徴を有するが、当該特徴以外については第一の実施形態に関して前述で例示した特徴のうち1つ以上を組合せることができる。
 圧力降下ゾーンは、当該圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、且つ当該圧力降下ゾーンへの流入物の圧力に対する当該圧力降下ゾーンからの流出物の圧力の比率が0.2以下である部位である。
 圧力降下ゾーンへの流入物の圧力は、第2の成分の微細化を良好に進行させる観点から、好ましくは、0.5MPa以上、又は1MPa以上、又は3MPa以上であり、第2の成分の損傷を抑制する観点から、好ましくは、20MPa以下、又は15MPa以下、又は10MPa以下である。なお、一態様において、圧力降下ゾーンへの流入物の圧力は、圧力降下ゾーン内の被混合物圧力に実質的に等しい。
 一態様において、圧力降下ゾーンへの流入物の第2の成分の含有率が15~90質量%であり、及び/又は、混練工程において、圧力降下ゾーンを通過した後の混合物に当該混合物よりも低温の追加ポリマーを添加して当該混合物を冷却する。
 特定の態様においては、圧力降下ゾーンへの流入物の第2の成分の含有率が15~90質量%であり、圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、且つ、圧力降下ゾーンへの流入物の圧力に対する圧力降下ゾーンからの流出物の圧力の比率が0.2以下である。
 特定の態様においては、圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、圧力降下ゾーンへの流入物の圧力に対する圧力降下ゾーンからの流出物の圧力の比率が0.2以下であり、且つ、混練工程において、圧力降下ゾーンを通過した後の混合物に混合物よりも低温の追加ポリマーを添加して当該混合物を冷却する。
 図2を参照し、第二の実施形態において、押出機200は混練ゾーン201を備え、任意に溶融ゾーン202を備えてよい。例えば、第二の実施形態に係る方法は、混練ゾーン201における混練工程の前に、第1の成分a1を溶融ゾーン202で溶融して得た溶融物に第2の成分a2を添加して予備混合物を得る工程を更に含んでよく、予備混合物を混練ゾーン201に供給してよい。押出機を用いた通常の混練では、最初の溶融ゾーンにおいて被混合物への剪断が強くかかるため、第1の成分である樹脂が溶融ゾーンを通過した後、溶融状態の樹脂に対して第2の成分を添加口(サイドフィーダー)から添加する場合、第2の成分の熱劣化を抑制できる。混合物は、混練ゾーン201で混練され、樹脂組成物bとして取り出される。
 第二の実施形態における混練ゾーン201は、圧力降下ゾーンD1を含む。なお図2では圧力降下ゾーンD1が1つ存在する例を示しているが、第二の実施形態において、圧力降下ゾーンの数は目的に応じて選定してよく、一態様において、1以上、又は2以上、又は3以上であり、一態様において、10以下、又は5以下である。
 第二の実施形態における圧力降下ゾーンは、一態様において、第一の実施形態で説明した狭間隙ゾーンであってもよい。当該狭間隙ゾーンのシリンダー間隙は、第一の実施形態で例示したのと同様であってよい。圧力降下ゾーンは、本開示の、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、スクリュー回転数、フィード量、樹脂組成、及び空間体積率からなる群から選択される1つ以上を調整することによって形成してもよい。
≪第三の実施形態≫
 図3は、第三の実施形態に係る樹脂組成物の製造方法の工程について説明する図である。第三の実施形態に係る方法は、以下のような特徴を有するが、当該特徴以外については第一又は第二の実施形態について前述で例示した特徴のうち1つ以上を組合せることができる。
 図3を参照し、第三の実施形態において、押出機300は混練ゾーン301を備え、任意に溶融ゾーン302を備えてよい。例えば、第三の実施形態の方法は、混練ゾーン301における混練工程の前に、第1の成分a1を溶融ゾーン202で溶融して得た溶融物に、例えばサイドフィードにて第2の成分a2を添加して予備混合物を得る工程を更に含んでよく、予備混合物を混練ゾーン301に供給してよい。このような添加態様は、第2の成分の熱劣化抑制の観点から好ましい。混合物は、混練ゾーン301で混練され、樹脂組成物bとして取り出される。
 一態様において、混練ゾーン301は、圧力が0.1MPa以上である複数の高圧ゾーンH1,H2,H3を含む。図3では高圧ゾーンが3つ存在する例を示しているが、混練ゾーン内の高圧ゾーンの数は目的に応じて選定してよく、例えば、2以上、又は3以上であってよく、例えば10以下、又は5以下であってよい。
 複数の高圧ゾーンH1,H2,H3のうち、圧力が最大である最高圧ゾーンの圧力[P1](以下、単に[P1]ともいう。)の、最高圧ゾーン以外の高圧ゾーンの圧力の平均値[P2]に対する比[P1/P2]は、第2の成分の微細化を良好に進行させる観点から、一態様において、1超、又は1.5以上、又は2以上であり、第2の成分の損傷を抑制する観点から、一態様において、100以下、又は50以下、又は20以下である。なお上記平均値[P2]とは、該当するゾーンが1つであれば当該ゾーンの圧力値を意味し、2つ以上であれば当該ゾーンの圧力値の算術平均を意味する。
 最高圧ゾーン以外の高圧ゾーンの各々の圧力[P3]に対する[P1]の比[P1/P3]は、第2の成分の微細化を良好に進行させる観点から、一態様において、1超、又は1.5以上、又は2以上であり、第2の成分の損傷を抑制する観点から、一態様において、100以下、又は50以下、又は20以下である。
 [P1]は、一態様において0.5MPa以上、好ましくは、1MPa以上、又は2MPa以上であり、好ましくは、20MPa以下、又は15MPa以下、又は10MPa以下である。
 [P2]は、好ましくは、0.1MPa以上、又は0.3MPa以上、又は0.5MPa以上であり、好ましくは、20MPa以下、又は15MPa以下、又は10MPa以下である。
 [P3]は、好ましくは、0.1MPa以上、又は0.3MPa以上、又は0.5MPa以上であり、好ましくは、20MPa以下、又は15MPa以下、又は10MPa以下である。
 複数の高圧ゾーンの各々のゾーン長/シリンダー内径比は、第2の成分の微細化を良好に進行させる観点から、一態様において、1以上、又は2以上、又は4以上であり、第2の成分の損傷を抑制する観点から、一態様において、30以下、又は20以下、又は15以下である。
 最高圧ゾーン以外の高圧ゾーンの各々のゾーン長/シリンダー内径比に対する最高圧ゾーンのゾーン長/シリンダー内径比の比は、第2の成分の微細化を良好に進行させる観点から、一態様において、1以上、又は2以上、又は4以上であり、第2の成分の損傷を抑制する観点から、一態様において、30以下、又は20以下、又は15以下である。
 最高圧ゾーンの圧力は、第2の成分の微細化を良好に進行させる観点から、一態様において、0.3MPa以上、又は0.5MPa以上、又は1MPa以上であり、第2の成分の損傷を抑制する観点から、一態様において、50MPa以下、又は20MPa以下、又は15MPa以下である。
≪その他ゾーン≫
 図1~3を参照し、混練ゾーン101,201,301は、分散混合ゾーンと分配混合ゾーンとを有してよい。狭間隙ゾーンN1,N2,N3、圧力降下ゾーンD1、及び高圧ゾーンH1,H2,H3は、分散混合ゾーンである。一方、その他ゾーン11,12,13,14,21,22,31,32,33,34の各々は、分散混合ゾーン又は分配混合ゾーンであってよい。その他ゾーンの混練条件は、所望に応じ、互いに同じ又は異なる条件に任意に設計してよい。好ましい態様において、混練ゾーンの最下流ゾーンは、その他ゾーン(例えば、図1~3のその他ゾーン14,22,24のように)であり、好ましくは分配混合ゾーンである。
≪追加ポリマーの添加≫
 図1~3を参照し、態様Aに係る方法においては、混練ゾーン101,201,301内で、混合物に対して、混合物中のポリマーと同種又は異種、好ましくは同種の追加ポリマーを添加(例えばサイドフィード)してもよい。典型的な態様において、追加ポリマーの添加位置は、混練ゾーン101の全ての狭間隙ゾーンN1,N2,N3よりも下流側であってよく、混練ゾーン201の圧力降下ゾーンD1よりも下流側であってよく、混練ゾーン301の全ての高圧ゾーンH1,H2,H3よりも下流側であってよい。
 追加ポリマーの添加量は、混練条件、樹脂組成物の所望の第2の成分の濃度等に応じて決定してよく、例えば、混合物100質量部に対して、10質量部以上、又は20質量部以上、又は30質量部以上、又は50質量部以上であってよく、1000質量部以下、又は500質量部以下、又は400質量部以下、又は300質量部以下であってよい。一態様においては、追加ポリマー添加前の混合物の第2の成分の濃度を、10質量%以上、又は15質量%以上、又は20質量%以上、又は25質量%以上、又は30質量%以上、並びに/或いは、90質量%以下、又は80質量%以下、又は70質量%以下、又は60質量%以下、又は50質量%以下とし、且つ、追加ポリマー添加後の混合物の第2の成分の濃度(一態様においては樹脂組成物中の第2の成分の濃度に等しい)を、1質量%以上、又は2質量%以上、又は3質量%以上、又は5質量%以上、並びに/或いは、50質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下としてよい。
(追加ポリマーによる冷却)
 追加ポリマーは、混合物よりも低温であってよい。すなわち、混練工程においては、第一の実施形態に係る複数の狭間隙ゾーンの全て、又は第二の実施形態に係る圧力降下ゾーン(複数存在する場合、一態様においてはその全て)、又は第三の実施形態に係る複数の高圧ゾーンの全て、を通過した後の混合物に当該混合物よりも低温の追加ポリマーを添加して当該混合物を冷却してよい。冷却のために添加される追加ポリマーの温度は、一態様において、0℃以上、又は10℃以上、又は20℃以上であり、一態様において、300℃以下、又は200℃以下、又は100℃以下、又は50℃以下である。追加ポリマーが添加される混合物の温度は、一態様において、100℃以上、又は150℃以上、又は200℃以上であり、一態様において、450℃以下、又は400℃以下、又は350℃以下である。
≪曲げ弾性率の変化≫
 態様Aに係る方法においては、複数であってよい高負荷ゾーンの各々における混合物単位質量当たりの曲げ弾性率向上率(すなわち、各ゾーンへの流入物の曲げ弾性率に対する各ゾーンからの流出物の曲げ弾性率の比)が、当該高負荷ゾーン以外の各ゾーンの混合物単位質量当たりの曲げ弾性率向上率(すなわち、各ゾーンへの流入物の曲げ弾性率に対する各ゾーンからの流出物の曲げ弾性率の比)の最大値よりも大きい。この場合、各高負荷ゾーンにおける曲げ弾性率向上効果が良好である一方、他のゾーンでは第2の成分の損傷を抑制できる。
≪チキソトロピー指数の変化≫
 態様Aに係る方法において、混練ゾーンへの流入物のチキソトロピー指数に対する混練ゾーンからの流出物のチキソトロピー指数の比は、混練ゾーンによる第2の成分の均一微分散の観点から、好ましくは、1以上、又は2以上、又は3以上であり、第2の成分の損傷抑制の観点から、好ましくは、100以下、又は50以下、又は10以下である。
[態様B]
 本開示の態様Bに係る方法は、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含む。態様Bに係る方法は、以下のような特徴を有するが、当該特徴以外については態様Aに関して前述で例示した特徴のうち1つ以上を組合せることができる。一態様において、態様Bに係る分散混合ゾーンは、態様Aに係る高負荷ゾーン(より具体的には狭間隙ゾーン、圧力降下ゾーン又は高圧ゾーン)を備えてよい。
[1] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
 前記分散混合ゾーンが、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上が互いに異なる第1の分散混合ゾーンと第2の分散混合ゾーンとを備え、
 前記第1の分散混合ゾーンへの流入物の引張伸度に対する前記第1の分散混合ゾーンからの流出物の引張伸度の増分[E1]と、前記第2の分散混合ゾーンへの流入物の引張伸度に対する前記第2の分散混合ゾーンからの流出物の引張伸度の増分[E2]とが、[E1]>[E2]の関係を満たし、
 前記第1の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第1の分散混合ゾーンからの流出物の曲げ弾性率の増分[M1]と、前記第2の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第2の分散混合ゾーンからの流出物の曲げ弾性率の増分[M2]とが、[M1]<[M2]の関係を満たす、方法。
[2] 前記第1の分散混合ゾーンと前記第2の分散混合ゾーンとが、前記第1の分散混合ゾーンが上流側となるように直接連通している、上記態様1に記載の方法。
[3] 前記第1の分散混合ゾーンと前記第2の分散混合ゾーンとが、前記第2の分散混合ゾーンが上流側となるように直接連通している、上記態様1に記載の方法。
[4] 前記第2の成分が有機繊維を含み、前記第1の分散混合ゾーンへの流入物中の有機繊維における径50μm以上の成分の質量比率が10%~90%であり、
 前記第1の分散混合ゾーンへの流入物中の有機繊維における径50μm以上の成分の質量比率(1a)に対する、前記第1の分散混合ゾーンからの流出物中の有機繊維における径50μm以上の成分の質量比率(1b)の比(1b/1a)が、0~0.6であり、
 前記第2の分散混合ゾーンへの流入物中の有機繊維における径50μm以上の成分の質量比率(2a)に対する、前記第2の分散混合ゾーンからの流出物中の有機繊維における径50μm以上の成分の質量比率(2b)の比(2b/2a)が、0.6~1である、上記態様1~3のいずれかに記載の方法。
[5] 前記[E1]が1%~100%、前記[E2]が0%~10%、前記[M1]が0GPa~1GPa、前記[M2]が0.1GPa~20GPa、前記[E1]と[E2]の差の絶対値が0.1%~100%、前記[M1]と[M2]の差の絶対値が0.1GPa~20GPaである、上記態様1~4のいずれかに記載の方法。
[6] 前記第1の分散混合ゾーン及び前記第2の分散混合ゾーンの各々のゾーン長/シリンダー内径比が1~30である、上記態様1~5のいずれかに記載の方法。
[7] 前記第1の分散混合ゾーン及び前記第2の分散混合ゾーンの各々の混合物充填率が10%~100%である、上記態様1~6のいずれかに記載の方法。
[8] 前記第1の分散混合ゾーン及び前記第2の分散混合ゾーンの各々の温度が100℃~400℃である、上記態様1~7のいずれかに記載の方法。
[9] 前記第1の分散混合ゾーン及び前記第2の分散混合ゾーンの各々の被混合物圧力が0MPa~15MPaである、上記態様1~8のいずれかに記載の方法。
[10] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
 前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
 前記分散混合ゾーンにおいて、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上をシリンダー長方向において異ならせることによって、混合物のシリンダー内進行長さl(mm)をシリンダー内径d(mm)で除した値(l/d)当たりの引張伸度変化量ΔE(%)の、前記l/d当たりの曲げ弾性率変化量ΔM(GPa)に対する比[ΔE/ΔM]を、シリンダー長方向において変化させる、方法。
[11] 前記比[ΔE/ΔM]をシリンダーの上流側から下流側に向かって漸減させる、上記態様10に記載の方法。
[12] 前記比[ΔE/ΔM]をシリンダーの上流側から下流側に向かって漸増させる、上記態様10に記載の方法。
[13] 前記第2の成分が有機繊維、好ましくはセルロース繊維を含み、前記樹脂組成物中の有機繊維が、平均繊維径1000nm以下、及び平均繊維長/平均繊維径比30以上を有する、上記態様1~12のいずれかに記載の方法。
[14] 前記分散混合工程の前に、前記第1の成分の溶融物に前記第2の成分を添加して予備混合物を得る工程を更に含み、前記予備混合物を前記分散混合ゾーンに供給する、上記態様1~13のいずれかに記載の方法。
 態様Bの方法においては、分散混合ゾーン内に、混合物の引張伸度及び曲げ弾性率のうち、主として引張伸度を向上させる領域(本開示で、引張伸度向上領域ともいう。)と、主として曲げ弾性率を向上させる領域(本開示で、曲げ弾性率向上領域ともいう。)とを設ける。引張伸度向上領域においては、第2の成分の粗大凝集塊を粉砕し、これにより混合物の引張伸度を上昇させることができる一方、粗大凝集塊の粉砕は混合物の曲げ弾性率(すなわち剛性)の上昇への寄与が小さい。一方、曲げ弾性率向上領域においては、第2の成分を第1の成分中に微分散させ、これにより混合物の曲げ弾性率を上昇させることができる一方、微分散は混合物の引張伸度の上昇への寄与が小さい。
 態様Bの方法では、引張伸度及び曲げ弾性率を同時に上昇させようとするのではなく、引張伸度向上領域及び曲げ弾性率向上領域の各々において、引張伸度及び曲げ弾性率のうち一方を重点的に向上させる。このようなプロセスを経て得られる樹脂組成物によれば、予想外にも、引張伸度及び曲げ弾性率を同時に上昇させようとするプロセスを経て得られる樹脂組成物と比べて、引張伸度及び曲げ弾性率の高度かつ安定的な両立が可能である。上記利点は、第2の成分が有機繊維、特にセルロース繊維を含む場合に顕著であり得る。
 態様Bは、より具体的には以下の第一及び第二の実施形態を包含する。
≪第一の実施形態≫
 図4は、第一の実施形態に係る樹脂組成物の製造方法の工程について説明する図であり、図5は、第一の実施形態に係る方法における引張伸度及び曲げ弾性率の変化挙動について説明する図である。図4を参照し、第一の実施形態において、押出機400は分散混合ゾーン401を有する。押出機400は、分配混合ゾーン402を更に有してもよい。押出機400はまた、分散混合ゾーン401の上流の溶融ゾーン403、及び/又は分散混合ゾーン401の下流の溶融ゾーン404を更に有してもよい。例えば、本開示の方法は、分散混合ゾーン401における分散混合工程の前に、第1の成分a1を溶融ゾーン403で溶融して得た溶融物に第2の成分a2を添加して予備混合物を得る工程を更に含んでよく、予備混合物を分散混合ゾーン401に供給してよい。押出機を用いた通常の混練では、最初の溶融ゾーンにおいて被混合物への剪断が強くかかるため、樹脂が溶融ゾーンを通過した後、溶融状態の第1の成分に対して第2の成分を添加口(サイドフィーダー)から添加する場合、第2の成分の熱劣化を抑制できる。混合物は、押出機400で分散混合及び任意に分配混合され、樹脂組成物bとして取り出される。
 また、態様Bに係る方法は、分散混合工程の後且つ分配混合工程の前に、分散混合生成物に、分散混合生成物中の第1の成分と同種又は異種、好ましくは同種の追加ポリマーを添加して追加ポリマー混合物を得る工程を更に含み、追加ポリマー混合物を分配混合ゾーンに供給してよい。例えば、分散混合ゾーン401からの流出物に追加ポリマーを添加(例えば図4の溶融ゾーン404での追加ポリマーのサイドフィードによって)した後、分配混合ゾーン402に供給してよい。追加ポリマーの添加量は、混練条件、樹脂組成物の所望の第2の成分の濃度等に応じて決定してよく、例えば、分散混合生成物100質量部に対して、10質量部以上、又は20質量部以上、又は30質量部以上、又は50質量部以上であってよく、1000質量部以下、又は500質量部以下、又は400質量部以下、又は300質量部以下であってよい。一態様においては、分散混合生成物の第2の成分の濃度を、10質量%以上、又は20質量%以上、又は25質量%以上、又は30質量%以上、並びに/或いは、80質量%以下、又は70質量%以下、又は60質量%以下、又は50質量%以下とし、且つ、追加ポリマー混合物の第2の成分の濃度(一態様においては樹脂組成物中の第2の成分の濃度に等しい)を、1質量%以上、又は2質量%以上、又は3質量%以上、又は5質量%以上、並びに/或いは、50質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下としてよい。
(追加ポリマーによる冷却)
 追加ポリマーは、分散混合生成物よりも低温であってよく、これにより当該分散混合生成物を冷却してよい。冷却のために添加される追加ポリマーの温度は、一態様において、0℃以上、又は10℃以上、又は20℃以上であり、一態様において、300℃以下、又は200℃以下、又は100℃以下、又は50℃以下である。追加ポリマーが添加される分散混合生成物の温度は、一態様において、100℃以上、又は150℃以上、又は200℃以上であり、一態様において、450℃以下、又は400℃以下、又は350℃以下である。
 分散混合ゾーン401は、プロセス条件が互いに異なる第1の分散混合ゾーン41と第2の分散混合ゾーン42とを備える。一態様において、第1の分散混合ゾーン41と第2の分散混合ゾーン42とは互いに直接連通している。一態様において、第1の分散混合ゾーン41の上流、第1の分散混合ゾーン41と第2の分散混合ゾーン42との間、及び/又は第2の分散混合ゾーン42の下流に、追加の分散混合ゾーンが存在してよい。例えば、第2の分散混合ゾーン42の下流に、第1の分散混合ゾーン41又は第2の分散混合ゾーン42と同じ又は異なる構成とした第3の分散混合ゾーン(図示せず)を配置し、当該第3の分散混合ゾーンからの流出物を樹脂組成物bとして回収する構成が例示できる。
 一態様において、プロセス条件は、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上である。
 上記ゾーン長とは、分散混合ゾーン及び分配混合ゾーンを構成するスクリューエレメントの合計長さであり、スクリュー構成に依存する。
 上記混合物充填率とは、押出機の空間体積に対する混合物の実際の充填量(体積基準)の比率であり、スクリューの回転及び原料供給を急停止させた後、スクリューを引き抜き、スクリュー表面に付着している混合物を採取、計量し、混合物の密度で除することで充満混合物の体積を計算し、続いて、充満混合物の体積を、後述の空間体積で除することで混合物充填率を算出する。混合物充填率は、スクリュー構成及び押出条件に依存する。
 上記空間体積率とは、押出機のシリンダー容積からスクリュー体積(エレメント体積と軸体積との合計)を差し引くことで空間体積を算出し、空間体積をシリンダー容積で除することで算出する。空間体積率は、スクリュー構成に依存する。
 図4及び5を参照し、第1の分散混合ゾーンへの流入物41aの引張伸度に対する第1の分散混合ゾーンからの流出物41bの引張伸度の増分[E1]と、第2の分散混合ゾーンへの流入物42aの引張伸度に対する第2の分散混合ゾーンからの流出物42bの引張伸度の増分[E2]とは、[E1]>[E2]の関係を満たす。また、第1の分散混合ゾーンへの流入物41aの曲げ弾性率に対する第1の分散混合ゾーンからの流出物41bの曲げ弾性率の増分[M1]と、第2の分散混合ゾーンへの流入物42aの曲げ弾性率に対する第2の分散混合ゾーンからの流出物42bの曲げ弾性率の増分[M2]とが、[M1]<[M2]の関係を満たす。すなわち、第1の分散混合ゾーンは引張伸度向上領域であり、第2の分散混合ゾーンは曲げ弾性率向上領域である。
 一態様においては、図4に示すように、第1の分散混合ゾーン41と第2の分散混合ゾーン42とが、第1の分散混合ゾーン41が上流側となるように連通(一態様においては直接連通)している。このような配置は、弾性率をより向上させる観点で有利である。
 一方、別の一態様においては、第1及び第2の分散混合ゾーンが、第2の分散混合ゾーンが上流側となるように連通(一態様においては直接連通)してよい。このような配置は、伸度をより向上させる観点で有利である。
 なお、各ゾーンへの流入物又は各ゾーンからの流出物は、各ゾーンに入り又は各ゾーンから出る混合物であればよく、例えば流出物は、押出機構成において押出機外への排出流路が予め設けられているものに限定されない。
 第2の成分が有機繊維を含む場合の一態様においては、第1の分散混合ゾーンへの流入物41a中の有機繊維における径50μm以上の成分の質量比率が、好ましくは、10%以上、又は20%以上、又は30%以上、又は40%以上であり、好ましくは、90%以下、又は80%以下、又は70%以下、又は60%以下である。すなわち、流入物41aは粗大粒子を相当量含み得る。
 一態様においては、第1の分散混合ゾーンへの流入物41a中の有機繊維における径50μm以上の成分の質量比率(1a)に対する、第1の分散混合ゾーンからの流出物41b中の有機繊維における径50μm以上の成分の質量比率(1b)の比(1b/1a)が、好ましくは、0以上、又は0.1以上、又は0.2以上であり、好ましくは、0.6以下、又は0.5以下、又は0.3以下である。この場合、第1の分散混合ゾーン41では粗大粒子が粉砕されて流出物41bにおいては粗大粒子が大幅に減少する。
 一態様においては、第2の分散混合ゾーンへの流入物42a中の有機繊維における径50μm以上の成分の質量比率(2a)に対する、第2の分散混合ゾーンからの流出物42b中の有機繊維における径50μm以上の成分の質量比率(2b)の比(2b/2a)が、好ましくは、0.6以上、又は0.7以上、又は0.8以上であり、好ましくは、1以下、又は0.9以下である。この場合、第2の分散混合ゾーン42では微分散が進行する一方で流入物42aから流出物42bへの粗大粒子の減少は僅かである。なお本開示では上記質量比率(2a)及び(2b)が共に0%である場合上記比(2b/2a)が1であると取扱う。
 一態様においては、[E1]が、好ましくは、1%以上、又は2%以上、又は3%以上であり、好ましくは、100%以下、又は50%以下、又は30%以下であり、[E2]が、好ましくは、0%以上であり、好ましくは、10%以下、又は5%以下、又は3%以下であり、[M1]が、好ましくは、0GPa以上、又は0.1GPa以上、又は0.3GPa以上であり、好ましくは、1GPa以下、又は0.7GPa以下、又は0.5GPa以下であり、[M2]が、好ましくは、0.1GPa以上、又は0.5GPa以上、又は1GPa以上であり、好ましくは、20GPa以下、又は10GPa以下、又は5GPa以下であり、[E1]と[E2]の差の絶対値が、好ましくは、0.1%以上、又は1%以上、又は5%以上であり、好ましくは、100%以下、又は50%以下、又は30%以下であり、[M1]と[M2]の差の絶対値が、好ましくは、0.1GPa以上、又は0.5GPa以上、又は1GPa以上であり、好ましくは、20GPa以下、又は10GPa以下、又は5GPa以下である。
 一態様においては、第1及び第2の分散混合ゾーンの各々のゾーン長/シリンダー内径比が、好ましくは、1以上、又は3以上、又は4以上であり、好ましくは、30以下、又は20以下、又は10以下である。
 一態様においては、第1及び第2の分散混合ゾーンの各々の混合物充填率が、好ましくは、10%以上、又は50%以上、又は70%以上であり、好ましくは、100%以下、又は99%以下、又は95%以下である。
 一態様においては、第1及び第2の分散混合ゾーンの各々の温度が、好ましくは、100℃以上、又は150℃以上、又は200℃以上であり、好ましくは、400℃以下、又は350℃以下、又は300℃以下である。
 一態様においては、第1及び第2の分散混合ゾーンの各々の被混合物圧力が、好ましくは、0MPa以上、又は0.1MPa以上、又は0.3MPa以上、又は1MPa以上であり、好ましくは、15MPa以下、又は10MPa以下、又は5MPa以下、又は3MPa以下である。
 一態様においては、第1及び第2の分散混合ゾーンの各々の空間体積率が、好ましくは、10%以上、又は20%以上、又は30%以上であり、好ましくは、70%以下、又は60%以下、又は50%以下である。
 分散混合ゾーン401で分散混合された樹脂組成物は、他のゾーン(例えば溶融ゾーン404)を経て又は経ずに分配混合ゾーン402に導入されて更に分配混合されてよい。分配混合ゾーンの混合条件は特に限定されないが、例えば順送りニーディングディスク、中立ニーディングディスク等のニーディングディスク、等を任意に組合せることで分配混合されてよい。
≪第二の実施形態≫
 図6は、第二の実施形態に係る樹脂組成物の製造方法の工程について説明する図であり、図7は、第二の実施形態に係る方法における引張伸度及び曲げ弾性率の変化挙動について説明する図である。第二の実施形態に係る方法は、以下のような特徴を有するが、当該特徴以外について、第一の実施形態について上記したのと同様の手順及び条件を適宜採用してよい。
 図6を参照し、第二の実施形態において、押出機600は分散混合ゾーン601を有し、任意に分配混合ゾーン602を更に有してもよく、分散混合ゾーン601の上流の溶融ゾーン603、及び/又は分散混合ゾーン601の下流の溶融ゾーン604を更に有してもよい。例えば、態様Bに係る方法は、分散混合ゾーン601における分散混合工程の前に、第1の成分a1を溶融ゾーン603で溶融して得た溶融物に第2の成分a2を添加して予備混合物を得る工程を更に含んでよく、予備混合物を分散混合ゾーン601に供給してよい。第1の成分a1が溶融ゾーン603を通過した後、溶融状態の第1の成分に対して第2の成分a2が添加口(サイドフィーダー)から添加される場合、第2の成分の熱劣化を抑制でき好ましい。混合物は、押出機600で分散混合及び任意に分配混合され、樹脂組成物bとして取り出される。
 図6及び7を参照し、分散混合ゾーン601は、プロセス条件が互いに異なることによって、混合物のシリンダー内進行長さl(すなわち、混合物が分散混合ゾーン601を流れる際のシリンダー長方向Lの流動長さ)(mm)をシリンダー内径d(mm)で除した値(l/d)当たりの引張伸度変化量ΔE(%)の、当該l/d当たりの曲げ弾性率変化量ΔM(GPa)に対する比[ΔE/ΔM]を、シリンダー長方向Lにおいて変化させる。一態様において、プロセス条件は、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上である。
 一態様においては、比[ΔE/ΔM]をシリンダーの上流側から下流側に向かって漸減させる。このような態様では、シリンダーのより上流側が引張伸度向上領域、より下流側が曲げ弾性率向上領域に対応し、より高剛性の樹脂組成物が得られる点で有利である。この態様においては、シリンダーの上流側から下流側に向かって、ΔEが漸減するとともにΔMが漸増してよい。例えば、分散混合ゾーン601の入口から出口に向かって、ΔEが、0.1%以上、又は1%以上、又は10%以上であり、300%以下、又は200%以下、又は100%以下である範囲から、0.01%以上、又は0.1%以上、又は0.5%以上であり、10%以下、又は5%以下、又は2%以下である範囲まで漸減してよく、ΔMが、0.001GPa以上、又は0.01GPa以上、又は0.05GPa以上であり、10GPa以下、又は5GPa以下、又は2GPa以下である範囲から、0.02GPa以上、又は0.05GPa以上、又は0.1GPa以上であり、50GPa以下、又は10GPa以下、又は5GPa以下である範囲まで漸増してよい。
 一方、別の一態様においては、比[ΔE/ΔM]をシリンダーの上流側から下流側に向かって漸増させる。このような態様では、シリンダーのより上流側が曲げ弾性率向上領域、より下流側が引張伸度向上領域に対応し、より高伸度の樹脂組成物が得られる点で有利である。この態様においては、シリンダーの上流側から下流側に向かって、ΔEが漸増するとともにΔMが漸減してよい。例えば、分散混合ゾーンの入口から出口に向かって、ΔEが、0.01%以上、又は0.1%以上、又は0.5%以上であり、10%以下、又は5%以下、又は2%以下である範囲から、0.1%以上、又は1%以上、又は10%以上であり、300%以下、又は200%以下、又は100%以下である範囲まで漸増してよく、ΔMが、0.02GPa以上、又は0.05GPa以上、又は0.1GPa以上であり、50GPa以下、又は10GPa以下、又は5GPa以下である範囲から、0.001GPa以上、又は0.01GPa以上、又は0.05GPa以上であり、10GPa以下、又は5GPa以下、又は2GPa以下である範囲まで漸減してよい。
≪態様C≫
 本開示の態様Cに係る方法は、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、押出機の分配混合ゾーンにおいて少なくとも当該分散混合生成物を分配混合して樹脂組成物を得る分配混合工程とを含む。態様Cに係る方法は、以下のような特徴を有するが、当該特徴以外については態様Aに関して前述で例示した特徴のうち1つ以上を組合せることができる。一態様において、態様Cに係る分散混合ゾーンは、態様Aに係る高負荷ゾーン(より具体的には狭間隙ゾーン、圧力降下ゾーン又は高圧ゾーン)を備えてよい。
[1] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、前記方法が、
 押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
 押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
を含み、
 前記分散混合ゾーンと前記分配混合ゾーンとは、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上において互いに異なっており、
 前記分散混合ゾーンへの流入物の引張伸度に対する前記分散混合ゾーンからの流出物の引張伸度の増分[EA]と、前記分配混合ゾーンへの流入物の引張伸度に対する前記分配混合ゾーンからの流出物の引張伸度の増分[EB]とが、[EA]>[EB]の関係を満たし、
 前記分散混合ゾーンへの流入物の曲げ弾性率に対する前記分散混合ゾーンからの流出物の曲げ弾性率の増分[MA]と、前記分配混合ゾーンへの流入物の曲げ弾性率に対する前記分配混合ゾーンからの流出物の曲げ弾性率の増分[MB]とが、[MA]>[MB]の関係を満たす、方法。
[2] 前記[EA]が1%~100%、前記[EB]が0%~10%、前記[MA]が0.1GPa~20GPa、前記[MB]が0GPa~1GPa、[EA]と[EB]との差([EA]-[EB])が0.01%~100%、[MA]と[MB]との差([MA]-[MB])が0.001GPa~10GPaである、上記態様1に記載の方法。
[3] 前記分散混合ゾーンのゾーン長/シリンダー内径比1以上、及び前記分配混合ゾーンのゾーン長/シリンダー内径比5以下の領域において、被混合物圧力が0.3MPa以上である、上記態様1又は2に記載の方法。
[4] 第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、前記方法が、
 押出機の分散混合ゾーンにおいてセルロース繊維と樹脂とを分散混合して分散混合生成物を得る分散混合工程と、
 押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
を含み、
 分散混合ゾーンにおける第2の成分の濃度[CA]が10質量%~90質量%であり、分配混合ゾーンにおける第2の成分の濃度[CB]が1質量%~50質量%であり、比[CA]/[CB]が2~90である、方法。
[5] 前記分散混合ゾーンへの流入物のチキソトロピー指数に対する前記分散混合ゾーンからの流出物のチキソトロピー指数の増分[TA]と、前記分配混合ゾーンへの流入物のチキソトロピー指数に対する前記分配混合ゾーンからの流出物のチキソトロピー指数の増分[TB]とが、[TA]>[TB]の関係を満たす、上記態様1~4のいずれかに記載の方法。
[6] 前記[TA]が0.01超10以下、前記[TB]が0.01以上10未満、前記[TA]/[TB]比が1超100以下である、上記態様5に記載の方法。
[7] 混合物中の第2の成分の単位質量当たりの物性向上率が、分散混合ゾーンよりも分配混合ゾーンで大きい、上記態様1~6のいずれかに記載の方法。
[8] 前記分散混合工程の後且つ前記分配混合工程の前に、前記分散混合生成物に追加ポリマーを添加して追加ポリマー混合物を得る工程を更に含み、前記追加ポリマー混合物を前記分配混合ゾーンに供給する、上記態様1~7のいずれかに記載の方法。
[9] 前記第2の成分が有機繊維、好ましくはセルロース繊維を含み、前記樹脂組成物中の有機繊維が、平均繊維径1000nm以下、及び平均繊維長/平均繊維径比30以上を有する、上記態様1~8のいずれかに記載の方法。
 態様Cの方法においては、分散混合及び分配混合を通じて引張伸度及び曲げ弾性率を上昇させようとするのではなく、分散混合時には、第2の成分にある程度大きな力を掛けて混合物の引張伸度及び曲げ弾性率を大きく向上させる一方、分配混合時には、第2の成分に掛かる力が最小限となるように混合条件を緩やかにして、引張伸度及び曲げ弾性率の向上は小さいが第2の成分の損傷が回避されるようにする。このようなプロセスステップを経て得られる樹脂組成物が形成する成形体においては、予想外にも、引張伸度及び曲げ弾性率が高度且つ安定的に両立され得る。
 図8は、本発明の一態様に係る樹脂組成物の製造方法の工程について説明する図である。図8を参照し、押出機800は分散混合ゾーン801及び分配混合ゾーン802を有する。典型的な態様においては、図8に示すように、分散混合ゾーン801の下流側に分配混合ゾーン802が配置される。押出機800はまた、分散混合ゾーン801よりも上流側の溶融ゾーン803、及び/又は分散混合ゾーン801よりも下流側且つ分配混合ゾーン802よりも上流側の溶融ゾーン804を更に有してもよい。
 態様Cに係る方法は、分散混合ゾーン801における分散混合工程の前に、第1の成分a1を溶融ゾーン803で溶融して得た溶融物に第2の成分a2を添加して予備混合物を得る工程を更に含んでよく、予備混合物を分散混合ゾーン801に供給してよい。押出機を用いた通常の混練では、最初の溶融ゾーンにおいて被混合物への剪断が強くかかるため、第1の成分が溶融ゾーンを通過した後、溶融状態の第1の成分に対して第2の成分を添加口(サイドフィーダー)から添加する場合、第2の成分の熱劣化を抑制できる。混合物は、押出機800で分散混合及び分配混合され、樹脂組成物bとして取り出される。
 また、態様Cに係る方法は、分散混合工程の後且つ分配混合工程の前に、分散混合生成物に、分散混合生成物中の第1の成分と同種又は異種、好ましくは同種の追加ポリマーを添加して追加ポリマー混合物を得る工程を更に含み、追加ポリマー混合物を分配混合ゾーンに供給してよい。例えば、分散混合ゾーン801からの流出物に追加ポリマーを添加(例えば図8の溶融ゾーン804での追加ポリマーのサイドフィードによって)した後、分配混合ゾーン802に供給してよい。追加ポリマーの添加量は、混練条件、樹脂組成物の所望の第2の成分の濃度等に応じて決定してよく、例えば、分散混合生成物100質量部に対して、10質量部以上、又は20質量部以上、又は30質量部以上、又は50質量部以上であってよく、1000質量部以下、又は500質量部以下、又は400質量部以下、又は300質量部以下であってよい。一態様においては、分散混合生成物の第2の成分の濃度を、10質量%以上、又は20質量%以上、又は25質量%以上、又は30質量%以上、並びに/或いは、80質量%以下、又は70質量%以下、又は60質量%以下、又は50質量%以下とし、且つ、追加ポリマー混合物の第2の成分の濃度(一態様においては樹脂組成物中の第2の成分の濃度に等しい)を、1質量%以上、又は2質量%以上、又は3質量%以上、又は5質量%以上、並びに/或いは、50質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下としてよい。
(追加ポリマーによる冷却)
 追加ポリマーは、分散混合生成物よりも低温であってよく、これにより当該分散混合生成物を冷却してよい。冷却のために添加される追加ポリマーの温度は、一態様において、0℃以上、又は10℃以上、又は20℃以上であり、一態様において、300℃以下、又は200℃以下、又は100℃以下、又は50℃以下である。追加ポリマーが添加される分散混合生成物の温度は、一態様において、100℃以上、又は150℃以上、又は200℃以上であり、一態様において、450℃以下、又は400℃以下、又は350℃以下である。
 態様Cは、より具体的には以下の第一及び第二の実施形態を包含する。
≪第一の実施形態(プロセス条件制御)≫
 図8を再び参照し、第一の実施形態において、分散混合ゾーン801と分配混合ゾーン802とは、プロセス条件が互いに異なる。一態様において、プロセス条件は、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上である。
 上記ゾーン長とは、分散混合ゾーン及び分配混合ゾーンを構成するスクリューエレメントの合計長さであり、スクリュー構成に依存する。
 上記混合物充填率とは、押出機の空間体積に対する混合物の実際の充填量(体積基準)の比率であり、スクリューの回転及び原料供給を急停止させた後、スクリューを引き抜き、スクリュー表面に付着している混合物を採取、計量し、混合物の密度で除することで充満混合物の体積を計算し、続いて、充満混合物の体積を、後述の空間体積で除することで混合物充填率を算出する。混合物充填率は、スクリュー構成及び押出条件に依存する。
 上記空間体積率とは、押出機のバレル容積からスクリュー体積(エレメント体積と軸体積との合計)を差し引くことで空間体積を算出し、空間体積をバレル容積で除することで算出する。空間体積率は、スクリュー構成に依存する。
 一態様においては、分散混合ゾーン801への流入物の引張伸度に対する分散混合ゾーン801からの流出物の引張伸度の増分[EA]と、分配混合ゾーン802への流入物の引張伸度に対する分配混合ゾーン802からの流出物の引張伸度の増分[EB]とが、[EA]>[EB]の関係を満たし、分散混合ゾーンへ801の流入物の曲げ弾性率に対する分散混合ゾーン801からの流出物の曲げ弾性率の増分[MA]と、分配混合ゾーン802への流入物の曲げ弾性率に対する分配混合ゾーン802からの流出物の曲げ弾性率の増分[MB]とが、[MA]>[MB]の関係を満たす。
 なお、各ゾーンへの流入物又は各ゾーンからの流出物は、各ゾーンに入り又は各ゾーンから出る混合物であればよく、例えば流出物は、押出機構成において押出機外への排出流路が予め設けられているものに限定されない。
 [EA]は、好ましくは、1%以上、又は2%以上、又は3%以上であり、好ましくは、100%以下、又は50%以下、又は30%以下である。[EB]は、好ましくは、0%以上、又は0.1%以上、又は0.5%以上であり、好ましくは、10%以下、又は5%以下、又は3%以下である。
 [MA]は、好ましくは、0.1GPa以上、又は0.5GPa以上、又は1GPa以上であり、好ましくは、20GPa以下、又は10GPa以下、又は5GPa以下である。[MB]は、好ましくは、0GPa以上、又は0.1GPa以上、又は0.3GPa以上であり、好ましくは、1GPa以下、又は0.7GPa以下、又は0.5GPa以下である。
 [EA]と[EB]との差([EA]―[EB])は、好ましくは、0.01%以上、又は0.1%以上、又は1%以上であり、好ましくは、100%以下、又は50%以下、又は10%以下である。
 [MA]と[MB]との差([MA]-[MB])は、好ましくは、0.001GPa以上、又は0.01GPa以上、又は0.1GPa以上であり、好ましくは、10GPa以下、又は5GPa以下、又は1GPa以下である。
 一態様においては、分散混合ゾーン801及び分配混合ゾーン802の各々のゾーン長/シリンダー内径比が、好ましくは、1以上、又は3以上、又は4以上であり、好ましくは、30以下、又は20以下、又は10以下である。
 一態様においては、分散混合ゾーン801及び分配混合ゾーン802の各々の混合物充填率が、好ましくは、10%以上、又は50%以上、又は70%以上であり、好ましくは、100%以下、又は99%以下、又は95%以下である。
 一態様においては、分散混合ゾーン801及び分配混合ゾーン802の各々の温度が、好ましくは、100℃以上、又は150℃以上、又は200℃以上であり、好ましくは、400℃以下、又は350℃以下、又は300℃以下である。
 一態様においては、分散混合ゾーン801及び分配混合ゾーン802の各々の被混合物圧力が、好ましくは、0MPa以上、又は0.1MPa以上、又は0.3MPa以上、又は1MPa以上であり、好ましくは、15MPa以下、又は10MPa以下、又は5MPa以下、又は3MPa以下である。
 一態様においては、分散混合ゾーン801及び分配混合ゾーン802の各々の空間体積率が、好ましくは、10%以上、又は20%以上、又は30%以上であり、好ましくは、70%以下、又は60%以下、又は50%以下である。
 一態様においては、分散混合ゾーン801のゾーン長/シリンダー内径比1以上、又は2以上、又は5以上、及び分配混合ゾーン802のゾーン長/シリンダー内径比5以下、又は2以下、又は1以下の領域において、被混合物圧力が0.1MPa以上、又は0.2MPa以上、又は0.3MPa以上、又は0.5MPa以上、又は1MPa以上、又は3MPa以上、又は5MPa以上、又は7MPa以上である。当該被混合物圧力は、第2の成分の損傷を抑制する観点から、好ましくは、20MPa以下、又は15MPa以下、又は10MPa以下であってよい。この場合、被混合物に高圧を掛ける領域を分散混合ゾーン801で比較的広く、分配混合ゾーン802で比較的狭くすることができる。これにより、分散混合ゾーン801では第2の成分の微細化を良好に進行させる一方、分配混合ゾーン802では第2の成分の損傷を回避しながら第2の成分の第1の成分中での分散状態を向上させることができる。被混合物圧力が上記範囲である領域は、分散混合ゾーン801のゾーン長/シリンダー内径比30以下、又は20以下、又は10以下の領域であってよい。
 一態様においては、分散混合ゾーンのゾーン長/シリンダー内径比1以上、及び分配混合ゾーンのゾーン長/シリンダー内径比5以下の領域において、被混合物圧力が0.3MPa以上である。
 一態様においては、第2の成分の分散を向上させ、より実用的な特性とする観点から、混合物中の第2の成分の単位質量当たりの物性向上率が、分散混合ゾーンよりも分配混合ゾーンで大きい。分散混合ゾーンの物性向上率は、分散混合ゾーンへの流入物の物性に対する分散混合ゾーンからの流出物の物性の比であり、分配混合ゾーンの物性向上率は、分配混合ゾーンへの流入物の物性に対する分配混合ゾーンからの流出物の物性の比である。一態様において、物性は、引張伸度及び曲げ弾性率から選ばれる。上記物性向上率の、分散混合ゾーンに対する分配混合ゾーンの比は、上記観点から、好ましくは、1超、又は1.2以上、又は1.5以上であり、プロセス条件設計の容易性の観点から、例えば、100以下、又は10以下、又は5以下であってよい。
≪第二の実施形態(第2の成分の濃度制御)≫
 図8を再び参照し、第二の実施形態においては、分散混合ゾーン801における第2の成分の濃度[CA]が10質量%~90質量%であり、分配混合ゾーン802における第2の成分の濃度[CB]が1質量%~50質量%であり、比[CA]/[CB]が2~90である。例えば、分散混合ゾーン801からの流出物に追加ポリマーを添加(例えば図8の溶融ゾーン804での追加ポリマーのサイドフィードによって)した後、分配混合ゾーン802に供給する方法で、第2の成分の濃度を上記範囲に調整できる。分散混合ゾーン801及び分配混合ゾーン802の第2の成分の濃度を上記のように調整することにより、分散混合ゾーン801での第2の成分の微細化と、分配混合ゾーン802での第2の成分の損傷を回避しながらの第2の成分分散状態向上とを両立できる。
 上記濃度[CA]は、第2の成分の微細化を良好に進行させる観点から、一態様において10質量%以上、又は15質量%以上、又は20質量%以上であり、第2の成分の損傷を抑制する観点から、一態様において90質量%以下、又は80質量%以下、又は70質量%以下である。
 上記濃度[CB]は、種々の用途に応じて樹脂組成物中第2の成分の濃度を調整する観点から、一態様において1質量%以上、又は5質量%以上、又は10質量%以上であり、第2の成分の損傷を抑制する観点から、一態様において50質量%以下、又は40質量%以下、又は30質量%以下である。
 上記比[CA]/[CB]は、第2の成分の分散混合工程での微細化促進及び分配混合工程での損傷抑制の観点から、一態様において2以上、又は3以上、又は4以上であり、濃度[CA]が大きすぎることによる第2の成分の損傷、又は濃度[CB]が小さすぎることによる樹脂組成物の適用用途の制限を回避する観点から、一態様において90以下、又は50以下、又は10以下である。
≪チキソトロピー指数の変化≫
 一態様においては、分散混合ゾーン801への流入物のチキソトロピー指数に対する分散混合ゾーン801からの流出物のチキソトロピー指数の増分[TA]と、分配混合ゾーン802への流入物のチキソトロピー指数に対する分配混合ゾーン802からの流出物のチキソトロピー指数の増分[TB]とが、[TA]>[TB]の関係を満たす。増分[TA]が大きいほど分散混合ゾーン801で第2の成分の微細化が進行したことを示し、増分[TB]が大きいほど分配混合ゾーン802で第2の成分の微細化が進行したことを示す。[TA]>[TB]であることは、分配混合ゾーン802よりも分散混合ゾーン801で第2の成分の微細化が優先的に進行することの指標である。
 [TA]/[TB]比は、第2の成分の微細化を分散混合ゾーン801で優先的に行う観点から、好ましくは、1超、又は2以上、又は3以上であり、分散混合ゾーン801で第2の成分が過度に微細化されることによる第2の成分の損傷を抑制する観点から、好ましくは、100以下、又は50以下、又は10以下である。チキソトロピー指数の測定方法については後述する。
 増分[TA]は、好ましくは、0.01超10以下、又は0.05~5、又は0.1~2である。
 増分[TB]は、好ましくは、0.01以上10未満、又は0.05~5、又は0.1~2である。
[樹脂組成物の押出]
 態様A~Cに係る方法において、混練ゾーン101,201,301(態様Aについて)、分配混合ゾーン402,602(態様Bについて)、又は分配混合ゾーン802(態様Cについて)を出た樹脂組成物bは、所望の形状にて押出機外に押し出されてよい。例えば、ペレット形態は、後加工及び運搬の容易性から好ましい。ペレット形態の好適例としては、丸型、楕円型、円柱型等が挙げられ、押出加工時のカット方式により異なる。丸型ペレットのサイズとしては、直径1mm以上3mm以下を例示でき、円柱状ペレットのサイズとしては、直径1mm以上3mm以下、及び長さ2mm以上10mm以下を例示できる。上記の直径及び長さは、押出時の運転安定性の観点から下限以上とすることが望ましく、後加工での成形機への噛み込み性の観点から上限以下とすることが望ましい。
[成形体の製造]
 態様A~Cに係る方法で製造された樹脂組成物は、フィルム状、シート状、繊維状、板状、粉末状、立体構造等の種々の形態の成形体に成形されてよい。成形方法としては、射出成形、押出成形、発泡成形、インサート成形、インモールドコーティング成形、金型成形等を例示できる。例えば、シート、フィルム、繊維等の成形には種々の押出成形が好適である。成形温度は、樹脂組成物の組成等に応じて適宜選択できるが、例えば、使用される樹脂の融点以上、又は当該融点+20℃以上、又は融点+30℃以上であってよく、融点+90℃以下、又は融点+80℃以下、又は融点+70℃以下であってよい。
[樹脂組成物の材料成分]
 本開示、特に態様A~Cに係る方法で製造される樹脂組成物は、ポリマーである第1の成分と、有機繊維、及び/又は、第1の成分と異なるポリマーである第2の成分とを含む。第1の成分と異なるポリマーは、一態様において、第1の成分と分子構造及び/又は分子量が異なるポリマーを意味する。第1の成分中のポリマー、第2の成分中の有機繊維、及び第2の成分中のポリマーは、それぞれ1種でも2種以上でもよい。一態様において、第1の成分中のポリマーと第2の成分中のポリマーとは、これらを構成する少なくとも1種のポリマーの分子構造及び/又は分子量が互いに異なっている。第2の成分は、一態様において有機繊維であり、一態様においてポリマーであり、一態様において有機繊維とポリマーとの組合せである。樹脂組成物を製造するために用いられ、したがって樹脂組成物中に含まれる材料成分としては、以下を例示できる。
≪第1の成分≫
 第1の成分は、一態様においてポリマーである。当該ポリマーは、樹脂組成物の使用目的に応じて適宜選択され、例えば、100℃~350℃の範囲内に融点を有する結晶性熱可塑性樹脂、100~250℃の範囲内にガラス転移点を有する非晶性熱可塑性樹脂等であってよい。ポリマーとしては、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらの2種以上の混合物を例示でき、取り扱い性及びコストの観点から、好ましくはポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂等が挙げられ、ポリアミド系樹脂、ポリオレフィン系樹脂及びポリアセタール系樹脂はより好ましく、ポリアミド系樹脂及びポリアセタール系樹脂は特に好ましい。熱可塑性樹脂(特に結晶性樹脂)の融点は、樹脂組成物の耐熱性を高める観点から、好ましくは、140℃以上、又は150℃以上、又は160℃以上、又は170℃以上、又は180℃以上、又は190℃以上、又は200℃以上、又は210℃以上、220℃以上、又は230℃以上、又は240℃以上、又は245℃以上、又は250℃以上である。
 熱可塑性樹脂の融点としては、例えば比較的低融点の樹脂(例えばポリオレフィン系樹脂)について、150℃~190℃、又は160℃~180℃、また例えば比較的高融点の樹脂(例えばポリアミド系樹脂)について、220℃~350℃、又は230℃~320℃、を例示できる。
 本開示で、融点とは、示差走査熱量分析装置(DSC)を用いて、23℃から10℃/分の昇温速度で昇温した際に現れる吸熱ピークのピークトップ温度を指し、吸熱ピークが2つ以上現れる場合は、最も高温側の吸熱ピークのピークトップ温度を指す。また本開示でガラス転移点とは前述のように動的粘弾性測定装置を用いて求められる温度である。
 ポリマーとして好ましいポリオレフィン系樹脂は、オレフィン類(例えばα-オレフィン類)やアルケン類をモノマー単位として重合して得られる高分子である。ポリオレフィン系樹脂の具体例としては、低密度ポリエチレン(例えば線状低密度ポリエチレン)、高密度ポリエチレン、超低密度ポリエチレン、超高分子量ポリエチレン等に例示されるエチレン系(共)重合体、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体等に例示されるポリプロピレン系(共)重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-グリシジルメタクリレート共重合体等に代表されるエチレン等α-オレフィンの共重合体等が挙げられる。
 ここで最も好ましいポリオレフィン系樹脂としては、ポリプロピレンが挙げられる。特に、ISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下であるポリプロピレンが好ましい。MFRの下限値は、より好ましくは5g/10分であり、さらにより好ましくは6g/10分であり、最も好ましくは8g/10分である。また、上限値は、より好ましくは25g/10分であり、さらにより好ましくは20g/10分であり、最も好ましくは18g/10分である。MFRは、組成物の靱性向上の観点から上記上限値を超えないことが望ましく、組成物の流動性の観点から上記下限値を下回らないことが望ましい。
 また、セルロースとの親和性を高めるため、酸変性されたポリオレフィン系樹脂も好適に使用可能である。この際の酸としては、マレイン酸、フマル酸、コハク酸、フタル酸及び、これらの無水物、並びにクエン酸等のポリカルボン酸から、適宜選択可能である。これらの中でも好ましいのは、変性率の高めやすさから、マレイン酸又はその無水物である。変性方法については特に制限はないが、過酸化物の存在下又は非存在下で融点以上に加熱して溶融混練する方法が一般的である。酸変性するポリオレフィン樹脂としては前出のポリオレフィン系樹脂はすべて使用可能であるが、ポリプロピレンが中でも好適に使用可能である。酸変性されたポリプロピレンは、単独で用いても構わないが、樹脂全体としての変性率を調整するため、変性されていないポリプロピレンと混合して使用することがより好ましい。この際のすべてのポリプロピレンに対する酸変性されたポリプロピレンの割合は、0.5質量%~50質量%である。より好ましい下限は、1質量%であり、更に好ましくは2質量%、更により好ましくは3質量%、特に好ましくは4質量%、最も好ましくは5質量%である。また、より好ましい上限は、45質量%であり、更に好ましくは40質量%、更により好ましくは35質量%、特に好ましくは30質量%、最も好ましくは20質量%である。第1の成分と第2の成分との界面強度(一態様において、樹脂とセルロースとの界面強度)を維持するためには、下限以上が好ましく、樹脂としての延性を維持するためには、上限以下が好ましい。
 酸変性されたポリプロピレンのISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)は、第1の成分と第2の成分との界面(例えばセルロースと樹脂との界面)との親和性を高めるため、50g/10分以上であることが好ましい。より好ましい下限は100g/10分であり、更により好ましくは150g/10分、最も好ましくは200g/10分である。上限は特にないが、機械的強度の維持から500g/10分である。MFRをこの範囲内とすることにより、第1の成分と第2の成分との界面(一態様においてセルロースと樹脂との界面)に存在しやすくなるという利点を享受できる。
 ポリアミド系樹脂としては、ラクタム類の重縮合反応により得られるポリアミド6、ポリアミド11、ポリアミド12や、1,6-ヘキサンジアミン、2-メチル-1,5-ペンタンジアミン、1,7-ヘプタンジアミン、2-メチル-1-6-ヘキサンジアミン、1,8-オクタンジアミン、2-メチル-1,7-ヘプタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、m-キシリレンジアミン等のジアミン類と、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、ベンゼン-1,2-ジカルボン酸、ベンゼン-1,3-ジカルボン酸、ベンゼン-1,4ジカルボン酸等、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸等のジカルボン酸類との共重合体として得られるポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12、ポリアミド6,T、ポリアミド6,I、ポリアミド9,T、ポリアミド10,T、ポリアミド2M5,T、ポリアミドMXD,6、ポリアミド6、C、ポリアミド2M5,C及び、これらがそれぞれ共重合された共重合体、一例としてポリアミド6,T/6,I等の共重合体が挙げられる。
 これらポリアミド系樹脂の中でも、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12といった脂肪族ポリアミドや、ポリアミド6,C、ポリアミド2M5,Cといった脂環式ポリアミドがより好ましい。
 ポリアミド系樹脂の末端カルボキシル基濃度には特に制限はないが、好ましくは、20μモル/g以上、又は25μモル/g以上であってよく、好ましくは、150μモル/g以下、又は100μモル/g以下であってよい。
 ポリアミド系樹脂の末端アミノ基濃度は、好ましくは、20μモル/g以上、又は30μモル/g以上であってよく、好ましくは、150μモル/g以下、又は100μモル/g以下であってよい。
 ポリアミド系樹脂の末端アミノ基と末端カルボキシル基との合計濃度に特に制限はないが、好ましくは、10μモル/g以上、又は50μモル/g以上、又は100μモル/g以上、又は135μモル/g以上であってよく、樹脂が過度に低分子量になることによる粘度低下を防止して成形時のバリ発生等を抑制する観点から、好ましくは、500μモル/g以下、又は300μモル/g以下、又は135μモル/g以下、又は100μモル/g以下であってよい。
 ポリアミド系樹脂の、カルボキシル末端基に対するアミノ末端基比率([NH2]/[COOH])は、好ましくは、1.00超、又は1.01以上、又は1.05以上、又は1.10以上である。アミノ末端基比率上限には特に制限はないが、樹脂組成物の色調を良好に維持する観点からは、好ましくは、10000以下、又は1000以下、又は100以下、又は10以下であってよい。
 ポリアミド系樹脂の末端基濃度の調整方法としては、公知の方法を用いることができる。例えば、ポリアミドの重合時に所定の末端基濃度となるように、ジアミン化合物、モノアミン化合物、ジカルボン酸化合物、モノカルボン酸化合物、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル、モノアルコール等の末端基と反応する末端調整剤を重合液に添加する方法が挙げられる。
 ポリアミド系樹脂のアミノ末端基及びカルボキシル末端基の濃度は、1H-NMRにより、各末端基に対応する特性シグナルの積分値から求めることができる。具体的には、特開平7-228775号公報に記載された方法が推奨される。
 ポリアミド系樹脂は、濃硫酸中30℃の条件下で測定した固有粘度[η]が、0.6~2.0dL/gであることが好ましく、0.7~1.4dL/gであることがより好ましく、0.7~1.2dL/gであることが更に好ましく、0.7~1.0dL/gであることが特に好ましい。上記範囲の固有粘度を有するポリアミドを使用すると、樹脂組成物の射出成形時の金型内流動性を高め、成形片の外観を向上させるという利点が得られる。
 本開示において、「固有粘度」とは、一般的に極限粘度と呼ばれている粘度と同義であり、例えば、Polymer Process Engineering(Prentice-Hall,Inc 1994)の291ページ~294ページ等に記載される方法で測定できる。
 ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペートテレフタレート(PBAT)、ポリヒドロキシアルカン酸(PHA)、ポリ乳酸(PLA)、ポリアリレート(PAR)、ポリカーボネート(PC)等から選ばれる1種又は2種以上を用いることができる。ポリエステル系樹脂としては、より好ましくは、PET、PBS、PBSA、PBT、PENが挙げられ、更に好ましくは、PBS、PBSA、PBTが挙げられる。
 また、ポリエステル系樹脂は、重合時のモノマー比率や末端安定化剤の添加の有無や量によって、末端基を自由に変えることが可能であるが、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95であることがより好ましい。カルボキシル末端基比率下限は、より好ましくは0.35であり、さらにより好ましくは、0.40であり、最も好ましくは0.45である。また、カルボキシル末端基比率上限は、より好ましくは0.90であり、さらにより好ましくは、0.85であり、最も好ましくは0.80である。上記カルボキシル末端基比率は、セルロースの組成物中への分散性の観点から0.30以上とすることが望ましく、得られる組成物の色調の観点から0.95以下とすることが望ましい。
 ポリアセタール系樹脂としては、ホルムアルデヒドを原料とするホモポリアセタールと、トリオキサンを主モノマーとし、1,3-ジオキソランをコモノマー成分として含むコポリアセタールが一般的であり、両者とも使用可能であるが、加工時の熱安定性の観点から、コポリアセタールが好ましく使用できる。特に、コモノマー成分(例えば1,3-ジオキソラン)由来構造の量としては0.01~4モル%の範囲内がより好ましい。コモノマー成分由来構造の量の好ましい下限量は、0.05モル%であり、より好ましくは0.1モル%であり、さらにより好ましくは0.2モル%である。また好ましい上限量は、3.5モル%であり、さらに好ましくは3.0モル%であり、さらにより好ましくは2.5モル%、最も好ましくは2.3モル%である。
 押出加工や成形加工時の熱安定性の観点から、下限は上述の範囲内とすることが望ましく、機械的強度の観点より、上限は上述の範囲内とすることが望ましい。
 ポリマーとしては、例えばセルロースとの親和性の観点から、親水性基(例えば、水酸基、アミノ基及びカルボキシ基から選ばれる1種以上)を有するポリマーが特に好ましい。親水性基を有するポリマーの好適例は、酸変性ポリオレフィン系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、及びアクリル系樹脂からなる群から選択される1種以上である。中でもポリアミド系樹脂及びマレイン化ポリプロピレンが好ましい。
≪第2の成分≫
 第2の成分は、有機繊維及び/又はポリマーである。一態様において、第2の成分は、第1の成分と混合されることによって第1の成分中に分散し、樹脂組成物の物性(一態様において、引張伸度、曲げ弾性率、熱膨張係数、及び物性安定性からなる群から選択される1つ以上、好ましくはこれらの全て)を、第2の成分が存在しない場合よりも向上させることができる。樹脂組成物において、樹脂組成物全体100質量%に対する第2の成分の量、又は、第1の成分と第2の成分との合計100質量%に対する第2の成分の量は、それぞれ、好ましくは、0.1質量%以上、又は0.5質量%以上、又は1質量%以上、又は3質量%以上であり、好ましくは、30質量%以下、又は25質量%以下、又は20質量%以下、又は15質量%以下である。第2の成分の量が上記範囲である場合、高引張伸度、高曲げ弾性率、低熱膨張係数、及び/又は良好な物性安定性の観点から好ましい。
 以下、有機繊維及びポリマーの各々の好適例について説明する。
<有機繊維>
 有機繊維は、有機材料で構成された繊維である。有機繊維は、一態様においてポリマー繊維であり、一態様において水素結合形成性構造(例えば、OH構造及び/又はNH構造)を有する繊維であり、一態様において、天然繊維(例えば、セルロース繊維、セルロースナノクリスタル、キチン繊維、キトサン繊維、ウール等)、及び合成繊維(例えば、アラミド繊維、ナイロン繊維、アクリル繊維、ポリエステル繊維、ビニロン繊維、レーヨン繊維、ポリウレタン繊維等)からなる群から選択される1種以上である。本開示で、セルロース繊維とは、L/Dが30以上であるセルロースを意味し、セルロースナノクリスタルは、平均繊維径が1000nm以下、且つL/Dが30未満であるセルロースを意味する。水素結合形成性構造を有する有機繊維は、水素結合によって本質的に凝集し易い傾向があるところ、本開示の方法によれば、このような有機繊維であっても第1の成分中に良好に微分散され得る。
 樹脂組成物において、樹脂組成物全体100質量%に対する有機繊維の量は、好ましくは、0.1質量%以上、又は0.5質量%以上、又は1質量%以上、又は3質量%以上であり、好ましくは、30質量%以下、又は25質量%以下、又は20質量%以下、又は15質量%以下である。上記範囲の有機繊維量は、高引張伸度、高曲げ弾性率、低熱膨張係数、及び/又は良好な物性安定性の観点から好ましい。
[セルロース繊維]
 一態様において、有機繊維はセルロース繊維を含み又はセルロース繊維である。セルロース繊維の原料としては、天然セルロース繊維及び再生セルロース繊維が挙げられる。天然セルロース繊維としては、木材種(広葉樹又は針葉樹)から得られる木材パルプ、非木材種(竹、麻系繊維、バガス、ケナフ、リンター等)から得られる非木材パルプ、及びこれらの精製パルプ(精製リンター等)等が使用できる。非木材パルプとしては、コットンリンターパルプを含むコットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、ワラ由来パルプ等を使用できる。コットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、及びワラ由来パルプは各々、コットンリント、コットンリンター、麻系のアバカ(例えば、エクアドル産又はフィリピン産のもの)、ザイサル、バガス、ケナフ、竹、ワラ等の原料から、蒸解処理による脱リグニン等の精製工程、漂白工程等を経て得られる精製パルプを原料とするセルロース繊維を挙げることができる。
 一態様において、セルロース繊維はセルロースナノファイバーである。セルロースナノファイバーは、例えば、上述のパルプを100℃以上の熱水等で処理し、ヘミセルロース部分を加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミル、ディスクミル等の粉砕法により解繊して得ることができる。
 セルロースナノファイバーの数平均繊維径は、一態様において、2~1000nmであり、好ましくは4nm以上、又は5nm以上、又は10nm以上、又は15nm以上、又は20nm以上、又は50nm以上、又は100nm以上であり、好ましくは500nm以下、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は250nm以下、又は200nm以下である。
 セルロースナノファイバーの数平均繊維長/数平均繊維径比(L/D)は、一態様において、30以上、又は50以上、又は80以上、又は100以上であってよく、一態様において、5000以下、又は4000以下、又は3000以下であってよい。
 一態様において、本開示のセルロース繊維の数平均繊維径(D)、数平均繊維長(L)、及びL/D比は、走査型電子顕微鏡(SEM)を用いて以下の手順で測定される値である。セルロース繊維の水分散液をtert-ブタノールで置換し、0.001~0.1質量%まで希釈し、高剪断ホモジナイザー(例えばIKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数15,000rpm×3分間で分散させ、オスミウム蒸着したシリコン基板上にキャストし、風乾したものを測定サンプルとし、高分解能走査型電子顕微鏡(SEM)で計測して求める。具体的には、少なくとも100本の繊維状物質が観測されるように倍率が調整された観察視野にて、無作為に選んだ100本の繊維状物質の長さ(L)及び径(D)を計測し、比(L/D)を算出する。セルロース繊維について、長さ(L)の数平均値、径(D)の数平均値、及び比(L/D)の数平均値を算出する。
 なお、樹脂組成物中及び成形体中のセルロース繊維の長さ、径、及びL/D比は、ポリマー成分を溶解できる有機又は無機の溶媒にポリマー成分を溶解させ、セルロース繊維を分離し、前記溶媒で充分に洗浄した後、tert-ブタノールで置換し、0.001~0.1質量%分散液を調製し、高剪断ホモジナイザー(例えばIKA製、商品名「ウルトラタラックスT18」)で再分散したものを利用して、上記の方法で測定できる。
 セルロース繊維の結晶化度は、耐熱性、機械強度及び寸法安定性に優れる樹脂組成物を得る観点から、好ましくは、55%以上、又は60%以上、又は70%以上、又は80%以上である。結晶化度がこの範囲にあると、セルロース繊維自体の力学物性(耐熱性、強度、寸法安定性)が高いため、セルロース繊維をポリマーに分散した際に、樹脂組成物の耐熱性、強度、寸法安定性が高い傾向にある。結晶化度は高い方が好ましいが、生産上の観点から好ましい上限は99%である。
 ここでいう結晶化度は、セルロース繊維がセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10~30)からSegal法により、以下の式で求められる。
結晶化度(%)=([2θ/deg.=22.5の(200)面に起因する回折強度]-[2θ/deg.=18の非晶質に起因する回折強度])/[2θ/deg.=22.5の(200)面に起因する回折強度]×100
 また結晶化度は、セルロース繊維がセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式によって求められる。
結晶化度(%) =h1 /h0 ×100
 セルロースの結晶形としては、I型、II型、III型、IV型などが知られており、その中でも特にI型及びII型は汎用されており、III型、IV型は実験室スケールでは得られているものの工業スケールでは汎用されていない。本開示のセルロース繊維としては、構造上の可動性が比較的高く、当該セルロース繊維を樹脂に分散させることにより、線膨張係数がより低く、引っ張り、曲げ変形時の強度及び伸びがより優れた樹脂組成物が得られることから、セルロースI型結晶又はセルロースII型結晶を含有するセルロース繊維が好ましく、セルロースI型結晶を含有し、かつ結晶化度が55%以上のセルロース繊維がより好ましい。
 また、セルロース繊維の重合度は、好ましくは100以上、より好ましくは150以上であり、より好ましくは200以上、より好ましくは300以上、より好ましくは400以上であり、好ましくは3500以下、より好ましく3300以下、より好ましくは3200以下、より好ましくは3100以下、より好ましくは3000以下である。
 加工性と機械的特性発現との観点から、セルロース繊維の重合度を上述の範囲内とすることが望ましい。加工性の観点から、重合度は高すぎない方が好ましく、機械的特性発現の観点からは低すぎないことが望まれる。
 セルロース繊維の重合度は、「第十五改正日本薬局方解説書(廣川書店発行)」の確認試験(3)に記載の銅エチレンジアミン溶液による還元比粘度法に従って測定される平均重合度を意味する。
 一態様において、セルロース繊維の重量平均分子量(Mw)は100000以上であり、より好ましくは200000以上である。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)は6以下であり、好ましくは5.4以下である。重量平均分子量が大きいほどセルロース分子の末端基の数は少ないことを意味する。また、重量平均分子量と数平均分子量との比(Mw/Mn)は分子量分布の幅を表すものであることから、Mw/Mnが小さいほどセルロース分子の末端の数は少ないことを意味する。セルロース分子の末端は熱分解の起点となるため、セルロース分子の重量平均分子量が大きいだけでなく、重量平均分子量が大きいと同時に分子量分布の幅が狭い場合に、特に高耐熱性のセルロース繊維、及びセルロース繊維と樹脂とを含む樹脂組成物が得られる。セルロース繊維の重量平均分子量(Mw)は、セルロース原料の入手容易性の観点から、例えば600000以下、又は500000以下であってよい。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)はセルロース繊維の製造容易性の観点から、例えば1.5以上、又は2以上であってよい。Mwは、目的に応じたMwを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mw/Mnもまた、目的に応じたMw/Mnを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mwの制御、及びMw/Mnの制御の両者において、上記物理的処理としては、マイクロフリュイダイザー、ボールミル、ディスクミル等の乾式粉砕若しくは湿式粉砕、擂潰機、ホモミキサー、高圧ホモジナイザー、超音波装置等による衝撃、剪断、ずり、摩擦等の機械的な力を加える物理的処理を例示でき、上記化学的処理としては、蒸解、漂白、酸処理、再生セルロース化等を例示できる。
 ここでいうセルロース繊維の重量平均分子量及び数平均分子量とは、セルロース繊維を塩化リチウムが添加されたN,N-ジメチルアセトアミドに溶解させたうえで、N,N-ジメチルアセトアミドを溶媒としてゲルパーミエーションクロマトグラフィによって求めた値である。
 セルロース繊維の重合度(すなわち平均重合度)又は分子量を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロース内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロース、リグニン等の不純物も取り除かれるため、繊維質内部が多孔質化する。それにより、後記の混練工程中等の、セルロースに機械的せん断力を与える工程において、セルロースが機械処理を受けやすくなり、セルロースが微細化されやすくなる。
 セルロース繊維が含み得るアルカリ可溶多糖類は、ヘミセルロースのほか、β-セルロース及びγ-セルロースも包含する。アルカリ可溶多糖類とは、植物(例えば木材)を溶媒抽出及び塩素処理して得られるホロセルロースのうちのアルカリ可溶部として得られる成分(すなわちホロセルロースからα-セルロースを除いた成分)として当業者に理解される。アルカリ可溶多糖類は、水酸基を含む多糖であり耐熱性が悪く、熱がかかった場合に分解すること、熱エージング時に黄変を引き起こすこと、セルロース繊維の強度低下の原因になること等の不都合を招来し得ることから、セルロース繊維中のアルカリ可溶多糖類含有量は少ない方が好ましい。
 一態様において、セルロース繊維中のアルカリ可溶多糖類平均含有率は、セルロース繊維の良好な分散性を得る観点から、セルロース繊維100質量%に対して、好ましくは、20質量%以下、又は18質量%以下、又は15質量%以下、又は12質量%以下、又は11質量%以下、又は8質量%以下である。上記含有率は、セルロース繊維の製造容易性の観点から、1質量%以上、又は2質量%以上、又は3質量%以上、又は6質量%以上であってもよい。一態様において、セルロース原料中のアルカリ可溶多糖類平均含有率は、13質量%以下、又は12質量%以下、又は11質量%以下、又は8質量%以下であってよく、最も好ましくは0質量%であるが、セルロース原料の入手容易性の観点から、例えば3質量%以上、又は6質量%以上であってもよい。
 アルカリ可溶多糖類平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載の手法より求めることができ、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求められる。なおこの方法は当業界においてヘミセルロース量の測定方法として理解されている。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をアルカリ可溶多糖類平均含有率とする。
 一態様において、セルロース繊維中の酸不溶成分平均含有率は、セルロース繊維の耐熱性低下及びそれに伴う変色を回避する観点から、セルロース繊維100質量%に対して、好ましくは、10質量%以下、又は5質量%以下、又は3質量%以下である。上記含有率は、セルロース繊維の製造容易性の観点から、0.1質量%以上、又は0.2質量%以上、又は0.3質量%以上であってもよい。
 酸不溶成分平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載のクラーソン法を用いた酸不溶成分の定量として行う。なおこの方法は当業界においてリグニン量の測定方法として理解されている。硫酸溶液中でサンプルを撹拌してセルロース及びヘミセルロース等を溶解させた後、ガラスファイバーろ紙で濾過し、得られた残渣が酸不溶成分に該当する。この酸不溶成分重量より酸不溶成分含有率を算出し、そして、3サンプルについて算出した酸不溶成分含有率の数平均を酸不溶成分平均含有率とする。
 セルロース繊維は、化学処理(例えば酸化、又は修飾化剤を用いた化学修飾)がされていてもよい。一例として、Cellulose(1998)5,153-164に示されているような2,2,6,6-テトラメチルピペリジン-1-オキシルラジカルによってセルロースを酸化させた後に、洗浄、機械解繊を経ることにより得られる、微細化セルロース繊維を使用してもよい。
[セルロース繊維の疎水化]
 セルロース繊維は疎水化剤により疎水化されたセルロース繊維(本開示で、化学修飾セルロース繊維ともいう。)であってもよい。疎水化することにより、セルロース繊維同士の水素結合が弱められ、微分散に寄与するようになるとともに、セルロース繊維として耐熱性が向上し、樹脂との混練による劣化を抑制することが可能となり、セルロース繊維が物性欠陥の起点となりにくくなる効果がある。疎水化剤(本開示で、修飾化剤ともいう。)としては、セルロースの水酸基と反応する化合物を使用でき、エステル化剤、エーテル化剤、及びシリル化剤が挙げられる。特にエステル化剤が好ましい。好ましい態様において、疎水化は、エステル化剤を用いたアシル化である。エステル化剤としては、酸ハロゲン化物、酸無水物、及びカルボン酸ビニルエステルが好ましい。特に好ましい態様において、疎水化はアセチル化である。これらエステル化反応剤の中でも、特に、無水酢酸、無水プロピオン酸、無水酪酸、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、及び酢酸からなる群から選択された少なくとも一種、中でも無水酢酸及び酢酸ビニルが、反応効率の観点から好ましい。
 疎水化セルロースナノファイバーを得る場合、天然セルロース原料を微細化し繊維径を小さくする方法としては、特に制限はないが、解繊の処理条件(剪断場を与える方法、剪断場の大きさ等)をより高効率にすることが好ましい。特に、非プロトン性溶媒を含む解繊用溶液を、セルロース純度が85質量%以上のセルロース原料に含浸させることで、セルロースの膨潤が短時間で起こり、わずかな攪拌と剪断エネルギーを与えるだけでセルロースが微細化していく。そして、解繊直後にセルロース修飾化剤を加えることにより、疎水化セルロースナノファイバーを得ることができる。この方法が、生成効率及び精製効率(すなわち疎水化セルロースナノファイバーの高セルロース純度化)、並びに樹脂組成物の物理特性の観点から好ましい。
 非プロトン性溶媒としては、例えば、アルキルスルホキシド類、アルキルアミド類、ピロリドン類などが挙げられ、単独で又は二種以上組み合わせて使用できる。これらの非プロトン性溶媒のうち、DMSO(29.8)、DMF(26.6)、DMAc(27.8)、NMP(27.3)(括弧内の数字はドナー数)など、特に、DMSOを用いれば、熱分解開始温度が高い疎水化セルロースナノファイバーをより効率的に製造することができる。この作用機序は必ずしも明らかではないが、非プロトン性溶媒中での繊維原料の均質なミクロ膨潤に起因するものと推察される。
 セルロース繊維の疎水化度(修飾度)は水酸基の平均置換度(セルロースの基本構成単位であるグルコース当たりの置換された水酸基の平均数、DSともいう)として表される。一態様において、化学修飾セルロース繊維のDSは0.01以上2.0以下が好ましい。DSが0.01以上であれば、熱分解開始温度が高い化学修飾セルロース繊維を含む樹脂組成物を得ることができる。一方、2.0以下であると、化学修飾セルロース繊維中に未修飾のセルロース骨格が残存するため、セルロース繊維由来の高い引張強度及び寸法安定性と化学修飾由来の高い熱分解開始温度を兼ね備えた化学修飾セルロース繊維を含む樹脂組成物を得ることができる。DSはより好ましくは0.05以上、さらに好ましくは0.1以上、特に好ましくは0.2以上、最も好ましくは0.3以上であって、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.2以下、最も好ましくは1.0以下である。
 疎水化セルロース繊維の反射型赤外吸収スペクトルにおいて、疎水化修飾基の種類により吸収バンドのピーク位置は変化する。ピーク位置の変化から、そのピークが何の吸収バンドに基づくものかは確定でき、修飾基の同定ができる。また、修飾基由来のピークとセルロース骨格由来のピークのピーク強度比から修飾化率を算出することができる。
 修飾基がアシル基の場合、アシル置換度(DS)は、エステル化セルロース繊維の反射型赤外吸収スペクトルから算出できる。アシル基に基づくC=Oの吸収バンドのピークは1730cm-1に出現し、セルロース骨格鎖に基づくC-Oの吸収バンドのピークは1030cm-1に出現する。エステル化セルロースのDSは、エステル化セルロースの固体NMR測定から得られるDSと、セルロース骨格鎖C-Oの吸収バンドのピーク強度に対するアシル基に基づくC=Oの吸収バンドのピーク強度の比率で定義される修飾化率(IRインデックス1030)との相関グラフを作製し、相関グラフから算出された検量線
置換度DS = 4.13 × IRインデックス(1030)
を使用することで求めることができる。
 なお、上記反射型赤外吸収スペクトルで適切な測定が困難である場合には、固体NMRを用い、50ppmから110ppmの範囲に現れるセルロースのピラノース環由来の炭素C1-C6に帰属されるシグナルの合計面積強度(Inp)に対する修飾基由来の1つの炭素原子に帰属されるシグナルの面積強度(Inf)より下記式で求めることができる。
DS=(Inf)×6/(Inp)
 たとえば、修飾基がアセチル基の場合、-CH3に帰属される23ppmのシグナルを用いれば良い。
[セルロースナノクリスタル]
 セルロースナノクリスタルは、パルプ等を原料とし、当該原料を裁断後、塩酸、硫酸等の酸中でセルロースの非晶部分を溶解した後に残留する結晶質のセルロースであってよい。セルロースナノクリスタルの長さ/径比率(L/D比)は、一態様において30未満である。セルロースナノクリスタルの平均径は、一態様において1000nm以下であり、好ましくは、500nm以下、又は200nm以下であり、好ましくは、10nm以上、又は20nm以上、又は30nm以上である。上記L/D比及び平均径は、セルロース繊維の平均繊維径と同様の方法で測定される値である。
 セルロースナノクリスタルのL/Dは、一態様において30未満であり、好ましくは、25以下、又は20以下、又は15以下、又は10以下、又は5以下である。下限は特に限定されないが、1を超えていればよい。セルロースナノクリスタルは、樹脂組成物の引張伸度を向上させ得る。一態様において、セルロースウィスカーは、そのサイズを除いて、セルロース繊維について前述したのと同様の特性(未変性又は変性の態様等)を有してよい。
[キチン繊維、キトサン繊維]
 キチン繊維は、甲殻類等の甲羅を原料とし、当該原料を分離、精製することで得られるアセチルグルコサミンの重合体、すなわちキチンを主成分とする繊維であってよい。キトサン繊維は、キチン繊維を脱アセチル化することで得られる繊維で、グルコサミンの重合体、すなわちキトサンを主成分とする繊維であってよい。キチン繊維及びキトサン繊維の平均径は、それぞれ、一態様において2~1000nmであり、好ましくは、500nm以下、又は200nm以下であり、好ましくは、10nm以上、又は20nm以上、又は30nm以上である。
 キチン繊維及びキトサン繊維のL/Dは、それぞれ、一態様において30以上であり、好ましくは、50以上、又は100以上であり、一態様において、100000以下、又は50000以下、又は10000以下、又は5000以下であってよい。
[アラミド繊維]
 アラミド繊維は、芳香族ポリアミドを主成分とする合成繊維であり、芳香族の構造によってパラ系アラミド繊維とメタ系アラミド繊維に大別される。アラミド繊維の平均径は、一態様において2~1000nmであり、好ましくは、500nm以下、又は200nm以下であり、好ましくは、10nm以上、又は20nm以上、又は30nm以上である。
 アラミド繊維のL/Dは、一態様において30以上であり、好ましくは、50以上、又は100以上であり、一態様において、100000以下、又は50000以下、又は10000以下、又は5000以下であってよい。
 セルロース繊維以外の有機繊維の繊維長、繊維径及びL/Dは、セルロース繊維と同様の方法で測定される。
<ポリマー>
 第2の成分は、一態様においてポリマーを含む。一態様において、第1の成分中のポリマーと第2の成分中のポリマーとは、これらを構成する少なくとも1種のポリマーの分子構造及び/又は分子量が互いに異なっている。第2の成分としてのポリマーは、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリカーボネート系樹脂、ポリメチルメタクリレート系樹脂、ポリウレタン系樹脂、フッ素系樹脂、ポリアクリロニトリル系樹脂、ポリブテン系樹脂、ポリイミド系樹脂、ポリアリレート系樹脂、セルロース系樹脂、ポリフェニレンエーテル系樹脂、エラストマー、及びこれらの変性物(例えば無水マレイン酸等の変性物)からなる群から選択される1種以上を含み、又はこれらからなる群から選択される1種以上であってよい。
[ポリフェニレンエーテル]
 ポリフェニレンエーテルは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R1、R2、R3、及びR4は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~7のアルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基又は少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群から選択される1価の基であり、nは20以上の整数である。)
で表される構造を有する。第2の成分としてポリフェニレンエーテルを用いることは、樹脂組成物の曲げ特性等の点で有利である。
 上記式(1)中、R1、R2、R3、及びR4で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子、及び臭素原子が好ましい。
 上記式(1)中、R1、R2、R3、及びR4で示される「アルキル基」は、炭素数が好ましくは1~6、より好ましくは1~3の、直鎖状又は分岐鎖状のアルキル基を示すものとし、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等が挙げられる。メチル及びエチルが好ましく、メチルがより好ましい。
 上記式(1)中、R1、R2、R3、及びR4で示されるアルキル基は、置換可能な位置にて、1又は2以上の置換基で置換されていてもよい。このような置換基としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、炭素数1~6のアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル)、アリール基(例えば、フェニル、ナフチル)、アルケニル基(例えば、エテニル、1-プロペニル、2-プロペニル)、アルキニル基(例えば、エチニル、1-プロピニル、2-プロピニル)、アラルキル基(例えば、ベンジル、フェネチル)、アルコキシ基(例えば、メトキシ、エトキシ)等が挙げられる。
 上記式(1)中のnは、20以上、又は100以上、又は200以上であってよく、2000以下、又は1000以下、又は400以下であってよい。
 ポリフェニレンエーテルとしては、特に限定されず、公知のものを用いてもよい。例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等が挙げられ、更に、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール又は2-メチル-6-ブチルフェノール)等のポリフェニレンエーテル共重合体も用いることができる。上記の中でも、好ましくは、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体であり、より好ましくは、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)である。
 これらのポリフェニレンエーテルは、単独で用いてよく、2種以上併用してもよい。
 ポリフェニレンエーテルの極限粘度[η]は、高剛性の樹脂組成物を得る観点から、好ましくは、0.1dl/g以上、又は0.2dl/g以上、又は0.3dl/g以上であり、樹脂組成物に良好な流動性を付与する観点から、好ましくは、1.0dl/g以下、又は0.7dl/g以下、又は0.6dl/g以下、又は0.5dl/g以下である。上記極限粘度は25℃のクロロホルム中で測定される値である。
 一態様において、ポリフェニレンエーテルは、その少なくとも一部が酸変性されているものでもよい。酸変性は、ポリフェニレンエーテルに変性剤(例えば、α,β-不飽和カルボン酸及びその誘導体等)を反応させることで実現できる。
 α,β-不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、フラン酸、ペンテン酸、ビニル酢酸、アンゲリカ酸等の一塩基酸、マレイン酸、クロロマレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、エンドシス-ビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボン酸(ナジック酸)等)の二塩基酸、クエン酸、アコニット酸等の三塩基酸、等を例示できる。
 α,β-不飽和カルボン酸の誘導体としては、上記のようなα,β-不飽和カルボン酸の酸ハライド、アミド、イミド、酸無水物、エステル等を例示できる。例えば、塩化マレニル、アクリルアミド、マレイミド、N-フェニルマレイミド、N-メチルマレイミド、N-エチルマレイミド、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水ナジック酸、無水アコニック酸、(メタ)アクリル酸メチル、マレイン酸モノメチル、マレイン酸ジメチル、イタコン酸ジエチル、シトラコン酸ジブチル、グリシジル(メタ)アクリレート、ジグリシジルマレエート等を例示できる。中でも好ましい変性剤の例としては、マレイン酸、クエン酸、イタコン酸、無水イタコン酸、無水マレイン酸が挙げられ、さらに好ましくは、クエン酸、無水マレイン酸である。
 ポリフェニレンエーテルの酸変性度は、第2の成分を良好に微分散させる観点から、好ましくは、0.01%以上、又は0.1%以上、又は0.2%以上、又は0.25%以上であり、ポリフェニレンエーテルの使用による利点を良好に得る観点から、好ましくは、10%以下、又は5%以下、又は2%以下、又は1%以下、又は0.7%以下、又は0.6%以下である。本開示のポリフェニレンエーテルは、酸変性度が異なる2種以上のポリマーの混合物であってもよい。この場合、樹脂組成物中のポリフェニレンエーテル全体での酸変性度が上記範囲であることが好ましい。上記酸変性度は、赤外分光測定から算出される付加率である。酸性官能基が無水マレイン酸に由来する場合、ポリフェニレンエーテルと無水マレイン酸の混合物を用いて、マレイン酸由来の1790cm-1のピークについてあらかじめ検量線を作成した後、無水マレイン酸変性ポリフェニレンエーテルの1790cm-1のピーク強度から付加率を計算する。
 ポリフェニレンエーテルの酸変性方法としては、流動状態(例えば、溶融、又は溶媒への分散若しくは溶解により)のポリフェニレンエーテルに変性剤を反応させる方法、変性剤の共存下、ポリフェニレンエーテルのガラス転移点以下の温度で、粉体状のポリフェニレンエーテルに変性剤を反応させる方法などを例示できる。流動状態のポリフェニレンエーテルに変性剤を反応させる方法の例としては、ポリフェニレンエーテルと変性剤とを、ロールミル、バンバリーミキサー、押出機等で、250℃~350℃で5秒間~30分間溶融混練する方法、ポリフェニレンエーテルを有機溶媒(例えば、トルエン、キシレン、デカリン、テトラリン等)に溶解させた後、変性剤を添加して加熱する方法を例示できる。また、粉体状のポリフェニレンエーテルに変性剤を反応させる方法の例としては、高速攪拌可能な攪拌装置にポリフェニレンエーテルと変性剤を所定量投入し、高速攪拌させたそのせん断発熱、及び/又はジャケットからの伝熱により、内容物温度を160℃~200℃の状態に、少なくとも30秒以上維持する方法などが挙げられる。
 反応は、ラジカル開始剤の存在下で行っても良い。ラジカル開始剤としては、有機過酸化物(ベンゾイルパーオキシド、ジクミルパーオキシド、ジ-tert-ブチルパーオキシド、tert-ブチルクミルパーオキシド、クメンハイドロパーオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキシン-3等)、アゾ化合物(アゾビスイソブチルニトリル、ジメチルアゾイソブチレート等)が挙げられる。ラジカル開始剤の使用量は、ポリフェニレンエーテル100質量部に対して、例えば0.01質量部~10質量部であってよい。
 一態様において、ポリフェニレンエーテルは、酸性官能基を有するポリフェニレンエーテルと酸性官能基を有さないポリフェニレンエーテルとの混合物であってよい。酸性官能基を有するポリフェニレンエーテルと酸性官能基を有さないポリフェニレンエーテルとの混合割合は、両者の合計を100質量%としたとき、酸性官能基を有するポリフェニレンエーテルによる利点を良好に得る観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらにより好ましくは30質量%以上、最も好ましくは40質量%以上である。上限は特に限定されず、実質的にすべてのポリフェニレンエーテルが酸性官能基を有するポリフェニレンエーテルであってもよいが、溶融時の流動性に課題を生じさせない観点から、80質量%以下が望ましい。
 第2の成分としてのポリマーは、一態様においてエラストマーである。本開示で、エラストマーとは、室温(23℃)において弾性体である物質(具体的には天然又は合成の重合体物質)である。エラストマーは、樹脂組成物の靭性、及び伸び(特に低温環境下での伸び)の向上の点で有利である。
 エラストマーの具体例としては、天然ゴム、共役ジエン化合物重合体、芳香族化合物-共役ジエン共重合体、芳香族化合物-共役ジエン共重合体の水素添加物、ポリオレフィン、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、コアシェル構造を有するエラストマー等が挙げられる。これらの中でも、後述の酸性官能基の変性反応の容易性の観点から、芳香族化合物-共役ジエン共重合体及びその水素添加物、ポリオレフィン、並びに、コアシェル構造を有するエラストマーが好ましい。上記芳香族化合物-共役ジエン共重合体及びその水素添加物としては、芳香族化合物-共役ジエンブロック共重合体及びその水素添加物がより好ましく、上記ポリオレフィンとしては、エチレンとα-オレフィンとの共重合体がより好ましい。
 一態様において、エラストマーは、エチレン-αオレフィン共重合体、芳香族ビニル化合物と共役ジエン化合物とのブロック共重合体、及び芳香族ビニル化合物と共役ジエン化合物とのブロック共重合体の水素添加物からなる群より選ばれる1種以上である。
 本開示で、芳香族化合物-共役ジエンブロック共重合体とは、芳香族ビニル化合物を主体とする重合体ブロック(A)と共役ジエン化合物を主体とする重合体ブロック(B)から構成されるブロック共重合体である。各ブロックの結合形式がAB型、ABA型、ABAB型のいずれかであるブロック共重合体が、衝撃強度発現の観点から好ましく、より好ましくは、ABA型、又はABAB型である。
 また、ブロック共重合体中の芳香族ビニル化合物ユニットと共役ジエン化合物ユニットとの質量比は、10/90~70/30であることが望ましい。より好ましくは、15/85~55/45であり、最も好ましくは20/80~45/55である。更に、これらは芳香族ビニル化合物と共役ジエン化合物との質量比が異なるものを2種以上ブレンドしても構わない。芳香族ビニル化合物の具体例としてはスチレン、α-メチルスチレン、ビニルトルエン等が挙げられ、これらから選ばれた1種以上の化合物が用いられるが、中でもスチレンが特に好ましい。
 共役ジエン化合物の具体例としては、ブタジエン、イソプレン、ピペリレン、1,3-ペンタジエン等が挙げられ、これらから選ばれた1種以上の化合物が用いられるが、中でもブタジエン、イソプレン及びこれらの組み合わせが好ましく、特に、ブタジエンが好ましい。ブロック共重合体の共役ジエン化合物としてブタジエンを使用する場合は、ポリブタジエンブロック部分のミクロ構造としては、ソフトセグメントの結晶化抑制の観点から、1,2-ビニル含量、又は1,2-ビニル含量と3,4-ビニル含量との合計量が、モル基準で、5~80%が好ましく、さらには10~50%が好ましく、15~40%が最も好ましい。
 芳香族化合物-共役ジエンブロック共重合体とは、芳香族ビニル化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックから構成されるブロック共重合体であり、実質的に水素添加処理を施していないブロック共重合体をいう。芳香族ビニル化合物と共役ジエン化合物のブロック共重合体の水素添加物とは、上述の芳香族ビニル化合物と共役ジエン化合物のブロック共重合体を水素添加処理することにより、ジエン化合物を主体とする重合体ブロックの脂肪族二重結合を0%超~100%の範囲で制御したものをいう。該ブロック共重合体の水素添加物の水素添加率は、加工時の熱劣化抑制の観点から、好ましくは50%以上であり、より好ましくは80%以上、最も好ましくは98%以上であり、低温靭性の観点からは、好ましくは50%以下であり、より好ましくは20%以下、最も好ましくは0%(すなわち芳香族ビニル化合物と共役ジエン化合物のブロック共重合体)である。
 また、芳香族ビニル化合物と共役ジエン化合物のブロック共重合体及びその水素添加物のそれぞれの分子量としては、衝撃強度と流動性の両立の観点から、数平均分子量(Mn)が、10,000~500,000のものが好ましく、40,000~250,000のものが最も好ましい。本開示で、数平均分子量とは、特記がない限り、ゲルパーミエーションクロマトグラフィ装置で、クロロホルムを溶媒とし、40℃の測定温度で、ポリスチレンスタンダードで換算して測定した値である。
 これら芳香族ビニル化合物-共役ジエン化合物のブロック共重合体は、結合形式の異なるもの、分子量の異なるもの、芳香族ビニル化合物種の異なるもの、共役ジエン化合物種の異なるもの、1,2-ビニル含量又は1,2-ビニル含量と3,4-ビニル含量との合計量の異なるもの、芳香族ビニル化合物成分含有量の異なるもの、水素添加率の異なるもの等を2種以上を混合して用いても構わない。水素添加率が異なるものの混合物における、当該混合物の好ましい水素添加率は、上述の通りである。
 また、ポリオレフィンとしては、耐衝撃性発現の観点から、エチレン-α-オレフィン共重合体が好適に使用可能である。エチレン単位と共重合できるモノマーとしては、プロピレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、又はエイコセン-1、イソブチレンなどの脂肪族置換ビニルモノマー、及び、スチレン、置換スチレンなどの芳香族系ビニルモノマー、酢酸ビニル、アクリル酸エステル、メタアクリル酸エステル、グリシジルアクリル酸エステル、グリシジルメタアクリル酸エステル、ヒドロキシエチルメタアクリル酸エステルなどのエステル系ビニルモノマー、アクリルアミド、アリルアミン、ビニル-p-アミノベンゼン、アクリロニトリルなどの窒素含有ビニルモノマー、ブタジエン、シクロペンタジエン、1,4-ヘキサジエン、イソプレンなどのジエンなどを挙げることができる。
 好ましくはエチレンと炭素数3~20のα-オレフィン1種以上とのコポリマーであり、更に好ましくはエチレンと炭素数3~16のα-オレフィン1種以上とのコポリマーであり、最も好ましくはエチレンと炭素数3~12のα-オレフィン1種以上とのコポリマーである。また、エチレン-α-オレフィン共重合体の分子量としては、耐衝撃性発現の観点から、ゲルパーミエーションクロマトグラフィ測定装置で、1,2,4-トリクロロベンゼンを溶媒とし、140℃、ポリスチレンスタンダードで測定した数平均分子量(Mn)が10,000以上であることが好ましく、より好ましくは10,000~100,000であり、更に好ましくは20,000~60,000である。また、分子量分布(重量平均分子量/数平均分子量:Mw/Mn)は、流動性と耐衝撃性両立の観点から、3以下が好ましく、さらには1.8~2.7がより好ましい。
 また、エチレン-α-オレフィン共重合体の好ましいエチレン単位の含有率は、加工時の取り扱い性の観点から、エチレン-α-オレフィン共重合体全量に対し30~95質量%である。
 これら好ましいエチレン-α-オレフィン共重合体は、例えば、特公平4-12283号公報、特開昭60-35006号公報、特開昭60-35007号公報、特開昭60-35008号公報、特開平5-155930号公報、特開平3-163088号公報、米国特許第5272236号明細書等に記載されている製造方法で製造可能である。
 本開示で、コアシェル構造を有するエラストマーとしては、粒子状のゴムであるコアと、当該コアの外部に形成された、ガラス質のグラフト層であるシェルとを持つコア-シェル型のエラストマーが挙げられる。コアとしてのゴムの成分としては、ブタジエン系ゴム、アクリル系ゴム、シリコーン・アクリル複合系ゴム等が好適に使用可能である。また、シェルとしては、スチレン樹脂、アクリロニトリル-スチレン共重合体、アクリル樹脂等のガラス状高分子が、好適である。例えば、第1の成分がポリアミドを含む場合には、ポリアミドとの相溶性の観点から、ブタジエンゴムのコアと、アクリル系樹脂のシェルとを有するコアシェル構造を有するエラストマーが好適に使用できる。
 一態様においては、エラストマーの少なくとも一部が酸性官能基を有している。本開示で、エラストマーが酸性官能基を有しているとは、エラストマーの分子骨格中に、酸性官能基が化学結合を介して付加していることを意味する。また本開示で、酸性官能基とは、塩基性官能基などと反応可能な官能基を意味し、具体例としては、ヒドロキシル基、カルボキシル基、カルボキシレート基、スルホ基、酸無水物基等が挙げられる。
 エラストマー中の酸性官能基の付加量は、酸性官能基を有する第2のポリマー又は酸性官能基を有するポリフェニレンエーテルとの相溶性の観点から、エラストマー100質量%基準で、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。なお、酸性官能基の数は、あらかじめ酸性物質を混合した検量線用サンプルを赤外吸収スペクトル測定装置により測定し、酸の特性吸収帯を用いて作成しておいた検量線を元に、当該試料を測定することで得られる値である。
 酸性官能基を有するエラストマーとしては、アクリル酸等を共重合成分として用いて形成した層をシェルとして有するコアシェル構造を有するエラストマー、アクリル酸等をモノマーとして含むエチレン-αオレフィン共重合体、ポリオレフィン、芳香族化合物-共役ジエン共重合体、又は芳香族化合物-共役ジエン共重合体水素添加物に、過酸化物の存在下又は非存在下で、α,β-不飽和ジカルボン酸又はその誘導体をグラフトさせた変性物であるエラストマー等が挙げられる。
 好ましい態様において、エラストマーは、酸無水物変性されたエラストマーである。
 これらの中では、ポリオレフィン、芳香族化合物-共役ジエン共重合体、又は芳香族化合物-共役ジエン共重合体水素添加物に、過酸化物の存在下又は非存在下で、α,β-不飽和ジカルボン酸又はその誘導体をグラフトさせた変性物がより好ましく、中でも特にエチレン-α-オレフィンの共重合体、又は芳香族化合物-共役ジエンブロック共重合体水素添加物に、過酸化物の存在下又は非存在下で、α,β-不飽和ジカルボン酸及びその誘導体をグラフトさせた変性物が特に好ましい。
 α,β-不飽和ジカルボン酸及びその誘導体の具体例としては、マレイン酸、フマル酸、無水マレイン酸、及び無水フマル酸が挙げられ、これらの中で無水マレイン酸が特に好ましい。
 一態様において、エラストマーは、酸性官能基を有するエラストマーと酸性官能基を有さないエラストマーとの混合物であってよい。酸性官能基を有するエラストマーと酸性官能基を有さないエラストマーとの混合割合は、両者の合計を100質量%としたとき、酸性官能基を有するエラストマーが、樹脂組成物の高靭性及び物性安定性を良好に維持する観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらにより好ましくは30質量%以上、最も好ましくは40質量%以上である。上限は特に限定されず、実質的にすべてのエラストマーが酸性官能基を有するエラストマーであってもよいが、流動性に課題を生じさせない観点から、80質量%以下が望ましい。
 第2の成分がポリマーを含み又はポリマーである場合、当該ポリマーは、樹脂組成物中で粒子状の分散相(分散粒子)を形成してよい。この場合、分散粒子径は、数平均粒子径として、好ましくは3μm以下、より好ましくは2μm以下、最も好ましくは1μm以下である。下限は、特に限定されないが、例えば0.01μmである。高靭性及び物性安定性の観点から、上述の範囲内とすることが好ましい。
 樹脂組成物において、樹脂組成物全体100質量%に対する、第2の成分としてのポリマーの量は、好ましくは、0.1質量%以上、又は0.5質量%以上、又は1質量%以上、又は3質量%以上であり、好ましくは、30質量%以下、又は25質量%以下、又は20質量%以下、又は15質量%以下である。当該ポリマーの量が上記範囲である場合、高引張伸度、高曲げ弾性率、低熱膨張係数、及び/又は良好な物性安定性の観点から好ましい。
≪追加の成分≫
 態様A~Cに係る樹脂組成物は、その性能を向上させるために、必要に応じて追加の成分をさらに含んでも良い。追加の成分としては、分散剤;有機繊維以外のフィラー成分;相溶化剤;可塑剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;ゼオライト、セラミックス、タルク、シリカ、金属酸化物、金属粉末等の無機化合物;着色剤;香料;顔料;流動調整剤;レベリング剤;導電剤;酸化防止剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤等が挙げられる。任意の追加の成分の樹脂組成物中の含有割合は、本発明の所望の効果が損なわれない範囲で適宜選択されるが、例えば0.01~50質量%、又は0.1~30質量%であってよい。
 分散剤としては、第2の成分と反応又は相互作用し得る化合物が好ましい。例えば、第2の成分が水素結合形成性構造(例えば水酸基等)を有する場合、分散剤としては、当該水素結合形成性構造と反応又は水素結合し得る化合物が好ましい。分散剤の好適例は、セルロース誘導体、ポリアルキレンオキシド、アミド及びアミンからなる群から選択される1種以上である。中でも、第2の成分がセルロースを含む場合、セルロース誘導体は、セルロース系物質であることから当該セルロースとの親和性が高い一方で、熱可塑性樹脂でもあることから、樹脂組成物中でのセルロースの分散安定性向上効果が高く好ましい。分散剤としては、水より高い沸点を有するものが好ましい。なお、水よりも高い沸点とは、水の蒸気圧曲線における各圧力における沸点(例えば、1気圧下では100℃)よりも高い沸点を指す。
 樹脂組成物中、第2の成分100質量部に対する分散剤の量は、第2の成分の良好な分散、及び、第2の成分が有機繊維を含む場合の繊維同士のネットワーク形成の観点から、好ましくは、1質量部以上、又は5質量部以上、又は10質量部以上、又は20質量部以上であり、樹脂組成物の性能のばらつき低減の観点から、好ましくは、500質量部以下、又は300質量部以下、又は200質量部以下である。
≪樹脂組成物の特性≫
 態様A~Cに係る方法で得られる樹脂組成物は、以下の特性を有し得る。
<樹脂組成物中の有機繊維の平均繊維径及びL/D>
 一態様において、樹脂組成物中の有機繊維の平均繊維径は、1000nm以下、又は500nm以下、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は250nm以下、又は200nm以下、又は150nm以下、又は100nm以下であってよく、2nm以上、又は4nm以上、又は5nm以上、又は10nm以上、又は15nm以上、又は20nm以上、又は30nm以上、又は40nm以上、又は50nm以上、又は100nm以上であってよい。
 樹脂組成物中の有機繊維の平均繊維長/平均繊維径比(L/D)は、一態様において、30以上、又は50以上、又は80以上、又は100以上であってよく、一態様において、5000以下、又は4000以下、又は3000以下であってよい。
<チキソトロピー指数>
 態様A~Cに係る方法で得られる樹脂組成物においては、第2の成分が均一に分散していることができる。樹脂組成物のチキソトロピー指数は、第2の成分の分散均一性の指標であり、分散均一性が高いとチキソトロピー指数は大きくなる。この現象は、第2の成分が有機繊維、特にセルロース繊維を含む場合に顕著であり得る。樹脂組成物のチキソトロピー指数は、第2の成分の分散均一性が良好である点で、好ましくは、2以上、又は3以上、又は4以上であり、樹脂組成物の製造容易性の観点から、好ましくは、10以下、又は9以下、又は8以下である。なお上記チキソトロピー指数は、動的粘弾性測定装置を用い、樹脂組成物に含まれる熱可塑性樹脂の融点(熱可塑性樹脂が複数種の場合は最も高温側の融点)+25℃において、剪断速度10秒-1での粘度に対する剪断速度1秒-1での粘度の比として求められる値である。
<引張伸度>
 一態様において、ISO527-1に準拠して測定される樹脂組成物の引張伸度は、2%以上、又は3%以上、又は5%以上であってよく、樹脂組成物の製造容易性の観点から、500%以下、又は300%以下、又は100%以下であってよい。
<曲げ弾性率>
 一態様において、ISO178に準拠して測定される樹脂組成物の曲げ弾性率は、1GPa以上、又は2GPa以上、又は3GPa以上であってよく、樹脂組成物の製造容易性の観点から、20GPa以下、又は15GPa以下、又は10GPa以下であってよい。
<引張強度>
 一態様において、ISO527-1に準拠して測定される樹脂組成物の引張強度は、10MPa以上、又は20MPa以上、又は50MPa以上であってよく、樹脂組成物の製造容易性の観点から、300MPa以下、又は250MPa以下、又は150MPa以下であってよい。
<線熱膨張係数>
 一態様において、ISO11359-2に準拠して熱機械分析法(TMA)で測定される樹脂組成物の線熱膨張係数は、温度範囲20℃~100℃において、140ppm/K以下、又は100ppm/K以下、又は70ppm/K以下、又は60ppm/K以下、又は50ppm/K以下、又は45ppm/K以下、又は40ppm/K以下、又は35ppm/K以下であってよく、樹脂組成物の製造容易性の観点から、5ppm/K以上、又は10ppm/K以上であってよい。
≪樹脂組成物の用途≫
 態様A~Cに係る樹脂組成物は、鋼板、繊維強化プラスチック(例えば炭素繊維強化プラスチック、ガラス繊維強化プラスチック等)、無機フィラーを含む樹脂コンポジット、等の代替品として有用である。樹脂組成物の好適な用途としては、産業用機械部品、一般機械部品、自動車・鉄道・車両・船舶・航空宇宙関連部品、電子・電気部品、建築・土木材料、生活用品、スポーツ・レジャー用品、風力発電用筐体部材、容器・包装部材、等を例示できる。
 以下、本発明の例示の態様について実施例を挙げて更に説明するが、本発明は以下の実施例に限定されない。
(1)実施例A(本開示の態様Aに係る実施例)
≪評価方法≫
<シリンダー内壁とスクリューとの間隙>
 ノギスを用いて直接測定することによって求めた。具体的には、被混合物の流路のうち、最も広い流路の部位のシリンダー内壁とスクリューとの間隙を計測した。シーリングにおいては当該シーリング外縁とシリンダー内壁との間隙を計測し、ニーディングディスク及びフライトにおいてはこれらの短軸方向外縁とシリンダー内壁との間隙を測定した。
<混合物及び樹脂組成物の引張伸度及び曲げ弾性率>
 得られた混合物又は樹脂組成物から、射出成形機を用いて、JIS K6920-2に準拠した条件で、ISO294-3に準拠した多目的試験片を成形した。多目的試験片について、ISO527に準拠して引張破断伸度、並びにISO178に準拠して曲げ弾性率を測定した。なお、ポリアミド樹脂は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
<樹脂組成物のシャルピー衝撃強度>
 上記と同様に作製した多目的試験片を用い、ISO179-1に記載の方法で、シャルピー衝撃強度を測定した。
<使用した有機繊維、及び樹脂組成物中の有機繊維の平均繊維長、平均繊維径及びL/D>
 ウェットケーキをtert-ブタノールで0.01質量%まで希釈し、高剪断ホモジナイザー(IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させ、マイカ上にキャストし、風乾したものを、高分解能走査型顕微鏡で測定した。測定は、少なくとも100本の有機繊維が観測されるように倍率を調整して行い、無作為に選んだ100本の有機繊維の長さ(L)、長径(D)及びこれらの比を求め、100本の有機繊維の加算平均を算出した。
 なお、樹脂組成物中の有機繊維については、ポリマーがポリアミドである場合はヘキサフルオロイソプロパノール、ポリマーがポリプロピレンである場合はキシレンに樹脂成分を溶解させて有機繊維を分離し、上記溶媒で充分に洗浄した後、tert-ブタノールで置換して得たウェットケーキを用いた。
<使用した有機繊維乾燥体の平均粒子径>
 ホソカワミクロン株式会社製パウダーテスター、型番:PT-Xを用いてd50粒子径を測定した。
<セルロース繊維及びキトサン繊維の重量平均分子量(Mw)、数平均分子量(Mn)及びMw/Mn比>
[多孔質シートの作製]
 まず、ウェットケーキをtert-ブタノール中に添加し、さらにミキサー等で凝集物が無い状態まで分散処理を行った。有機繊維固形分重量0.5gに対し、濃度が0.5質量%となるように調整した。得られたtert-ブタノール分散液100gをろ紙上で濾過し、150℃にて乾燥させた後、ろ紙を剥離してシートを得た。このシートの透気抵抗度がシート目付10g/m2あたり100sec/100ml以下のものを多孔質シートとし、測定サンプルとして使用した。
 23℃、50%RHの環境で1日静置したサンプルの目付W(g/m2)を測定した後、王研式透気抵抗試験機(旭精工(株)製、型式EG01)を用いて透気抵抗度R(sec/100ml)を測定した。この時、下記式に従い、10g/m2目付あたりの値を算出した。
目付10g/m2あたり透気抵抗度(sec/100ml)=R/W×10
[測定]
 多孔質シートを0.88g秤量し、ハサミで小片に切り刻んだ後、軽く攪拌したうえで、純水20mLを加え1日放置した。次に遠心分離によって水と固形分を分離した。続いてアセトン20mLを加え、軽く攪拌したうえで1日放置した。次に遠心分離によってアセトンと固形分を分離した。続いてN、N-ジメチルアセトアミド20mLを加え、軽く攪拌したうえで1日放置した。再度、遠心分離によってN、N-ジメチルアセトアミドと固形分を分離したのち、N,N-ジメチルアセトアミド20mLを加え、軽く攪拌したうえで1日放置した。遠心分離によってN,N-ジメチルアセトアミドと固形分を分離し、固形分に塩化リチウムが8質量パーセントになるように調液したN,N-ジメチルアセトアミド溶液を19.2g加え、スターラーで攪拌し、目視で溶解するのを確認した。有機繊維を溶解させた溶液を0.45μmフィルターでろ過し、ろ液をゲルパーミエーションクロマトグラフィ用の試料として供した。用いた装置と測定条件は下記である。
  装置 :東ソー社 HLC-8120
  カラム:TSKgel SuperAWM-H(6.0mmI.D.×15cm)×2本
  検出器:RI検出器
  溶離液:N、N-ジメチルアセトアミド(塩化リチウム0.2%)
  流速:0.6mL/分
  検量線:プルラン換算
<セルロース繊維の結晶化度>
 多孔質シートのX線回折測定を行い、下記式より結晶化度を算出した。
結晶化度(%)=[I(200)-I(amorphous)]/I(200)×100
(200):セルロースI型結晶における200面(2θ=22.5°)による回折ピーク強度
(amorphous):セルロースI型結晶におけるアモルファスによるハローピーク強度であって、200面の回折角度より4.5°低角度側(2θ=18.0°)のピーク強度
(X線回折測定条件)
 装置     MiniFlex(株式会社リガク製)
 操作軸    2θ/θ
 線源     CuKα
 測定方法   連続式
 電圧     40kV
 電流     15mA
 開始角度   2θ=5°
 終了角度   2θ=30°
 サンプリング幅 0.020°
 スキャン速度 2.0°/min
 サンプル:試料ホルダー上に多孔質シートを貼り付け
<セルロース繊維のアルカリ可溶多糖類平均含有率>
 アルカリ可溶多糖類含有率は、セルロースについて非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載の手法より、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求めた。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をセルロースのアルカリ可溶多糖類平均含有率とした。
<セルロース繊維の置換度(DS)>
 多孔質シートの5か所のATR-IR法による赤外分光スペクトルを、フーリエ変換赤外分光光度計(JASCO社製 FT/IR-6200)で測定した。赤外分光スペクトル測定は以下の条件で行った。
 積算回数:64回、
 波数分解能:4cm-1
 測定波数範囲:4000~600cm-1
 ATR結晶:ダイヤモンド、
 入射角度:45°
得られたIRスペクトルよりIRインデックスを、下記式(1):
 IRインデックス= H1730/H1030・・・(1)
に従って算出した。式中、H1730及びH1030は1730cm-1、1030cm-1(セルロース骨格鎖C-O伸縮振動の吸収バンド)における吸光度である。ただし、それぞれ1900cm-1と1500cm-1を結ぶ線と800cm-1と1500cm-1を結ぶ線をベースラインとして、このベースラインを吸光度0とした時の吸光度を意味する。
 そして、各測定場所の平均置換度をIRインデックスより下記式(2)に従って算出し、その平均値をDSとした。
 DS=4.13×IRインデックス・・・(2)
<混合物中及び樹脂組成物中の径50μm以上の粒子の含有率>
 混合物又は樹脂組成物から、射出成形機を用いて、JIS K6920-2に準拠した条件で、ISO294-3に準拠した多目的試験片を成形した。この試験片から約2mm四方サイズの試料を切り出し、X-CT(X線CT装置)(ブルカージャパン社製、Skyscan1272)を用いて凝集物の解析を行った。測定条件は下記のとおりである。
管電圧:40kV
管電流:100μA
ピクセル分解能:1.2μm
検出器画素数:2452×1640 pixel
積算回数:4回
測定角度ステップ:0.2度
スキャン範囲:0~180度
なお、測定後のデータについて、3D方向に対して2画素にわたって桑原フィルターをかけてスムージングを行い、画質を向上させた。
 このようにして得られた3Dデータについて、triangle法による自動二値化を行い、凝集物のみの画素を抽出した。当該凝集物のうち球相当体積が(4/3)×π×253μm3以上である凝集物の画素の総和の、観察範囲全体の画素の総和に対する比率より、混合物中又は樹脂組成物中の径50μm以上の粒子の含有率(体積%)を算出し、この径50μm以上の粒子の含有率(体積%)を、混合物又は樹脂組成物への有機繊維の配合量から計算された有機繊維の総含有率(体積%)で除することによって得られた値を、有機繊維中の径50μm以上の粒子の含有率(質量%)とみなした。
<樹脂組成物中の分散相の粒子径>
 樹脂組成物の断面を、走査型電子顕微鏡を用いて観察することで、分散相の粒子径を測定した。スチレン系熱可塑性エラストマーの染色は、四酸化ルテニウム水溶液に含侵させることで行った。ポリアミド樹脂の染色は、リンタングステン酸水溶液に含侵させることで行った。
≪使用材料≫
<第1の成分>
ポリアミド6(PA6):(宇部興産製:1013B)
ポリプロピレン(PP):(プライムポリマー製:J105G)
ポリアセタール(POM):(旭化成製:HC450)
<第2の成分>
[酸変性ポリフェニレンエーテル(m-PPE)]
旭化成製:R4919
[スチレン-エチレン-ブタジエン-スチレン共重合体(SEBS)]
旭化成製:タフテックH1052
[CNF-A]
 市販のセリッシュKY100G(ダイセルファインケム製)をCNF-Aケーキとして使用した。
[CNF-B](アセチル化CNF)
 コットンリンターパルプを1質量部、一軸撹拌機(アイメックス社製 DKV-1 φ125mmディゾルバー)を用いジメチルスルホキサイド(DMSO)30質量部中で500rpmにて1時間、常温で攪拌した。続いて、ホースポンプでビーズミル(アイメックス社製 NVM-1.5)にフィードし、DMSOのみで180分間循環運転させ、微細セルロース繊維スラリーとして、固形分率3.2質量%のスラリーS1(DMSO溶媒)を得た。
 循環運転の際、ビーズミルの回転数は2500rpm、周速12m/sとし、用いたビーズはジルコニア製で、φ2.0mm、充填率70%とした(ビーズミルのスリット隙間は0.6mmとした)。また、循環運転の際は、摩擦による発熱を吸収するためにチラーによりスラリー温度を40℃に温度管理した。
 スラリーS1を防爆型ディスパーザータンクに投入した後、酢酸ビニル3.2質量部、炭酸水素ナトリウム0.49質量部を加え、タンク内温度を50℃とし、120分間撹拌を行い、固形分率2.9質量%のスラリー(DMSO溶媒)を得た。
 反応を停止するため、純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬及び溶媒等を除去し、固形分率10質量%のアセチル化された微細セルロース繊維ケーキ(CNF-Bケーキ)(水溶媒)を10質量部得た。このケーキから多孔質シートを作製してアシル置換度(DS)を求めたところ、DS=1.0であった。
[CNF-C](ディスクリファイナー処理をしたCNF)
 コットンリンターパルプ3質量部を水27質量部に浸漬させてオートクレーブ内で130℃、4時間の熱処理を行った。得られた膨潤パルプは水洗し、水を含む精製パルプ(30質量部)を得た。つづいて、水を含む精製パルプ30質量部に水を170質量部入れて水中に分散させて(固形分率1.5質量%)、ディスクリファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで該水分散体を20分間叩解処理した。そして、脱水機により固形分率10質量%まで濃縮し、CNF-Cケーキ(水溶媒)を得た。
[CNF-D](CNF-Cを更に高圧ホモジナイザーで解繊処理したもの)
 CNF-Cケーキを、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で徹底的に叩解を行い、叩解水分散体(固形分濃度:1.5質量%)を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NSO15H)を用いて操作圧力100MPa下で15回微細化処理し、セルロース繊維スラリー(固形分濃度:1.5質量%)を得た。そして、脱水機により固形分率10質量%まで濃縮し、CNF-Dケーキ(水溶媒)を得た。
[CNF-E](アセチル化CNF)
 反応時間を60分とした以外はCNF-Bと同様にして製造した。このケーキから多孔質シートを作製してアシル置換度(DS)を求めたところ、DS=0.5であった。
[セルロースナノクリスタル]
 セオラスFD-301(旭化成(株)製)を用いた。
[キトサン繊維]
 Binfis Efo-08002(スギノマシン製)を用いた。
[アラミド繊維]
 ティアラKY400S(ダイセルファインケム製)を用いた。
 有機繊維の特性を表1に示す。
<分散剤>
 ポリエチレンオキシド-ポリプロピレンオキシド共重合体(PEG-PPG)(三洋化成製:GL-3000)
≪混練方法≫
<押出機のスクリュー構成>
 表2に記載の通り、高負荷ゾーン1、高負荷ゾーン2、高負荷ゾーン3、及び分配混合ゾーンを配置したスクリュー1~6を設計した。高負荷ゾーンの前半には、分流フライトスクリュー、切り欠きスクリュー、ニーディングディスク、偏心多条ディスク、偏心多条スクリューのいずれかからなる混練エレメントを配置し、下流には所定の間隙を有するシールリングを配置して被混合物を堰き止める設計とした。分配混合ゾーンは、シリンダー11に2個の中立ニーディングディスク、1個の反時計回りスクリューの順に配置した。
<混合操作>
[実施例A1]
 以下の手順でセルロース繊維乾燥体の調製、及びセルロース繊維乾燥体と樹脂との混合を行って樹脂組成物を製造した。
(セルロース繊維乾燥体の製造)
 セルロース繊維ケーキ(固形分質量10%)に、セルロース固形分100質量部に対して43質量部となる量で分散剤を加え、よく撹拌し、分散剤を配合したセルロース繊維ケーキを得た。これらを原料として乾燥装置に投入し、所定のずり速度、減圧度、加熱温度(ジャケット温度又は熱風温度)にて乾燥を実施した。赤外加熱式水分計(MX-50(エー・アンド・デイ製))を用いて水分率を測定し、水分率が7質量%以下(固形分質量93%以上)になった時間を乾燥の終点とした。条件は以下のとおりである。
プラネタリーミキサー(PM)
装置:株式会社小平製作所製プラネタリーミキサー(型番:ACM-5LVT:フック型)
条件:ジャケット温度60℃、307rpmで撹拌しながら、真空ポンプで-90kPaまで減圧した。品温が50℃に達するまで減圧乾燥を実施した。
 クリアランスとしては、フック羽(径100mm)とジャケットとの間の最小距離を測定した。
 本条件における乾燥時間は、180分であった。
 乾燥温度は、ジャケットの表面温度を3点計測し、その平均値とした。
(分散混合)
 押出機に2kg/hでポリアミド6を、2.86kg/h(セルロースとして2kg/h)でセルロース繊維乾燥体を投入し、分散混合ゾーンにて加熱溶融混練することで、分散混合物を得た。
(分配混合)
 分散混合物4.86kg/hに、15.14kg/hでポリアミド6をサイドフィードにて加えた後、分配混合ゾーンにて加熱溶融混練することで、樹脂組成物を得た。得られた樹脂組成物はペレタイザーにて、ペレットに加工した。押出特性として、押出加工の際、押出機運転開始から1時間以内にスクリーンメッシュが詰まった場合を運転安定性「不良」、詰まらなかった場合を運転安定性「良」とした。
[実施例A2~A19、比較例A1~A3]
 樹脂組成物の組成及び押出機の設定条件を表3~5に示すように変更した他は実施例A1と同様の手順で樹脂組成物を製造し、各種評価を行った。結果を表3~5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(2)実施例B(本開示の態様Bに係る実施例)
≪評価方法≫
<シリンダー内壁とスクリューとの間隙>
 実施例Aと同様に測定した。
<混合物充填率>
 押出実施中に、スクリューの回転及び原料供給を急停止させた後、スクリューを引き抜き、スクリュー表面に付着している混合物を採取、計量し、混合物の密度で除することで充満混合物の体積を計算した。続いて、充満混合物の体積を、後述の空間体積で除することで混合物充填率を算出した。
<空間体積率>
 押出機のシリンダー容積からスクリュー体積(エレメント体積と軸体積との合計)を差し引くことで空間体積を算出し、空間体積をシリンダー容積で除することで空間体積率を算出した。
<ゾーン長>
 分散混合ゾーン及び分配混合ゾーンを構成するスクリューパーツの合計長をゾーン長とした。
<混合物及び樹脂組成物の引張伸度及び曲げ弾性率>
 得られた混合物又は樹脂組成物から、射出成形機を用いて、JIS K6920-2に準拠した条件で、ISO294-3に準拠した多目的試験片を成形した。多目的試験片について、ISO527-1に準拠して引張破断伸度、並びにISO178に準拠して曲げ弾性率を測定した。なお、ポリアミド樹脂は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
<混合物中及び樹脂組成物中の径50μm以上の粒子の含有率>
 実施例Aと同様に測定した。
<使用した有機繊維、及び樹脂組成物中の有機繊維の平均繊維径及びL/D>
 実施例Aと同様に測定した。
<セルロース繊維及びキトサン繊維の重量平均分子量(Mw)、数平均分子量(Mn)及びMw/Mn比>
 実施例Aと同様に測定した。
<セルロース繊維の結晶化度>
 実施例Aと同様に多孔質シートの作製及び測定を行った。
<セルロース繊維のアルカリ可溶多糖類平均含有率>
 実施例Aと同様に測定した。
<セルロース繊維の置換度(DS)>
 実施例Aと同様に測定した。
≪使用材料≫
 実施例Aと同様のものを用いた。
≪混練方法≫
[押出機の構成]
 シリンダーブロック数が15個ある二軸押出機(STEER社製 OMEGA30H、L/D=72)を用いて混練を実施した。なお、シリンダー14にはシリンダー上部にベントポートを設置し減圧吸引できるようにし、真空吸引を実施した。ダイアダプターとダイヘッドの間に50メッシュのスクリーンメッシュを取り付けた。
<押出機のスクリュー構成>
 表6に記載の通り、第1の分散混合ゾーン、第2の分散混合ゾーン、分配混合ゾーンを配置したスクリュー1~5を設計した。第1の分散混合ゾーン、第2の分散混合ゾーンはそれぞれ、前半に分流フライトスクリュー、切り欠きスクリュー、ニーディングディスク、偏心多条ディスク、偏心多条スクリューのいずれかからなる混練エレメントを配置し、後半にシールリング及び/又は反時計回りスクリューを組み合わせて、被混合物を滞留させる設計とした。分配混合ゾーンは、シリンダー11に2個の中立ニーディングディスク、引き続いて1個の反時計回りスクリューを配置した。
<混合操作>
[実施例B1]
 以下の手順でセルロース繊維乾燥体の調製、及びセルロース繊維乾燥体と樹脂との混合を行って樹脂組成物を製造した。
(セルロース繊維乾燥体の製造)
 セルロース繊維ケーキ(固形分質量10%)に、セルロース固形分100質量部に対して43質量部となる量で分散剤を加え、よく撹拌し、分散剤を配合したセルロース繊維ケーキを得た。これらを原料として乾燥装置に投入し、所定のずり速度、減圧度、加熱温度(ジャケット温度又は熱風温度)にて乾燥を実施した。赤外加熱式水分計(MX-50(エー・アンド・デイ製))を用いて水分率を測定し、水分率が7質量%以下(固形分質量93%以上)になった時間を乾燥の終点とした。条件は以下のとおりである。なお、セルロース繊維乾燥体を寒天に担持した後、前述の方法でX-CT解析したところ、セルロースナノファイバーが凝集してなる径50μm以上の粒子を50質量%超含んでいた。
プラネタリーミキサー(PM)
装置:株式会社小平製作所製プラネタリーミキサー(型番:ACM-5LVT:フック型)
条件:ジャケット温度60℃、307rpmで撹拌しながら、真空ポンプで-90kPaまで減圧した。品温が50℃に達するまで減圧乾燥を実施した。
 クリアランスとしては、フック羽(径100mm)とジャケットとの間の最小距離を測定した。
 本条件における乾燥時間は、180分であった。
 乾燥温度は、ジャケットの表面温度を3点計測し、その平均値とした。
(分散混合)
 押出機に2kg/hでポリアミド6を、2.86kg/h(セルロースとして2kg/h)でセルロース繊維乾燥体を投入し、第1の分散混合ゾーンにて加熱溶融混練することで、第1の分散混合物を得た。続いて、第2の分散混合ゾーンにて加熱溶融混練することで、第2の分散混合物を得た。
(分配混合)
 第2の分散混合物4.86kg/hに、15.14kg/hでポリアミド6をサイドフィードにて加えた後、分配混合ゾーンにて加熱溶融混練することで、樹脂組成物を得た。得られた樹脂組成物はペレタイザーにて、ペレットに加工した。押出特性として、押出加工の際、押出機運転開始から1時間以内にスクリーンメッシュが詰まった場合を運転安定性「不良」、詰まらなかった場合を運転安定性「良」とした。
[実施例B2~B7、比較例B1]
 樹脂組成物の組成及び押出機の設定条件を表7に示すように変更した他は実施例B1と同様の手順で樹脂組成物を製造し、各種評価を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(3)実施例C(本開示の態様Cに係る実施例)
≪評価方法≫
<シリンダー内壁とスクリューとの間隙>
 実施例Aと同様に測定した。
<混合物充填率>
 押出実施中に、スクリューの回転及び原料供給を急停止させた後、スクリューを引き抜き、スクリュー表面に付着している混合物を採取、計量し、混合物の密度で除することで充満混合物の体積を計算した。続いて、充満混合物の体積を、後述の空間体積で除することで混合物充填率を算出した。
<被混合物圧力0.3MPa以上である領域のゾーン長/シリンダー内径比>
 押出機のシリンダーに複数の樹脂圧計を設置し、樹脂圧を押出中にモニタリングすることによって各ゾーンにおける樹脂圧を測定した。被混合物圧力0.3MPa以上を示したゾーンの全長をシリンダー内径で除することによって計算した。
<空間体積率>
 押出機のバレル容積からスクリュー体積(エレメント体積と軸体積との合計)を差し引くことで空間体積を算出し、空間体積をバレル容積で除することで空間体積率を算出した。
<ゾーン長>
 分散混合ゾーン及び分配混合ゾーンを構成するスクリューパーツの合計長をゾーン長とした。
<混合物及び樹脂組成物の引張伸度及び曲げ弾性率>
 得られた混合物又は樹脂組成物から、射出成形機を用いて、JIS K6920-2に準拠した条件で、ISO294-3に準拠した多目的試験片を成形した。多目的試験片について、ISO527-1に準拠して引張破断伸度、並びにISO178に準拠して曲げ弾性率を測定した。なお、ポリアミド樹脂は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
<チキソトロピー指数>
 上記多目的試験片について、以下の試験条件で溶融時の粘弾性を測定した。
装置名:ARES G2 ティー・エイ・インスツルメント・ジャパン株式会社
測定温度:250℃(ポリアミドの融点+25℃)、185℃(ポリプロピレンの融点+25℃)
せん断速度:1.0~40s-1
25mm/40mmパラレルプレートを使用し、Gap1mmで行った。
 この時の測定結果から、下記式に従ってチキソトロピー指数を算出した。
チキソトロピー指数=(せん断速度1s-1の時の粘度/せん断速度10s-1の時の粘度)
<混合物中のセルロース繊維の単位質量当たりの物性向上率(曲げ弾性率向上率)>
 混合物中のセルロース繊維濃度を、押出時の押出機へのフィード量の比により求め、混合物中のセルロース繊維の単位質量当たりの物性向上率を以下の式に従って算出した。
(混合物の曲げ弾性率-ベース樹脂の曲げ弾性率)/セルロース繊維濃度(質量%)
<シャルピー衝撃強度>
 実施例Aと同様に測定した。
<使用したセルロース繊維、及び樹脂組成物中のセルロース繊維の平均繊維長、平均繊維径及びL/D>
 実施例Aと同様に測定した。
<セルロース繊維の重量平均分子量(Mw)、数平均分子量(Mn)及びMw/Mn比>
 実施例Aと同様に測定した。
<セルロース繊維の結晶化度>
 実施例Aと同様に多孔質シートの作製及び測定を行った。
<セルロース繊維のアルカリ可溶多糖類平均含有率>
 実施例Aと同様に測定した。
<樹脂組成物中の径50μm以上の粒子の含有率>
 実施例Aと同様に測定した。
<樹脂組成物中の分散相の粒子径>
 実施例Aと同様に測定した。
≪使用材料≫
 ポリマー、有機繊維及び分散剤について、実施例Aと同様のものを用いた。
≪混練方法≫
<押出機のスクリュー構成>
 表8に記載の通り、ゾーン1及び2を配置したスクリュー1~5を設計した。スクリュー1のゾーン1は分散混合ゾーンであり、分流フライトスクリュー、切り欠きスクリュー、ニーディングディスク、偏心多条ディスク、偏心多条スクリューのいずれかからなる混練エレメントと、シールリング及び/又は反時計回りスクリューからなる滞留エレメントを組み合わせた、複数の混練ゾーンからなる設計とした。スクリュー1~5のゾーン2は分配混合ゾーンであり、シリンダー11に2個の中立ニーディングディスク、引き続いて1個の反時計回りスクリューを配置した。
 スクリュー2のゾーン1は分配混合ゾーンであり、単一及び/又は複数のニーディングディスク、単一及び/又は複数の反時計回りスクリューを組み合わせた設計とした。
 スクリュー3のゾーン1は分散混合ゾーンであり、スクリュー1よりも混練ゾーンが一つ多い設計とした。
 各スクリュー構成のゾーン長/シリンダー内径比、及び空間体積率は表8に示すとおりである。
<混合操作>
[実施例C1]
 以下の手順でセルロース繊維乾燥体の調製、及びセルロース繊維乾燥体とポリマーとの混合を行って樹脂組成物を製造した。
(セルロース繊維乾燥体の製造)
 セルロース繊維ケーキ(固形分質量10%)に、セルロース固形分100質量部に対して43質量部となる量で分散剤を加え、よく撹拌し、分散剤を配合したセルロース繊維ケーキを得た。これらを原料として乾燥装置に投入し、所定のずり速度、減圧度、加熱温度(ジャケット温度又は熱風温度)にて乾燥を実施した。赤外加熱式水分計(MX-50(エー・アンド・デイ製))を用いて水分率を測定し、水分率が7質量%以下(固形分質量93%以上)になった時間を乾燥の終点とした。条件は以下のとおりである。
プラネタリーミキサー(PM)
装置:株式会社小平製作所製プラネタリーミキサー(型番:ACM-5LVT:フック型)
条件:ジャケット温度60℃、307rpmで撹拌しながら、真空ポンプで-90kPaまで減圧した。品温が50℃に達するまで減圧乾燥を実施した。
 クリアランスとしては、フック羽(径100mm)とジャケットとの間の最小距離を測定した。
 本条件における乾燥時間は、180分であった。
 乾燥温度は、ジャケットの表面温度を3点計測し、その平均値とした。
(分散混合)
 押出機に2kg/hでポリアミド6を、2.86kg/h(セルロースとして2kg/h)でセルロース繊維乾燥体を投入し、分散混合ゾーンにて加熱溶融混練することで、分散混合物を得た。
(分配混合)
 分散混合物4.86kg/hに、15.14kg/hでポリアミド6をサイドフィードにて加えた後、分配混合ゾーンにて加熱溶融混練することで、樹脂組成物を得た。得られた樹脂組成物はペレタイザーにて、ペレットに加工した。押出特性として、押出加工の際、押出機運転開始から1時間以内にスクリーンメッシュが詰まった場合を運転安定性「不良」、詰まらなかった場合を運転安定性「良」とした。
[実施例C2~C9、比較例C1]
 樹脂組成物の組成及び押出機の設定条件を表9及び10に示すように変更した他は実施例C1と同様の手順で樹脂組成物を製造し、各種評価を行った。結果を表9及び10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本開示の樹脂組成物の製造方法よって得られる樹脂組成物は、産業用機械部品、一般機械部品、自動車・鉄道・車両・船舶・航空宇宙関連部品、電子・電気部品、建築・土木材料、生活用品、スポーツ・レジャー用品、風力発電用筐体部材、容器・包装部材、等の広範な用途に好適に適用され得る。
100,200,300,400,600,800 押出機
101,201,301 混練ゾーン
102,202,302 溶融ゾーン
N1,N2,N3 狭間隙ゾーン
D1 圧力降下ゾーン
H1,H2,H3 高圧ゾーン
11,12,13,14,21,22,31,32,33,34 その他ゾーン
401,601,801 分散混合ゾーン
402,602,802 分配混合ゾーン
403,404,603,604,803,804 溶融ゾーン
41 第1の分散混合ゾーン
42 第2の分散混合ゾーン
41a 第1の分散混合ゾーンへの流入物
41b 第1の分散混合ゾーンからの流出物
42a 第2の分散混合ゾーンへの流入物
42b 第2の分散混合ゾーンからの流出物
a1 第1の成分
a2 第2の成分
b 樹脂組成物
L シリンダー長方向

Claims (33)

  1.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法は、シリンダー内壁とスクリューとの間隙が2mm以下の複数の狭間隙ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含む、方法。
  2.  前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記最狭間隙ゾーン以外の狭間隙ゾーンの前記間隙の平均値[G2]に対する比[G1/G2]が、0.001以上1未満である、請求項1に記載の方法。
  3.  前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記最狭間隙ゾーン以外の狭間隙ゾーンの各々の前記間隙[G3]に対する比[G1/G3]が、0.001以上1未満である、請求項1又は2に記載の方法。
  4.  前記第2の成分が有機繊維を含み、
     前記押出機に供給される前記有機繊維が平均繊維長1μm~10000μmを有し、
     前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記平均繊維長に対する比が、0.001~10である、請求項1~3のいずれか一項に記載の方法。
  5.  前記第2の成分が有機繊維を含み、
     前記押出機に供給される前記有機繊維が平均粒子径1μm~10000μmの粒子を形成しており、
     前記複数の狭間隙ゾーンのうち前記間隙が最小である最狭間隙ゾーンの前記間隙[G1]の、前記平均粒子径に対する比が、0.001~10である、請求項1~4のいずれか一項に記載の方法。
  6.  前記複数の狭間隙ゾーンの各々における混合物単位質量当たりの曲げ弾性率向上率が、前記狭間隙ゾーン以外の各ゾーンにおける混合物単位質量当たりの曲げ弾性率の最大値よりも大きい、請求項1~5のいずれか一項に記載の方法。
  7.  前記狭間隙ゾーンの各々について、
     前記狭間隙ゾーンへの流入物の圧力が0.5~20MPaであり、且つ
     前記狭間隙ゾーンへの流入物の圧力に対する前記狭間隙ゾーンからの流出物の圧力の比率が0.2以下である、請求項1~6のいずれか一項に記載の方法。
  8.  前記狭間隙ゾーンの各々について、前記狭間隙ゾーンへの流入物の前記第2の成分の含有率が、15~90質量%である、請求項1~7のいずれか一項に記載の方法。
  9.  前記混練工程において、前記複数の狭間隙ゾーンを通過した後の混合物に混合物よりも低温の追加ポリマーを添加して前記混合物を冷却する、請求項1~8のいずれか一項に記載の方法。
  10.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法は、圧力降下ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、
     前記圧力降下ゾーンは、前記圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、且つ前記圧力降下ゾーンへの流入物の圧力に対する前記圧力降下ゾーンからの流出物の圧力の比率が0.2以下である部位であり、
     前記圧力降下ゾーンへの流入物の前記第2の成分の含有率が15~90質量%である
    、方法。
  11.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法は、圧力降下ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、
     前記圧力降下ゾーンは、前記圧力降下ゾーンへの流入物の圧力が0.5~20MPaであり、且つ前記圧力降下ゾーンへの流入物の圧力に対する前記圧力降下ゾーンからの流出物の圧力の比率が0.2以下である部位であり、
     前記混練工程において、前記圧力降下ゾーンを通過した後の混合物に前記混合物よりも低温の追加ポリマーを添加して前記混合物を冷却する、方法。
  12.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法は、圧力が0.1MPa以上の複数の高圧ゾーンを含む混練ゾーンを備える押出機によって第1の成分と第2の成分とを混練する混練工程を含み、
     前記複数の高圧ゾーンのうち前記圧力が最大である最高圧ゾーンの前記圧力[P1]が0.5MPa以上であり、前記圧力[P1]の、前記最高圧ゾーン以外の高圧ゾーンの前記圧力の平均値[P2]に対する比[P1/P2]が、1超100以下である、方法。
  13.  前記最高圧ゾーン以外の高圧ゾーンの各々の前記圧力[P3]に対する前記圧力[P1]の比[P1/P3]が、1超100以下である、請求項12に記載の方法。
  14.  前記複数の高圧ゾーンの各々のゾーン長/シリンダー内径比が、1~30である、請求項12又は13に記載の方法。
  15.  前記最高圧ゾーン以外の高圧ゾーンの各々のゾーン長/シリンダー内径比に対する前記最高圧ゾーンのゾーン長/シリンダー内径比の比が、1以上である、請求項12~14のいずれか一項に記載の方法。
  16.  前記複数の高圧ゾーンの各々における混合物単位質量当たりの曲げ弾性率向上率が、前記高圧ゾーン以外の各ゾーンにおける混合物単位質量当たりの曲げ弾性率の最大値よりも大きい、請求項12~15のいずれか一項に記載の方法。
  17.  前記高圧ゾーンの各々について、
     前記高圧ゾーンへの流入物の圧力が0.5~20MPaであり、且つ
     前記高圧ゾーンへの流入物の圧力に対する前記高圧ゾーンからの流出物の圧力の比率が0.2以下である、請求項12~16のいずれか一項に記載の方法。
  18.  前記高圧ゾーンの各々について、前記高圧ゾーンへの流入物の前記第2の成分の含有率が、15~90質量%である、請求項12~17のいずれか一項に記載の方法。
  19.  前記混練工程において、前記複数の高圧ゾーンの全てを通過した後の混合物に前記混合物よりも低温の追加ポリマーを添加して前記混合物を冷却する、請求項12~18のいずれか一項に記載の方法。
  20.  前記混練工程の前に、前記第1の成分の溶融物に前記第2の成分を添加して予備混合物を得る工程を更に含み、前記予備混合物を前記混練ゾーンに供給する、請求項1~19のいずれか一項に記載の方法。
  21.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
     前記分散混合ゾーンが、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上が互いに異なる第1の分散混合ゾーンと第2の分散混合ゾーンとを備え、
     前記第1の分散混合ゾーンへの流入物の引張伸度に対する前記第1の分散混合ゾーンからの流出物の引張伸度の増分[E1]と、前記第2の分散混合ゾーンへの流入物の引張伸度に対する前記第2の分散混合ゾーンからの流出物の引張伸度の増分[E2]とが、[E1]>[E2]の関係を満たし、
     前記第1の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第1の分散混合ゾーンからの流出物の曲げ弾性率の増分[M1]と、前記第2の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第2の分散混合ゾーンからの流出物の曲げ弾性率の増分[M2]とが、[M1]<[M2]の関係を満たす、方法。
  22.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
     前記分散混合ゾーンにおいて、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上をシリンダー長方向において異ならせることによって、混合物のシリンダー内進行長さl(mm)をシリンダー内径d(mm)で除した値(l/d)当たりの引張伸度変化量ΔE(%)の、前記l/d当たりの曲げ弾性率変化量ΔM(GPa)に対する比[ΔE/ΔM]を、シリンダー長方向において変化させる、方法。
  23.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法が、
     押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
     押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
    を含み、
     前記分散混合ゾーンと前記分配混合ゾーンとは、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上において互いに異なっており、
     前記分散混合ゾーンへの流入物の引張伸度に対する前記分散混合ゾーンからの流出物の引張伸度の増分[EA]と、前記分配混合ゾーンへの流入物の引張伸度に対する前記分配混合ゾーンからの流出物の引張伸度の増分[EB]とが、[EA]>[EB]の関係を満たし、
     前記分散混合ゾーンへの流入物の曲げ弾性率に対する前記分散混合ゾーンからの流出物の曲げ弾性率の増分[MA]と、前記分配混合ゾーンへの流入物の曲げ弾性率に対する前記分配混合ゾーンからの流出物の曲げ弾性率の増分[MB]とが、[MA]>[MB]の関係を満たす、方法。
  24.  第1の成分と第2の成分とを含む樹脂組成物の製造方法であって、
     前記第1の成分は、ポリマーであり、
     前記第2の成分は、有機繊維、前記第1の成分と異なるポリマー、又はこれらの組合せであり、
     前記方法が、
     押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
     押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
    を含み、
     分散混合ゾーンにおける前記第2の成分の濃度[CA]が10質量%~90質量%であり、分配混合ゾーンにおける前記第2の成分の濃度[CB]が1質量%~50質量%であり、比[CA]/[CB]が2~90である、方法。
  25.  前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
     前記分散混合ゾーンが、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上が互いに異なる第1の分散混合ゾーンと第2の分散混合ゾーンとを備え、
     前記第1の分散混合ゾーンへの流入物の引張伸度に対する前記第1の分散混合ゾーンからの流出物の引張伸度の増分[E1]と、前記第2の分散混合ゾーンへの流入物の引張伸度に対する前記第2の分散混合ゾーンからの流出物の引張伸度の増分[E2]とが、[E1]>[E2]の関係を満たし、
     前記第1の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第1の分散混合ゾーンからの流出物の曲げ弾性率の増分[M1]と、前記第2の分散混合ゾーンへの流入物の曲げ弾性率に対する前記第2の分散混合ゾーンからの流出物の曲げ弾性率の増分[M2]とが、[M1]<[M2]の関係を満たす、請求項1~20のいずれか一項に記載の方法。
  26.  前記方法が、押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合する分散混合工程を含み、
     前記分散混合ゾーンにおいて、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上をシリンダー長方向において異ならせることによって、混合物のシリンダー内進行長さl(mm)をシリンダー内径d(mm)で除した値(l/d)当たりの引張伸度変化量ΔE(%)の、前記l/d当たりの曲げ弾性率変化量ΔM(GPa)に対する比[ΔE/ΔM]を、シリンダー長方向において変化させる、請求項1~20のいずれか一項に記載の方法。
  27.  前記方法が、
     押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
     押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
    を含み、
     前記分散混合ゾーンと前記分配混合ゾーンとは、ゾーン長/シリンダー内径比、混合物充填率、温度、圧力、及び空間体積率からなる群から選択される1つ以上において互いに異なっており、
     前記分散混合ゾーンへの流入物の引張伸度に対する前記分散混合ゾーンからの流出物の引張伸度の増分[EA]と、前記分配混合ゾーンへの流入物の引張伸度に対する前記分配混合ゾーンからの流出物の引張伸度の増分[EB]とが、[EA]>[EB]の関係を満たし、
     前記分散混合ゾーンへの流入物の曲げ弾性率に対する前記分散混合ゾーンからの流出物の曲げ弾性率の増分[MA]と、前記分配混合ゾーンへの流入物の曲げ弾性率に対する前記分配混合ゾーンからの流出物の曲げ弾性率の増分[MB]とが、[MA]>[MB]の関係を満たす、請求項1~20のいずれか一項に記載の方法。
  28.  前記方法が、
     押出機の分散混合ゾーンにおいて第1の成分と第2の成分とを分散混合して分散混合生成物を得る分散混合工程と、
     押出機の分配混合ゾーンにおいて少なくとも前記分散混合生成物を分配混合して樹脂組成物を得る分配混合工程と、
    を含み、
     分散混合ゾーンにおける前記第2の成分の濃度[CA]が10質量%~90質量%であり、分配混合ゾーンにおける前記第2の成分の濃度[CB]が1質量%~50質量%であり、比[CA]/[CB]が2~90である、請求項1~20のいずれか一項に記載の方法。
  29.  前記分散混合工程の前に、前記第1の成分の溶融物に前記第2の成分を添加して予備混合物を得る工程を更に含み、前記予備混合物を前記分散混合ゾーンに供給する、請求項21~28のいずれか一項に記載の方法。
  30.  前記第2の成分が有機繊維を含む、請求項1~29のいずれか一項に記載の方法。
  31.  前記有機繊維がセルロース繊維である、請求項30に記載の方法。
  32.  前記樹脂組成物中の有機繊維が、平均繊維径1000nm以下、及び平均繊維長/平均繊維径比30以上を有する、請求項30又は31に記載の方法。
  33.  前記有機繊維を乾燥体の形態で押出機に供給する、請求項30~32のいずれか一項に記載の方法。
PCT/JP2022/004323 2021-02-03 2022-02-03 樹脂組成物の製造方法 WO2022168928A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/275,605 US20240117127A1 (en) 2021-02-03 2022-02-03 Method for Producing Resin Composition
CN202280011357.2A CN116867839A (zh) 2021-02-03 2022-02-03 树脂组合物的制造方法
EP22749799.7A EP4289887A4 (en) 2021-02-03 2022-02-03 METHOD FOR MANUFACTURING A RESIN COMPOSITION
JP2022579611A JP7579365B2 (ja) 2021-02-03 2022-02-03 樹脂組成物の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-016020 2021-02-03
JP2021016005 2021-02-03
JP2021-016005 2021-02-03
JP2021016022 2021-02-03
JP2021-016022 2021-02-03
JP2021016020 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022168928A1 true WO2022168928A1 (ja) 2022-08-11

Family

ID=82741602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004323 WO2022168928A1 (ja) 2021-02-03 2022-02-03 樹脂組成物の製造方法

Country Status (4)

Country Link
US (1) US20240117127A1 (ja)
EP (1) EP4289887A4 (ja)
JP (1) JP7579365B2 (ja)
WO (1) WO2022168928A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234220A1 (ja) * 2022-06-01 2023-12-07 ポリプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
WO2024014397A1 (ja) * 2022-07-15 2024-01-18 株式会社ユポ・コーポレーション 熱可塑性樹脂組成物の製造方法、及び混練機

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035008A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 幅広い分子量分布を有するポリエチレンの製造方法及びその触媒
JPS6035006A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 反応器ブレンドポリオレフインの製造方法及びその触媒
JPS6035007A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− ポリオレフインの密度及び分子量を調節するための方法と触媒
JPH03163088A (ja) 1989-08-31 1991-07-15 Dow Chem Co:The 第4族金属配位錯体
JPH0412283B2 (ja) 1981-07-09 1992-03-04 Hoechst Ag
JPH05155930A (ja) 1991-05-31 1993-06-22 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
JPH07228775A (ja) 1994-02-17 1995-08-29 Kuraray Co Ltd 難燃性ポリアミド組成物
JP2004142444A (ja) * 2002-10-03 2004-05-20 Mitsubishi Gas Chem Co Inc ポリアミド複合材料の製造方法
JP2004330610A (ja) * 2003-05-07 2004-11-25 Asahi Kasei Chemicals Corp 粉体供給装置及びその方法
JP2005035134A (ja) * 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2007015382A (ja) * 2005-07-05 2007-01-25 Johns Manville Internatl Inc 長繊維強化製品を作製する方法およびシステムおよびそれによって得られた製品
JP2011255652A (ja) * 2010-06-11 2011-12-22 Asahi Kasei Chemicals Corp ポリフェニレンエーテル樹脂組成物の製造方法
JP2013127040A (ja) * 2011-12-19 2013-06-27 Sumitomo Chemical Co Ltd 熱可塑性エラストマー組成物を製造する方法
JP2015227053A (ja) * 2014-05-08 2015-12-17 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP2016203578A (ja) * 2015-04-28 2016-12-08 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP2016203576A (ja) * 2015-04-28 2016-12-08 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP2017066206A (ja) * 2015-09-28 2017-04-06 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法
JP2018048227A (ja) * 2016-09-20 2018-03-29 旭化成株式会社 熱可塑性樹脂組成物の製造方法
JP2018177965A (ja) * 2017-04-13 2018-11-15 パナソニックIpマネジメント株式会社 セルロースを含む複合材料の製造方法
JP2020147006A (ja) * 2019-03-15 2020-09-17 旭化成株式会社 サイドフィーダー、押出機、および熱可塑性樹脂組成物の製造方法
JP2020147007A (ja) * 2019-03-15 2020-09-17 旭化成株式会社 樹脂組成物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167240A (ja) * 1983-03-14 1984-09-20 Chisso Corp 有機フイラ−を配合された熱可塑性樹脂組成物の成形物の製法及びそのための装置
US6565348B1 (en) * 1998-05-07 2003-05-20 Instituut Voor Agrotechnologisch Onderzoek (Ato-Dlo) Extruder for continuously manufacturing composites of polymer and cellulosic fibres
US6280667B1 (en) * 1999-04-19 2001-08-28 Andersen Corporation Process for making thermoplastic-biofiber composite materials and articles including a poly(vinylchloride) component
US20060264544A1 (en) * 2005-05-17 2006-11-23 Arnold Lustiger Cloth-like fiber reinforced polypropylene compositions and method of making thereof
US8211341B2 (en) * 2007-11-16 2012-07-03 Exxonmobil Research And Engineering Company Fiber pellets method of making, and use in making fiber reinforced polypropylene composites
EP2511323A1 (en) * 2011-04-12 2012-10-17 Södra Skogsägarna Ekonomiska Förening Composite and a process for making such composite
JP2012236906A (ja) 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
US9169397B2 (en) 2011-06-22 2015-10-27 Kankyokeieisogokenkyusho Co., Inc. Manufacturing method for resin composition containing fine paper powder
CN105377947B (zh) * 2013-07-10 2018-01-30 三菱瓦斯化学株式会社 聚酰胺树脂的制造方法
CN108884272B (zh) * 2016-12-28 2021-01-26 旭化成株式会社 含纤维素的树脂组合物和纤维素制剂
JP7142586B2 (ja) 2019-02-06 2022-09-27 株式会社スギノマシン セルロース繊維乾燥体、セルロース繊維樹脂複合体、成形体
JP7343703B2 (ja) * 2020-06-09 2023-09-12 旭化成株式会社 射出成形体の製造方法、並びに射出成形機用のノズル及びノズル付射出ユニット

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412283B2 (ja) 1981-07-09 1992-03-04 Hoechst Ag
JPS6035008A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 幅広い分子量分布を有するポリエチレンの製造方法及びその触媒
JPS6035006A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 反応器ブレンドポリオレフインの製造方法及びその触媒
JPS6035007A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− ポリオレフインの密度及び分子量を調節するための方法と触媒
JPH03163088A (ja) 1989-08-31 1991-07-15 Dow Chem Co:The 第4族金属配位錯体
JPH05155930A (ja) 1991-05-31 1993-06-22 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
JPH07228775A (ja) 1994-02-17 1995-08-29 Kuraray Co Ltd 難燃性ポリアミド組成物
JP2004142444A (ja) * 2002-10-03 2004-05-20 Mitsubishi Gas Chem Co Inc ポリアミド複合材料の製造方法
JP2004330610A (ja) * 2003-05-07 2004-11-25 Asahi Kasei Chemicals Corp 粉体供給装置及びその方法
JP2005035134A (ja) * 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2007015382A (ja) * 2005-07-05 2007-01-25 Johns Manville Internatl Inc 長繊維強化製品を作製する方法およびシステムおよびそれによって得られた製品
JP2011255652A (ja) * 2010-06-11 2011-12-22 Asahi Kasei Chemicals Corp ポリフェニレンエーテル樹脂組成物の製造方法
JP2013127040A (ja) * 2011-12-19 2013-06-27 Sumitomo Chemical Co Ltd 熱可塑性エラストマー組成物を製造する方法
JP2015227053A (ja) * 2014-05-08 2015-12-17 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP2016203578A (ja) * 2015-04-28 2016-12-08 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP2016203576A (ja) * 2015-04-28 2016-12-08 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP2017066206A (ja) * 2015-09-28 2017-04-06 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法
JP2018048227A (ja) * 2016-09-20 2018-03-29 旭化成株式会社 熱可塑性樹脂組成物の製造方法
JP2018177965A (ja) * 2017-04-13 2018-11-15 パナソニックIpマネジメント株式会社 セルロースを含む複合材料の製造方法
JP2020147006A (ja) * 2019-03-15 2020-09-17 旭化成株式会社 サイドフィーダー、押出機、および熱可塑性樹脂組成物の製造方法
JP2020147007A (ja) * 2019-03-15 2020-09-17 旭化成株式会社 樹脂組成物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Mokushitsu Kagaku Jikken Manual", 2000, THE JAPAN WOOD RESEARCH SOCIETY, pages: 92 - 97
"Polymer Process Engineering", 1994, PRENTICE-HALL, INC, pages: 291 - 294
CELLULOSE, vol. 5, 1998, pages 153 - 164
See also references of EP4289887A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234220A1 (ja) * 2022-06-01 2023-12-07 ポリプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
WO2024014397A1 (ja) * 2022-07-15 2024-01-18 株式会社ユポ・コーポレーション 熱可塑性樹脂組成物の製造方法、及び混練機

Also Published As

Publication number Publication date
US20240117127A1 (en) 2024-04-11
JP7579365B2 (ja) 2024-11-07
EP4289887A1 (en) 2023-12-13
JPWO2022168928A1 (ja) 2022-08-11
EP4289887A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
Igarashi et al. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites
JP7169460B2 (ja) ポリアミド-セルロース樹脂組成物
WO2022168928A1 (ja) 樹脂組成物の製造方法
WO2016010016A1 (ja) 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
JP6775160B2 (ja) 疎水化セルロース系繊維用の解繊助剤、それを使用する樹脂組成物の製造方法並びに成形体
JP7385625B2 (ja) 複合粒子及び樹脂組成物
JP7504650B2 (ja) セルロース繊維乾燥体及びその製造方法、並びに樹脂複合体の製造方法
JP2021138971A (ja) 高靭性ポリアミド−セルロース樹脂組成物
JP7411378B2 (ja) セルロース樹脂組成物
JP2023053377A (ja) セルロース微細繊維強化ポリアミド樹脂成形体
CN114585666A (zh) 纤维素复合体的制造方法、纤维素复合体/树脂组合物的制造方法、纤维素复合体、以及纤维素复合体/树脂组合物
WO2021172407A1 (ja) 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤
JP2022003120A (ja) セルロース樹脂組成物及びその製造方法
JP2021187885A (ja) セルロース樹脂組成物及びその製造方法
JP2023160890A (ja) 射出成形体の製造方法、並びに射出成形機用のノズル及びノズル付射出ユニット
CN116867839A (zh) 树脂组合物的制造方法
JP7583007B2 (ja) ポリアミド-セルロース樹脂組成物
JP6937817B2 (ja) セルロース組成物
JP7333510B2 (ja) 繊維強化樹脂組成物及びその製造方法、並びに成形体
JP7342142B2 (ja) セルロース樹脂組成物
JP7564943B2 (ja) ポリアセタール樹脂組成物及びその製造方法
WO2022260175A1 (ja) 樹脂組成物及びその製造方法
JP2023177265A (ja) 樹脂組成物及び成形体
JP2022128430A (ja) エステル化セルロースナノファイバー及び樹脂組成物の製造方法
JP2022171138A (ja) 樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579611

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011357.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749799

Country of ref document: EP

Effective date: 20230904